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Abstract. Interannual variations in air-sea fluxes of carbon dioxide (CO2) impact the global carbon cycle and climate system,

and previous studies suggest that these variations may be predictable in the near-term (from a year to a decade in advance).

Here, we quantify and understand the sources of near-term predictability and predictive skill in air -sea CO2 flux on global

and regional scales by analyzing output from a novel set of retrospective decadal forecasts of an Earth system model. These

forecasts exhibit the potential to predict year-to-year variations in the globally-integrated air-sea CO2 flux several years in5

advance, as indicated by the high correlation of the forecasts with a model reconstruction of past CO2 flux evolution. This

potential predictability exceeds that obtained solely from foreknowledge of variations in external forcing or a simple persistence

forecast, with the longest-lasting forecast enhancement in the subantarctic Southern Ocean and the northern North Atlantic.

Potential predictability in CO2 flux variations are largely driven by predictability in the surface ocean partial pressure of

CO2, which itself is a function of predictability in surface ocean dissolved inorganic carbon and alkalinity. The potential10

predictability, however, is not realized as predictive skill, as indicated by the moderate to low correlation of the forecasts

with an observationally-based CO2 flux product. Nevertheless, our results suggest that year-to-year variations in ocean carbon

uptake have the potential to be predicted well in advance, and establish a precedent for forecasting air-sea CO2 flux in the near

future.

1 Introduction15

Observations collected over the past few decades indicate that the ocean has absorbed 160 Pg of excess carbon from the at-

mosphere since the beginning of the industrial revolution (Le Quéré et al., 2018); projections from climate models suggest

that ∼540 Pg of excess carbon will reside in the ocean by the end of the century (under the RCP8.5 emission scenario;

Ciais and Sabine, 2013). Accurate projections of past and future air-sea CO2 flux are important for quantifying and under-

standing the changing global carbon cycle and for estimating future global climate change (Le Quéré et al., 2018).20

Superimposed on the background of long-term changes in ocean carbon uptake is substantial variability on global and

regional scales (McKinley et al., 2017; Landschützer et al., 2016). The recent literature highlights ocean carbon uptake vari-

ability that manifests on timescales of years to decades. Interannual variability in globally-integrated air-sea CO2 flux has

been estimated to have a standard deviation of 0.31 Pg C yr−1 and 0.2 Pg C yr−1 from observationally-based products

(Rödenbeck et al., 2015) and ocean biogeochemical models (Wanninkhof et al., 2013), respectively, which is on the order25
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of 10% of the global-mean CO2 flux (2.3 Pg C yr−1). A global extrapolation of sparse pCO2 observations suggests that there

is large variability on decadal timescales (Landschützer et al., 2016). On regional scales, Southern Ocean studies have high-

lighted recent air-sea CO2 flux variability on interannual (Wetzel et al., 2005; Lenton and Matear, 2007; Lovenduski et al.,

2007, 2013, 2015a; Verdy et al., 2007; Wang and Moore, 2012; Hauck et al., 2013; Lenton et al., 2013) and decadal (Fay et al.,

2014; Landschützer et al., 2015; Munro et al., 2015) timescales. In the North Atlantic, high air-sea CO2 flux variability has5

been linked to the North Atlantic Oscillation (Thomas et al., 2008; Ullman et al., 2009) and the Atlantic Multidecadal Oscilla-

tion (Metzl et al., 2010; Breeden and McKinley, 2016), whose spectra peak at interannual and multi-decadal timescales.

Near-term predictions of the climate system (so-called “decadal predictions") are forecasts of climate variability and change

on annual, multi-annual, and decadal timescales from global climate models (Meehl et al., 2014). These forecasts are sen-

sitive to both initial conditions (e.g., the atmospheric temperature used to initialize the forecasts) and external forcing (e.g.,10

the long-term increase in atmospheric temperature associated with increasing greenhouse gas concentrations; Kirtman et al.,

2013). Recent publications highlight near-term predictability and predictive skill in regional surface air temperature, precip-

itation, Arctic sea ice concentration, oceanic heat content, and the large-scale Atlantic Ocean circulation (Smith et al., 2007;

Keenlyside et al., 2008; Meehl et al., 2009; Robson et al., 2012; Yeager et al., 2012; Meehl et al., 2014; Yeager et al., 2015;

Boer et al., 2016; Yeager and Robson, 2017). As prior literature has established a strong link between air-sea CO2 flux and15

variability in the physical climate system on these timescales (e.g., Resplandy et al., 2015; McKinley et al., 2017), it follows

that air-sea CO2 flux may be predictable in the near-term.

