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Abstract.

Recent research on Emergent Constraints (EC) has delivered promising results in narrowing down uncertainty in climate pre-
dictions. The method utilizes a measurable variable (predictor) from the recent historical past to obtain a constrained estimate
of change in an entity of interest (predictand) at a potential future CO; concentration (forcing) from multi-model projections.
This procedure critically depends on, first, accurate estimation of the predictor from observations and models, and second, on
a robust relationship between inter-model variations in the predictor-predictand space. Here, we investigate issues related to
these two themes in a carbon cycle case study using observed vegetation greening sensitivity to CO5 forcing as a predictor
of change in photosynthesis (Gross Primary Productivity, GPP) for a doubling of pre-industrial CO, concentration. Greening
sensitivity is defined as changes in annual maximum of green leaf area index (L.Alp,,x) per unit CO, forcing realized through
its radiative and fertilization effects. We first address the question of how to realistically characterize the predictor of a large
area (e.g. greening sensitivity in the northern high latitudes region) from pixel-level data. This requires an investigation into
uncertainties in the observational data source and an evaluation of the spatial and temporal variability in the predictor in both
the data and model simulations. Second, the predictor-predictand relationship across the model ensemble depends on a strong
coupling between the two variables, i.e. simultaneous changes in GPP and LAI,,,. This coupling depends in a complex man-
ner on the magnitude (level), time-rate of application (scenarios) and effects (radiative and/or fertilization) of CO5 forcing. We
investigate how each one of these three aspects of forcing can @i} the EC estimate of the predictand (AGPP). QOur results
show that uncertainties in the EC method cafr primarily originate fom a lack of predictor comparability between models and
observations, temporal variability, and the observational data soul of the predictor. The disagreement between models on
the mechanistic behavior of the ﬁlstcm under intensifying forcing limits the EC applicability. MM"“S
and sources of uncertainty in the EC method go beyond carbon cycle research and are generally applicable in Earth system
sciences. [
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1 Introduction

Earth system models (ESMs) are powerful tools to predict responses to a variety of forcings such as increasing atmospheric
concentration of greenhouse gases and other agents of radiative forcing (Klein and Hall, 2015). Still, longterm ESM projections
of climate change have substantial uncertainties. This can be due to poorly understood processes in some cases, and in others,
to missing or simplified representations called parameterizations (Flato et al., 2013; Klein and Hall, 2015; Knutti et al., 2017).
Certain important processes, especially in the atmosphere, happen at spatial scales finer than can be possibly represented in
current ESMs. Consequently, various phenomena in the system ranging from local extreme precipitation events to large-scale
climate modes, can be poorly simulated (Flato et al., 2013). Errors propagate and can be amplified through feedbacks among
interacting components in the Earth system, resulting in biases whose origins can be difficult to identify (Flato et al., 2013).
Furthermore, an inherent component of the Earth climatic system, its internal natural variability, is complicated to represent
and simulate in models (Flato et al., 2013; Klein and Hall, 2015).

Model Intercomparison Projects explore these uncertainties by coordinating a wide range of simulation setups focusing on
internal variability, boundary conditions, parameterizations, etc. (Taylor et al., 2012; Flato et al., 2013; Eyring et al., 2016;
Knutti et al., 2017). Models developed at various institutions are driven with the same forcing information (e.g. historical forc-
ing) or with identical idealized boundary conditions. However, each modeling group decides which of the processes to consider
and implement in their ESM. The conventional approach of handling these multi-model ensembles is to use unweighted ensem-
ble averages (Knutti, 2010; Knutti et al., 2017). This assumes that the models are independent of one another and equally good
at simulating the climate system (Flato et al., 2013; Knutti et al., 2017). The large spread between model projections suggests
that this assumption is not valid. Therefore, alternate methods have been developed to extract results more accurate than multi-
model averages (e.g. model weighting scheme based on preformance and interdependence, Knutti et al., 2017). The concept of
Emergent Constraints arises in this context, namely, as a method to reduce uncertainty in ESM projections relying on histori-

cal simulations and observations (Hall and Qu, 2006; Boé et al., 2009; Cox et al., 2013; Klein and Hall, 2015; Cox et al., 2018).

The two key parts of an Emergent Constraint (EC) based method are a linear relationship arising from the collective behavior
of a multi-model ensemble and an observational estimate for imposing the said constraint (Fig. 1). The linear relationship is a
physically (or physiologically) based correlation between inter-model variations in an observable entity of the contemporary
climate system (predictor) and a projected variable (predictand) that is difficult to observe or not observable at all. Combining
the emergent linear relationship with observations of the predictor sets a constraint on the predictand (Cox et al., 2013; Flato
et al., 2013; Klein and Hall, 2015; Knutti et al., 2017). Many such ECs have been identified and reported, as briefly summarized

below.

Hall and Qu (2006) proposed a constraint on projections of snow-albedo feedback based on the correlation between large

inter-model variations in feedback strength of the current seasonal cycle. The EC was first established for the CMIP3 ensemble
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and confirmed for phase five of the Coupled Model Intercomparison Project (CMIPS5; Flato et al., 2013; Qu and Hall, 2014).
Several EC studies followed with the goal of reducing uncertainty in projections of the cloud feedback under global warming,
as reviewed by Klein and Hall (2015). It is thought that erroneous representation of low-cloud feedback in ESMs contributes
essentially to the large uncertainty in equilibrium climate sensitivity (ECS, 1.5 to 5 K), i.e. warming for a doubling of pre-
industrial atmospheric CO; concentration (2xCOs; Sherwood et al., 2014; Klein and Hall, 2015). Recently, Cox et al. (2018)
presented a different approach to constrain ECS based on its relationship to variability of global temperatures during the recent
historical warming period. They reported a constrained ECS estimate of 2.8 K for 2xCQ; (66% confidence limits of 2.2 — 3.4
K).

