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Abstract. We derive a minimal dynamical systems model for the Northern Hemisphere midlatitude jet dynam-
ics by embedding atmospheric data and by investigatingCE1 its properties (bifurcation structure, stability, local
dimensions) for different atmospheric flow regimes. The derivation is a three-step process: first, we obtain a
1-D description of the midlatitude jet stream by computing the position of the jet at each longitude using ERA-
Interim. Next, we use the embedding procedure to derive a map of the local jet position dynamics. Finally, we
introduce the coupling and stochastic effects deriving from both atmospheric turbulence and topographic distur-
bances to the jet. We then analyze the dynamical properties of the model in different regimes: one that gives the
closest representation of the properties extracted from real data; one featuring a stronger jet (strong coupling);
one featuring a weaker jet (weak coupling); and one with modified topography. Our model, notwithstanding its
simplicity, provides an instructive description of the dynamical properties of the atmospheric jet.

1 Introduction

Jet streams are narrow, fast-flowing westerly air currents near
the tropopause. They are a major feature of the large-scale
atmospheric circulation and modulate the frequency, sever-
ity and persistence of weather events across the extratropics
(e.g., Röthlisberger et al., 2016). Their location and inten-
sity also affects commercial aviation and shipping (Reiter
and Nania, 1964; Hadlock and Kreitzberg, 1988; Williams
and Joshi, 2013). Two types of atmospheric jets can be
identified: thermally driven subtropical jets, and eddy-driven
jets associated with baroclinic instability at the polar front.
In the Northern Hemisphere (NH), the two are not always
clearly separated (Lee and Kim, 2003), and when consider-
ing monthly or longer time averages, a single, spiral-shaped

jet structure emerges (e.g., Archer and Caldeira, 2008). In
this paper we consider a single NH jet (NHJ), rather than
attempting to separate the subtropical and eddy-driven jets
(e.g., Belmecheri et al., 2017).

Even though the climatological NHJ is a westerly flow,
it can present large meanders on synoptic timescales (e.g.,
Koch et al., 2006; Röthlisberger et al., 2016). These can
cause the local flow to become predominantly meridional or
can even determine a splitting or breaking of the jet (Haines
and Malanotte-Rizzoli, 1991). The occurrence of these large
meanders in the jet is often associated with events such as
temperature and precipitation extremes (e.g., Dole et al.,
2011; Screen and Simmonds, 2014). Although jet dynamics
are well understood in a climatological sense, our insights
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2 D. Faranda et al.: Jet stream dynamical model via embedding

into features such as jet splitting or meandering are still lim-
ited.

The dynamics of meanders and split jets has often been
framed in terms of transitions between zonal and blocked
flows since the seminal work by Charney and DeVore (1979).
Legras and Ghil (1985) and Ghil (1987) used an intermedi-
ate complexity barotropic model with dissipation forcing and
topography and observed two distinct equilibria associated
with the zonal and blocked flows. Similar mechanisms have
been proposed by Mo and Ghil (1988) and then tested in ex-
perimental facilities (Weeks et al., 2000). However, there is
no consensus about the nature of flow multistability, and a
wide range of theoretical explanations and models have been
proposed (e.g., Tung and Lindzen, 1979; Simmons et al.,
1983; Frederiksen, 1982; Faranda et al., 2016a). Moreover,
jet dynamics have been described as a manifestation of multi-
ple equilibria in asymmetrically forced flows (Hansen, 1986)
or as a result of soliton–modon structures (McWilliams et al.,
1981).

In order to advance our understanding of the jet dy-
namics, we employ a low-dimensional dynamical systems
model derived from reanalysis data. The best-known exam-
ple of a low-dimensional model for atmospheric phenom-
ena is Lorenz’ simple three-dimensional system represent-
ing some features of Rayleigh–Bénard convection (Lorenz,
1963). Thereafter, simple dynamical systems models have
been devised to study El Niño (Penland and Matrosova,
1994), ocean–atmosphere interactions (Dijkstra and Ghil,
2005), climate tipping points (Stommel, 1961; Benzi et al.,
1982), large-scale atmospheric motions (Lorenz, 1984, 1996)
and many other phenomena. The goal of these investigations
was not to provide the most realistic representation of the
relevant systems but rather to capture key emerging behav-
iors (such as chaos, intermittency, multistability). The main
drawback of those investigations was the weakness of the
connection between models and real data due to the scarcity
of observations as well as theoretical limitations. Until very
recently, there was a strong case against the use of embed-
ding techniques to derive low-dimensional models from ex-
perimental data (Letellier et al., 2006). This opposition was
motivated by a long sequence of papers that appeared be-
tween 1984 and 1991. The initial claim that low-dimensional
models for complex phenomena could be derived using a
very small numbers of variables (see e.g., Nicolis and Nico-
lis, 1984; Fraedrich, 1986) was disproved by rigorous numer-
ical computations by Grassberger (1986) and Lorenz (1991).