Here, we analyze a novel set of decadal prediction simulations from an Earth System Model (ESM) to investigate near-term

predictions of global and regional ocean carbon uptake. On annual to decadal timescales, ESM predictions of the past (so-

called “retrospective forecasts") are used to assess both predictability and predictive skill in air-sea CO2 flux. Predictability20

is the potential to predict the system, based on forecast verification against a model reconstruction. Predictive skill is based

on forecast verification against observations. We further assess the role of external forcing in the predictability of CO2 flux

by analyzing a set of uninitialized forecasts run under identical external forcing. By analyzing forecasts of the past, our study

establishes a precedent for making skillful predictions of ocean carbon uptake in the near future.

2 Community Earth System Model Decadal Prediction System25

Our primary numerical tool is the Community Earth System Model Decadal Prediction Large Ensemble (CESM-DPLE;

Yeager et al., 2018). In this section, we describe the model and provide details about forecast initialization, ensemble genera-

tion, and drift correction. Importantly, we note that this is the first CESM decadal prediction system to include a representation

of ocean biogeochemistry. CESM-DPLE uses the same code base as the CESM Large Ensemble (CESM-LE; Kay et al., 2015).

The CESM is a state-of-the-art coupled climate model consisting of atmosphere, ocean, land, and sea ice component models30

(Hurrell et al., 2013; Danabasoglu et al., 2012; Lawrence et al., 2012; Hunke and Lipscomb, 2008). The ocean physical model

(version 2 of the Parallel Ocean Program; Danabasoglu et al., 2012) has nominal 1◦ horizontal resolution and 60 vertical

levels. The biogeochemical ocean model represents the lower trophic levels of the marine ecosystem (Moore et al., 2004,
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2013), full carbonate system thermodynamics (Long et al., 2013), air-sea CO2 fluxes, and a dynamic iron cycle (Doney et al.,

2006; Moore and Braucher, 2008).

CESM-DPLE consists of a set of initialized, fully-coupled integrations of CESM that adhere to the protocols for Component

A of the Decadal Climate Prediction Project (Boer et al., 2016). We use the CESM-DPLE system (Yeager et al., 2018) that

builds on previous CESM decadal prediction efforts (Yeager et al., 2012, 2015) with some modifications (including the addition5

of ocean biogeochemistry, as noted above). CESM-DPLE initiates 40 decade long “forecasts" of the Earth system each year

from 1954-2015; the start date for each forecast is November 1, in accordance with the DCPP protocols. Each of the model

integrations are subject to a common set of historical external forcings (e.g., greenhouse gas concentrations).

The ocean physical and biogeochemical initial conditions for the DP experiments are generated from a forced ocean - sea

ice simulation of the CESM. That is, a simulation of the ocean and ice components of the CESM that has been forced with10

fluxes computed from the observed atmospheric state over 1948-2015. This simulation is therefore meant to reconstruct the

historical evolution of the ocean physical and biogeochemical state over the 1948-2015 period (Figure 1). Hereafter, we refer

to this simulation as the “reconstruction". Initial conditions from the atmosphere and land components of the DP experiments

are obtained from a 20th century simulation of the CESM Large Ensemble (Kay et al., 2015).

Ocean biogeochemistry in the version of the CESM used for CESM-DPLE has been extensively validated in the literature15

(Long et al., 2016; Lovenduski et al., 2016; McKinley et al., 2016; Krumhardt et al., 2017; Freeman et al., 2018). In particular,

the simulated mean, variability, and trends in surface ocean pCO2 and air-sea CO2 flux from CESM over 1982-2011 compare

favorably to estimates from observations for the global average and over most ocean biogeochemical biomes (McKinley et al.,

2016; Lovenduski et al., 2016). In Figure 2, we illustrate the comparison between observationally-based estimates of CO2

flux (from the Landschützer et al. (2016) pCO2 product) and estimates produced by the reconstruction and coupled CESM-LE20

over 1982-2015. The model reconstruction does a reasonable job (r = 0.79) of representing observed spatial patterns (in both

magnitude and direction) of the flux across most oceanic regions. The globally-integrated air-sea CO2 flux over 1982-2015

from the observational product and model reconstruction are 1.41 and 1.80 Pg C yr−1, respectively (directed into the ocean).

