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Abstract.1

Recent research on Emergent Constraints (EC) has delivered promising results in narrowing down uncertainty in climate pre-2

dictions. The method utilizes a measurable variable (predictor) from the recent historical past to obtain a constrained estimate3

of change in an entity of interest (predictand) at a potential future CO2 concentration (forcing) from multi-model projections.4

This procedure critically depends on, first, accurate estimation of the predictor from observations and models, and second, on5

a robust relationship between inter-model variations in the predictor-predictand space. Here, we investigate issues related to6

these two themes in a carbon cycle case study using observed vegetation greening sensitivity to CO2 forcing as a predictor7

of change in photosynthesis (Gross Primary Productivity, GPP) for a doubling of pre-industrial CO2 concentration. Greening8

sensitivity is defined as changes in annual maximum of green leaf area index (LAImax) per unit CO2 forcing realized through9

its radiative and fertilization effects. We first address the question of how to realistically characterize the predictor of a large10

area (e.g. greening sensitivity in the northern high latitudes region) from pixel-level data. This requires an investigation into11

uncertainties in the observational data source and an evaluation of the spatial and temporal variability in the predictor in both12

the data and model simulations. Second, the predictor-predictand relationship across the model ensemble depends on a strong13

coupling between the two variables, i.e. simultaneous changes in GPP and LAImax. This coupling depends in a complex man-14

ner on the magnitude (level), time-rate of application (scenarios) and effects (radiative and/or fertilization) of CO2 forcing. We15

investigate how each one of these three aspects of forcing can affect the EC estimate of the predictand (∆GPP). Our results16

show that uncertainties in the EC method primarily originate from a lack of predictor comparability between observations17

and models, the observational data source, and temporal variability of the predictor. The disagreement between models on the18

mechanistic behavior of the system under intensifying forcing limits the EC applicability. The discussed limitations and sources19

of uncertainty in the EC method go beyond carbon cycle research and are generally applicable in Earth system sciences.20

Copyright statement.21
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1 Introduction1

Earth system models (ESMs) are powerful tools to predict responses to a variety of forcings such as increasing atmospheric2

concentration of greenhouse gases and other agents of radiative forcing (Klein and Hall, 2015). Still, longterm ESM projections3

of climate change have substantial uncertainties. This can be due to poorly understood processes in some cases, and in others,4

to missing or simplified representations called parameterizations (Flato et al., 2013; Klein and Hall, 2015; Knutti et al., 2017).5

Certain important processes, especially in the atmosphere, happen at spatial scales finer than can be possibly represented in6

current ESMs. Consequently, various phenomena in the system ranging from local extreme precipitation events to large-scale7

climate modes, can be poorly simulated (Flato et al., 2013). Errors propagate and can be amplified through feedbacks among8

interacting components in the Earth system, resulting in biases whose origins can be difficult to identify (Flato et al., 2013).9

Furthermore, an inherent component of the Earth climatic system, its internal natural variability, is complicated to represent10

and simulate in models (Flato et al., 2013; Klein and Hall, 2015).11

12

Model Intercomparison Projects explore these uncertainties by coordinating a wide range of simulation setups focusing on13

internal variability, boundary conditions, parameterizations, etc. (Taylor et al., 2012; Flato et al., 2013; Eyring et al., 2016;14

Knutti et al., 2017). Models developed at various institutions are driven with the same forcing information (e.g. historical forc-15

ing) or with identical idealized boundary conditions. However, each modeling group decides which of the processes to consider16

and implement in their ESM. The conventional approach of handling these multi-model ensembles is to use unweighted ensem-17

ble averages (Knutti, 2010; Knutti et al., 2017). This assumes that the models are independent of one another and equally good18

at simulating the climate system (Flato et al., 2013; Knutti et al., 2017). The large spread between model projections suggests19

that this assumption is not valid. Therefore, alternate methods have been developed to extract results more accurate than multi-20

model averages (e.g. model weighting scheme based on preformance and interdependence, Knutti et al., 2017). The concept of21

Emergent Constraints arises in this context, namely, as a method to reduce uncertainty in ESM projections relying on histori-22

cal simulations and observations (Hall and Qu, 2006; Boé et al., 2009; Cox et al., 2013; Klein and Hall, 2015; Cox et al., 2018).23

24

The two key parts of an Emergent Constraint (EC) based method are a linear relationship arising from the collective behavior25

of a multi-model ensemble and an observational estimate for imposing the said constraint (Fig. 1). The linear relationship is a26

physically (or physiologically) based correlation between inter-model variations in an observable entity of the contemporary27

climate system (predictor) and a projected variable (predictand) that is difficult to observe or not observable at all. Combining28

the emergent linear relationship with observations of the predictor sets a constraint on the predictand (Cox et al., 2013; Flato29

et al., 2013; Klein and Hall, 2015; Knutti et al., 2017). Many such ECs have been identified and reported, as briefly summarized30

below.31

32

Hall and Qu (2006) proposed a constraint on projections of snow-albedo feedback based on the correlation between large33

inter-model variations in feedback strength of the current seasonal cycle. The EC was first established for the CMIP3 ensemble34
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and confirmed for phase five of the Coupled Model Intercomparison Project (CMIP5; Flato et al., 2013; Qu and Hall, 2014).1

Several EC studies followed with the goal of reducing uncertainty in projections of the cloud feedback under global warming,2

as reviewed by Klein and Hall (2015). It is thought that erroneous representation of low-cloud feedback in ESMs contributes3

essentially to the large uncertainty in equilibrium climate sensitivity (ECS, 1.5 to 5 K), i.e. warming for a doubling of pre-4

industrial atmospheric CO2 concentration (2×CO2; Sherwood et al., 2014; Klein and Hall, 2015). Recently, Cox et al. (2018)5

presented a different approach to constrain ECS based on its relationship to variability of global temperatures during the recent6

historical warming period. They reported a constrained ECS estimate of 2.8 K for 2×CO2 (66% confidence limits of 2.2 – 3.47

K).8

9

The concept of EC also found its way into the field of carbon cycle projections. A series of studies analyzed the extent10

to which inter-annual atmospheric CO2 variability can serve as a predictor of longterm temperature sensitivity of terrestrial11

tropical carbon storage. Cox et al. (2013) and Wenzel et al. (2014) reported an emergent linear relationship, although with12

different slopes for CMIP3 and CMIP5 ensembles, resulting in slightly divergent constrained estimates (CMIP3: -53 ± 17 Pg13

C K−1, CMIP5: -44 ± 14 Pg C K−1). Wang et al. (2014) however were unable to detect a similar relationship between the14

proposed predictor and predictand. Recently, Lian et al. (2018) presented an EC estimate of the global ratio of transpiration15

to total terrestrial evapotranspiration (T/ET), which is substantially higher (0.62 ± 0.06) than the unconstrained value (0.41 ±16

0.11). For the marine tropical carbon cycle, Kwiatkowski et al. (2017) identified an emergent relationship between the longterm17

sensitivity of tropical ocean net primary production (NPP) to rising sea surface temperature (SST) in the equatorial zone and18

the interannual sensitivity of NPP to El Niño/Southern Oscillation driven SST anomalies. Tropical NPP is projected to decrease19

by 3 ± 1% for 1 K increase in equatorial SST according to the observational constraint.20

21

Similar results were reported for modeled extra-tropical terrestrial carbon fixation in a 2×CO2 world. Plant productivity is22

expected to increase due to the fertilizing and radiative effects of rising atmospheric CO2 concentration. Wenzel et al. (2016)23

focused on constraining the CO2 fertilization effect on plant productivity in the northern high latitudes (60◦ N – 90◦ N, NHL)24

and the entire extra-tropical area in the northern hemisphere (30◦ N – 90◦ N) using the seasonal amplitude of longterm CO225

measurements at different latitudes. They presented a linear relationship between the sensitivity of CO2 amplitude to rising26

atmospheric CO2 concentration and the relative increase in zonally averaged gross primary production (GPP) for 2×CO2.27