Progress in data quality and availability and the advent
of stochastic dynamical systems have renewed the attention
for data embedding. Recently, Faranda et al. (2017a) have
shown that embedding techniques can yield effective low-
dimensional dynamics provided that the chosen observables
reflect the symmetries of the system and that small-scale
(sub-grid) dynamics are represented as stochastic perturba-
tions. Here, we use these results to develop a minimal model
of the effective dynamics of the midlatitude jet. This is useful

to explore a range of possible behaviors beyond those dis-
played in the available data that could have appeared in past
climates and could appear again in future climates. In anal-
ogy to the model derived by Faranda et al. (2017a) for the
von Karman turbulent flow, the jet model is based on a cou-
pled map lattice (CML; see Appendix A). Each element of
the lattice reflects the dynamics of the jet at a given longi-
tude. Such a model does not require physical sub-grid terms
a priori but only if they are found to be essential to capture the
large-scale phenomenology – which we show is not the case.
We then evaluate how this model represents key dynamical
features of the jet, namely its stability, the statistics of split-
ting or breaking and the response to topographical features,
and we relate the results back to the original ERA-Interim
TS1 CE2 data.

First, we provide the details of the ERA-Interim TS2 CE3

data and of the jet detection algorithm (Sect. 2). We then
present the stochastic coupled map lattice model and com-
pute its bifurcation structure (Sect. 3). Next, we introduce
some instantaneous dynamical indicators (Sect. 4) and use
them to relate the conceptual model to more complex climate
models and reanalysis data (Sect. 5). Finally, we highlight the
open questions our results can answer and the new questions
they pose (Sect. 6).

2 Data and methods

2.1 ERA-Interim data and jet position algorithm

The analysis is based on the European Centre for Medium
Range Weather Forecasts’s ERA-Interim (Dee et al., 2011).
We consider daily data with a 1◦ horizontal resolution over
the period 1979–2016.

The jet position is diagnosed through a modified version
of the approach by Woollings et al. (2010). We take daily
mean wind speed averaged over 200–400 hPa and apply a
10 d TS3 low-pass Lanczos filter (Duchon, 1979). We then
identify the latitudinal position of the jet at every longitude
as the location of the strongest wind over the band 15–75◦ N.
This approach is intended to provide a “raw” measure of the
jet variability. We then consider the longitude and time de-
pendence of the latitude of the jet to monitor its waviness.

We define an index of large jet meanders, or breaks (break-
ing index, BRI), as the daily number of meridional variations
in jet position of more than 10◦ of latitude across adjacent
longitude grid points, except at longitude 0. The analysis has
been repeated for BRI thresholds between 5 and 15◦, with no
significant qualitative differences.

Figure 1 shows a snapshot of the jet position on 4 Febru-
ary 1979, together with the time series of the daily jet po-
sition recorded in 1979 at longitude 120◦W. An animation
of the jet location for the year 1980 is provided as a supple-
mentary video. Both the time series and the snapshot show
large jumps in the jet position. A qualitative analysis of the
jet position data suggests that the jet fluctuates around a
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D. Faranda et al.: Jet stream dynamical model via embedding 3

Figure 1. Snapshot of the jet position extracted from the ERA-
Interim data set on 4 February 1979 and time series of the jet posi-
tion for the year 1979, recorded at longitude 120◦W.

central latitude (Central Jet, CJ) and seldom shifts to more
northerly (NJ) or southerly (SJ) latitudes.

In order to embed the data and derive the effective maps
of the dynamics, we remove the seasonal cycle from the data
by subtracting, longitude by longitude, the average merid-
ional position for each calendar day and dividing by the stan-
dard deviation. For the deseasonalized data, the dimension-
less threshold for the computation of theCE4 BRI correspond-
ing to about 10◦ latitude is |x|> 1.

2.2 Local dynamical systems metrics

Our analysis leverages two recently developed dynamical
systems metrics, namely the local dimension of the attrac-
tor d and the stability or persistence of phase-space trajec-
tories θ−1. Instantaneity in time corresponds to locality in
phase space, such that a value of d and θ−1 can be computed
for a given variable (in our case the jet position data) at ev-
ery time step. d is a proxy for the system’s active number of
degrees of freedom. It provides information on how the sys-
tem can reach a given state and how it can evolve from such
state. θ−1 describes the persistence of a state in time, thus
providing complementary information to d.