CESM-DPLE initializes an ensemble of 40 simulations each year using round-off level (order 10−14) perturbations in the

initial air temperature field (Figure 1). Previous work indicates that this small perturbation in the initial conditions generates25

a wide divergence in global mean surface temperatures across the ensemble members within about 30 days (V. Yettella, pers.

comm., 2018), and the average divergence in globally-integrated, annual-mean forecast CO2 flux across the ensemble members

(0.53 Pg C yr−1) is an order of magnitude greater than that generated by the preindustrial control simulation of CESM (0.09

Pg C yr−1; Lovenduski et al., 2015b). Each ensemble member is subject to identical external forcing. The number of ensem-

ble members in each forecast ensures statistically robust drift estimates (see below; Boer et al., 2013; Kirtman et al., 2013;30

Yeager et al., 2018).

Following initialization, the coupled model drifts toward its preferred state over the decadal forecast. This is a common

problem for full-field initialization decadal prediction experiments (Meehl et al., 2014) and requires a drift correction to be

applied to the model forecasts before predictability and predictive skill may be analyzed. We correct the drift by transforming

to anomalies from a drifting climatology, as in Yeager et al. (2012) and Yeager et al. (2018). For a given forecast, X(L,M,S),35
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where L is the forecast length, M is the ensemble member, and S is the start year of the forecast, the drift-corrected forecast

anomaly, X ′(L,M,S) is defined as

X ′(L,M,S) =X(L,M,S)−X(L,M,S)
M,S

, (1)

where X(L,M,S)
M,S

is the average rate of drift over all forecasts. Note that this method does not assume that the drift is

linear, and disregards potential dependence of the drift on the external forcing.5

Predictive skill in CESM-DPLE may be enabled by external forcing (e.g. the time evolution of atmospheric greenhouse

gases) as well as by initialization. To assess the role of initialization in predictability, we compare CESM-DPLE air-sea CO2

flux (generated with the initialization procedure described above) with air-sea CO2 flux from the CESM-LE (McKinley et al.,

2016; Lovenduski et al., 2016) over the same historical period. The CESM-LE is a 32-member ensemble of the CESM with

fully resolved ocean biogeochemistry that evolves the Earth system from 1920 to 2100 under historical and RCP8.5 forcing10

(Kay et al., 2015). As such, CESM-LE represents the uninitialized counterpart to the CESM-DPLE system; output from CESM-

LE can tell us how the modeled air-sea CO2 flux would evolve over a given decade in the absence of initialization, but under

the same external forcing.

3 Results

3.1 Predictability15

Predictability is a property of a system that characterizes the potential for its future evolution to be predicted; this concept is

distinct from that of model skill. We quantify predictability by evaluating the ability of the CESM-DPLE initialized forecasts

to predict variations in air-sea CO2 flux from the reconstruction. For a given forecast anomaly, X ′(L,M,S), predictability is

defined as the correlation coefficient of X ′(L,M,S) with the corresponding anomaly in the reconstruction; the reconstruction

anomaly is obtained by subtracting the climatological mean value over 1955-2015.20

The globally-integrated, air-sea CO2 flux anomaly from the initialized CESM-DPLE in forecast year 1 exhibits high corre-

lation with the CO2 flux anomaly from the reconstruction (Figure 3a; r = 0.98). This correlation remains high and statistically

significant (at the 95% level, using a two-sided student t test while accounting for autocorrelation in the sample size) for 10

forecast lead years (Figure 3c), suggesting high, long-lasting predictability in the globally-integrated air-sea CO2 flux.

We further investigate whether the predictability in the globally-integrated air-sea CO2 flux is a function of initialization25

by (1) correlating integrated CO2 flux anomalies from the ensemble mean of the uninitialized CESM-LE simulation with

anomalies from the reconstruction, and (2) generating a persistence forecast (autocorrelation as a function of lead time) for

the CO2 flux anomalies from the reconstruction. Figures 3a and 3c reveal that the initialization of the forecast does not much

improve the prediction from the uninitialized forecast. This is because the strong externally-forced component of the forecast

(e.g., the rising CO2 concentration in the atmosphere) provides an important source of predictability in both the initialized30
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and uninitialized forecasts. While the persistence forecast also yields high correlation coefficients, both the initialized and

uninitialized forecasts beat persistence for all prediction lead times (Figure 3c).