The observed CO2 amplitude sensitivities at respective stations provide a constraint on the increase of GPP due to the CO228

fertilization effect, namely 37% ± 9% and 32% ± 9% for 2×CO2 in the NHL and the extra-tropical region, respectively.29

30

Focusing on the NHL, Winkler et al. (2019) investigated how both effects of CO2 enhance plant productivity while assess-31

ing the feasibility of vegetation greenness changes as a constraint. Enhanced GPP due to the physiological effect and ensuing32

climate warming is indirectly evident in large-scale increase in summer time green leaf area (Myneni et al., 1997a; Zhu et al.,33

2016). Historical CMIP5 simulations show that the maximum annual leaf area index (LAImax, leaf area per ground area) in-34

creases linearly with both CO2 concentration and temperature in NHL. In all ESMs, these changes in LAImax strongly correlate35
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to changes in GPP arising from the combined radiative and physiological effects of CO2 enrichment. Thus, the large variation1

in modeled historical LAImax responses to the effects of CO2 linearly maps to variation in ∆GPP at 2×CO2 in the CMIP52

ensemble. This linear relationship in inter-model variations enables the usage of the observed longterm change in LAImax as3

an EC on ∆GPP at 2×CO2 in NHL (3.4 ± 0.2 Pg C yr−1 for 2×CO2; Winkler et al., 2019).4

5

The robustness of these EC estimates is debated, mainly because the EC approach is susceptible to methodological incon-6

sistencies. For example, Cox et al. (2013), Wang et al. (2014) and Wenzel et al. (2015) investigated on constraining future7

terrestrial tropical carbon storage using the same set of models and data. However, they arrived at different EC estimates and8

divergent conclusions. Some reasons for failure and essential criteria of the EC approach were described previously (Bracegir-9

dle and Stephenson, 2012b; Klein and Hall, 2015), but this list is far from complete. To account for this gap in the literature,10

a detailed investigation and description of the EC method in terms of its potential sources of uncertainty and the range of11

applicability are needed.12

13

Here, we revisit the study of Winkler et al. (2019) and elaborate on key issues concerning the robustness of the EC method.14

Uncertainty of the constrained estimate depends on (a) observed predictor and (b) modeled relationship, aside from the15

goodness-of-fit of the latter (green shading in Fig. 1). As for (a), the source of observations is an obvious first line of in-16

quiry (Sect. 3.1). Spatial aggregation of data and model simulations introduces uncertainties, as the EC method is applied on17

large areal values of predictor and predictand. This is the subject of Sect. 3.2. The observed and modeled predictors are from18

the historical period. The representativeness, duration and match between data and models all introduce an uncertainty related19

to variations in the temporal domain – these are explored in Sect. 3.3. The yellow shading in Fig. 1 represents the total uncer-20

tainty on observed predictor from these three fronts. Regarding (b), the modeled linear relation varies (grey shading in Fig. 1)21

depending on three attributes of the forcing, i.e. CO2 concentration change, its magnitude, rate and effect (Sect. 3.4 and 3.5).22

Lessons learned from analyses along these lines are presented in the conclusion section at the end.23

24
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2 Data and Methods1

2.1 Remotely sensed leaf area index2

We used the recently updated version (V1) of the leaf area index dataset (LAI3g) developed by (Zhu et al., 2013). It was gen-3

erated using an artificial neural network (ANN) and the latest version (third generation) of the Global Inventory Modeling and4

Mapping Studies group (GIMMS) Advanced Very High Resolution Radiometer (AVHRR) normalized difference vegetation5

index (NDVI) data (NDVI3g). The latter have been corrected for sensor degradation, inter-sensor differences, cloud cover, ob-6

servational geometry effects due to satellite drift, Rayleigh scattering and stratospheric volcanic aerosols (Pinzon and Tucker,7

2014). This dataset provides global and year-round LAI observations at 15-day (bi-monthly) temporal resolution and 1/128

degree spatial resolution from July 1981 to December 2016. Currently, this is the only available record of such length.9

10

The quality of previous version (V0) of LAI3g dataset was evaluated through direct comparisons with ground measurements11

of LAI and indirectly with other satellite-data based LAI products, and also through statistical analysis with climatic variables,12

such as temperature and precipitation variability (Zhu et al., 2013). The LAI3gV0 dataset (and related fraction vegetation-13

absorbed photosynthetically active radiation dataset) has been widely used in various studies (Anav et al., 2013; Piao et al.,14

2014; Poulter et al., 2014; Forkel et al., 2016; Zhu et al., 2016; Mao et al., 2016; Mahowald et al., 2016; Keenan et al., 2016).15

The new version, LAI3gV1, used in our study is an update of that earlier version.16

17

We also utilized a more reliable but shorter dataset from the Moderate Resolution Imaging Spectroradiometer (MODIS)18

aboard the NASA’s Terra satellite (Yan et al., 2016a, b). These data are well calibrated, cloud-screened and corrected for at-19

mospheric effects, especially tropospheric aerosols. The sensor-platform is regularly adjusted to maintain a precise orbit. All20

algorithms, including the LAI algorithm, are physics-based, well-tested and currently producing sixth generation datasets. The21

dataset provides global and year-round LAI observations at 16-day (bi-monthly) temporal resolution and 1/20 degree spatial22

resolution from 2000 to 2016.23

24

Leaf area index is defined as the one-sided green leaf area per unit ground area in broadleaf canopies and as one-half the25

green needle surface area in needleleaf canopies in both observational and CMIP5 simulation datasets. It is expressed in units26

of m2 green leaf area per m2 ground area. Leaf area changes can be represented either by changes in annual maximum LAI27

(LAImax; Cook and Pau, 2013), or growing season average LAI. In this study, we use the former because of its ease and28

unambiguity, as the latter requires quantifying the start- and end-dates of the growing season, something that is difficult to29

do accurately in NHL (Park et al., 2016) with the low resolution model data. Further, LAImax, is less influenced by cloudi-30

ness and noise; accordingly, it is most useful in investigations of long-term greening and browning trends. The drawback of31

LAImax, is the saturation effect at high LAI values (Myneni et al., 2002). However, this is less of a problem in high latitudinal32

ecosystems which are less-densely vegetated compared to tropical regions, with LAImax, values typically in the range of 2 to 3.33

34
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The bi-monthly satellite datasets were merged to a monthly temporal resolution by averaging the two composites in the same1

month and bi-linearly remapped to the resolution of the applied reanalysis product (0.5◦×0.5◦, CRU TS4.01).2

3

2.2 Environmental driver variables4

We use time series of temperature and CO2 to derive the observed historical forcing (Sect. 2.4) and climatologies of pre-5

cipitation and temperature to calculate climatic regimes (Fig. 2). Monthly averages of near-surface air temperature and pre-6

cipitation are from the latest version of the Climatic Research Unit Timeseries dataset (CRU TS4.01). The global data are7

gridded to 0.5◦×0.5◦ resolution (Harris et al., 2014). Global monthly means of atmospheric CO2 concentration are from8

the GLOBALVIEW-CO2 product (obspack_co2_1_GLOBALVIEWplus_v2.1_2016_09_02; for details see https://doi.org/10.9

25925/20190520) provided by the National Oceanic and Atmospheric Administration / Earth System Research Laboratory10

(NOAA / ESRL).11

12

2.3 Earth system model simulations13

We analyzed recent climate-carbon simulations of seven ESMs participating in the fifth phase of the Coupled Model Inter-14

comparison Project, CMIP (Taylor et al., 2012). The model simulated data were obtained from the Earth System Grid Federa-15

tion, ESGF (https://esgf-data.dkrz.de/projects/esgf-dkrz/). Seven ESMs provide output for the variables of interest (GPP, CO2,16