The concept of EC also found its way into the field of carbon cycle projections. A series of studies analyzed the extent
to which inter-annual atmospheric CO5 variability can serve as a predictor of longterm temperature sensitivity of terrestrial
tropical carbon storage. Cox et al. (2013) and Wenzel et al. (2014) reported an emergent linear relationship, although with
different slopes for CMIP3 and CMIP5 ensembles, resulting in slightly divergent constrained estimates (CMIP3: -533 + 17 Pg
C K1, CMIP5: -44 + 14 Pg C K~1). Wang et al. (2014) however were unable to detect a similar relationship between the
proposed predictor and predictand. Recently, Lian et al. (2018) presented an EC estimate of the global ratio of transpiration
to total terrestrial evapotranspiration (T/ET), which is substantially higher (0.62 & 0.06) than the unconstrained value (0.41 &+
0.11). For the marine tropical carbon cycle, Kwiatkowski et al. (2017) identified an emergent relationship between the longterm
sensitivity of tropical ocean net primary production (NPP) to rising sea surface temperature (SST) in the equatorial zone and
the interannual sensitivity of NPP to El Nifio/Southern Oscillation driven SST anomalies. Tropical NPP is projected to decrease

by 3 £ 1% for 1 K increase in equatorial SST according to the observational constraint.

Similar results were reported for modeled extra-tropical terrestrial carbon fixation in a 2xCOz world. Plant productivity is
expected to increase due to the fertilizing and radiative effects of rising atmospheric CO; concentration. Wenzel et al. (2016)
focused on constraining the CO. fertilization effect on plant productivity in the northern high latitudes (60° N — 90° N, NHL)
and the entire extra-tropical area in the northern hemisphere (30° N — 90° N} using the seasonal amplitude of longterm CO;
measurements at different latitudes. They presented a linear relationship between the sensitivity of CO; amplitude to rising
atmospheric CO, concentration and the relative increase in zonally averaged gross primary production (GPP) for 2xCO;. The
observed CO; amplitude sensitivities at respective stations provided a constraint on the strength of the CO», fertilization effect,
namely 37% + 9% and 32% =+ 9% for the NHL and the extra-tropical region, respectively.

G not sure. what these numbens ﬂ;};rg_gw(;‘
Focusing on the NHL, Winkler et al. (2019) investigated how both effects of CO2 enhance plant productivity while assess-

ing the feasibility of vegetation greenness changes as a constraint. Enhanced GPP due to the physiological effect and ensuing
climate warming is indirectly evident in large-scale increase in summer time green leaf area (Myneni et al., 1997a; Zhu et al.,
2016). Historical CMIP5 simulations show that the maximum annual leaf area index (LAl ,x, leaf area per ground area) in-

creases linearly with both CO;, concentration and temperature in NHL. In all ESMs, these changes in LALy .« strongly correlate
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to changes in GPP arising from the combined radiative and physiological effects of CO, enrichment. Thus, the large variation
in modeled historical LAI,,,,, responses to the effects of CO5 linearly maps to variation in AGPP at 2xCO, in the CMIP5

ensemble. This linear relationship in inter-model variations enables the usage of the observed longterm change in LA, as

an EC on AGPP at 2XC02 in NHL (3-4:': 0.2 chYr—l; Winkler et al., 2019). a
7 i Rale X NOLANE
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The robustness of these EC estimates is debated, mainly because the EC approach is susceptible to methodological incon-
sistencies. For example, Cox et al. (2013), Wang et al. (2014) and Wenzel et al. (2015) investigated on constraining future
terrestrial tropical carbon storage using the same set of models and data. However, they arrived at different EC estimates and
divergent conclusions. Some reasons for failure and essential criteria of the EC approach were described previously (Bracegir-
dle and Stephenson, 2012b; Klein and Hall, 2015), but this list is far from complete. To account for this gap in the literature,
a detailed investigation and description of the EC method in terms of its potential sources of uncertainty and the range of

applicability are needed.

Here, we revisit the study of Winkler et al. (2019) and elaborate on key issues concerning the robustness of the EC method.
Uncertainty of the constrained estimate depends on (a) observed predictor and (b) modeled relationship, aside from the
goodness-of-fit of the latter (green shading in Fig. 1). As for (a), the source of observations is an obvious first line of in-
quiry (Sect. 3.1). Spatial aggregation of data and model simulations introduces uncertainties, as the EC method is applied on
large areal values of predictor and predictand. This is the subject of Sect. 3.2. The observed and modeled predictors are from
the historical period. The representativeness, duration and match between data and models all introduce an uncertainty related
to variations in the temporal domain — these are explored iniSect. 3.3{. The yellow shading in Fig. 1 represents the total uncer-
tainty on observed predictor from these three fronts. Regarding (b), the modeled linear relation varies (grey shading in Fig. 1)
depending on three attributes of the forcing, i.e. CO, concentration change, its magnitude, rate and effect (Sect. 3.4 and 3.5).

Lessons learned from analyses along these lines are presented in the conclusion section at the end.
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2 Data and Methods
2.1 Remotely sensed leaf area index

We used the recently updated version (V1) of the leaf area index dataset (LAI3g) developed by (Zhu et al., 2013). It was gen-
erated using an artificial neural network (ANN) and the latest version (third generation) of the Global Inventory Modeling and
Mapping Studies group (GIMMS) Advanced Very High Resolution Radiometer (AVHRR) normalized difference vegetation
index (NDVT) data (NDVI3g). The latter have been corrected for sensor degradation, inter-sensor differences, cloud cover, ob-

servational geometry effects due to satellite drift, Rayleigh scattering and stratospheric volcanic aerosols (Pinzon and Tucker,

2014). This dataset provides global and year-round LAI observations at 15-day (bi-monthly) temporal resolution and 1/12 -

degree spatial resolution from July 1981 to December 2016. Currently, this is the only available record of such length.

