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Abstract.

Recent research on Emergent Constraints (EC) has delivered promising results in narrowing down uncertainty in climate pre-
dictions. The method utilizes a measurable variable (predictor) from the recent historical past to obtain a constrained estimate
of change in an entity of interest (predictand) at a potential future CO5 concentration (forcing) from multi-model projections.
This procedure critically depends on, first, accurate estimation of the predictor from observations and models, and second, on
a robust relationship between inter-model variations in the predictor-predictand space. Here, we investigate issues related to
these two themes in a carbon cycle case study using observed vegetation greening sensitivity to CO, forcing as a predictor
of change in photosynthesis (Gross Primary Productivity, GPP) for a doubling of pre-industrial CO2 concentration. Greening
sensitivity is defined as changes in annual maximum of green leaf area index (LAl .x) per unit CO, forcing realized through
its radiative and fertilization effects. We first address the question of how to realistically characterize the predictor of a large
area (e.g. greening sensitivity in the northern high latitudes region) from pixel-level data. This requires an investigation into
uncertainties in the observational data source and an evaluation of the spatial and temporal variability in the predictor in both
the data and model simulations. Second, the predictor-predictand relationship across the model ensemble depends on a strong
coupling between the two variables, i.e. simultaneous changes in GPP and LAl . This coupling depends in a complex man-
ner on the magnitude (level), time-rate of application (scenarios) and effects (radiative and/or fertilization) of CO; forcing. We
investigate how each one of these three aspects of forcing can impair-affect the EC estimate of the predictand (AGPP). Our
results show that uncertainties in the EC method ean-primarily originate from a lack of predictor comparability between medels
and-observations—-temporal-variability,-and-observations and models, the observational data source, and temporal variability of
the predictor. The disagreement between models on the mechanistic behavior of the system under intensifying forcing limits
the EC applicability. The here-iHustrated-discussed limitations and sources of uncertainty in the EC method go beyond carbon

cycle research and are generally applicable in Earth system sciences.
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1 Introduction

Earth system models (ESMs) are powerful tools to predict responses to a variety of forcings such as increasing atmospheric
concentration of greenhouse gases and other agents of radiative forcing (Klein and Hall, 2015). Still, longterm ESM projections
of climate change have substantial uncertainties. This can be due to poorly understood processes in some cases, and in others,
to missing or simplified representations called parameterizations (Flato et al., 2013; Klein and Hall, 2015; Knutti et al., 2017).
Certain important processes, especially in the atmosphere, happen at spatial scales finer than can be possibly represented in
current ESMs. Consequently, various phenomena in the system ranging from local extreme precipitation events to large-scale
climate modes, can be poorly simulated (Flato et al., 2013). Errors propagate and can be amplified through feedbacks among
interacting components in the Earth system, resulting in biases whose origins can be difficult to identify (Flato et al., 2013).
Furthermore, an inherent component of the Earth climatic system, its internal natural variability, is complicated to represent

and simulate in models (Flato et al., 2013; Klein and Hall, 2015).

Model Intercomparison Projects explore these uncertainties by coordinating a wide range of simulation setups focusing on
internal variability, boundary conditions, parameterizations, etc. (Taylor et al., 2012; Flato et al., 2013; Eyring et al., 2016;
Knutti et al., 2017). Models developed at various institutions are driven with the same forcing information (e.g. historical forc-
ing) or with identical idealized boundary conditions. However, each modeling group decides which of the processes to consider
and implement in their ESM. The conventional approach of handling these multi-model ensembles is to use unweighted ensem-
ble averages (Knutti, 2010; Knutti et al., 2017). This assumes that the models are independent of one another and equally good
at simulating the climate system (Flato et al., 2013; Knutti et al., 2017). The large spread between model projections suggests
that this assumption is not valid. Therefore, alternate methods have been developed to extract results more accurate than multi-
model averages (e.g. model weighting scheme based on preformance and interdependence, Knutti et al., 2017). The concept of
Emergent Constraints arises in this context, namely, as a method to reduce uncertainty in ESM projections relying on histori-

cal simulations and observations (Hall and Qu, 2006; Boé et al., 2009; Cox et al., 2013; Klein and Hall, 2015; Cox et al., 2018).