LAI, and near-surface air temperature) for simulations titled esmHistorical, RCP4.5, RCP8.5, 1pctCO2, esmFixClim1, and17

esmFdbk1. It is the same set of models analyzed in Wenzel et al. (2016) and Winkler et al. (2019). The individual model setups18

and components are illustrated in more detail in various studies, such as Arora et al. (2013); Wenzel et al. (2014); Mahowald19

et al. (2016); Winkler et al. (2019).20

21

The esmHistorical simulation spanned the period 1850 to 2005 and was driven by observed conditions such as solar forcing,22

emissions or concentrations of short-lived species and natural and anthropogenic aerosols or their precursors, land use, anthro-23

pogenic as well as volcanic influences on atmospheric composition. The models are forced by prescribed anthropogenic CO224

emissions, rather than atmospheric CO2 concentrations.25

26

Several Representative Concentration Pathways (RCPs) have been formulated describing different trajectories of greenhouse27

gas emissions, air pollutant production and land use changes for the 21st century. These scenarios have been designed based28

on projections of human population growth, technological advancement and societal responses (van Vuuren et al., 2011; Tay-29

lor et al., 2012). We analyzed simulations forced with specified concentrations of a high emissions scenario (RCP8.5) and30

a medium mitigation scenario (RCP4.5) reaching a radiative forcing level of 8.5 and 4.5 W m−2 at the end of the century,31

respectively. These simulations were initialized with the final state at the end of the historical runs and spanned the period 200632

6

obspack_co2_1_GLOBALVIEWplus_v2.1_2016_09_02
https://doi.org/10.25925/20190520
https://doi.org/10.25925/20190520
https://doi.org/10.25925/20190520
https://esgf-data.dkrz.de/projects/esgf-dkrz/


to 2100.1

2

1pctCO2 is an idealized fully coupled carbon-climate simulation initialized from a steady state of the pre-industrial control3

run and atmospheric CO2 concentration prescribed to increase 1% yr−1 until quadrupling of the pre-industrial level. The sim-4

ulations esmFixClim and esmFdbk aim to disentangle the two carbon cycle feedbacks in response to rising CO2 analogous5

to the 1pctCO2 setup: In esmFixClim CO2-induced climate change is suppressed (i.e. radiation transfer model sees constant6

pre-industrial CO2 level), while the carbon cycle responds to increasing CO2 concentration (vice versa for esmFdbk; Taylor7

et al., 2009, 2012; Arora et al., 2013).8

9

2.4 Estimation of greening sensitivities10

We largely follow the methodology detailed in Winkler et al. (2019). For both model and observational data, the two-dimensional11

global fields of LAI and the driver variables are cropped according to different classification schemes (namely, climatic regimes,12

latitudinal bands and vegetation classes; Olson et al., 2001; Fritz et al., 2015). The aggregated values are area-weighted, aver-13

aged in space, and temporally reduced to annual estimates dependent on the variable: annual maximum LAI, annual average14

atmospheric CO2 concentration, and growing degree days (GDD0, yearly accumulated temperature of days where near-surface15

air temperature > 0◦ C).16

17

We use a standard linear regression model to derive the historical greening sensitivities in models and observations alike (for18

details see the Methods section Estimation of historical LAImax sensitivity in Winkler et al., 2019). On the global scale, LAImax19

is assumed to be a linear function of atmospheric CO2 concentration. For the temperature-limited high northern latitudes, we20

also have to account for warming and include temperature as an additional driver. We do this using GDD0. Through a principal21

component analysis (PCA) of CO2 and GDD0 we avoid redundancy from co-linearity between the two driver variables, but22

retain their underlying time-trend and interannual variability (for details see the Methods section Dimension reduction using23

principal component analysis in Winkler et al., 2019). In particular, the PCA is performed on large-scale aggregated values24

as well as on pixel level to investigate on spatial variations. We only retain the first principal component (denoted ω), which25

explains a large fraction of the variance in models and observations (for more details see Supplementary Table 1 in Winkler26

et al., 2019). Figure A1 depicts the temporal development of CO2 and GDD0 as well as their principal component ω for27

observations. For the NHL, LAImax is then formulated as a linear function of the proxy driver time series ω (Winkler et al.,28

2019). The best-fit gradients and associated standard errors of the linear regression model represent the LAImax sensitivities,29

or greening sensitivities, and their uncertainty estimates, respectively.30

31
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3 Results and Discussion1

There are two parts to the EC methodology (Fig. 1) – a statistically robust relationship between modeled matching pairs of2

predictor-predictand values and an observed value of the predictor. The predictors are from a representative historical period.3

The predictands are modeled changes in a variable of interest at another forcing state of the system (e.g. potential future).4

The projection of the observed predictor on the modeled relation yields a constrained value of the predictand. A causal basis5

has to buttress the predictor-predictand relationship, else the EC method may be spurious. For example, meaningful coupling6

between concurrent changes in GPP and LAImax with increasing atmospheric CO2 concentration underpins our specific case7

study in the NHL, i.e. some of the enhanced GPP due to rising CO2 concentration is invested in additional green leaves by8

plants (Myneni et al., 1997a; Forkel et al., 2016; Zhu et al., 2016; Mao et al., 2016; Winkler et al., 2019). Supplementary Figure9

1 in Winkler et al. (2019) illustrates the specifics of the causal link underlying this predictor-predictand relationship. This tight10

coupling assures an approximately constant ratio of predictand to predictor across the models within the ensemble, thus setting11

up the potential for deriving an EC estimate. Uncertainty in the constrained estimate depends on the observed predictor and12

modeled relationship, aside from the goodness-of-fit of the latter (Fig. 1). These are detailed below.13

14

3.1 Uncertainty in Observed Predictor Due to Data Source15

We investigate observational uncertainty using LAI data from two different sources, AVHRR (1/12 degree) and MODIS (1/2016

degree), and spatially aggregating these over broad vegetation classes, latitudinal bands and climatic regimes. The observed17

large-scale LAImax sensitivities to CO2 forcing are always positive (greening), irrespective of the source data and the method18

of aggregation (Fig. 2, Tab. 1). Overall, MODIS based estimates have higher uncertainty because of the shorter length of the19

data record (17 years). The failure to reliably estimate sensitivities in tropical forests (also in the latitudinal band 30◦ S – 30◦20

N, and in hot, wet and humid climatic regimes, see Tab. 1 and Fig. 2) is due to saturation of optical remote sensing data over21

dense vegetation (LAImax > 5) and problems associated with high aerosol content and ubiquitous cloudiness. In other regions,22

the estimated sensitivities are comparable across sensors and aggregation schemes, in particular in the high latitudinal band (>23

60◦ N/S; AVHRR: [3.4 ± 0.5] × 10−3, MODIS: [3.6 ± 0.9] × 10−3 m2 m−2 ppm−1 CO2). This aligns with previous studies24

reporting a net increase in green leaf area across the high latitudes during the observational period (Myneni et al., 1997b; Zhu25

et al., 2016; Forkel et al., 2016).26

27

This analysis illustrates the applicability and limitations of using observed greening sensitivities to CO2 forcing as a con-28

straint on photosynthetic production. For example, data from both AVHRR and MODIS sensors provide a comparable estimate29

of greening sensitivity in the colder high latitudes (boreal forests and tundra vegetation classes; Winkler et al., 2019). In the30

lower latitudes, however, the discrepancies among the two sensors indicate a considerable observational uncertainty and thus31

no robust estimation of the observed predictor is possible.32

33
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3.2 Uncertainty Due to Spatial Aggregation1

We focus further analyses on the NHL region (> 60◦ N; Fig. 2b), because of two reasons. First, the direct human impact (i.e.2

land management) can be neglected in the high latitudes, thus, we can assume that the observed changes reflect the response of3

natural ecosystems. Second, the observational evidence of an increased plant productivity in the recent decades is well estab-4

lished (e.g. Keeling et al., 1996; Myneni et al., 1997a; Graven et al., 2013; Forkel et al., 2016; Wenzel et al., 2016, and Sect.5

3.1) – an important requisite in defining a robust predictor.6

7

In addition to the physiological effect of CO2, warming also plays a key role in controlling plant productivity of the NHL8

temperature-limited ecosystems, and thus, vegetation greenness. To avoid redundancy from co-linearity between CO2 and9

GDD0, we reduce dimensionality by performing a principal component analysis of the two driver variables (Sect. 2.4). The10

resulting first principal component explains most of the variance and retains the trend and year-to-year fluctuations in both11