2.2.1 Local dimension

The local dimension is estimated by making use of extreme
value statistics applied to Poincaré recurrences. The Freitas
et al. (2010) theorem, modified by Lucarini et al. (2012),
states that the probability of entering a hyperball with a small
radius centered on a state ζ on a chaotic attractor obeys a
generalized Pareto distribution (Pickands III, 1975). In or-
der to compute this probability empirically, we first calculate
the series of distances dist(x(t),ζ ) between the point on the
attractor ζ and all other points x(t) on the trajectory. This
series is transformed via the distance function:

g(x(t))=− log(dist(x(t),ζ )), (1)

such that close recurrences of ζ correspond to large values
of g(x(t)) (Collet and Eckmann, 2009). Thus, the probabil-
ity of entering a small hyperball around ζ is transformed into
the probability of exceeding a high threshold s(q), where q is
a percentile of the series g(x(t)) itself. In the limit of an in-
finitely long trajectory, it can be shown that the choice of
g(x(t)) in Eq. (1) locks this probability into the exponential
member of the generalized Pareto distribution:

Pr(z > s(q))' exp
[
−ϑ(ζ )

(
z−µ(ζ )
β(ζ )

)]
, (2)

where z= g(x(t)) and µ and β (obtained via fitting) depend
on the point ζ . These are the location and the scale param-
eters of the distribution. Remarkably, β(ζ )= 1/d(ζ ), where
d(ζ ) is the local dimension around the point ζ . This result has
been recently applied to a range of atmospheric and oceanic
fields (e.g., Faranda et al., 2017c, b; Messori et al., 2017;
Faranda et al., 2019a, b). In this paper, we use the quan-
tile 0.975 of the series g(x(t)) to determine q. Our results are
robust with respect to reasonable changes in this quantile.

2.2.2 Local persistence

Extreme value statistics also allow estimating the persis-
tence of a given state ζ , by inspecting the temporal evolu-
tion of the dynamics around it. A measure of persistence
around ζ can be obtained from the mean residence time
of the trajectory within the neighborhood of ζ . To quan-
tify this, we employ the so-called extremal index ϑ (Fre-
itas et al., 2012; Faranda et al., 2016b): an adimensional
parameter 0< ϑ(ζ )< 1 which can be interpreted as the in-
verse of the mean residence time. We can then compute
θ−1(ζ )= dt/ϑ(ζ ), where dt is the time step of our data.
Heuristically, if the ith visit to the neighborhood of ζ lasts τi
consecutive time steps and N such visits are made in total,
then θ−1

≈ (1/N )
∑
i τi . In practice, instead of this naive es-

timator, we compute the extremal index using the likelihood
estimator of Süveges (2007). θ = 0 corresponds to a stable
fixed point of the dynamics, so that the trajectory resides an
infinite amount of time in the neighborhood of ζ . θ = 1 cor-
responds to a trajectory residing in the neighborhood of ζ for
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4 D. Faranda et al.: Jet stream dynamical model via embedding

only one time step per visit. The estimate of θ is thus sen-
sitive to the dt used. If dt is too large, the time dependence
structure is unresolved and θ will be close to 1. Conversely,
if dt is too small, θ will be close to 0. Faranda et al. (2017c)
observed that θ varies between 0.3 and 0.5, when dt = 1 day,
for sea-level pressure fields over the North Atlantic. In this
work, we use the same dt .

3 Derivation of the lattice jet model

3.1 Model framework

While not directly issued from the Navier–Stokes equa-
tions, our framework builds on concrete physical hypothe-
ses, namely that (i) the physics of the jet is the same at ev-
ery longitude and is only slightly modified by the presence
of topographical constraints, (ii) the jet can experience sud-
den breaks and shifts from its central position (CJ) to north-
ern (NJ) or southern latitudes (SJ), (iii) the jet must propa-
gate to the west, and (iv) smaller-scale phenomena, such as
turbulence and baroclinic waves, will be introduced in the
model only if necessary to reproduce the effective dynamics
in the data. This latter point is fundamentally different from
the philosophy of direct numerical simulations.

We construct our model starting from the local time series
of the non-dimensionalized jet position x measured at each
longitude i and time t . We use the simplest possible embed-
ding procedure (see Appendix B), which consists of plotting
the return map x(i)

t vs. x(i)
t+1 (an example is shown in Fig. 2)

and searching for a function f (i) such that x(i)
t+1 = f

(i)(x(i)
t ).

The first thing to verify is that the same functional form f (i)

may be used at all longitudes i. This is equivalent to asking
that there is only one dynamic driving the jet independently
of the location. With the choice

f (i)(x)=


−
A(A+x)
A−c

+ r (i), x <−c,

sinh(βx)+ r (i), −c ≤ x ≤ c,
A(A−x)
A−c

+ r (i), c < x,

(3)

where we have dropped the dependencies of x for clarity, the
parameters can be fixed at all longitudes as β = 0.75, A= 3,
and c = sinh−1(A)/β ≈ 2.4246. Even though the functional
form of f (i) is independent of longitude, a dependence on
i remains in the form of the parameter r (i), which represents
the effects of topography in terms of spatial inhomogeneities
of the local dynamics. As a first-order approximation, we
consider only the difference between land and ocean and as-
sign one of two discrete values to each r (i). The choice of the
function f (i) is not unique; however, the one we propose here
is a suitable option that satisfies hypotheses (i) and (ii) above.
In order to reproduce the eastward propagation of the jet (hy-
pothesis iii), we introduce the coupled map lattice (CML; see
Kaneko, 1983, and Appendix A):