Figure 3a also reveals interannual variability in the globally-integrated air-sea CO2 flux. While this variability is swamped

by the externally forced signal (i.e., the increasing CO2 uptake due to rising atmospheric CO2), we are nevertheless interested

in the ability of CESM-DPLE to forecast this year-to-year variability. To accomplish this, we remove the linear trend from5

the forecasts and the reconstruction before computing predictability; this method produces estimates of correlation that are not

dominated by the trend induced by external forcing. The globally-integrated, detrended, air-sea CO2 flux anomaly from the

initialized CESM-DPLE in lead year 1 exhibits high correlation with CO2 flux from the reconstruction (Figure 3b; r = 0.70),

suggesting high predictability of ocean carbon uptake variability on interannual timescales, as well. While this predictability

drops off with forecast lead time, we nevertheless find high correlations (r > 0.5) between the annual-mean CO2 flux forecast10

anomalies and detrended reconstruction anomalies that extend for 4 years (Figure 3d).

Interannual variability in global air-sea CO2 flux may also be affected by interannual variability in external forcing (e.g.,

volcanoes). As above, we evaluate the role of initialization by calculating uninitialized predictability and estimating persistence.

Figure 3 indicates that the initialized forecast exhibits higher predictability than the uninitialized forecast and the persistence

forecast for a lead time of 10 years, though this initialized predictability is only statistically separable from the uninitialized and15

persistence forecasts for lead years 1-2 and 2, respectively (statistical separation determined via a Fisher’s r to z transformation

and a comparison of the resulting z test statistic to the value for the 95% confidence interval (1.96)). Thus, the CESM-DPLE

initialized forecasts have the potential to predict year-to-year variations of globally-integrated air-sea CO2 flux several years in

advance.

The results from our analysis of the globally-integrated air-sea CO2 flux suggest that interannual variations in global ocean20

carbon uptake may be predictable in advance. They further indicate that initialization of the forecasts enhances the predictability

of future interannual variations over and above the predictability from variations in the external forcing, such as those imposed

by volcanic eruptions. This is a particularly meaningful result for those forecasting year-to-year changes in the global carbon

budget (e.g., Le Quéré et al., 2018), especially as these forecasting efforts are blind to the externally forced variability in

advance (i.e., the external forcing of the future is unknown). In this way, near-term predictions of air-sea CO2 flux variations25

can help to inform future predictions of land-air CO2 flux and atmospheric CO2.

Given the high predictability and the important role of initialization in forecasts of interannual air-sea CO2 fluxes on a global

scale, we next investigate the spatial patterns of air-sea CO2 flux predictability across the global ocean. Here, we use the same

statistical techniques as for the global flux, but instead perform analysis in each model grid cell. On a global scale, the evolution

of air-sea CO2 flux is dominated by the long-term increase in ocean uptake (see, e.g., Figure 3a), whereas on local and regional30

scales, the evolution is dominated by interannual variability (Figure 1; see also, e.g., Lovenduski et al., 2016). To capture the

predictability on interannual timescales, we perform analysis on linearly detrended forecasts in each model grid cell. Figure 4a

illustrates large predictability of initialized CO2 flux across much of the global ocean for forecast lead year 1 (additional

forecast lead years shown in Figure S1). The uninitialized forecast (Figure 4b) and the persistence forecast (Figure 4c) indicate

lower predictability.35
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If not external forcing or persistence, what drives the high predictability in air-sea CO2 flux interannual variability? We

decompose the predictability of air-sea CO2 flux (Φ) over forecast lead year 1 by considering the predictability of its drivers:

Φ= k ·S0 · (1− ice) ·∆pCO2, (2)

where k is the piston velocity (also known as the gas transfer coefficient), S0 is the solubility of CO2 in seawater, ice is the

fraction of the ocean covered by sea ice, and ∆pCO2 is the difference between the oceanic pCO2 and the atmospheric pCO2.5

As for CO2 flux, predictability is defined as the anomaly correlation coefficient of each driver variable in forecast year 1 with

the corresponding anomaly of that driver variable in the reconstruction, e.g., the correlation of anomalous piston velocities

from the forecast with those from the reconstruction. Figure 5 shows the predictability of each of the CO2 flux driver variables,

where the anomaly correlation coefficients are scaled to CO2 flux units (mol m−2 yr−1) and can be easily compared. The

predictability scaling is achieved by multiplying the anomaly correlation coefficient (r) by the sensitivity of CO2 flux to each10

driver variabile (x) and the standard deviation of the driver variable timeseries:

r ·
∂Φ

∂x
·σx, (3)

where the sensitivities and standard deviations are established from model-estimated, annual-mean quantities in each grid cell

(as in, e.g., Lovenduski et al., 2007, 2013, 2015a), using annual averages from the reconstruction. The CO2 flux predictability is

largely driven by predictability in ∆pCO2 across the global ocean (Figure 5). Our results suggest secondary roles for the piston15

velocity in the equatorial Pacific, solubility in the North Atlantic subpolar gyre, and sea ice fraction in the Arctic/North Atlantic

and high latitude Southern Ocean. Elsewhere, these other driver variables play only minor roles in CO2 flux predictability.