CO2 and GDD0. Therefore, we obtain a proxy driver (hereafter denoted ω) that represents the overall forcing signal causing12

observed vegetation greenness changes in NHL (Fig. A1). Accordingly, greening sensitivity for the entire NHL area is derived13

as response to ω, the combined forcing signal of rising CO2 and warming. This procedure also enables a better comparability14

between observations and models because varying strengths of physiological and radiative effects of CO2 among models are15

taken into account (Sect. 3.3 – 3.5).16

17

The vegetated landscape in the NHL region is heterogeneous, with boreal forests in the south, vast tundra grasslands to the18

north and shrublands in-between. The species within each of these broad vegetation classes respond differently to changes in19

key environmental factors. Even within a species, such responses might vary due to different boundary conditions, such as20

topography, soil fertility, micrometeorological conditions, etc. How this fine scale variation in greening sensitivity impacts the21

aggregated value is assessed below.22

23

The distribution of greening sensitivities from all NHL pixels is slightly skewed towards the positive (blue histogram). The24

mean value of this distribution (blue dashed line) is comparable to the sensitivity estimate derived from the spatially-averaged25

NHL time series (yellow dashed line; Fig. 3). Based on the Mann-Kendall test (p > 0.1), nearly over half the pixels (54%) show26

positive statistically significant trends (greening), while about 10% show browning trends (possibly due to disturbances; Goetz27

et al., 2005). The distribution of these statistically significant sensitivities (red histogram) therefore has two modes, a weak28

browning and a dominant greening mode, resulting in a substantially higher mean value (red dashed line) in comparison to the29

spatially-averaged estimate (yellow dashed line; Fig. 3). Thus, by taking into account the remaining 36% of non-significantly30

changing pixels (as in the NHL spatially-averaged estimate), an additional source of uncertainty is possibly introduced. The31

mean sensitivity value is, of course, higher when only pixels showing a greening trend are considered in the analysis (green32

dashed line; Fig. 3). These are the only areas in NHL that actually show a large increase in plant productivity and consequently33
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significant changes in leaf area.1

2

Model output of several ESMs (CMIP5) reveal similar pixel-level variation in both the predictor (LAImax to ω, historical3

simulation; Sect. 2.3) and associated changes in the predictand (GPP, 1pctCO2; Sect. 2.3), although ESMs operate on much4

coarser resolution (Fig. A2; see also Anav et al., 2013, 2015). Due to the coupling of the predictor and predictand, the distri-5

bution of pixels with significant changes is approximately the same for the two variables (Fig. A2). Accordingly, averaging6

the equally distributed estimates likely does not affect the predictor-predictand relationship in the model ensemble (Fig. 1).7

Consequently, if all spatial gridded data arrays are consistently processed to spatially-aggregated estimates, each predictand8

and predictor (observed and modeled) estimate contain a coherent component of spatial variations. In other words, considering9

browning and non-significant pixels results in a lower overall LAImax sensitivity in NHL, which in turn leads to a lower con-10

strained estimate of ∆GPP in NHL. This is consistent with the underlying relationship between predictor and predictand. On a11

related note, Bracegirdle and Stephenson (2012a) suggest that this source of error is not significantly dependent on the spatial12

resolution when comparing model subsets from high to low resolution.13

14

The above analysis informs that spatially-averaged estimates are approximations containing a random error component due15

to inclusion of data from insignificantly changing pixels and a systematic bias component from pixels of reversed sign. This16

uncertainty is relevant to the EC method, where the observed sensitivity decisively determines the constrained estimate from17

the ensemble of ESM projections (Kwiatkowski et al., 2017; Winkler et al., 2019). However, if spatial variations are treated18

consistently as an inherent component of observations and models, the EC method is only slightly susceptible to this source of19

uncertainty.20

21

3.3 Uncertainty Due to Temporal Variations22

We seek recourse to longterm CMIP5 ESM simulations covering the historical period 1850 to 2005 (Sect. 2.3) to assess23

temporal variation in the predictor variable, because of the shortness of observational record. Three representative models24

(CESM1-BGC, MIROC-ESM, and HadGEM2-ES) spanning the full range of NHL greening sensitivities in the CMIP5 en-25

semble (Winkler et al., 2019) are selected for this analysis. For each model, LAImax sensitivity to ω in moving windows of26

different lengths are evaluated (15, 30, and 45 years; Fig. 4 and A3). The analysis reveals two crucial aspects that highlight how27

temporal variations impair comparability of the predictor variable between models and observations – an essential component28

of the EC approach.29

30

First, window locations of modeled and observed predictor variable have to match. If the forcing in the simulations is low,31

for example, as in the second half of the 19th century when CO2 concentration was increasing slowly, inter-annual variability32

dominates and LAImax sensitivity cannot be accurately estimated irrespective of the window length (Fig. 4 and A3). With in-33

creasing forcing over time (rising yearly rate of CO2 emissions, and consequently, the concentration), the signal-to-noise ratio34
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increases and LAImax sensitivity to ω estimation stabilizes, for example, as in the second half of the 20th century. Therefore,1

LAImax sensitivities estimated at different temporal locations result in non-comparable values and eventually a false con-2

strained estimate (details in Sect. 3.4). As an example, modeled sensitivities based on a 30-year window centered on year 1900,3

when CO2 level increased by 10 ppm, and observed sensitivity estimated from a 30-year window centered on year 2000, when4

CO2 level increased by 55 ppm, describe different states of the system and therefore should not be contrasted in the EC method.5

6

Second, in addition to temporal location, also window lengths have to match between observations and models. For all three7

models, sensitivities estimated from 15-year chunks show high variability and thus, a 15-year record is perhaps too short to8

obtain robust estimates. The LAImax sensitivity estimation becomes more stable with strengthening forcing and increasing9

window length (Fig. 4 and A3). As a consequence, using short-term observed sensitivity as a constraint on long-term model10

projections results in an incorrect EC estimate. Hence, the MODIS sensor record is, on the one hand, too short and does not,11

on the other hand, overlap temporally with the historical CMIP5 forcing. Therefore, it does not provide a robust predictor in12

this EC study.13

14

3.4 Level and Time Rate of CO2 Forcing15

The EC method raises an obvious question – does it not implicitly assume that the key operative mechanisms underpinning the16

EC relation remain unchanged because a future system state is being predicted based on its past behavior? To be specific, we17

are attempting to predict GPP at a future point in time based on greening sensitivity inferred from the past. Does this not require18

the assumption that the key underlying relationship which makes this prediction possible, namely, a robust coupling between19

contemporaneous changes in GPP and LAImax remains unchanged from the past to the future? To address this question, we20

resort to the CMIP5 idealized simulation (1pctCO2), where atmospheric CO2 concentration increases 1% annually, starting21

from a pre-industrial level of 284 ppm until a quadruple of this value is reached (Sect. 2.3). We limit the analysis to the three22

models (CESM1-BGC, MIROC-ESM, and HadGEM2-ES) which bracket the full range of GPP enhancement and LAImax23

sensitivity in the original seven ESM ensemble (Winkler et al., 2019).24

25

The relationship between simultaneous changes in GPP and LAImax remains linear for all CMIP5 models in the range26

1×CO2 to 2×CO2 (Fig. 5 and A4, Tab. 2). With concentration increasing beyond 2×CO2, all models show weakening correla-27

tion (R2, Tab. 2) and decreasing slope (b, Tab. 2) of this relationship (Fig. 5 and A4), suggesting a saturating rate of allocation28

of additional GPP to new leaves at higher levels of CO2. Consequently, LAImax sensitivity to increasing CO2 and associated29

warming decreases. At and over 4×CO2 (1140 ppm), a level unlikely to be seen in the near future, there appears to be no30

relationship between ∆GPP and ∆LAImax in some models. This raises the question as to what extent does the weakening of31

the relationship between the predictor and predictand in each model at higher CO2 concentrations affect the EC analysis (Fig.32

1). To shed light on this matter, we perform the following thought experiment.33

34
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Understanding the relationship and interplay between forcing (increasing CO2 concentration), predictor (LAImax sensitiv-1

ity), and the predictand (∆GPP) is key to evaluating the EC method. We conceive four possible scenarios of how the sys-2

tem might behave with increasing forcing. For simplicity, we assume linearly increasing CO2 concentration, LAI represents3