Figure 2. The average return map extracted from the data at longi-
tude i = 1. This is constructed by coarse-graining the state space at
i = 1 intoM partitions L(1)

k
(k = 1, 2, . . . ,M). We then define x(1,k)

as the midpoint of the partition L
(1)
k

, and Y (1,k)
= {x

(1)
t |x

(1)
t−1 ∈

L
(1)
k
} (t = 2, 3, . . . ). The black dots represent (x(1,k), 〈Y (1,k)

〉) for
k = 1, 2, . . . , 500, where 〈·〉 is the average over the elements of
Y (1,k), computed based on the observed data. The red line repre-
sents the approximated average return map 〈Y (1,k)

〉 = f (1)(x(1,k))
when |x| ≤ c. In the region |x|> c, we assume linear reflection ef-
fects. As a result, we have the return map f (1) in Eq. (3).

x
(i)
t+1 =(1− ε)f (i)

(
x

(i)
t

)
+ εf (i−1)

(
x

(i−1)
t

)
,

(i = 1, 2, . . . , N; t = 1, 2, . . .). (4)

With this geometry, the dynamics are divided into N = 360
cells. Periodic boundary conditions are applied at N = 360.
The dynamics in each cell i are time-independent but per-
turbed by the cell i−1 (i.e., its neighbor to the west) with in-
tensity ε, which we estimate and scale based on the observed
data. This further implies that our reference length-scale in
the model corresponds to that of 1◦ longitude in the midlati-
tudes, namely of the order of 100 km.

3.2 Sub-grid feedbacks to jet dynamics

If we perform a numerical simulation of Eq. (4), the dynam-
ics are fixed to one of the three states (CJ, SJ, NJ), depending
on the value of ε. This means that the role of small-scale per-
turbations in triggering the transitions between the states is
fundamental. We therefore have to include an additive noise
term ξ

(i)
t in Eq. (4):

Earth Syst. Dynam., 10, 1–13, 2019 www.earth-syst-dynam.net/10/1/2019/



D. Faranda et al.: Jet stream dynamical model via embedding 5

x
(i)
t+1 =(1− ε)f (i)

(
x

(i)
t

)
+ εf (i−1)

(
x

(i−1)
t

)
+ ξ

(i)
t ,

(i = 1, 2, . . . , N; t = 1, 2, . . .). (5)

The noise is a fundamental ingredient for the breaking of the
jet and the transition between zonal and blocked states, as
shown in tank experiments and numerical simulations (Ja-
coby et al., 2011). Physically, noise arises from key sub-grid
processes that affect the jet dynamics, such as convection
or the interaction between the jet stream and gravity waves
(Williams et al., 2003, 2005). Translated to our model with a
reference spatial scale of the order of 100 km these phenom-
ena, ranging from a few meters to a few kilometers, imply a
perturbation in the range 10−4 < ν < 10−3. Several sub-grid
parametrization of turbulence exists: the seminal works of
Kraichnan (1961) and Thomson (1987) showed that if large
scales are represented by a deterministic term, a single ran-
dom variable can drive the turbulence term. This means that
Langevin model representations are appropriate to describe
turbulent eddies (McComb, 1992; Frederiksen and Davies,
1997). Following these ideas, we model ν(i)

t ∈ [−δ, δ] as a
uniform random variable.

However, considering small-scale turbulent disturbances
to the jet dynamics is not sufficient to reproduce the block-
ing and breaking of the jet. Even if the introduction of ν as a
stochastic term can account for the direct Kolmogorov turbu-
lent cascade (Kolmogorov, 1941), the jet dynamics are also
driven by the effect of an inverse cascade transferring en-
ergy to large scales via baroclinic waves (Held and Larichev,
1996).

Baroclinic activity is associated with extratropical cy-
clones and anticyclones, on scales of the order of 103 km.
These can affect the jet position by several degrees of lat-
itude. Again, there is no unique way to model baroclinic
waves in our framework. We follow the rationale of multi-
scale parametrizations as they can be theoretically justified
(e.g., Wouters and Lucarini, 2013; Kitsios and Frederiksen,
2019) and are numerically efficient (Faranda et al., 2014).
The simple introduction of another source of noise η(i), act-
ing at intermediate scales (i.e., between the scale of the jet
and the scale of turbulence), is enough to obtain reliable jet
breaking dynamics (see Sect. 4.1). The simplest choice for
η

(i)
t ∈ [−µ, µ] is a block noise taking the same value over bl

cells, where bl is the one-dimensionalized size of cyclones
or anticyclones (see Appendix B) and obeying the uniform
distribution. Another choice for modeling baroclinic distur-
bances to the jet could be to introduce a second determin-
istic equation, weakly coupled with the jet position. How-
ever, this choice requires additional hypotheses and parame-
ters and does not emerge naturally from the embedding pro-
cedure used to derive the dynamics of x.