The quality of previous version (V0) of LAI3g dataset was evaluated through direct comparisons with ground measurements
of LAI and indirectly with other satellite-data based LAI products, and also through statistical analysis with climatic variables,
such as temperature and precipitation variability (Zhu et al,, 2013). The LAI3gVO0 dataset (and related fraction vegetation-
absorbed photosynthetically active radiation dataset) has been widely used in various studies (Anav et al., 2013; Piao et al.,
2014; Poulter et al., 2014; Forkel et al., 2016; Zhu et al., 2016; Mao et al., 2016; Mahowald et al., 2016; Keenan et al., 2016).

The new version, LAI3gV1, used in our study is an update of that earlier version.

We also utilized a more reliable but shorter dataset from the Moderate Resolution Imaging Spectroradiometer (MODIS)
aboard the NASA’s Terra satellite (Yan et al., 2016a, b). These data are well calibrated, cloud-screened and corrected for at-
mospheric effects, especially tropospheric aerosols. The sensor-platform is regularly adjusted to maintain a precise orbit. All
algorithms, including the LAI algorithm, are physics-based, well-tested and currently producing sixth generation datasets. The
dataset provides global and year-round LAI observations at 16-day (bi-monthly) temporal resolution and 0.05° spatial resolu-

tion from 2000 to 2016, Vso degrec.

Leaf area index is defined as the one-sided green leaf area per unit ground area in broadleaf canopies and as one-half the
green needle surface area in needleleaf canopies in both observational and CMIP5 simulation datasets. It is expressed in units
of m? green leaf area per m? ground area. Leaf area changes can be represented either by changes in annual maximum LAI
(LALmax; Cook and Pau, 2013), or growing season average LAL In this study, we use the former because of its ease and
unambiguity, as the latter requires quantifying the start- and end-dates of the growing season, something that is difficult to do
accurately in NHL (Park et al., 2016) with the low resolution model data. Further, LAIp, .y, is less influenced by cloudiness and
noise; accordingly, it is most useful in investigations of long-term greening and browning trends. The drawback of LAl ., is
the saturation effect at high LAI values (Myneni et al., 2002). However, this is less of a problem in high latitudinal ecosystems
which are less-densely vegetated, with LAIax, values typically in the range of 2 to 3.
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The bi-monthly satellite datasets were merged to a monthly temporal resolution by averaging the two composites in the same
month and bi-linearly remapped to the resolution of the applied reanalysis product (0.5° x0.5°, CRU TS4.01).

2.2 Environmental driver variables

We use time series of temperature and CO; to derive the observed historical forcing (Sect. 2.4) and climatologies of pre-
cipitation and temperature to calculate climatic regimes (Fig. 2). Monthly averages of near-surface air temperature and pre-
cipitation are from the latest version of the Climatic Research Unit Timeseries dataset (CRU TS4.01). The global data are
gridded to 0.5°x0.5° resclution (Harris et al., 2014). Global monthly means of atmospheric CO; concentration are from
the GLOBALVIEW-CO2 product (obspack_co2_1_GLOBALVIEWplus_v2.1_2016_09_02; for details see https://doi.org/10.
25925/20190520) provided by the National Oceanic and Atmospheric Administration / Earth System Research Laboratory
(NOAA /ESRL).

2.3 Earth system model simulations

We analyzed recent climate-carbon simulations of seven ESMs participating in the fifth phase of the Coupled Model Inter-
comparison Project, CMIP (Taylor et al., 2012). The model simulated data were obtained from the Earth System Grid Federa-
tion, ESGF (https://esgf-data.dkrz.de/projects/esgf-dkrz/). Seven ESMs provide output for the variables of interest (GPP, CO,,
LAI, and near-surface air temperature) for simulations titled esmHistorical, RCP4.5, RCP8.5, 1pctCO2, esmFixClim1, and
esmFdbk]1. It is the same set of models analyzed in Wenzel et al. (2016) and Winkler et al. (2019). The individual model setups
and components are illustrated in more detail in various studies, such as Arora et al. (2013); Wenzel et al. (2014); Mahowald
et al. (2016); Winkler et al. (2019).

The esmHistorical simulation spanned the period 1850 to 2005 and was driven by observed conditions such as solar forcing,
emissions or concentrations of short-lived species and natural and anthropogenic aerosols or their precursors, land use, anthro-
pogenic as well as volcanic influences on atmospheric composition. The models are forced by prescribed anthropogenic CO,

emissions, rather than atmospheric CO; concentrations.

Several Representative Concentration Pathways (RCPs) have been formulated describing different trajectories of greenhouse
gas emissions, air pollutant production and land use changes for the 21st century. These scenarios have been designed based
on projections of human population growth, technological advancement and societal responses (van Vuuren et al., 2011; Tay-
lor et al., 2012). We analyzed simulations forced with specified concentrations of a high emissions scenario (RCP8.5) and
a medium mitigation scenario (RCP4.5) reaching a radiative forcing level of 8.5 and 4.5 W m~2 at the end of the century,
respectively. These simulations were initialized with the final stateCf the historical runs and spanned the period 2006 to 2100.

at the end
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1petCO2 is an idealized fully coupled carbon-climate simulation initialized from a steady state of the pre-industrial control
run and atmospheric CO; concentration prescribed to increase 1% yr~! until quadrupling of the pre-industrial level. The sim-
ulations esmFixClim and esmFdbk aim to disentangle the two carbon cycle feedbacks in response to rising CO, analogous
to the 1pctCO?2 setup: In esmFixClim CO5-induced climate change is suppressed (i.e. radiation transfer model sees constant
pre-industrial CO. level), while the carbon cycle responds to increasing CO; concentration (vice versa for esmFdbk; Taylor
et al., 2009, 2012; Arora et al., 2013).

24 Estimation of greening sensitivities

We largely follow the methodology detailed in Winkler et al. (2019). For both model and observational data, the two-dimensional
global fields of LAI and the driver variables are cropped according to different classification schemes (namely, climatic regimes,
latitudinal bands and vegetation classes; Olson et al., 2001; Fritz et al., 2015). The aggregated values are area-weighted, aver-
aged in space, and temporally reduced to annual estimates dependent on the variable: annual maximum LA, annual average
atmospheric CO, concentration, and growing degree days (GDDO, yearly accumulated temperature of days where near-surface

air temperature > (° C).