The two key parts of an Emergent Constraint (EC) based method are a linear relationship arising from the collective behavior
of a multi-model ensemble and an observational estimate for imposing the said constraint (Fig. 1). The linear relationship is a
physically (or physiologically) based correlation between inter-model variations in an observable entity of the contemporary
climate system (predictor) and a projected variable (predictand) that is difficult to observe or not observable at all. Combining
the emergent linear relationship with observations of the predictor sets a constraint on the predictand (Cox et al., 2013; Flato
et al., 2013; Klein and Hall, 2015; Knutti et al., 2017). Many such ECs have been identified and reported, as briefly summarized

below.

Hall and Qu (2006) proposed a constraint on projections of snow-albedo feedback based on the correlation between large

inter-model variations in feedback strength of the current seasonal cycle. The EC was first established for the CMIP3 ensemble
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and confirmed for phase five of the Coupled Model Intercomparison Project (CMIP5; Flato et al., 2013; Qu and Hall, 2014).
Several EC studies followed with the goal of reducing uncertainty in projections of the cloud feedback under global warming,
as reviewed by Klein and Hall (2015). It is thought that erroneous representation of low-cloud feedback in ESMs contributes
essentially to the large uncertainty in equilibrium climate sensitivity (ECS, 1.5 to 5 K), i.e. warming for a doubling of pre-
industrial atmospheric CO5 concentration (2xCOs; Sherwood et al., 2014; Klein and Hall, 2015). Recently, Cox et al. (2018)
presented a different approach to constrain ECS based on its relationship to variability of global temperatures during the recent
historical warming period. They reported a constrained ECS estimate of 2.8 K for 2xCO; (66% confidence limits of 2.2 — 3.4
K).

The concept of EC also found its way into the field of carbon cycle projections. A series of studies analyzed the extent
to which inter-annual atmospheric CO; variability can serve as a predictor of longterm temperature sensitivity of terrestrial
tropical carbon storage. Cox et al. (2013) and Wenzel et al. (2014) reported an emergent linear relationship, although with
different slopes for CMIP3 and CMIP5 ensembles, resulting in slightly divergent constrained estimates (CMIP3: -53 4+ 17 Pg
C K~!, CMIP5: -44 4+ 14 Pg C K—1). Wang et al. (2014) however were unable to detect a similar relationship between the
proposed predictor and predictand. Recently, Lian et al. (2018) presented an EC estimate of the global ratio of transpiration
to total terrestrial evapotranspiration (T/ET), which is substantially higher (0.62 £ 0.06) than the unconstrained value (0.41 +
0.11). For the marine tropical carbon cycle, Kwiatkowski et al. (2017) identified an emergent relationship between the longterm
sensitivity of tropical ocean net primary production (NPP) to rising sea surface temperature (SST) in the equatorial zone and
the interannual sensitivity of NPP to El Nifio/Southern Oscillation driven SST anomalies. Tropical NPP is projected to decrease

by 3 &+ 1% for 1 K increase in equatorial SST according to the observational constraint.

Similar results were reported for modeled extra-tropical terrestrial carbon fixation in a 2xCOs world. Plant productivity is
expected to increase due to the fertilizing and radiative effects of rising atmospheric CO5 concentration. Wenzel et al. (2016)
focused on constraining the CO» fertilization effect on plant productivity in the northern high latitudes (60° N — 90° N, NHL)
and the entire extra-tropical area in the northern hemisphere (30° N — 90° N) using the seasonal amplitude of longterm COo
measurements at different latitudes. They presented a linear relationship between the sensitivity of CO2 amplitude to rising
atmospheric CO5 concentration and the relative increase in zonally averaged gross primary production (GPP) for 2xCQOs. The
observed CO, amplitude sensitivities at respective stations provided-provide a constraint on the strength-of-increase of GPP
due to the CO; fertilization effect, namely 37% = 9% and 32% =+ 9% for 2xCO; in the NHL and the extra-tropical region,

respectively.