The minimal sub-grid parametrization can thus be written
in the following form:

ξ
(i)
t = ν

(i)
t + η

(i)
t , (6)

Figure 3. Schematic representation of noise contributions to the
CML model (Eqs. 3 and 6): ν represents local turbulent distur-
bances, r topographical features, η baroclinic eddies and i longi-
tudinal positions.

where ν(i)
t and η(i)

t model the effects of small turbulent distur-
bances and baroclinic eddies, respectively (Fig. 3). The noise
terms are discussed further in Appendix B.

3.3 Local dynamics

Owing to the unidirectional coupling in our model and to
the large N , the local dynamics can be approximated by a
nonautonomous dynamical system:

x
(i)
t+1 ' f

(i)
(
x

(i)
t

)
+p

(i)
t , (7)

where a nonautonomous external force p(i)
t is given by

p
(i)
t = ε

[
f (i−1)

(
x

(i−1)
t

)
− f (i)

(
x

(i)
t

)]
+ ν

(i)
t + η

(i)
t . (8)

When |p(i)
t | → 0, the local dynamics has a stable fixed point

at x ≈ 0 and two unstable chaotic sets near x ≈±2. When
p

(i)
t > 0, the resulting perturbed dynamics may exhibit es-

cape behavior from the fixed point to the chaotic regions with
positive Lyapunov exponents. Figure 4 shows the bifurca-
tion diagrams as a function of κ over land (r (i)

=−0.02) and
ocean (r (i)

= 0; see Appendix B) obtained by approximating
the external perturbation p(i)

t as a random variable obeying
the uniform distribution in [−κ , κ]. They both indicate a bi-
furcation to chaotic and partially chaotic behavior (Sato et al.,
2018). The different value of r (i) over land gives rise to an
asymmetry in the invariant sets, namely the sets delimiting
the accessible region of the dynamics with respect to all pos-
sible external perturbations p(i)

t . In Fig. 4, these dynamically
reachable regions are depicted in gray, while a realization of
the dynamics is depicted by the black dots. With r (i)

=−0.02
over land and 0.1574< κ < 0.1985, there is a small chance

www.earth-syst-dynam.net/10/1/2019/ Earth Syst. Dynam., 10, 1–13, 2019



6 D. Faranda et al.: Jet stream dynamical model via embedding

Figure 4. Bifurcation diagrams as a function of κ for (a) land (r(i)
=−0.02) and (b) ocean (r(i)

= 0.0). The gray regions delimit the
accessible region of the dynamics with respect to all possible external forcings. A realization of the dynamics is depicted by the black dots.
For r(i)

=−0.02 and 0.1574< κ < 0.1985, there is a small chance of reaching SJ positions and no chance of reaching NJ positions.

of reaching SJ positions and no chance of reaching NJ posi-
tions. This is reflected in the skewed distribution of x(i)

t . For
the sake of conciseness, we do not report the detailed bifur-
cation analysis of the local dynamics here. A brief analysis
of the global dynamics is presented in Sect. 5.

4 Validation of the model against ERA-Interim data

In this section we compare the ERA-Interim deseasonalized
jet position data with numerical simulations of our model.
In order to have the same statistical sample as for the re-
analysis, we simulate 37 years of daily snapshots of the jet
position. The best fit of our model to the data is obtained,
by a trial and error procedure, for the parameters µ= 0.6,
bl= 15, ε = 0.33, κ = 0.5,µ= 0.5 and δ = 10−4. We further
compare the results of model runs containing all noise terms
with runs where individual terms are suppressed: coupling
(ε = 0), topography (r = 0) and baroclinic waves (bl= 1).

4.1 Spatiotemporal dynamics

We first consider the latitudinal distribution of the yearly me-
dian jet positions at each longitude (dots in Fig. 5) and their
interannual mean (solid lines in Fig. 5). The ERA-Interim
data set (Fig. 5a) presents a negative interannual mean jet
position at almost all longitudes, with noticeable zonal asym-
metries and a marked interannual variability. The best model
run (Fig. 5b) captures both the interannual variability and,
thanks to the term r , the longitudinal variations in average
location. A run without coupling (ε = 0) is shown in Fig. 5c).
In this simulation the dynamics are local, except for the pres-
ence of block noise, resulting in a discontinuous jet profile.
Unlike the ERA-Interim data, the run with no geographyCE5

(Fig. 5d) has median values which are roughly symmetric
around zero. Finally, the run with suppressed baroclinic ac-
tivity (Fig. 5e) has a smaller interannual variability than the

ERA-Interim data and sharp changes in the median values
of x following the geographic constraints.