We use a standard linear regression model to derive the historical greening sensitivities in models and observations alike (for
details see the Methods section Estimation of historical LAl ., sensitivity in Winkler et al., 2019). On the global scale, LAl 5y
is assumed to be a linear function of atmospheric CO5 concentration. For the temperature-limited high northern latitudes, we
also have to account for warming and include temperature as an additional driver. We do this using GDD{). Through a principal
component analysis (PCA) of CO; and GDDO we avoid redundancy from co-linearity between the two driver variables, but
retain their underlying time-trend and interannual variability (for details see the Methods section Dimension reduction using
principal component analysis in Winkler et al., 2019). In particular, the PCA is performed on large-scale aggregated values
as well as on pixel level to investigate on spatial variations. We only retain the first principal component (denoted w), which
explains a large fraction of the variance in models and observations (for more details see Supplementary Table 1 in Winkler
et al., 2019). Figure Al depicts the temporal development of CO3 and GDDO as well as their principal component w for
observations. For the NHL, LAI,., is then formulated as a linear function of the proxy driver time series w (Winkler et al.,
2019). The best-fit gradients and associated standard errors of the linear regression model represent the LAL ., sensitivities,

or greening sensitivities, and their uncertainty estimates, respectively.
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3 Results and Discussion

There are two parts to the EC methodology (Fig. 1) — a statistically robust relationship between modeled matching pairs of
predictor-predictand values and an observed value of the predictor. The predictors are from a representative historical period.
The predictands are modeled changes in a variable of interest at another forcing state of the system (e.g. potential future).
The projection of the observed predictor on the modeled relation yields a constrained value of the predictand. A causal basis
has to buttress the predictor-predictand relationship, else the EC method may be spurious. For example, meaningful coupling
between concurrent changes in GPP and LAl with increasing atmospheric COy concentration underpins our specific case
study in the NHL, i.e. some of the enhanced GPP due to rising CO4 concentration is invested in additional green leaves by
plants (Myneni et al., 1997a; Forkel et al., 2016; Zhu et al., 2016; Mao et al., 2016; Winkler et al., 2019). Supplementary Figure
1 in Winkler et al. (2019) illustrates the specifics of the causal link underlying this predictor-predictand relationship. This tight
coupling assures an approximately constant ratio of predictand to predictor across the models within the ensemble, thus setting
up the potential for deriving an EC estimate. Uncertajnt;r\ano e constrained estimate depends on the observed predictor and

modeled relationship, aside from the goodness-of-fit of the latter (Fig. 1). These are detailed below.

3.1 Uncertainty in Observed Predictor Due to Data Source

We investigate observational uncertainty using LAT data from two different sources, AVHRR (1/12 degree) and MODIS (1/20
degree), and spatially aggregating thesefbvg;’cgroad vegetation classes, latitudinal bands and climatic regimes. The observed
large-scale LAl ., sensitivities to CO; forcing are always positive (greening), irrespective of the source data and the method
of aggregation (Fig. 2, Tab. 1). Overall, MODIS based estimates have higher uncertainty because of the shorter length of the
data record (17 years). The failure to reliably estimate sensitivities in tropical forests (also in the latitudinal band 30° S — 30°
N, and in hot, wet and humid climatic regimes, see Tab. 1 and Fig. 2) is due to saturation of optical remote sensing data over
dense vegetation (LAl > 5) and problems associated with high aerosol content and ubiquitous cloudiness. In other regions,
the estimated sensitivities are comparable across sensors and aggregation schemes, in particular in the high latitudinal band (>
60° N/S; AVHRR: [3.4 £ 0.5] x 10—, MODIS: [3.6 £ 0.9] x 102 m? m~? ppm~? CO,). This aligns with previous studies
reporting a net increase in green leaf area across the high latitudes during the observational period (Myneni et al., 1997b; Zhu
et al., 2016; Forkel et al., 2016).

This analysis illustrates the applicability and limitations of using observed greening sensitivities to CO forcing as a con-
straint on photosynthetic production. For example, data from both AVHRR and MODIS sensors provide a comparable estimate
of greening sensitivity in the colder high latitudes (boreal forests and tundra vegetation classes; Winkler et al., 2019). In the
lower latitudes, however, the discrepancies among the two sensors indicate a considerable observational uncertainty and thus

no robust estimation of the observed predictor is possible.
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3.2 Uncertainty Due to Spatial Aggregation

We focus further analyses on the NHL region (> 60° N; Fig. 2b), because of two reasons. First, the direct human impact (i.e.
land management) can be neglected in the high latitudes, thus, we can assume that the observed changes reflect the response of
natural ecosystems. Second, the observational evidence of an increased plant productivity in the recent decades is well estab-
lished (e.g. Keeling et al., 1996; Myneni et al., 1997a; Graven et al., 2013; Forkel et al., 2016; Wenzel et al., 2016, and Sect.

3.1) — an important requisite in defining a robust predictor.

In addition to the physiological effect of COgMplays a key role in controlling plant productivity of the NHL
temperature-limited ecosystems, and thus, vegetation greenness. To avoid redundancy from co-linearity between CO; and
GDDO, we reduce dimensionality by performing a principal component analysis of the two driver variables (Sect. 2.4). The
resulting first principal component explains most of the variance and retains the trend and year-to-year fluctuations in both
CO;.and GDDO. Therefore, we obtain a proxy driver (hereafter denoted w) that represents the overall forcing signal causing
observed vegetation greenness changes in NHL (Fig. Al). Accordingly, greening sensitivity for the entire NHL area is derived
as response to w, the combined forcing signal of rising CO, and warming. This procedure also enables a better comparability
between observations and models because varying strengths of physiological and radiative effects of CO, among models are
taken into account (Sect. 3.3 — 3.5).