LAImax, and GPP refers to its annual value below (Fig. 6). The four scenarios are: All linear, all non-linear (saturation), and4

two mixed linear / non-linear cases (Tab. A1). We emulate a multi-model ensemble by applying different random parameteri-5

zations for the linear and saturation (the hyperbolic tangent function) responses of GPP to CO2 and of LAI to GPP. One of these6

realizations is assumed to represent pseudo-observations (dashed lines, Fig. 6). We discuss one case in detail for illustrative7

purposes (No. 3, Tab. A1).8

9

In scenario 3, ∆GPP increases linearly with increasing CO2 (Fig. 6a), while ∆LAI/∆GPP saturates (Fig. 6b). The LAI sen-10

sitivity to CO2 weakens with increasing forcing (Fig. 6c) as a response to saturation of GPP allocation to leaf area. We derive11

LAI sensitivities to CO2 for three different periods (’past periods’ in Fig. 6c) to constrain ∆GPP at a much higher CO2 level12

(’projected period’ in Fig. 6a). Next, we apply the EC method on these pseudo-projections of ∆GPP relying on LAI sensitivi-13

ties derived from the three past periods (Fig. 6d). The EC method is applicable even at a low forcing level (past period 1) in this14

simplified scenario because we neglect stochastic internal variability of the system. The slope of emergent linear relationship15

increases (Fig. 6d) as modeled LAI sensitivities decrease with rising CO2 concentration (Fig. 6c). The observational constraint16

on future ∆GPP, however, remains nearly the same, because pseudo-observed LAI sensitivity also weakens at higher CO217

levels (dashed lines, Fig. 6c, d). Thus, the three EC estimates of ∆GPP are approximately identical (Fig. 6d) and independent18

of the forcing level during past periods. With intensified forcing, the relationship between predictor and predictand remains19

linear within the model ensemble, although their relationship becomes non-linear within each model and, crucially, in reality20

as well. In other words, as long as the models agree on the occurrence and strength of saturation for given forcing, i.e. the21

dynamics of the system, the inter-model variations of predictor and predictand relate linearly within the ensemble (Fig. 6). The22

same behavior is also seen in the other three scenarios (Tab. A1; Fig. A5, A6).23

24

Nevertheless, with ever increasing forcing and associated steepening of the emergent linear relationship, the LAI sensitivity25

loses its explanatory power at some point because the linear relationship eventually lies within the observational uncertainty26

and no meaningful constraint can be derived. This and disagreement between models on system dynamics are ultimate limits27

of the EC method. Interestingly, we find that all CMIP5 models agree on the occurrence of saturation, but slightly disagree on28

the strength of saturation for given CO2 forcing (Fig. 5, A4, and Tab. 2). Further, we find that the ’all non-linear’ scenario best29

describes the dynamics of the system in the forcing range from 1×CO2 to 4×CO2. However, the saturation of LAI to GPP30

happens at a lower CO2 level than saturation of GPP to CO2. Still, inferences from interpretation of Case 3 (Fig. 6) are equally31

applicable.32

33

Results from the above thought experiment also highlight the importance of matching window locations and lengths between34

models and observations, as discussed earlier (Sect. 3.3). For instance, taking LAI sensitivity from past period 2 (green dashed35
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line, Fig. 6d) as an observational constraint on the multi-model linear relationship based on past period 3 (red solid line, Fig.1

6d), results in a significant overestimation of constrained ∆GPP (intersection of the two lines, Fig. 6d).2

3

The above analysis informs that the constrained GPP estimate at one future period (e.g. 2×CO2) is nearly independent of4

the past periods from when the observational sensitivities are derived. Now, we evaluate the EC method where sensitivity from5

one past period is used to obtain constrained GPP estimates at different periods in a potential future, i.e. progressively farther6

down the time-line of a CO2-enriched world. We utilize the greening sensitivity derived from 35 years of observed LAImax7

data (AVHRR, Sect. 2.1) and apply the EC method to CMIP5 1pctCO2 simulations. The sensitivities in this case are due to8

forcing from both CO2 increase and associated warming during the observational period (Sect. 2.4). We seek constrained GPP9

estimates for the NHL at different CO2 levels (2×CO2, 3×CO2, and 4×CO2).10

11

Winkler et al. (2019) previously reported a strong linear relationship between modeled contemporaneous changes in LAImax12

and GPP arising from the combined radiative and physiological effects of CO2 enrichment until 2×CO2 in the CMIP5 ensem-13

ble. As a result, models with low LAImax sensitivity to ω project lower ∆GPP for a given increment of CO2 concentration, and14

vice versa. Thus, the large variation in modeled historical LAImax sensitivities linearly maps to variation in ∆GPP at 2×CO215

(Winkler et al., 2019, blue line, Fig. 7a). At higher levels, such as 3×CO2 (green line, R2 = 0.93) and 4×CO2 (red line, R216

= 0.88), this linear relationship within the model ensemble, while still present, weakens (Fig. 7a; Tab. 3). This is because the17

CMIP5 models do not agree on the strength of the saturation effect at higher CO2 levels (Fig. 5 and A4). The increment in18

constrained GPP estimates for successive equal increments of CO2 decreases due to the saturation effect in all CMIP5 models19

(dashed horizontal lines, Fig. 7a). For example, the change in GPP between 3×CO2 and 4×CO2 (∆GPP ∼1.06 Pg C yr−1,20

Tab. 3) is much lower than between 2×CO2 and 3×CO2 (∆GPP ∼2.34 Pg C yr−1, Tab. 3).21

22

We have thus far focused on the magnitude of CO2 concentration change and not on the time rate of this change. For example,23

a given amount of change in CO2 concentration, say 200 ppm, can be realized over different time periods, say over a 100 or 15024

years. The problem of varying rates of CO2 concentration change is implicitly encountered when ESMs are executed under25

different forcing scenarios, such as RCPs (Sect. 2.3). A question then arises whether the constrained predictand estimate is26

independent of the time rate of CO2 concentration change and dependent only on the magnitude of CO2 concentration change.27

To investigate this aspect of forcing, we extract GPP estimates at the same CO2 concentration (535 ppm; final concentration28

in RCP4.5) from three simulations of different forcing rates and calculate the difference relative to a common initial CO229

concentration (380 ppm; initial concentration of RCP scenarios). Hence, the magnitude of the forcing is the same but applied30

over different durations (RCP4.5: ∼90yr, RCP8.5: ∼45yr, and 1pctCO2: ∼30yr). A clear majority of the CMIP5 models show31

substantial differences in ∆GPP between the different pathways of CO2 forcing. In general, GPP changes are higher for lower32

time rates of CO2 forcing, i.e. forcing over longer time periods. As a consequence, the EC estimates of ∆GPP for the same33

increase in CO2 concentration are scenario-dependent (Fig. 7b; Tab. 3) – a counter-intuitive result. For instance, in the RCP4.534

scenario (which is characterized by a lower rate of CO2 increase) an increment of 155 ppm CO2 yields a GPP enhancement of35
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∼2.84 Pg C yr−1 (see Tab. 3). This GPP enhancement is ∼39% and ∼20% larger than in the 1pctCO2 run (∼2.05 Pg C yr−1,1

Tab. 3) and the RCP8.5 (∼2.38 Pg C yr−1, Tab. 3) scenario, respectively, for the same total increase in CO2 concentration.2

Both these scenarios are characterized by a faster rate of CO2 increase than RCP4.5. This analysis suggests that the vegetation3

response to rising CO2 is pathway dependent, at least in the NHL. One of the reasons for this could be species compositional4

changes in scenarios of low forcing rates, i.e. over longer time frames. This novel result, however, requires a separate in-depth5

study.6

3.5 Effects of CO2 Forcing7

Higher concentration of CO2 in the atmosphere stimulates plant productivity through the fertilization and radiative effects (Ne-8

mani et al., 2003; Leakey et al., 2009; Arora et al., 2011; Goll et al., 2017). The two effects can be disentangled in the model9

world by conducting simulations in a ’CO2 fertilization effect only’ (esmFixClim1) and a ’radiative effect only’ (esmFdbk1)10

setup (Sect. 2.3). These are termed below as idealized model simulations. We investigate here whether historical runs and11

observations, which include both effects, can be used to constrain GPP changes in idealized CMIP5 simulations (e.g. as in12