As the large predictability in ∆pCO2 is caused by predictability of surface ocean pCO2 in our model framework (i.e.,

atmospheric CO2 concentration is prescribed, rather than predicted), we next investigate the drivers of interannual predictability

in surface ocean pCO2: dissolved inorganic carbon (DIC), alkalinity (Alk), temperature (T), and salinity (S). We use a similar20

approach as for CO2 flux, but here the sensitivities are derived from carbonate chemistry approximations (Lovenduski et al.,

2007; Doney et al., 2009; Long et al., 2013), and all drivers are scaled to pCO2 units (µatm) for ease of comparison:

r ·
∂pCO2

∂x
·σx. (4)

The surface ocean pCO2, and thus the air-sea CO2 flux predictability for forecast lead year 1 is largely driven by predictability

in surface ocean DIC and Alk, with temperature playing a secondary role, and salinity a minor role (Figure 6). The similar25

predictability of DIC and Alk across many regions hints at an important role for ocean circulation, rather than biological

productivity (which has a much larger impact on DIC than Alk), in CO2 flux predictability.
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3.2 Predictive skill

We next evaluate the predictive skill of the CESM-DPLE forecasts; the skill is a measure of the ability of the forecast to

reproduce the observational record. For air-sea CO2 flux, direct observations are rare, and we are constrained to estimates

of flux from observations of sparsely sampled surface ocean pCO2. Here, we use as our observational metric the CO2 flux

estimated from the Landschützer et al. (2016) surface ocean pCO2 product. This product is a gap-filled estimate of surface5

ocean pCO2, which, when combined with measurements of atmospheric pCO2, sea surface temperature, salinity, and wind,

yields a monthly estimate of air-sea CO2 flux at 1◦ x 1◦ horizontal resolution from 1982-2015 (see also Figure 2a). As the pCO2

observations are rather sparse prior to 1995 (see Figure 2 of Bakker et al., 2016), we calculate skill for the period between 1995

and 2015 only, but show for the interested reader the full observational product timeseries.

The CESM-DPLE initialized predictions exhibit some skill at representing the globally-integrated air-sea CO2 flux in fore-10

cast lead year 1 (Figure 3a,b; initialized forecast skill = 0.88; detrended, initialized forecast skill = 0.66). Our comparison

indicates that CESM-DPLE (and the reconstruction, for that matter) struggles to produce the pronounced trends toward anoma-

lous CO2 outgassing in the 1990s and anomalous CO2 uptake in the 2000s. The ability (or lack thereof) of ESMs to repro-

duce the observationally-derived multi-decadal air-sea CO2 flux variability has been the subject of recent publications (e.g.,

Li and Ilyina, 2018; Gruber et al., 2017), though no robust mechanisms seem to explain the (mis)match. The CESM-DPLE15

initialized forecast in forecast lead year 1 exhibits moderate predictive skill in the tropics and subtropics (Figure 7), and low

skill elsewhere.

3.3 Predictability and predictive skill on the biome scale

Because the predictability of air-sea CO2 flux is primarily driven by predictability of the biogeochemical state variables DIC

and Alk, it makes sense to aggregate predictability across biogeographical biomes. We probe the limits of predictability and20

predictive skill in regional air-sea CO2 flux by averaging the local flux across 17 biogeographical biomes. This is achieved

by re-gridding the Fay and McKinley (2014) mean biome mask to the CESM model grid and computing the area-weighted,

average CO2 flux from the reconstruction, CESM-DPLE initialized forecasts, and observationally-derived pCO2 product. The

detrended CO2 flux anomalies for three of the biomes are shown for forecast lead year 1 in Figure 8, and the predictability and

predictive skill across all biomes is detailed in Table 1. These three biomes were chosen to contrast their predictability and/or25

predictive skill.