The vegetated landscape in the NHL region is heterogeneous, with boreal forests in the south, vast tundra grasslands to the
north and shrublands in-between. The species within each of these broad vegetation classes respond differently to changes in
key environmental factors. Even within a species, such responses might vary due to different boundary conditions, such as
topography, soil fertility, micrometeorological conditions, etc. How this fine scale variation in greening sensitivity impacts the

aggregated value is assessed below.

The distribution of greening sensitivities from all NHL pixels is slightly skewed towards the positive (blue histogram). The
mean value of this distribution (blue dashed line) is comparable to the sensitivity estimate derived from the spatially-averaged
NHL time series (yellow dashed line; Fig. 3). Based on the Mann-Kendall test (p > 0.1), nearly over half the pixels (54%) show
positive statistically significant trends (greening), while about 10% show browning trends (possibly due to disturbances; Goetz
et al., 2005). The distribution of these statistically significant sensitivities (red histogram) therefore has two modes, a weak
browning and a dominant greening mode, resulting in a substantially higher mean value (red dashed line} in compariscn to the

spatially-averaged estimate (yellow dashed line; Fig. 3). Thus, by taking into account the remaining 36% 0f non-significantly

changing pixels (as in the NHL spatially-averaged estimate), an additional source of uncertainty is possibly introduced. The
mean sensitivity value is, of course, higher when only pixels showing a greening trend are considered |in the analysis (green

dashed line; Fig. 3). These are the only areas in NHL that actually show a large increase in plant productivity and consequently

o~
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significant changes in leaf area.

Model output of several ESMs (CMIPS5) reveal similar pixel-level variation in both the predictor (LAI,, to w, historical
simulation; Sect. 2.3) and associated changes in the predictand (GPP, 1pctCO2; Sect. 2.3), although ESMSs operate on much
coarser resolution (Fig. A2; see also Anav et al., 2013, 2015). Due to the coupling of the predictor and predictand, the distri-
bution of pixels with significant changes is approximately the same for the two variables (Fig. A2). Accordingly, averaging
the equally distributed estimates likely does not affect the predictor-predictand relationship in the model ensemble (Fig. 1).
Consequently, if all spatial gridded data arrays are consistently processed to spatially-aggregated estimates, each predictand
and predictor (observed and modeled) estimate contain a coherent component of spatial variations. In other words, considering
browning and non-significant pixels results in a lower overall LA, sensitivity in NHL, which in turn leads to a lower con-
strained estimate of AGPP in NHL. This is consistent with the underlying relationship between predictor and predictand. On a
related note, Bracegirdle and Stephenson (2012a) suggest that this source of error is not significantly dependent on the spatial

resolution when comparing model subsets from high to low resolution.

The above analysis informs that spatially-averaged estimates are approximations containing a random error component due
to inclusion of data from insignificantly changing pixels and a systematic bias component from pixels of reversed sign. This
uncertainty is relevant to the EC method, where the observed sensitivity decisively determines the constrained estimate from
the ensemble of ESM projections (Kwiatkowski et al., 2017; Winkler et al., 2019). Howeyver, if spatial variations are treated
consistently as an inherent component of observations and models, the EC method is only slightly susceptible to this source of

uncertainty.

3.3 Uncertainty Due to Temporal Variations

We seek recourse to longterm CMIPS ESM simulations covering the historical period 1850 to 2005 (Sect. 2.3) to assess
temporal variation in the predictor variable, because of the shortness of observational record. Three representative models
(CESM1-BGC, MIROC-ESM, and HadGEM2-ES) spanning the full range of NHL greening sensitivities in the CMIP5 en-
semble (Winkler et al., 2019) are selected for this analysis. For each model, LAla, sensitivity to w in moving windows of
different lengths are evaluated (15, 30, and 45 years; Fig. 4 and A3). The analysis reveals two crucial aspects that highlight how
temporal variations impair comparability of the predictor variable between models and observations — an essential component

of the EC approach.

First, window locations of modeled and observed predictor variable have to match. If the forcing in the simulations is low,
for example, as in the second half of the 19th century when CO, concentration was increasing slowly, inter-annual variability
dominates and LA, sensitivity cannot be accurately estimated irrespective of the window length (Fig. 4 and A3). With

increasing forcing over time (rising yearly rate of CO, infusion, and consequently, the concentration), the signal-to-noise ratio
7
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increases and LAIL,, sensitivity to w estimation stabilizes, for example, as in the second half of the 20th century. Therefore,
LAl sensitivities estimated at different temporal locations result in non-comparable values and eventually a false con-
strained estimate (details in Sect. 3.4). As an example, modeled sensitivities based on a 30-year window centered on year 1900,
when CO;, level increased by 10 ppm, and observed sensitivity estimated from a 30-year window centered on year 2000, when

CO;, level increased by 55 ppm, describe different states of the system and therefore should not be contrasted in the EC method.

Second, in addition to temporal location, also window lengths have to match between observations and models. For all three
models, sensitivities estimated from 15-year chunks show high variability and thus, a 15-year record is perhaps too short to
obtain robust estimates. The LAI,, sensitivity estimation becomes more stable with strengthening forcing and increasing
window length (Fig. 4 and A3). As a consequence, using short-term observed sensitivity as a constraint on long-term model
projections results in an incorrect EC estimate. Hence, the MODIS sensor record is, on the one hand, too short and does not,
on the other hand, overlap temporally with the historical CMIP5 forcing. Therefore, it does not provide a robust predictor in
this EC study.

3.4 Level and Time Rate of CO; Forcing

The EC method raises an obvious question — does it not implicitly assume that the key operative mechanisms underpinning the
EC relation remain unchanged because a future system state is being predicted based on its past behavior? To be specific, we
are attempting to predict GPP at a future point in time based on greening sensitivity inferred from the past. Does this not require
the assumption that the key underlying relationship which makes this prediction possible, namely, a robust coupling between
contemporaneous changes in GPP and LAI,,,« remains unchanged from the past to the future? To address this question, we
resort to the CMIP5 idealized simulation (1pctCO2), where atmospheric CO, concentration increases 1% annually, starting
from a pre-industrial level of 284 ppm until a quadruple of this value is reached (Sect. 2.3). We limit the analysis to the three
models (CESM1-BGC, MIROC-ESM, and HadGEM2-ES) which bracket the full range of GPP enhancement and LAI .
sensitivity in the original seven ESM ensemble (Winkler et al., 2019).