We next consider the NHJ’s shifts from CJ towards NJ or
SJ positions. We binarize the dynamics by the detecting all
the events such that |x|> 1. Note that this corresponds to
breaks in the jet position with the same threshold defined by
the BRI, although there is not exact correspondence. We then
assign “0” to all the observations with |x|< 1 (CJ) and “1” to
all the others (NJ or SJ). This procedure, known as coding, is
widely used in dynamical systems analysis to identify differ-
ent dynamical phases in complex systems (Kaneko, 1990).
The so-obtained binary spatiotemporal dynamics are shown
in Fig. 6a–e for all the previously described runs. In the ERA-
Interim data (Fig. 6a), the switch from CJ to NJ and SJ phases
occurs in clusters displaying a characteristic longitudinal ex-
tent and temporal persistence. There is also some indication
of a westerly propagation of the clusters. The best model fit
captures the qualitative aspects of this behavior, although the
longitudinal coherence is weaker (see Sect. 4.2 below). In
the remaining model simulations, the suppression of differ-
ent noise terms alters either the cluster size or the westerly
propagation of the clusters (Fig. 6c–e). A quantitative analy-
sis of the cluster size spectra is presented in Fig. 6f for space
clusters and Fig. 6g for time clusters. There is a clear power
law behavior, reminiscent of a multiscale structure (Schertzer
et al., 1997). This is coherent with the claim that the under-
lying jet dynamics are turbulent, with energy at all scales.
Despite its simplicity, our model reproduces this power law
behavior. The theoretical reasons are nontrivial and can be
related to the possibility of building turbulent cascades start-
ing from simple Langevin equations (Wouters and Lucarini,
2013; Faranda et al., 2014). We underline here the neces-
sity of adding ε and having bl> 1. Indeed when ε = 0, the
spatial cluster spectrum consists of discrete peaks with the
energy concentrated at precise scales. These are a resonance
of the block noise size. When instead we impose bl= 1, we
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Figure 5. Single-year median location (dotted points) and multiyear average of medians (solid lines) of the meridional jet position for ERA-
Interim (a) and model (b–e) data. (b) Best-fit model, obtained with µ= 0.6, bl= 15, ε = 0.33 and δ = 0.5× 10−4; (c) as in (b) but with
ε = 0; (d) as in (b) but with r = 0; (e) as in (b) but with bl= 1. The simulations consist of 37 years of daily jet positions.

still recover a power law behavior, but the slope for the tem-
poral clustering strongly deviates from that observed in the
ERA-Interim data.

4.2 Dynamical indicators

We further assess our model by means of the d and θ met-
rics described in Sect. 2.2, computed on both ERA-Interim
data and the coupled map lattice. We also compare here the
statistics of the spatial breaks of the jet, detected via the in-
dicator BRI.

Figure 7 show the box plots of d (Fig. 7a), θ (Fig. 7b)
and the BRI (Fig. 7c) for every day in the data set. The
ranges of values of d and θ for the ERA-Interim data re-
semble closely those found for sea-level pressure fields over
the Northern Hemisphere (Faranda et al., 2017b). This sup-
ports the claim that the position of the jet is indicative of
large-scale features of the NH atmospheric circulation. Sim-
ilar claims about the relevance of low-dimensional projec-
tions in describing the midlatitude atmospheric circulation
are presented by Madonna et al. (2017). The model runs
can produce average dimensions comparable to those ob-

www.earth-syst-dynam.net/10/1/2019/ Earth Syst. Dynam., 10, 1–13, 2019
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Figure 6. (a–e) Space–time daily representation of the binarized jet dynamics: 1 (black) corresponds to a NJ or SJ shift (|x(t)|> 1) and
0 (white) corresponds to a CJ position. The results are for the ERA-Interim data (a) and model runs (b–e). The latter are the same as in Fig. 5.
Space (f) and time (g) cluster spectra for the binarized ERA-interim data (black) and the different model runs (colors).

served in the ERA-Interim data, except for the bl= 1 case.
There, the fragmented dynamics lead to a much higher di-
mension. This is consistent with the spatiotemporal diagrams
shown in Fig. 6. The models’ inverse persistence θ is slightly
larger than that observed in reanalysis but still of the order of
2 d. Here we can clearly see the effect of the noise suppres-
sion (ε = 0 and bl= 1) in modifying the dynamical proper-
ties by leading to lower persistence. Finally, we remark that
the number of breaks is correlated to the local dimension.
This result is consistent with Faranda et al. (2017c), who
found that high d matches blocking-like atmospheric config-
urations in the North Atlantic region. For the limiting bl= 1
case, the BRI is also correlated with θ : the more breaks, the
lower the persistence of the flow.