The biome-averaged CO2 flux anomalies from the CESM-DPLE initialized forecast in forecast lead year 1 exhibit high

correlations with the reconstruction anomalies in the North Pacific Subtropical biomes, and in the Southern Ocean Ice biome

(Figure 8; Table 1), indicating high potential for prediction of CO2 flux anomalies. This predictability decreases with increasing

forecast lead time in the North Pacific Subtropical biomes, but persists for the Southern Ocean ice biome through forecast years30

7-9 (Figure 8). Indeed, the Southern Ocean Ice biome is an anomaly in this regard; in the other 16 biomes, predictability drops

off with prediction lead time (not shown).
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Initialization engenders predictability of air-sea CO2 flux variability the North Pacific Subtropical biomes, as we find low

correlation between the uninitialized CESM-LE forecast CO2 flux anomalies and the reconstruction anomalies here (Fig-

ure 8a,b; Table 1). The initialized forecast for these biomes has higher predictability than the uninitialized forecast and the

persistence forecast for 7-8 years (Figure 9). These conclusions hold for most of the other ocean biomes (Table 1), with a

few exceptions where the uninitialized forecast and/or persistence forecast are similar to the initialized forecast (e.g., the East5

Pacific Equatorial biome). In the Southern Ocean Ice biome, the CO2 flux predictability is almost entirely driven by external

forcing, and the persistence forecast indicates high predictability, as well (Figure 8; Figure 9, Table 1). Thus, the high and long-

lasting predictability in this biome must be interpreted with caution, given the importance of external forcing in predicting CO2

flux anomalies here.

The predictive skill of CESM-DPLE in forecast lead year 1 is illustrated for three biomes in Figure 8 and Table 1. Again,10

we note the moderate skill in the tropics and subtropics, and lower skill elsewhere.

The difference in the predictability between the initialized, uninitialized, and persistence forecasts reveals the impact of

initialization on predictions of air-sea CO2 flux variability on the biome scale (Figure 9). We probe the limits of initialized

predictability in each biome by calculating the maximum forecast lead time for which the initialized CESM-DPLE CO2 flux

forecast has both higher predictability than the uninitialized CESM-LE and persistence forecasts and present the results in15

Figure 10. Our results indicate that initialization improves the forecast for the longest lead times in the subantarctic Southern

Ocean and the northern North Atlantic, where the initialized forecast beats the other two forecasts out to forecast lead times

of 10 and 9 years, respectively. We note, however, that the improvement in the North Atlantic is only statistically significant

for 1 lead year, and in the Southern Ocean for 2-3 lead years. Given the important role of these two regions for the global

ocean uptake of anthropogenic carbon, and the numerous studies linking climate variability to air-sea CO2 flux variability in20

these regions, this long-lasting predictability is encouraging. In other regions, however, such as the Southern Ocean Ice or East

Equatorial Pacific biomes, the initialized forecast only beats the uninitialized or persistence forecast for a single year, indicating

little benefit of forecast initialization on CO2 flux forecasts here.

4 Conclusions

We analyze output from the CESM-DPLE system to quantify and understand the sources of predictability and predictive skill25

in global and regional air-sea CO2 flux on annual to decadal timescales. We find high potential predictability in globally-

integrated CO2 flux several years in advance that is engendered by initialization. This potential predictability is evident across

much of the global ocean, driven by predictability in ∆pCO2, which itself is primarily driven by predictability in surface

ocean DIC and Alk. While the CESM-DPLE system exhibits strong potential predictability, model skill as compared to an

observationally-based product remains a challenge to developing useful forecasts.30

Our study complements two recent studies of ocean carbon decadal predictions conducted at different modeling centers.

Li et al. (2016) use decadal predictions from MPI-ESM to investigate near-term changes in North Atlantic CO2 flux, while

Séférian et al. (2018) use CNRM-ESM1 to assess the predictability horizon of globally-integrated ocean and land carbon
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fluxes. While these studies use different prediction systems, we nevertheless come to some of the same conclusions. For

example, Séférian et al. (2018) find that global ocean carbon uptake is potentially predictable for up to 6 years, and Li et al.

(2016) find high potential predictability in the North Atlantic that is engendered by initialization. These studies collectively

suggest predictability for near-term ocean carbon uptake on global and regional scales, which is beneficial for forecasting the

future global carbon budget and climate system.5

While the ever-expanding field of decadal climate prediction has the potential to inform policy and management decisions

moving forward, decadal forecasts come with several caveats. Initialization shock and drift of the coupled model system,

inability of Earth system models to realistically simulate internal variability, uncertain future levels of radiative forcing, and

imperfect observations are frequently cited as limitations to making accurate forecasts of the future (Meehl et al., 2014). In the

case of ocean carbon, it is important to note that potential predictability in regional CO2 flux may be driven by initialization10

of the physical (e.g., SST) or biogeochemical (e.g., DIC) ocean state (Li et al., 2016), and that the spatiotemporal coverage of