Wenzel et al., 2016).13

14

We find strong linear relationships between historical LAImax sensitivity and ∆GPP for 2×CO2 in both idealized setups15

(esmFixClim1: R2 = 0.92, esmFdbk1: R2 = 0.98, Tab. 3, Fig. 7c). Consequently, this linear relationship is also pronounced for16

calculated sums of both effects for each model (esmFixClim1 + esmFdbk1: R2 = 0.95, Tab. 3, Fig. 7c). This suggests that the17

two effects act additively on plant productivity and, thus, each effect can be simply expressed in terms of a scaling factor of18

the total GPP enhancement. Hence, the application of the EC method on idealized simulations using real world observations is19

conceptually feasible.20

21

Interestingly, the two effects contribute about the same to the general increase in GPP at 2×CO2 (esmFixClim1: ∆GPP22

∼1.35 Pg C yr−1, esmFdbk1: ∆GPP ∼1.38 Pg C yr−1, Tab. 3, Fig. 7c). At higher concentrations, such as 3×CO2 and 4×CO2,23

the enhancement in GPP saturates in both idealized setups. However, the radiative effect becomes dominant relative to the24

CO2 fertilization effect when CO2 concentration exceeds 2×CO2 (e.g. at 4×CO2 esmFixClim1: ∆GPP ∼2.42 Pg C yr−1,25

esmFdbk1: ∆GPP ∼3.06 Pg C yr−1, Tab. 3). Therefore, we can expect that at some point in the future, NHL photosynthetic26

carbon fixation will benefit more from climate change (e.g. warming) than from the fertilizing effect of CO2.27

3.6 Uncertainties in the Multi-Model Ensemble28

Besides methodological sources of uncertainty discussed above, the estimate of an EC may also be deficient due to inaccurate29

assumptions about the model ensemble. First, possible common systematic errors in a multi-model ensemble (i.e. the entire30

ensemble misses an unknown process, which plays a key role in a high CO2 world) are implicitly omitted in the EC ap-31

proach, however, could cause a general over- or underestimation of the constrained value (Bracegirdle and Stephenson, 2012b;32

Stephenson et al., 2012). Second, the set of forcing variables for historical simulations may be incomplete (i.e. not yet identified33
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drivers of observed changes) and thus the comparability of observations and model simulations is limited (Flato et al., 2013).1

Third, the EC method can be overly sensitive to individual models of the ensemble, which has a bearing on the robustness of2

the constrained value (Bracegirdle and Stephenson, 2012b). Bracegirdle and Stephenson (2012b) proposed a diagnostic metric3

(Cook’s distance) to test an ensemble for influential models. Fourth, the predictand-predictor relationship not only has to rely4

on a physical, but also on a logical connection within the model ensemble. For instance, Wenzel et al. (2016) established a5

linear relationship between relative changes in the predictand taking the initial state into account (changes in GPP for doubling6

of CO2 relative to the initial pre-industrial state), and a predictor neglecting the initial state (historical sensitivity of CO2 am-7

plitude to rising CO2). This statistical relationship can be spurious, because the model skill of simulating an accurate initial8

state and a plausible sensitivity to a forcing are not connected. These issues are to be contemplated when establishing an EC9

estimate and evaluating its robustness.10

4 Conclusions11

An in-depth analysis of the EC method is illustrated in this article through its application to projections of change in NHL12

photosynthesis under conditions of rising atmospheric CO2 concentration. Key conclusions highlighting the functionality of13

the EC method are presented below.14

15

The importance of how the observational predictor is obtained cannot be emphasized enough because the EC method is16

particularly sensitive to observational uncertainty. The single observational estimate essentially determines the EC, whereas17

the emergent linear relationship is established based on a collection of multi-model estimates (each model gets ’one vote’,18

however, some models might be more influential than others; Bracegirdle and Stephenson, 2012b). Hence, the observational19

uncertainty has a much larger bearing on the EC than the uncertainty of each individual model. To overcome this source of20

uncertainty, various meaningful observations should be taken into consideration when establishing the observed predictor.21

22

Spatially aggregating observations and model output of different resolutions in the EC method constitutes another source23

of uncertainty. Predictors and predictands expressed as regional estimates (e.g. area-weighted mean of the NHL) are approxi-24

mations of complex fine-scale processes. Aggregation will inevitably introduce a random error component due to inclusion of25

estimates from areas where the predictor is not changing or a systematic bias from areas where the predictor has a reversed26

sign. Thus, the spatially-aggregated variables are meaningful only if most of the region is in agreement about the response to27

CO2 forcing (e.g. more than half of the NHL is greening with rising CO2). However, we find that the source of uncertainty28

related to spatial aggregation is of minor importance as long as spatial variations in observations and models simulations are29

treated consistently.30

31

A large source of uncertainty is associated with temporal variability of the predictor variable when comparing models and32

observations. Establishing a robust predictor requires evaluating temporal window lengths of sufficient duration (approximately33
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30 years) and their locations along the forcing time line. Both window length and location should match between models and1

observations in the EC method. For example, the analysis in Wenzel et al. (2016) might have yielded different results and2

conclusions if model and observational predictor sensitivities were temporally matched. We find that the relevance of window3

length decreases with increasing and accelerating forcing, depending on the magnitude of natural/internal variability (signal-4

to-noise ratio) of the predictor variable.5

6

The level, effect and time-rate of applied CO2 forcing can have a bearing on the linear relationship between the predictand7

and predictor variables (Fig. 1). In our case study, the relationship underpinning the EC method, namely, that between concur-8

rent ∆GPP and ∆LAImax changes non-linearly with increasing forcing level (i.e. saturation with rising CO2 concentration).9

The EC method can still be applied, because the CMIP5 models agree on the non-linear behavior of the system. However,10

at very high CO2 concentrations the models diverge and this relation breaks down, at which point the EC method fails. The11

two dominant effects of rising CO2 concentration on vegetation, namely, the fertilization and radiative effects, appear to be12

approximately additive in terms of GPP enhancement to CO2 forcing in the NHL. Therefore, the EC method can be applied to13

constrain estimates of GPP due to one or the other, or both the effects. The models, however, document a higher radiative effect14

than fertilization at concentrations exceeding 2×CO2. Another intriguing conclusion from our analysis is that the time-rate of15

forcing has an effect on GPP changes, that is, the projected GPP enhancement to CO2 forcing seems to be dependent on how16

the forcing is applied over time, as in different scenarios or RCPs. This aspect is presently not well understood and requires17

further study.18

19

The EC framework is widely promoted as observation-based evaluation tool for climate projections, especially in the context20

of the nascent CMIP6 ensemble (Eyring et al., 2019; Hall et al., 2019). Previous EC studies, however, exclusively focused on21

predictor-predictand combinations which exhibit so-called existent ECs (Hall et al., 2019), i.e. predictor and predictand are22

found to relate linearly across the ensemble. In the context of ESM evaluation, non-existent ECs, i.e. predictor and predictand23

are found to be unrelated in the ensemble, are equally important. Since predictor and predictand variables are premised on24

our mechanistic process understanding, non-existent ECs reveal a fundamental disagreement on the system dynamics among25

the models. This study encourages to scrutinize these system dynamics in the predictor-predictand space and also report such26

non-existent, yet expected, ECs in order to advance model development and evaluation.27

28

Across different disciplines each EC and its set of predictor and predictand are unique to some extent and require an individ-29

ual detailed examination. In this article, we addressed general potential sources of uncertainty and limitations in the EC method30

by the means of a case study in carbon cycle research. Thus, the illustrated results are qualitatively transmissive to other sets31

of predictors and predictands and are generally relevant in Earth system sciences.32
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Figure 1. Schematic depiction of the Emergent Constraint (EC) method and factors affecting the uncertainty of the constrained estimate.