Focusing on the NHL, Winkler et al. (2019) investigated how both effects of CO, enhance plant productivity while assess-
ing the feasibility of vegetation greenness changes as a constraint. Enhanced GPP due to the physiological effect and ensuing
climate warming is indirectly evident in large-scale increase in summer time green leaf area (Myneni et al., 1997a; Zhu et al.,

2016). Historical CMIP5 simulations show that the maximum annual leaf area index (LAl ,x, leaf area per ground area) in-
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creases linearly with both CO4 concentration and temperature in NHL. In all ESMs, these changes in LAl .« strongly correlate
to changes in GPP arising from the combined radiative and physiological effects of CO, enrichment. Thus, the large variation in
modeled historical LA, responses to the effects of COs linearly maps to variation in AGPP at 2xCOs in the CMIP5 ensem-

ble. This linear relationship in inter-model variations enables the usage of the observed longterm change in LAI,,,x as an EC on

AGPP at 2xCOy in NHL (3:4402 Pe-Cyr— Winkleret-al52049)(3.4 £ 0.2 Pg C yr~! for 2xCO,; Winkler et al., 2019).

The robustness of these EC estimates is debated, mainly because the EC approach is susceptible to methodological incon-
sistencies. For example, Cox et al. (2013), Wang et al. (2014) and Wenzel et al. (2015) investigated on constraining future
terrestrial tropical carbon storage using the same set of models and data. However, they arrived at different EC estimates and
divergent conclusions. Some reasons for failure and essential criteria of the EC approach were described previously (Bracegir-
dle and Stephenson, 2012b; Klein and Hall, 2015), but this list is far from complete. To account for this gap in the literature,
a detailed investigation and description of the EC method in terms of its potential sources of uncertainty and the range of

applicability are needed.

Here, we revisit the study of Winkler et al. (2019) and elaborate on key issues concerning the robustness of the EC method.
Uncertainty of the constrained estimate depends on (a) observed predictor and (b) modeled relationship, aside from the
goodness-of-fit of the latter (green shading in Fig. 1). As for (a), the source of observations is an obvious first line of in-
quiry (Sect. 3.1). Spatial aggregation of data and model simulations introduces uncertainties, as the EC method is applied on
large areal values of predictor and predictand. This is the subject of Sect. 3.2. The observed and modeled predictors are from
the historical period. The representativeness, duration and match between data and models all introduce an uncertainty related
to variations in the temporal domain — these are explored in {Sect. 3.3). The yellow shading in Fig. 1 represents the total uncer-
tainty on observed predictor from these three fronts. Regarding (b), the modeled linear relation varies (grey shading in Fig. 1)
depending on three attributes of the forcing, i.e. CO2 concentration change, its magnitude, rate and effect (Sect. 3.4 and 3.5).

Lessons learned from analyses along these lines are presented in the conclusion section at the end.
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2 Data and Methods
2.1 Remotely sensed leaf area index

We used the recently updated version (V1) of the leaf area index dataset (LAI3g) developed by (Zhu et al., 2013). It was gen-
erated using an artificial neural network (ANN) and the latest version (third generation) of the Global Inventory Modeling and
Mapping Studies group (GIMMS) Advanced Very High Resolution Radiometer (AVHRR) normalized difference vegetation
index (NDVI) data (NDVI3g). The latter have been corrected for sensor degradation, inter-sensor differences, cloud cover, ob-
servational geometry effects due to satellite drift, Rayleigh scattering and stratospheric volcanic aerosols (Pinzon and Tucker,
2014). This dataset provides global and year-round LAI observations at 15-day (bi-monthly) temporal resolution and 1/12

degree spatial resolution from July 1981 to December 2016. Currently, this is the only available record of such length.

The quality of previous version (V0) of LAI3g dataset was evaluated through direct comparisons with ground measurements
of LAI and indirectly with other satellite-data based LAI products, and also through statistical analysis with climatic variables,
such as temperature and precipitation variability (Zhu et al., 2013). The LAI3gV0 dataset (and related fraction vegetation-
absorbed photosynthetically active radiation dataset) has been widely used in various studies (Anav et al., 2013; Piao et al.,
2014; Poulter et al., 2014; Forkel et al., 2016; Zhu et al., 2016; Mao et al., 2016; Mahowald et al., 2016; Keenan et al., 2016).

The new version, LAI3gV1, used in our study is an update of that earlier version.