CO2 flux observations is insufficient to fully address predictive skill in our forecast systems.
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Figure 1. Annual mean air-sea CO2 flux (mol m−2 yr−1) in the South Pacific subtropical permanently stratified biome for the (black) model

reconstruction, and (pink) CESM-DPLE decadal forecasts initiated in 1960, 1980, and 2000 (other forecasts omitted for visual clarity). Thick

magenta line represents the ensemble-mean forecast; open circles show the ensemble mean in forecast year 1. Positive fluxes denote ocean

outgassing. Forecasts have been drift-corrected and adjusted to match the reconstruction climatological mean for ease of visual comparison.
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(a) observationally-based product (b) reconstruction (c) CESM-LE

Figure 2. Annual-mean air-sea CO2 flux (mol m−2 yr−1) over the period 1982-2015 as estimated by (a) the Landschützer et al. (2016)

observationally-based product, (b) the model reconstruction, and (c) the CESM-LE. Positive fluxes denote ocean outgassing, and black

contours in (a) show biome boundaries.

16



a
n

o
m

a
ly

 c
o

rr
e

la
ti
o

n
 c

o
e

ff
ic

ie
n

t
a

ir
-s

e
a

 C
O

2
 f
lu

x
 a

n
o

m
a

ly
 

(P
g

 C
 y

r-1
)

(a)

reconstruction

initialized forecast

uninitialized forecast

observational product

initialized forecast

uninitialized forecast

persistence forecast

(b)

1960 1970 1980 1990 2000 2010
-1.5

-1

-0.5

0

0.5

1

1.5

1960 1970 1980 1990 2000 2010
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

forecast lead time (years) forecast lead time (years)

(c) (d)

1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3. (a) Temporal evolution of the globally-integrated air-sea CO2 flux anomaly, as estimated by the (black) reconstruction, (red)

CESM-DPLE initialized forecast, (red dotted) CESM-LE uninitialized forecast, and (blue) Landschützer et al. (2016) observationally-based

product. The CESM-DPLE time series is the drift-corrected, ensemble mean forecast anomalies over lead year 1, and the reconstruction,

uninitialized forecast, and observational product have been transformed to anomalies by subtracting their respective climatological means.

Observations prior to 1995 are dotted, due to lower observation density. Positive anomalies indicate anomalous ocean outgassing. (b) Same

as (a), but with long-term linear trends removed from each time series. (c) Predictability of globally integrated CO2 flux as a function of

lead time, as indicated by the correlation coefficient of CO2 flux anomalies from the (red) CESM-DPLE initialized forecast, and (red dotted)

CESM-LE uninitialized forecast with the reconstruction. Black dashed line shows indicates the correlation coefficient of the persistence

forecast as a function of lead time. Red asterisks (black circles) on the initialized forecast indicate predictability that is statistically different

from the uninitialized (persistence) forecast at the 95% level using a z test. (d) Same as (c), but with linear trends removed from each time

series.
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Figure 4. Predictability of air-sea CO2 flux, as indicated by the correlation coefficient of detrended, air-sea CO2 flux anomalies from the (a)

CESM-DPLE initialized forecast lead year 1 with the reconstruction, and (b) CESM-LE uninitialized forecast with the reconstruction. (c)

Correlation coefficient of the persistence forecast for lead year 1. Correlation coefficients that are not statistically significant at the 95% level

using a t test are assigned a value of zero.
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Figure 5. Drivers of predictability in air-sea CO2 flux during forecast year 1, as indicated by the predictability of the (a) gas-exchange

coefficient, (b) solubility, (c) sea ice fraction, and (d) ∆pCO2, scaled to CO2 flux units (mol m−2 yr−1). Correlation coefficients that are not

statistically significant at the 95% level using a t test are assigned a value of zero.
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Figure 6. Drivers of predictability in surface ocean pCO2 during forecast year 1, as indicated by the predictability of surface ocean (a) DIC,

(b) Alk, (c) temperature, and (d) salinity, scaled to pCO2 units (µatm). Correlation coefficients that are not statistically significant at the 95%

level using a t test are assigned a value of zero.
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Figure 7. Air-sea CO2 flux predictive skill, as indicated by the correlation coefficient of air-sea CO2 flux (a) anomalies, and (b) linearly

detrended anomalies from the CESM-DPLE initialized forecast in year 1 with the Landschützer et al. (2016) observational product over

1995-2015. Correlation coefficients that are not statistically significant at the 95% level using a t test are assigned a value of zero.
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Figure 8. Temporal evolution of the biome-averaged air-sea CO2 flux anomalies in the (a) NP STSS, (b) NP STPS, and (c) SO ICE biomes

(mol m−2 yr−1). The following time series are plotted: (black) reconstruction, (red) CESM-DPLE initialized forecast, (red dotted) CESM-