The predictor (x axis) is change in annual maximum of green leaf area index (LAImax) due to unit forcing (CO2 increase and associated

climatic changes) during a representative historical period. It is termed greening sensitivity in this study. The predictand (y axis) is projected

changes in Gross Primary Productivity (GPP) in response to rising CO2 concentration (e.g. for a doubling of the pre-industrial level). Both

the predictor and predictand refer to large area values, in this case, the entire Northern High Latitudes (NHL). Inter-model variations (each

symbol represents a model) in matching pairs of predictor and predictand result in a linear relationship between the two (green band), i.e. the

ratio (predictand/predictor) is approximately constant across the model ensemble. The slope depends on forcing attributes (gray shading),

such as its level (CO2 concentration, Sect. 3.4), time rate of application (scenarios such as various RCPs, Sect. 3.4) and different effects (i.e.

fertilization, radiative, etc., Sect. 3.5). The observed sensitivity (yellow vertical bar) is used to find the constrained estimate of the predictand

(i.e. change in GPP). The ability to accurately estimate the predictor depends on the source of observational data (Sect. 3.1), and its spatial

(Sect. 3.2) and temporal variability (Sect. 3.3). Observed (yellow bar) and modeled predictor values (x coordinate of symbols) must be

obtained from matching time periods, i.e. at the same level of historical forcing, to ensure comparability (Sect. 3.3 and 3.4). All these factors,

together with the goodness-of-fit of inter-model variations (width of green shading), finally define the uncertainty of the derived constrained

estimate (blue horizontal bar with black solid lines depicting the upper and lower bound of uncertainty).
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Figure 2. Bar charts showing regression slopes of LAImax against atmospheric CO2 concentration for broad vegetation classes (a; Olson

et al., 2001; Fritz et al., 2015), latitudinal bands (b) and climate regimes (c). The class "Other" includes deserts, mangroves, barren and urban

land, snow and ice, and permanent wetlands. The climatic boundaries are defined as follows - cold: < 10◦C; warm: > 10◦C & < 25◦C; hot:

> 25◦C; dry: < 500 mm a−1; wet: > 500 mm a−1 & < 1000 mm a−1; humid: > 1000 mm a−1. Sensitivities evaluated from data from two

satellite-borne sensors are shown, AVHRR (1982 – 2016; Pinzon and Tucker, 2014) and MODIS (2000 – 2016; Yan et al., 2016a, b). Grey

bars indicate the standard error of the best linear fit.
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Figure 3. Histograms and associated probability density functions (Gaussian kernel density estimation) of observed LAImax sensitivity to

ω at pixel scale for the northern high latitudinal band (> 60◦ N, data from AVHRR sensor). Blue color depicts the distribution of LAImax

sensitivities of all pixels and the red color for pixels with statistically significant (Mann-Kendall test, p < 0.1) greening or browning trends

(the dashed lines denote the respective mean value). The green dashed line shows the mean value of ’greening’ pixels only, whereas the

yellow dashed line shows the LAImax sensitivity to ω for the entire northern high latitudinal belt.
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Figure 4. Temporal variation of LAImax sensitivity to ω in three selected CMIP5 models spanning the full range from low (CESM1-BGC,

a), to closest-to-observations (MIROC-ESM, b), to high-end (HadGEM2-ES, c). The colored lines show LAImax sensitivity variations for

moving windows of varying length of 15 (blue), 30 (green), and 45 (red) years over the historical period from 1860 to 2005.
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Figure 5. Correlation of ∆LAImax and ∆GPP with increasing CO2 forcing, starting from a pre-industrial concentration of 280 ppm (1xCO2)

to 4xCO2 (CMIP5 1pctCO2 simulations). Results are shown for three selected CMIP5 models spanning the full range of LAImax sensitivity

to ω, low-end: CESM1-BGC (a), closest-to-observations: MIROC-ESM (b), and high-end: HadGEM2-ES (c). Blue colored dots show the

relation between 1xCO2 and 2xCO2, green colored dots between 2xCO2 and 3xCO2, and red colored dots between 3xCO2 and 4xCO2. The

respective colored lines represent the best linear fit through those dots and the shading represents the 95% confidence interval.
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Figure 6. Thought experiment to examine the applicability of EC analysis under the assumption of an idealized linear / non-linear behavior

of the system (Case 3, Table A1). a, Changes in GPP relate linearly to changes in CO2 concentration. The yellow band marks the projection

period of interest, i.e. the period of CO2 concentration from x + 4∆ to x + 5∆. b, The increment in LAI with increasing GPP is assumed

to decrease with rising CO2 concentration (described by a hyperbolic tangent function). The parameterization in the linear and non-linear

functions for pseudo observations (dashed black line) as well as models (solid grey lines) are determined randomly for each model. c, The

diagnostic variable, LAI sensitivity to CO2, is decreasing with increasing CO2 as a consequence of the non-linear relation between ∆GPP and

∆LAI. The colored bands indicate three ’past’ periods from x to x + ∆ (blue), x + ∆ to x + 2∆ (green), and x + 2∆ to x + 3∆ (red).

d, Linear relationships among the pseudo model ensembles (Ensemble LR, colored lines) between LAI sensitivities to CO2 of the three

past periods and ∆GPP from the projected period. Colored dots mark different models and the dashed lines represent associated pseudo

observations for the respective historical period. Yellow solid line depicts the constant EC on projected ∆GPP irrespective of the past period.
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Figure 7. Linear relationships between historical sensitivity of LAImax to ω and absolute increase of GPP at different levels (a), different

time-rates (b) as well as effects of rising CO2 (c). The black solid line depicts the observational sensitivity including the standard error (grey

shading). Each CMIP5 model is represented by a distinct marker (legend at the top). The colored lines show the best linear fits including the

68% confidence interval estimated by bootstrapping across the model ensemble. The colored dashed lines indicate the derived constraints on

∆GPP. a, Absolute changes in GPP at different levels of CO2: 2×CO2 (blue), 3×CO2 (green), and 4×CO2 (red). b, Absolute changes in

GPP for rising CO2 concentration from 380 to 535 ppm at different time-rates: RCP4.5 (90 yr, blue), RCP8.5 (45 yr, green), and 1pctCO2

(30 yr, red). c, Absolute changes in GPP due to the two disentangled effects of CO2 at 2×CO2 in idealized simulations: Fertilization effect

(esmFixClim1, blue), radiative effect (esmFdbk1, green), and the sum of both effects (red).
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Table 1. Coefficients of determination (R2) of LAImax sensitivity to CO2 for different large-scale aggregated regions. Data are from two

optical remote sensors of different time length, AVHRR (1982 – 2016) and MODIS (2000 – 2016). Asterisks denote non-significant values:

** p > 0.1; * p > 0.05.

1

2

3

Correlation coefficient R2 AVHRR MODIS

Biomes

Boreal forests 0.49 0.58

Temperate forests 0.47 0.81

Tropical forests 0.41 0.06**

Graslands 0.75 0.83

Croplands 0.75 0.8

Other 0.35 0.2*

Latitudinal Bands

> 60◦ N/S 0.51 0.61

30◦ N/S – 60◦ N/S 0.67 0.83

30◦ S – 30◦ N 0.65 0.26

Climate Space

cold dry 0.29 0.27

cold wet 0.49 0.4

cold humid 0.33 0.21*

warm dry 0.33 0.36

warm wet 0.37 0.18*

warm humid 0.25 0.12**

hot dry 0.08* 0.08**

hot wet 0.15 0.00**

hot humid 0.13 0.01**
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Table 2. Slopes (b) and coefficients of determination (R2) for regression between changes of LAImax against changes in annual mean GPP

for the NHL at different atmospheric CO2 levels in all available CMIP5 models (1pctCO2 simulation). Asterisks denote non-significant

values: ** p > 0.1; * p > 0.05.