5 Bifurcation diagram and jet regimes

The bifurcation diagram in Fig. 8 is constructed by plotting
the empirical density ρ(x) of the jet position at all longi-
tudes as a function of ε. The vertical gray line corresponds
to the value of ε that best fits the ERA-Interim data. The di-
agram would look symmetric with respect to x = 0 if r = 0
everywhere, but the addition of geography CE6 via r (i) al-
ters the relative proportion of time spent in SJ versus NJ.
Specifically, our asymmetric land–ocean distribution implies
a southward shift of the average CJ position with increasing

coupling. This is reminiscent of the behavior in the stochastic
bifurcation obtained from the approximated local dynamics
(Fig. 4). By analyzing the bifurcation structure of the concep-
tual model as a function of the coupling coefficient – which
mimics the coherence of the jet – we identify three behaviors:
(i) a strong and uniform jet where large meridional excur-
sions in the jet location are relatively rare events (ε < 0.35),
which is close to the jet dynamics as inferred from the ERA-
Interim data; (ii) a state with sharp meridional excursions
in which the jet is very unstable and on average shifted far
to the south (0.6< ε < 0.9); and (iii) an intermediate state
of transition between the two. These jet regimes are broadly
consistent with those obtained in idealized atmospheric sim-
ulations (Lachmy and Harnik, 2016; Son and Lee, 2005), al-
though here we do not delve into the physical mechanisms
underlying the different behaviors. It is also noteworthy that
our model qualitatively reproduces a southern jet configura-
tion, even though we provide it with a single NHJ and do not
distinguish between eddy-driven and subtropical jets.

6 Conclusions

We have derived a minimal model of the jet stream position
dynamics, based on a stochastic coupled map lattice, by em-
bedding data extracted from ERA-Interim. This procedure
innovates over earlier studies (e.g., Faranda et al., 2017a) by
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Figure 7. Box plots of the local dimension d (a), inverse persis-
tence θ (b) and breaking index BRI (c) for the ERA-Interim data
and four numerical simulations as in Fig. 5. In each box, the central
mark is the median, the edges of the box are the 25th and 75th per-
centiles, the whiskers extend to the most extreme data points not
considered outliers, and outliers are plotted individually.

making use of a coupled map lattice derived from a local
embedding of the data and could be adapted to systems with
several degrees of freedom. Instead of embedding the data
of a global observable in a high-dimensional space, we have
constructed the return map for the local position of the jet and
then added, via coupling and noise, the physical ingredients
identified in previous studies as drivers of the jet dynamics.
The conceptual model is then validated and tuned using dy-
namical indicators of the jet’s dimension and persistence in
the reanalysis data.

Future analyses could apply this approach to the Southern
Hemisphere, where the role of topography is less important
than in its northern counterpart. This would allow us to bet-
ter constrain the influence of topography on the dimension–
persistence diagrams. Another possibility would be to use the
low-dimensional model to build a surrogate data set of the
jet positions and then apply this to atmospheric analogues,
so as to construct realistic atmospheric dynamics. Finally, it
would be interesting to study whether further projections of
the atmospheric dynamics to a lower-dimensional space are
possible, beyond the model developed here, and to test possi-
ble relations between different atmospheric blocking indices
and the BRI defined here.

Figure 8. Bifurcation diagram of the global dynamics obtained for
µ= 0.6, bl= 15, 0< ε < 1 and δ = 0.5× 10−4. The diagram rep-
resents the density of states ρ(x) obtained by varying ε. The vertical
gray line indicates the value used as best fit to the ERA-Interim data.

The analysis we have conducted can, however, already an-
swer some of the questions left open in Faranda et al. (2017b)
and Madonna et al. (2017) concerning the possibility of re-
ducing the complex midlatitude circulation dynamics to low-
dimensional representations given by blocking indices or
conceptual models. The fact that the dimension–persistence
diagram of our minimal model qualitatively matches many
features obtained for the ERA-Interim jet position and sea-
level pressure fields shows that a substantial part of the dy-
namics projects along a single line (the jet position). This
may explain why previous investigations observed relatively
low dimensions when considering the full sea-level pressure
fields (Faranda et al., 2017c, b). It also suggests that breaks
in the jet are responsible for higher dimensions.