We also utilized a more reliable but shorter dataset from the Moderate Resolution Imaging Spectroradiometer (MODIS)
aboard the NASA’s Terra satellite (Yan et al., 2016a, b). These data are well calibrated, cloud-screened and corrected for at-
mospheric effects, especially tropospheric aerosols. The sensor-platform is regularly adjusted to maintain a precise orbit. All
algorithms, including the LAI algorithm, are physics-based, well-tested and currently producing sixth generation datasets. The
dataset provides global and year-round LAI observations at 16-day (bi-monthly) temporal resolution and 6:05°-1/20 degree
spatial resolution from 2000 to 2016.

Leaf area index is defined as the one-sided green leaf area per unit ground area in broadleaf canopies and as one-half the
green needle surface area in needleleaf canopies in both observational and CMIPS5 simulation datasets. It is expressed in units
of m? green leaf area per m? ground area. Leaf area changes can be represented either by changes in annual maximum LAI
(LAILax; Cook and Pau, 2013), or growing season average LAIL In this study, we use the former because of its ease and
unambiguity, as the latter requires quantifying the start- and end-dates of the growing season, something that is difficult to
do accurately in NHL (Park et al., 2016) with the low resolution model data. Further, LAl,,.x, is less influenced by cloudi-
ness and noise; accordingly, it is most useful in investigations of long-term greening and browning trends. The drawback of
LAl ax, is the saturation effect at high LAI values (Myneni et al., 2002). However, this is less of a problem in high latitudinal
ecosystems which are less-densely vegetated compared to tropical regions, with LAl values typically in the range of 2 to 3.
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The bi-monthly satellite datasets were merged to a monthly temporal resolution by averaging the two composites in the same

month and bi-linearly remapped to the resolution of the applied reanalysis product (0.5°x0.5°, CRU TS4.01).

2.2 Environmental driver variables

We use time series of temperature and CO, to derive the observed historical forcing (Sect. 2.4) and climatologies of pre-
cipitation and temperature to calculate climatic regimes (Fig. 2). Monthly averages of near-surface air temperature and pre-
cipitation are from the latest version of the Climatic Research Unit Timeseries dataset (CRU TS4.01). The global data are
gridded to 0.5°x0.5° resolution (Harris et al., 2014). Global monthly means of atmospheric CO5 concentration are from
the GLOBALVIEW-CO2 product (obspack_co2_1_GLOBALVIEWplus_v2.1_2016_09_02; for details see https://doi.org/10.
25925/20190520) provided by the National Oceanic and Atmospheric Administration / Earth System Research Laboratory
(NOAA / ESRL).

2.3 Earth system model simulations

We analyzed recent climate-carbon simulations of seven ESMs participating in the fifth phase of the Coupled Model Inter-
comparison Project, CMIP (Taylor et al., 2012). The model simulated data were obtained from the Earth System Grid Federa-
tion, ESGF (https://esgf-data.dkrz.de/projects/esgf-dkrz/). Seven ESMs provide output for the variables of interest (GPP, COa,
LAI and near-surface air temperature) for simulations titled esmHistorical, RCP4.5, RCPS.5, 1pctCO2, esmFixClim1, and
esmFdbkl1. It is the same set of models analyzed in Wenzel et al. (2016) and Winkler et al. (2019). The individual model setups
and components are illustrated in more detail in various studies, such as Arora et al. (2013); Wenzel et al. (2014); Mahowald

et al. (2016); Winkler et al. (2019).

The esmHistorical simulation spanned the period 1850 to 2005 and was driven by observed conditions such as solar forcing,
emissions or concentrations of short-lived species and natural and anthropogenic aerosols or their precursors, land use, anthro-
pogenic as well as volcanic influences on atmospheric composition. The models are forced by prescribed anthropogenic CO4

emissions, rather than atmospheric CO, concentrations.

Several Representative Concentration Pathways (RCPs) have been formulated describing different trajectories of greenhouse
gas emissions, air pollutant production and land use changes for the 21st century. These scenarios have been designed based
on projections of human population growth, technological advancement and societal responses (van Vuuren et al., 2011; Tay-
lor et al., 2012). We analyzed simulations forced with specified concentrations of a high emissions scenario (RCP8.5) and
a medium mitigation scenario (RCP4.5) reaching a radiative forcing level of 8.5 and 4.5 W m~2 at the end of the century,

respectively. These simulations were initialized with the final state at the end of the historical runs and spanned the period 2006


obspack_co2_1_GLOBALVIEWplus_v2.1_2016_09_02
https://doi.org/10.25925/20190520
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to 2100.