1

2

3

Correlation details < 2xCO2 > 2xCO2 & < 3xCO2 > 3xCO2

b R2 b R2 b R2

MIROC-ESM 0.23 0.97 0.16 0.89 0.08 0.63

CESM1-BGC 0.45 0.93 0.36 0.82 0.27 0.62

GFDL-ESM2M 0.37 0.89 0.04 0.07** 0.01 0.12**

CanESM2 0.22 0.95 0.19 0.83 0.17 0.67

HadGEM2-ES 0.13 0.99 0.08 0.96 0.06 0.78

MPI-ESM-LR 0.13 0.94 0.09 0.78 0.04 0.51

NorESM1-ME 0.26 0.94 0.2 0.77 0.09 0.27
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Table 3. Coefficients of determination (R2) of the emergent linear relationships in Figure 7 (asterisks denote non-significant values: ** p

> 0.1; * p > 0.05). ECs on ∆GPP (upper and lower bound of uncertainty in square brackets) for different atmospheric CO2 levels and

fully-coupled as well as idealized setups. The rightmost column shows the increase of ∆GPP for an increment of 1×CO2. The lowermost

section compares EC estimates of ∆GPP for equivalent changes in CO2 concentration (CO2 rises from 380 to 535 ppm), but for different

time-rates.

1

2

3

4

5

R2 EC ∆GPP estimate (Pg C yr−1) EC ∆GPP for ∆1× CO2 (Pg C yr−1)

2xCO2

Fully coupled (1pctCO2) 0.96 3.36 [3.15, 3.56] –

CO2 fertilization only (esmFixClim1) 0.88 1.35 [1.29, 1.62] –

Radiative effect only (esmFdbk1) 0.94 1.38 [1.13, 1.51] –

Sum of both effects (esmFixClim1 + esmFdbk1) 0.95 2.74 [2.6, 2.9] –

3xCO2

Fully coupled (1pctCO2) 0.93 5.7 [5.26, 6.16] 2.34

CO2 fertilization only (esmFixClim1) 0.92 2.15 [2.02, 2.37] 0.79

Radiative effect only (esmFdbk1) 0.98 2.53 [2.3, 2.66] 1.15

Sum of both effects (esmFixClim1 + esmFdbk1) 0.96 4.68 [4.38, 4.97] 1.94

4xCO2

Fully coupled (1pctCO2) 0.88 6.76 [6.08, 7.53] 1.06

CO2 fertilization only (esmFixClim1) 0.88 2.42 [2.23, 2.74] 0.28

Radiative effect only (esmFdbk1) 0.97 3.06 [2.83, 3.2] 0.53

Sum of both effects (esmFixClim1 + esmFdbk1) 0.95 5.49 [5.09, 5.85] 0.81

380 – 535 ppm CO2

Slow increase in CO2 (RCP4.5) 0.93 2.84 [2.54, 3.08] -

Medium-fast increase in CO2 (RCP8.5) 0.96 2.38 [2.18, 2.55] -

Rapid increase in CO2 (1pctCO2) 0.96 2.05 [1.94, 2.16] -
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Figure A1. Standardized temporal anomalies of annual averaged atmospheric CO2 concentration (blue solid line), area-weighted averaged

GDD0 for NHL (green solid line), and their leading principal component ω (red dashed line) in observations.

2

3

32



0.0

0.5

1.0

1.5

2.0

2.5 MIROC-ESM

0

1

2

3

0

1

2

3

4

5 CESM1-BGC

0

2

4

6

0

1

2

3
GFDL-ESM2M

0.0

0.5

1.0

1.5

2.0

2.5

0

1

2

3

4 CanESM2

0

1

2

3

0

1

2

3

4 HadGEM2-ES

0

1

2

3

4

0

1

2

3
MPI-ESM-LR

0

1

2

3

0

2

4

6
NorESM1-ME

0

1

2

3

4

5

Historical LAImax sensitivity to CO2
Trends in GPP until 2×CO2

Normalized x-axis

No
rm

ali
ze

d 
pr

ob
ab

ilit
y d

en
sit

y

1

2

Figure A2. Similar pixel distribution of predictor and predictand in each model, except HadGEM2-ES. Histograms and associated probability

density functions (Gaussian kernel density estimation) of LAI sensitivity to ω (red, left y-axis, historical simulations) and temporal trends

in GPP (blue, right y-axis, 1pctCO2, until 2×CO2) for NHL are shown for all CMIP5 models. Only significant pixels are included (Mann-

Kendall test, p < 0.1). To obtain comparability between the distributions, the x-axis was normalized and has only qualitative meaning.
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Figure A3. Temporal variation of LAImax sensitivity to ω in four CMIP5 models analogous to Fig. 4. The colored lines show LAImax

sensitivity variations for moving windows of varying length of 15 (blue), 30 (green), and 45 (red) years over the historical period from 1860

to 2005.
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Figure A4. Correlation of ∆LAImax and ∆GPP with increasing CO2 forcing, starting from a pre-industrial concentration of 280 ppm

(1xCO2) to 4xCO2 (CMIP5 1pctCO2 simulations). Results are shown for four CMIP5 models analogous to Fig. 5. Blue colored dots show

the relation between 1xCO2 and 2xCO2, green colored dots between 2xCO2 and 3xCO2, and red colored dots between 3xCO2 and 4xCO2.

The respective colored lines represent the best linear fit through those dots and the shading represents the 95% confidence interval.
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Figure A5. Thought experiment to examine the applicability of the EC analysis assuming an idealized linear / linear behavior of the system

(Case 1, Table A1). a, Changes in GPP relate linearly to changes in CO2 concentration. The yellow band marks the projection period

of interest, i.e. the period of CO2 concentration from x + 4∆ to x + 5∆. b, Changes in LAI relate linearly to changes in GPP. The

parameterization in the linear functions for pseudo observations (dashed black line) as well as models (solid grey lines) are determined

randomly for each model. c, The diagnostic variable, LAI sensitivity to CO2, remains constant with increasing CO2 as a consequence of the

overall linear characteristics of the system. The colored bands indicate three ’past’ periods from x to x + ∆ (blue), x + ∆ to x + 2∆

(green), and x + 2∆ to x + 3∆ (red). d, Linear relationships among the pseudo model ensembles (Ensemble LR 1-3 on top of each other,

red) between LAI sensitivity to CO2 of the three past periods and ∆GPP from the projected period. Red dots mark different models and the

dashed line represents associated pseudo observations for all three historical periods. Yellow solid line depicts the constant EC on projected

∆GPP irrespective of the past period.
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Figure A6. Thought experiment to examine the applicability of the EC analysis assuming an idealized non-linear / non-linear behavior of

the system (Case 4, Table A1). a, ∆GPP decreases with increasing CO2 concentration (described by a hyperbolic tangent function). The

yellow band marks the projected period of interest, i.e. the period of CO2 concentration from x + 4∆ to x + 5∆. b, Also ∆LAI decreases

with increasing GPP (described by a hyperbolic tangent function). The parameterization in the hyperbolic tangent functions for pseudo

observations (dashed black line) as well as models (solid grey lines) are determined randomly for each model. c, The diagnostic variable,

LAI sensitivity to CO2, is decreasing with increasing CO2 as a consequence of the overall saturating characteristics of the system. The

colored bands indicate three ’past’ periods from x to x + ∆ (blue), x + ∆ to x + 2∆ (green), and x + 2∆ to x + 3∆ (red). d, Linear

relationships among the pseudo model ensembles (Ensemble LR, colored lines) between LAI sensitivity to CO2 of the three past periods

and ∆GPP from the projected period. Colored dots mark different models and the dashed lines represent associated pseudo observations for

respective historical period. Yellow solid line depicts the constant EC on projected ∆GPP irrespective of the past period.
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Table A1. Overview of four possible cases of interaction between forcing, non-observable and observable identified in the thought experi-

ment: All linear, all non-linear, and two mixed cases.

1

2

Different assumptions d[non−observable]
d[forcing]

, e.g. d[GPP]
d[CO2]

d[observable]
d[non−observable]

, e.g. d[LAI]
d[GPP]

1 linear linear

2 non-linear linear

3 linear non-linear

4 non-linear non-linear

3

4

38