The relationship between simultancous changes in GPP and LAl,, remains linear for all CMIP5 models in the range
1xCOs to 2xCO, (Fig. 5 and A4, Tab. 2). With concentration increasing beyond 2 x COs, all models show weakening correla-
tion (R2, Tab. 2) and decreasing slope (b, Tab. 2) of this relationship (Fig. 5 and A4), suggesting a saturating rate of allocation
of additional GPP to new leaves at higher levels of CO3. Consequently, LAL,., sensitivity to increasing CO; and associated
warming decreases. At and over 4xCO; (1140 ppm), a level unlikely to be seen in the near future, there appears to be no
relationship between AGPP and ALAI,,. This raises the question as to what extent does the weakening of the relationship
between the predictor and predictand in eagh model at higher CO5 concentrations affect the EC analysis (Fig. 1). To shed light

on this matter, we perform the following/thought experiment.
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Understanding the relationship and interplay between forcing (increasing CO; concentration), predictor (LAl .y sensitiv-
ity), and the predictand (AGPP) is key to evaluating the EC method. We conceive four possible scenarios of how the sys-
tem might behave with increasing forcing. For simplicity, we assume linearly increasing CO2 concentration, LAI represents
LAl .y, and GPP refers to its annual value below (Fig. 6). The four scenarios are: All linear, all non-linear (saturation), and
two mixed linear / non-linear cases (Tab. Al). We emulate a multi-model ensemble by applying different random parameteri-
zations for the linear and saturation (the hyperbolic tangent function) responses of GPP to CO; and of LAI to GPP. One of these
realizations is assumed to represent pseudo-observations (dashed lines, Fig. 6). We discuss one case in detail for illustrative
purposes (No. 3, Tab. Al).

In scenario 3, AGPP increases linearly with increasing CO, (Fig. 6a), while ALAI/AGPP saturates (Fig. 6b). The LAI sen-
sitivity to CO, weakens with increasing forcing (Fig. 6c) as a response to saturation of GPP allocation to leaf area. We derive
LAI sensitivities to CO5 for three different periods (’past pericds’ in Fig. 6¢) to constrain AGPP at a much higher CO; level
('projected period’ in Fig. 6a). Next, we apply the EC method on these pseudo-projections of AGPP relying on LAI sensitivi-
ties derived from the three past periods (Fig. 6d). The EC method is applicable even at a low forcing level (past period 1) in this
simplified scenario because we neglect stochastic internal variability of the system. The slope of emergent linear relationship
increases (Fig. 6d) as modeled LAI sensitivities decrease with rising CO» concentration (Fig. 6c). The observational constraint
on future AGPP, however, remains nearly the same, because pseudo-observed LAI sensitivity also weakens at higher CO4
levels (dashed lines, Fig. 6c, d). Thus, the three EC estimates of AGPP are approximately identical (Fig. 6d) and independent
of the forcing level during past periods. With intensified forcing, the relationship between predictor and predictand remains
linear within the model ensemble, although their relationship becomes non-linear within each model and, crucially, in reality
as well. In other words, as long as the models agree on the occurrence and strength of saturation for given forcing, i.e. the
dynamics of the system, the inter-model variations of predictor and predictand relate linearly within the ensemble (Fig. 6). The

same behavior is also seen in the other three scenarios (Tab. Al; Fig. A5, A6).

Nevertheless, with ever increasing forcing and associated steepening of the emergent linear relationship, the LAI sensitivity
loses its explanatory power at some point because the linear relationship eventually lies within the observational uncertainty
and no meaningful constraint can be derived. This and disagreement between models on system dynamics are ultimate limits
of the EC method. Interestingly, we find that all CMIPS5 models agree on the occurrence of saturation, but slightly disagree on
the strength of saturation for given COs forcing (Fig. 5, A4, and Tab. 2). Further, we find that the "all non-linear’ scenario best
describes the dynamics of the system in the forcing range from 1xCO; to 4xCO4. However, the saturation of LAI to GPP
happens at a lower CO., level than saturation of GPP to CO,. Still, inferences from interpretation of Case 3 (Fig. 6) are equally
applicable.

Results from the above thought experiment also highlight the importance of matching window locations and lengths between

models and observations, as discussed earlier (Sect. 3.3). For instance, taking LAJ sensitivity from past period 2 (green dashed

12
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line, Fig. 6d) as an observational constraint on the multi-model linear relationship based on past peried 3 (red solid line, Fig.

6d), results in a significant overestimation of constrained AGPP (intersection of the two lines, Fig. 6d).

The above analysis informs that the constrained GPP estimate at one future period (e.g. 2xCQy3) is nearly independent of
the past periods from when the observational sensitivities are derived, for most realistic scenarios. Now, we evaluate the EC
method where sensitivity from one past period is used to obtain constrained GPP estimates at different periods in a potential
future, i.e. progressively farther down the time-line of a CO;-enriched world. We utilize the greening sensitivity derived from
35 years of observed LAI,,, data (AVHRR, Sect. 2.1} and apply the EC method to CMIP5 1pctCO2 simulations. The sensi-
tivities in this case are due to forcing from both CO; increase and associated warming during the observational period (Sect.
2.4). We seek constrained GPP estimates for the NHL at different CO4, levels (2xCO5, 3xCOo, and 4 xCO5).