Data availability. The data sets analyzed in this paper are avail-
able in the ERA-Interim repository: https://www.ecmwf.int/en/
forecasts/datasets/reanalysis-datasets/era-interim (last access: Au-
gust 2019).
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Appendix A: Coupled map lattice

A coupled map lattice (CML; Kaneko, 1983) is given by

x
(i)
t+1 =(1− ε)f

(
x

(i)
t

)
+
ε

2

[
f
(
x

(i−1)
t

)
+ f

(
x

(i+1)
t

)]
,

(i = 1, 2, . . . , N; t = 1, 2, . . .),
(A1)

where ε ∈ [0, 1], x(i)
t ∈ R and f (x) : R−→ R. For our jet

dynamics, we adopt the open flow model, which is a class of
CMLCE7 with unidirectional coupling (Kaneko, 1985):

x
(i)
t+1 =(1− ε)f

(
x

(i)
t

)
+ εf

(
x

(i−1)
t

)
,

(i = 1, 2, . . . , N; t = 1, 2, . . .). (A2)

The CML is a phenomenological model to study complex
spatiotemporal dynamics in systems with large numbers of
degrees of freedom. The idea is to discretize the dynamics
in space and time, while capturing the global phenomenol-
ogy of the system. CMLs have been successfully applied to
processes such as turbulence in thermal convection (Yanagita
and Kaneko, 1993) and turbulent puff-in-pipe flow (Avila and
Hof, 2013). It is convenient for us to model the jet dynamics
leveraging the CML approach because we can extract a local
one-dimensional map from the observed time series.

Appendix B: Average return map and noise

To extract the local jet dynamics, we construct an average
return map. We first coarse-grain the state space into M par-
titions L(i)

k (k = 1, 2, . . . ,M) and let x(i,k) be the midpoint
of L(i)

k . Then, we construct a set Y (i,k)
= {x

(i)
t |x

(i)
t−1 ∈ L

(i)
k }

(t = 2, 3, . . . ) and a return map f (i) via the return plot of
(x(i,k), 〈Y (i,k)

〉), where 〈·〉 is the average over the elements
of Y (i,k) at each longitude i and at each partition k:

〈Y (i,k)
〉 = f (i)

(
x(i,k)

)
, i = 1, 2, . . . , N, k = 1, 2, . . . , M, (B1)

where |x| ≤ c. In the region |x|> c, we assume linear re-
flection effects. As a result, we have the return map f (i) in
Eq. (3). Figure 2 illustrates the construction for i = 1 and
M = 500.

An important ingredient of the jet dynamics is the pres-
ence of topographic obstacles to the midlatitude zonal flow.
Mountain ranges and land–sea boundaries cause meridional
deviations in the mean jet location (Tibaldi et al., 1980). This
inhomogeneity can be modeled via a parameter r (i) that mim-
ics this “spatial noise”. Since the topography is at most a few
kilometers in height, this translates to a perturbation of the
order of 10−3 in the model. Reasonable geographical con-
straints are therefore r (i)

=−0.02 (i ∈ land) and r (i)
= 0.0

(i ∈ ocean), where “land” spans the ranges 0≤ i < 161 and
239≤ i < 301 and “ocean” spans the ranges 161≤ i < 239
and 301≤ i < 360. The negative sign for the jet shifts over
land is justified by the negative median values of the ERA-
Interim jet position anomalies over land (compare Fig. 5a
and b with Fig. 5d where no topography is present).

As discussed in Sect. 3.2, noise is a fundamental ingredi-
ent in the jet dynamics. The “turbulent noise” term ν relates
to physical phenomena in the range of a few meters to a few
kilometers, implying a perturbation in the range 10−4 < ν <

10−3, where ν is a random variable obeying the uniform dis-
tribution. The second noise term, η, relates to baroclinic ac-
tivity, and we model it as a block noise taking the same value
over bl blocks (where bl is the one-dimensionalized size of
cyclones or anticyclones in our model) with an amplitude of
the order of 1. The latter value is determined empirically as
it is an indicative magnitude of the large shifts midlatitude
baroclinic systems can induce in the jet. To determine a real-
istic length for bl, we reason as follows: given that our model
has a reference scale of about 100 km, and assuming a typ-
ical scale for extratropical cyclones of about 3000 km, we
then have that bl≈ 30 blocks. However, the perturbations are
associated with the cyclone radius rather than diameter: up-
stream of the cyclone, the jet will mostly be deviated south-
wards, while downstream of the cyclone, the jet will mostly
be deviated northwards. We therefore take the block pertur-
bation to be of the size bl= 15 blocks.

Owing to the unidirectional coupling in our lattice
jet model and to the large N , the local dynamics can
be approximated by a nonautonomous dynamical system
x

(i)
t+1 ' f

(i)(x(i)
t )+p(i)

t , where the external force p
(i)
t =

ε[f (i−1)(x(i−1)
t )− f (i)(x(i)

t )] + ν(i)
t + η

(i)
t . Assuming that the

time averages 〈f (i−1)(x(i−1)
t )−f (i)(x(i)

t )〉, 〈ν(i)
t 〉 and 〈η(i)

t 〉 are
all 0 by symmetry, we have 〈p(i)

t 〉 ≈ 0. Thus, we recover the
average return map given in Eq. (B1).
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Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-10-1-2019-supplement.
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