LE uninitialized forecast, and (blue) Landschützer et al. (2016) observationally-based product. The CESM-DPLE time series is the linearly

detrended, drift-corrected, ensemble mean forecast anomalies in year 1; the reconstruction, CESM-LE ensemble mean, and observed time-

series have been transformed to anomalies by removing the linear trend. Observations prior to 1995 are dotted, due to lower observation

density. Positive anomalies indicate anomalous ocean outgassing.
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Figure 9. Predictability of biome-average CO2 flux as a function of lead time in the (a) NP STSS, (b) NP STPS, and (c) SO ICE biomes, as

indicated by the correlation coefficient of detrended CO2 flux anomalies from the (red) CESM-DPLE initialized forecast, and (red dotted)

CESM-LE uninitialized forecast with the reconstruction. Black dashed line shows the correlation coefficient of the persistence forecast as

a function of lead time. Red asterisks (black circles) on the initialized forecast indicate predictability that is statistically different from the

initialized (persistence) forecast at the 95% level using a z test.
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Figure 10. For each biome, the maximum forecast lead time (years) in which the initialized CESM-DPLE CO2 flux forecast has both higher

predictability than the uninitialized CESM-LE forecast and a higher correlation coefficient than the persistence forecast. Hatching shows the

maximum forecast lead time while accounting for statistical separation of correlation coefficients at the 95% level using a z test.
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Table 1. Biome-averaged air-sea CO2 flux statistics.

Biome Biome Biome Initialized Uninitialized Persistence Forecast Maximum

Name Acronym Number Forecasta Forecastb Forecastc Skilld Lead Timee

North Pacific Ice NP ICE 1 0.29 -0.22 0.25 0.43 3 (0)

North Pacific Subpolar NP SPSS 2 0.54 -0.12 0.47 -0.45 2 (0)

Seasonally Stratified

North Pacific Subtropical NP STSS 3 0.54 0.06 0.07 -0.28 9 (2)

Seasonally Stratified

North Pacific Subtropical NP STPS 4 0.85 0.32 0.45 0.60 4 (1)

Permanently Stratified

West Pacific Equatorial PEQU-W 5 0.73 0.31 0.52 0.66 5 (0)

East Pacific Equatorial PEQU-E 6 0.64 0.35 0.50 0.53 1 (0)

South Pacific Subtropical SP STPS 7 0.81 0.33 0.50 0.19 3 (1)

Permanently Stratified

North Atlantic Ice NA ICE 8 0.49 0.07 0.24 0.36 4 (0)

North Atlantic Subpolar NA SPSS 9 0.55 0.10 0.17 -0.28 9 (1)

Seasonally Stratified

North Atlantic Subtropical NA STSS 10 0.53 -0.08 0.01 -0.10 9 (1)

Seasonally Stratified

North Atlantic Subtropical NA STPS 11 0.72 0.35 0.18 0.56 3 (1)

Permanently Stratified

Atlantic Equatorial AEQU 12 0.55 0.17 0.27 -0.04 4 (1)

South Atlantic Subtropical SA STPS 13 0.60 0.09 0.16 0.49 2 (1)

Permanently Stratified

Indian Ocean Subtropical IND STPS 14 0.16 -0.11 0.05 0.31 3 (2)

Permanently Stratified

Southern Ocean Subtropical SO STSS 15 0.70 -0.02 0.20 0.26 10 (3)

Seasonally Stratified

Southern Ocean Subpolar SO SPSS 16 0.47 0.08 0.32 0.47 10 (2)

Seasonally Stratified

Southern Ocean Ice SO ICE 17 0.85 0.81 0.64 0.60 1 (0)
aCorrelation of CO2 flux anomalies from the CESM-DPLE initialized forecast in lead year 1 with the reconstruction. Boldface indicates

correlation coefficient is statistically different from both the uninitialized and persistence forecasts at the 95% level using a z test.
bCorrelation of CO2 flux anomalies from the CESM-LE uninitialized forecast with the reconstruction.

cAutocorrelation of the persistence forecast at lead year 1.
dCorrelation of CO2 flux anomalies from the CESM-DPLE initialized forecast in lead year 1 with the Landschützer et al. (2016)

observational product over 1995-2015.
eThe maximum forecast lead time (years) in which the CESM-DPLE initialized forecast has both higher predictability than the uninitialized

CESM-LE forecast and a higher correlation coefficient than the persistence forecast. Lead times in parenthesis account for statistical

separation in correlation coefficients at the 95% level using a z test.
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