1pctCO2 is an idealized fully coupled carbon-climate simulation initialized from a steady state of the pre-industrial control

L until quadrupling of the pre-industrial level. The sim-

run and atmospheric CO5 concentration prescribed to increase 1% yr—
ulations esmFixClim and esmFdbk aim to disentangle the two carbon cycle feedbacks in response to rising CO2 analogous
to the 1pctCO2 setup: In esmFixClim CO»-induced climate change is suppressed (i.e. radiation transfer model sees constant
pre-industrial CO; level), while the carbon cycle responds to increasing CO2 concentration (vice versa for esmFdbk; Taylor

et al., 2009, 2012; Arora et al., 2013).

2.4 Estimation of greening sensitivities

We largely follow the methodology detailed in Winkler et al. (2019). For both model and observational data, the two-dimensional
global fields of LAI and the driver variables are cropped according to different classification schemes (namely, climatic regimes,
latitudinal bands and vegetation classes; Olson et al., 2001; Fritz et al., 2015). The aggregated values are area-weighted, aver-
aged in space, and temporally reduced to annual estimates dependent on the variable: annual maximum LAI, annual average
atmospheric CO3 concentration, and growing degree days (GDDO, yearly accumulated temperature of days where near-surface

air temperature > 0° C).

We use a standard linear regression model to derive the historical greening sensitivities in models and observations alike (for
details see the Methods section Estimation of historical LAl .« sensitivity in Winkler et al., 2019). On the global scale, LAl ax
is assumed to be a linear function of atmospheric CO5 concentration. For the temperature-limited high northern latitudes, we
also have to account for warming and include temperature as an additional driver. We do this using GDDO. Through a principal
component analysis (PCA) of CO5 and GDDO we avoid redundancy from co-linearity between the two driver variables, but
retain their underlying time-trend and interannual variability (for details see the Methods section Dimension reduction using
principal component analysis in Winkler et al., 2019). In particular, the PCA is performed on large-scale aggregated values
as well as on pixel level to investigate on spatial variations. We only retain the first principal component (denoted w), which
explains a large fraction of the variance in models and observations (for more details see Supplementary Table 1 in Winkler
et al., 2019). Figure Al depicts the temporal development of CO2 and GDDO as well as their principal component w for
observations. For the NHL, LAI, .« is then formulated as a linear function of the proxy driver time series w (Winkler et al.,
2019). The best-fit gradients and associated standard errors of the linear regression model represent the LAL,., sensitivities,

or greening sensitivities, and their uncertainty estimates, respectively.
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3 Results and Discussion

There are two parts to the EC methodology (Fig. 1) — a statistically robust relationship between modeled matching pairs of
predictor-predictand values and an observed value of the predictor. The predictors are from a representative historical period.
The predictands are modeled changes in a variable of interest at another forcing state of the system (e.g. potential future).
The projection of the observed predictor on the modeled relation yields a constrained value of the predictand. A causal basis
has to buttress the predictor-predictand relationship, else the EC method may be spurious. For example, meaningful coupling
between concurrent changes in GPP and LA, ,x with increasing atmospheric CO5 concentration underpins our specific case
study in the NHL, i.e. some of the enhanced GPP due to rising CO- concentration is invested in additional green leaves by
plants (Myneni et al., 1997a; Forkel et al., 2016; Zhu et al., 2016; Mao et al., 2016; Winkler et al., 2019). Supplementary Figure
1 in Winkler et al. (2019) illustrates the specifics of the causal link underlying this predictor-predictand relationship. This tight
coupling assures an approximately constant ratio of predictand to predictor across the models within the ensemble, thus setting
up the potential for deriving an EC estimate. Uncertainty on-in the constrained estimate depends on the observed predictor and

modeled relationship, aside from the goodness-of-fit of the latter (Fig. 1). These are detailed below.