Winkler et al. (2019) previously reported a strong linear relationship between modeled contemporaneous changes in LAT .,
and GPP arising from the combined radiative and physiological effects of CO3 enrichment until 2x CO; in the CMIP5 ensem-
ble. As a result, models with low LAIL, . sensitivity to w project lower AGPP for a given increment of CO, concentration, and
vice versa. Thus, the large variation in modeled historical LAI, sensitivities linearly maps to variation in AGPP at 2xCQO»
(Winkler et al., 2019, blue line, Fig. 7a). At higher levels, such as 3xCO, (green line, R? = 0.93) and 4xCOy (red line, R?
= (.88), this linear relationship within the model ensemble, while still present, weakens (Fig. 7a; Tab. 3). This is because the
CMIP5 models do not agree on the strength of the saturation effect at higher CO; levels (Fig. 5 and A4). The increment in
constrained GPP estimates for successive equal increments of CO, decreases due to the saturation effect in all CMIP5 models
(dashed horizontal lines, Fig. 7a). For example, the change in GPP between 3xCO5 and 4xCOs (AGPP ~1.06 Pg C yr !,
Tab. 3) is much lower than between 2xCO; and 3xCO; (AGPP ~2.34 Pg C yr~!, Tab. 3).

We have thus far focused on the magnitude of CO5 concentration change and not on the time rate of this change. For example,
a given amount of change in CO, concentration, say 200 ppm, can be realized over different time periods, say over a 100 or 150
years. The problem of varying rates of CO, concentration change is implicitly encountered when ESMs are executed under
different forcing scenarios, such as RCPs (Sect. 2.3). A question then arises whether the constrained predictand estimate is
independent of the time rate of CO» concentration change and dependent only on the magnitude of CO; concentration change.
To investigate this aspect of forcing, we extract GPP estimates at the same CO2 concentration (535 ppm,; final concentration
in RCP4.5) from three simulations of different forcing rates and calculate the difference relative to a common initial CO,
concentration (380 ppm; initial concentration of RCP scenarios). Hence, the magnitude of the forcing is the same but applied
over different durations (RCP4.5: ~90yr, RCP8.5: ~45yr, and 1pctCO2: ~30yr). A clear majority of the CMIP5 models show
substantial differences in AGPP between the different pathways of CO; forcing. In general, GPP changes are higher for lower
time rates of CO, forcing, i.e. forcing over longer time periods. As a consequence, the EC estimates of AGPP for the same
increase in CO; concentration are scenario-dependent (Fig. 7b; Tab. 3) — a counter-intuitive result. For instance, AGPP in the
low-CQ,-rate scenario (RCP4.5: AGPP ~2.84 Pg C yr~!, Tab. 3) is ~39% (1pctCO2: AGPP ~2.05 Pg C yr~!, Tab. 3) and

13



[4)] AW N =

0w o N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

27
28
29
30
31
32
33

1}\& 1 Pot‘CDl

w s ccenario

-

~20% (RCP8.5: AGPP ~2.38 Pg C yr—1, Tab. 3) higher than the high-CO,-rate scenarios for an increase of 155 ppm CO,.
This analysis suggests that the vegetation response to rising CO3 is pathway dependent, at least in the NHL. One of the reasons

for this could be species compositional changes in scenarios of low forcing rates, i.e. over longer time frames. This novel result,

however, requires a separate in-depth study.
3.5 Effects of CO; Forcing

Higher concentration of CO; in the atmosphere stimulates plant productivity through the fertilization and radiative effects (Ne-
mani et al., 2003; Leakey et al., 2009; Arora et al., 2011; Goll et al., 2017). The two effects can be disentangled in the model
world by conducting simulations in a CO; fertilization effect only’ (esmFixClim1) and a ’radiative effect only’ (esmFdbk1)
setup (Sect. 2.3). These are termed below as idealized model simulations. We investigate here whether historical runs and
observations, which include both effects, can be used to constrain GPP changes in idealized CMIP5 simulations (e.g. as in
Wenzel et al., 2016).

We find strong linear relationships between historical LAI,,, sensitivity and AGPP for 2xCOs in both idealized setups
(esmFixClim1: R? = 0.92, esmFdbk1: R? = 0.98, Tab. 3, Fig. 7c). Consequently, this linear relationship is also pronounced for
calculated sums of both effects for each model (esmFixClim1 + esmFdbk1: R? = 0.95, Tab. 3, Fig. 7c). This suggests that the
two effects act additively on plant productivity and, thus, each cffect can be simply expressed in terms of a scaling factor of
the total GPP enhancement. Hence, the application of the EC method on idealized simulations using real world observations is

conceptually feasible.

Interestingly, the two effects contribute about the same to the general increase in GPP at 2xCO5 (esmFixClim1l: AGPP
~1.35Pg Cyr!, esmFdbk1: AGPP ~1.38 Pg C yr—!, Tab. 3, Fig. 7c). At higher concentrations, such as 3xCO, and 4xCOg,
the enhancement in GPP saturates in both idealized setups. However, the radiative effect becomes dominant relative to the
CO,, fertilization effect when CO, concentration exceeds 2$<C22‘ (e.g. at 4xCO, esmFixCliml: AGPP ~2.42 Pg C yr},
esmFdbk1: AGPP ~3.06 Pg C yr—?, Tab. 3). Therefore, we can expect that at some point in the future, NHL photosynthetic

carbon fixation will benefit more from climate change (e.g. warming) than from the fertilizing effect of COs.
3.6 Uncertainties in the Multi-Model Ensemble

Besides methodological sources of uncertainty discussed above, the estimate of an EC may also be deficient due to inaccurate
assumptions about the model ensemble. First, possible common systematic errors in a multi-model ensemble (i.e. the entire

ensemble misses an unknown but for the future essential process) are implicitly omitted in the EC approach, however, could

cause a general over- or undereslimat:ioj\ of the constrained value (Bracegirdle and Stephenson, 2012b; Stephenson et al.,
2012). Second, the set of forcing variables for historical simulations may be incomplete (i.e. not yet identified drivers of
observed changes) and thus the comparability of observations and model simulations is limited (Flato et al., 2013). Third,

the EC method can be overly sensitive fo individual models of the ensemble, which has a bearing on the robustness of the
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constrained value (Bracegirdle and Stephenson, 2012b). Bracegirdle and Stephenson (2012b) proposed a diagnostic metric
(Cook’s distance) to test an ensemble for influential models. Fourth, the predictand-predictor relationship not only has to rely
on a physical, but also on a logical connection within the model ensemble. For instance, Wenzel et al. (2016) established a
linear relationship between relative changes in the predictand taking the initial state into account (changes in GPP for doubling
of CO; relative to the initial pre-industrial state), and a predictor neglecting the initial state (historical sensitivity of COq
amplitude to rising CO3). This statistical relationship can be spurious, because the model skill of simulating an accurate initial
state and a plausible sensitivity to a forcing are not connected. These issues are to be contemplated when establishing an EC

estimate and evaluating its robustness.