3.1 Uncertainty in Observed Predictor Due to Data Source

We investigate observational uncertainty using LAI data from two different sources, AVHRR (1/12 degree) and MODIS (1/20
degree), and spatially aggregating these by-over broad vegetation classes, latitudinal bands and climatic regimes. The observed
large-scale LAI .« sensitivities to CO, forcing are always positive (greening), irrespective of the source data and the method
of aggregation (Fig. 2, Tab. 1). Overall, MODIS based estimates have higher uncertainty because of the shorter length of the
data record (17 years). The failure to reliably estimate sensitivities in tropical forests (also in the latitudinal band 30° S — 30°
N, and in hot, wet and humid climatic regimes, see Tab. 1 and Fig. 2) is due to saturation of optical remote sensing data over
dense vegetation (LAI,.x > 5) and problems associated with high aerosol content and ubiquitous cloudiness. In other regions,
the estimated sensitivities are comparable across sensors and aggregation schemes, in particular in the high latitudinal band (>
60° N/S; AVHRR: [3.4 & 0.5] x 1073, MODIS: [3.6 & 0.9] x 1073 m? m~2 ppm~—! COy). This aligns with previous studies
reporting a net increase in green leaf area across the high latitudes during the observational period (Myneni et al., 1997b; Zhu

et al., 2016; Forkel et al., 2016).

This analysis illustrates the applicability and limitations of using observed greening sensitivities to CO forcing as a con-
straint on photosynthetic production. For example, data from both AVHRR and MODIS sensors provide a comparable estimate
of greening sensitivity in the colder high latitudes (boreal forests and tundra vegetation classes; Winkler et al., 2019). In the
lower latitudes, however, the discrepancies among the two sensors indicate a considerable observational uncertainty and thus

no robust estimation of the observed predictor is possible.
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3.2 Uncertainty Due to Spatial Aggregation

We focus further analyses on the NHL region (> 60° N; Fig. 2b), because of two reasons. First, the direct human impact (i.e.
land management) can be neglected in the high latitudes, thus, we can assume that the observed changes reflect the response of
natural ecosystems. Second, the observational evidence of an increased plant productivity in the recent decades is well estab-
lished (e.g. Keeling et al., 1996; Myneni et al., 1997a; Graven et al., 2013; Forkel et al., 2016; Wenzel et al., 2016, and Sect.

3.1) — an important requisite in defining a robust predictor.

In addition to the physiological effect of CO», alse-warming-warming also plays a key role in controlling plant productivity
of the NHL temperature-limited ecosystems, and thus, vegetation greenness. To avoid redundancy from co-linearity between
CO; and GDDO, we reduce dimensionality by performing a principal component analysis of the two driver variables (Sect.
2.4). The resulting first principal component explains most of the variance and retains the trend and year-to-year fluctuations
in both CO5 and GDDO. Therefore, we obtain a proxy driver (hereafter denoted w) that represents the overall forcing signal
causing observed vegetation greenness changes in NHL (Fig. A1). Accordingly, greening sensitivity for the entire NHL area is
derived as response to w, the combined forcing signal of rising CO2 and warming. This procedure also enables a better com-
parability between observations and models because varying strengths of physiological and radiative effects of CO5 among

models are taken into account (Sect. 3.3 — 3.5).

The vegetated landscape in the NHL region is heterogeneous, with boreal forests in the south, vast tundra grasslands to the
north and shrublands in-between. The species within each of these broad vegetation classes respond differently to changes in
key environmental factors. Even within a species, such responses might vary due to different boundary conditions, such as
topography, soil fertility, micrometeorological conditions, etc. How this fine scale variation in greening sensitivity impacts the

aggregated value is assessed below.

The distribution of greening sensitivities from all NHL pixels is slightly skewed towards the positive (blue histogram). The
mean value of this distribution (blue dashed line) is comparable to the sensitivity estimate derived from the spatially-averaged
NHL time series (yellow dashed line; Fig. 3). Based on the Mann-Kendall test (p > 0.1), nearly over half the pixels (54%) show
positive statistically significant trends (greening), while about 10% show browning trends (possibly due to disturbances; Goetz
et al., 2005). The distribution of these statistically significant sensitivities (red histogram) therefore has two modes, a weak
browning and a dominant greening mode, resulting in a substantially higher mean value (red dashed line) in comparison to the
spatially-averaged estimate (yellow dashed line; Fig. 3). Thus, by taking into account the remaining 36% of non-significantly
changing pixels (as in the NHL spatially-averaged estimate), an additional source of uncertainty is possibly introduced. The
mean sensitivity value is, of course, higher when only pixels showing a greening trend are considered in the analysis (green

dashed line; Fig. 3). These are the only areas in NHL that actually show a large increase in plant productivity and consequently
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significant changes in leaf area.

Model output of several ESMs (CMIP5) reveal similar pixel-level variation in both the predictor (LAl .« to w, historical
simulation; Sect. 2.3) and associated changes in the predictand (GPP, 1pctCO2; Sect. 2.3), although ESMs operate on much
coarser resolution (Fig. A2; see also Anav et al., 2013, 2015). Due to the coupling of the predictor and predictand, the distri-
bution of pixels with significant changes is approximately the same for the two variables (Fig. A2). Accordingly, averaging
the equally distributed estimates likely does not affect the predictor-predictand relationship in the model ensemble (Fig. 1).
Consequently, if all spatial gridded data arrays are consistently processed to spatially-aggregated estimates, each predictand
and predictor (observed and modeled) estimate contain a coherent component of spatial variations. In other words, considering
browning and non-significant pixels results in a lower overall LAl sensitivity in NHL, which in turn leads to a lower con-
strained estimate of AGPP in NHL. This is consistent with the underlying relationship between predictor and predictand. On a
related note, Bracegirdle and Stephenson (2012a) suggest that this source of error is not significantly dependent on the spatial

resolution when comparing model subsets from high to low resolution.

The above analysis informs that spatially-averaged estimates are approximations containing a random error component due
to inclusion of data from insignificantly changing pixels and a systematic bias component from pixels of reversed sign. This
uncertainty is relevant to the EC method, where the observed sensitivity decisively determines the constrained estimate from
the ensemble of ESM projections (Kwiatkowski et al., 2017; Winkler et al., 2019). However, if spatial variations are treated
consistently as an inherent component of observations and models, the EC method is only slightly susceptible to this source of

uncertainty.

3.3 Uncertainty Due to Temporal Variations

We seek recourse to longterm CMIP5 ESM simulations covering the historical period 1850 to 2005 (Sect. 2.3) to assess
temporal variation in the predictor variable, because of the shortness of observational record. Three representative models
(CESM1-BGC, MIROC-ESM, and HadGEM2-ES) spanning the full range of NHL greening sensitivities in the CMIP5 en-
semble (Winkler et al., 2019) are selected for this analysis. For each model, LAL,,x sensitivity to w in moving windows of
different lengths are evaluated (15, 30, and 45 years; Fig. 4 and A3). The analysis reveals two crucial aspects that highlight how
temporal variations impair comparability of the predictor variable between models and observations — an essential component

of the EC approach.

First, window locations of modeled and observed predictor variable have to match. If the forcing in the simulations is low,
for example, as in the second half of the 19th century when CO; concentration was increasing slowly, inter-annual variability
dominates and LAI,,x sensitivity cannot be accurately estimated irrespective of the window length (Fig. 4 and A3). With

increasing forcing over time (rising yearly rate of CO, infustenemissions, and consequently, the concentration), the signal-to-
g g g yearly emissions, q Yy g
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noise ratio increases and LAI,,,x sensitivity to w estimation stabilizes, for example, as in the second half of the 20th century.
Therefore, LAl .« sensitivities estimated at different temporal locations result in non-comparable values and eventually a false
constrained estimate (details in Sect. 3.4). As an example, modeled sensitivities based on a 30-year window centered on year
1900, when COq level increased by 10 ppm, and observed sensitivity estimated from a 30-year window centered on year 2000,
when COs level increased by 55 ppm, describe different states of the system and therefore should not be contrasted in the EC

method.

Second, in addition to temporal location, also window lengths have to match between observations and models. For all three
models, sensitivities estimated from 15-year chunks show high variability and thus, a 15-year record is perhaps too short to
obtain robust estimates. The LAI,, sensitivity estimation becomes more stable with strengthening forcing and increasing
window length (Fig. 4 and A3). As a consequence, using short-term observed sensitivity as a constraint on long-term model
projections results in an incorrect EC estimate. Hence, the MODIS sensor record is, on the one hand, too short and does not,
on the other hand, overlap temporally with the historical CMIP5 forcing. Therefore, it does not provide a robust predictor in

this EC study.