4 Conclusions

An in-depth analysis of the EC method is illustrated in this article through its application to projections of change in NHL
photosynthesis under conditions of rising atmospheric CO, concentration. Key conclusions highlighting the functionality of
the EC method are presented below.

The importance of how the observational predictor is obtained cannot be emphasized enough because the EC method is
particularly sensitive to observational uncertainty. The single observational estimate essentially determines the EC, whereas
the emergent linear relationship is established based on a collection of multi-model estimates (each model gets *one vote’,
however, some models might be more influential than others; Bracegirdle and Stephenson, 2012b). Hence, the observational
uncertainty has a much larger bearing on the EC than the uncertainty of each individual model. To overcome this source of

uncertainty, various meaningful observations should be taken into consideration when establishing the observed predictor.

Spatially aggregating observations and model output of different resolutions in the EC method constitutes another source
of uncertainty. Predictors and predictands expressed as regional estimates (e.g. area-weighted mean of the NHL) are approxi-
mations of complex fine-scale processes. Aggregation will inevitably introduce a random error component due to inclusion of
estimates from areas where the predictor is not changing or a systematic bias from areas where the predictor has a reversed
sign. Thus, the spatially-aggregated variables are meaningful only if most of the region is in agreement about the response to
CO., forcing (e.g. more than half of the NHL is greening with rising COg). However, we find that the source of uncertainty
related to spatial aggregation is of minor importance as long as spatial variations in observations and models simulations are

treated consistently.

A large source of uncertainty is associated with temporal variability of the predictor variable when comparing models and
observations. Establishing a robust predictor requires evaluating temporal window lengths of sufficient duration (approximately
30 years) and their locations along the forcing time line. Both window length and location should match between models and

observations in the EC method. For example, the analysis in Wenzel et al. (2016) might have yielded different results and
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conclusions if model and observational predictor sensitivities were temporally matched. We find that the relevance of window
length decreases with increasing and accelerating forcing, depending on the magnitude of natural/internal variability (signal-

to-noise ratio) of the predictor variable.

The level, effect and time-rate of applied CO; forcing can have a bearing on the linear relationship between the predictand
and predictor variables (Fig. 1). In our case study, the relationship underpinning the EC method, namely, that between concur-
rent AGPP and ALAI, ., changes non-linearly with increasing forcing level (i.e. saturation with rising CO» concentration).
The EC method can still be applied, because the CMIP5 models agree on the non-linear behavior of the system. However,
at very high CO; concentrations the models diverge and this relation breaks down, at which point the EC method fails. The
two dominant effects of rising CO, concentration on vegetation, namely, the fertilization and radiative effects, appear to be
approximately additive in terms of GPP enhancement to CO, forcing in the NHL. Therefore, the EC method can be applied

to constrain estimates of GPP due to one or the other, or both the effects. The models, however, document a higher radiative

effect than fertilization at high CO, concentrations, i.e. 3xXCO» and higher. Another intriguing conclusion from our analysis

is that the time-rate of forcing has an effect on GPP changes, that is, the projected GPP enhancement to CO, forcing seems
to be dependent on how the forcing is applied over time, as in different scenarios or RCPs. This aspect is presently not well

understood and requires further study.

The EC framework is widely promoted as observation-based evaluation tool for climate projections, especially in the context
of the nascent CMIP6 ensemble (Eyring et al., 2019; Hall et al., 2019). Previous EC studies, however, exclusively focused on
predictor-predictand combinations which exhibit so-called existent ECs (Hall et al., 2019), i.e. predictor and predictand are
found to relate linearly across the ensemble. In the context of ESM evaluation, non-existent ECs, i.e. predictor and predictand
are found to be unrelated in the ensemble, are equally important. Since predictor and predictand variables are premised on
our mechanistic process understanding, non-existent ECs reveal a fundamental disagreement on the system dynamics among
the models. This study encourages to scrutinize these system dynamics in the predictor-predictand space and also report such

non-existent, yet expected, ECs in order to advance model development and evaluation.
Across different disciplines each EC and its set of predictor and predictand are unique to some extent and require an individ-
ual detailed examination. In this article, we addressed general potential sources of uncertainty and limitations in the EC method

by the means of a case study in carbon cycle research. W}g}he illustrated results are qualitatively transmissive to other sets

of predictors and predictands and are generally relevant in Earth system sciences.
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Table 2. Slopes (b) and coefficients of determination (R?) for regression between changes of LAlmax against changes in annual mean GPP
at different atmospheric COz levels in all available CMIP5 models (1pctCO2 simulation). Asterisks denote non-significant values: ** p >
0.1; * p > 0.05.

Correlation details < 2xCO2 > 2xC0; & < 3xCO2 > 3xCO-

b R? b R? b R
MIROC-ESM 0.23 0.97 0.16 0.89 0.08 0.63
CESMI1-BGC 0.45 0.93 0.36 0.82 0.27 0.62
GFDL-ESM2M 0.37 0.89 0.04 0.07** 0.01 0.12%+
CanESM?2 0.22 0.95 0.19 0.83 0.17 0.67
HadGEM2-ES 0.13 0.99 0.08 0.96 0.06 0.78
MPI-ESM-LR 0.13 0.94 0.09 0.78 0.04 0.51
NorESM1-ME 0.26 0.94 0.2 0.77 0.09 0.27
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