3.4 Level and Time Rate of CO- Forcing

The EC method raises an obvious question — does it not implicitly assume that the key operative mechanisms underpinning the
EC relation remain unchanged because a future system state is being predicted based on its past behavior? To be specific, we
are attempting to predict GPP at a future point in time based on greening sensitivity inferred from the past. Does this not require
the assumption that the key underlying relationship which makes this prediction possible, namely, a robust coupling between
contemporaneous changes in GPP and LA, remains unchanged from the past to the future? To address this question, we
resort to the CMIP5 idealized simulation (1pctCO2), where atmospheric CO> concentration increases 1% annually, starting
from a pre-industrial level of 284 ppm until a quadruple of this value is reached (Sect. 2.3). We limit the analysis to the three
models (CESM1-BGC, MIROC-ESM, and HadGEM2-ES) which bracket the full range of GPP enhancement and LAI,,,x
sensitivity in the original seven ESM ensemble (Winkler et al., 2019).

The relationship between simultaneous changes in GPP and LA, ,x remains linear for all CMIP5 models in the range
1xCO4 to 2xCO4 (Fig. 5 and A4, Tab. 2). With concentration increasing beyond 2 x CO., all models show weakening correla-
tion (R2, Tab. 2) and decreasing slope (b, Tab. 2) of this relationship (Fig. 5 and A4), suggesting a saturating rate of allocation
of additional GPP to new leaves at higher levels of CO,. Consequently, LAI,, sensitivity to increasing CO2 and associated
warming decreases. At and over 4xCO (1140 ppm), a level unlikely to be seen in the near future, there appears to be no
relationship between AGPP and ALAIL,,x in some models. This raises the question as to what extent does the weakening of

the relationship between the predictor and predictand in each model at higher CO5 concentrations affect the EC analysis (Fig.
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1). To shed light on this matter, we perform the following thought experiment.

Understanding the relationship and interplay between forcing (increasing CO4 concentration), predictor (LAl .5 sensitiv-
ity), and the predictand (AGPP) is key to evaluating the EC method. We conceive four possible scenarios of how the sys-
tem might behave with increasing forcing. For simplicity, we assume linearly increasing CO5 concentration, LAI represents
LAl ax, and GPP refers to its annual value below (Fig. 6). The four scenarios are: All linear, all non-linear (saturation), and
two mixed linear / non-linear cases (Tab. Al). We emulate a multi-model ensemble by applying different random parameteri-
zations for the linear and saturation (the hyperbolic tangent function) responses of GPP to CO5 and of LAI to GPP. One of these
realizations is assumed to represent pseudo-observations (dashed lines, Fig. 6). We discuss one case in detail for illustrative

purposes (No. 3, Tab. Al).

In scenario 3, AGPP increases linearly with increasing CO5 (Fig. 6a), while ALAI/AGPP saturates (Fig. 6b). The LAI sen-
sitivity to CO4 weakens with increasing forcing (Fig. 6¢) as a response to saturation of GPP allocation to leaf area. We derive
LAI sensitivities to COs for three different periods ("past periods’ in Fig. 6¢) to constrain AGPP at a much higher CO, level
(projected period’ in Fig. 6a). Next, we apply the EC method on these pseudo-projections of AGPP relying on LAI sensitivi-
ties derived from the three past periods (Fig. 6d). The EC method is applicable even at a low forcing level (past period 1) in this
simplified scenario because we neglect stochastic internal variability of the system. The slope of emergent linear relationship
increases (Fig. 6d) as modeled LAI sensitivities decrease with rising CO5 concentration (Fig. 6¢). The observational constraint
on future AGPP, however, remains nearly the same, because pseudo-observed LAI sensitivity also weakens at higher CO,
levels (dashed lines, Fig. 6¢, d). Thus, the three EC estimates of AGPP are approximately identical (Fig. 6d) and independent
of the forcing level during past periods. With intensified forcing, the relationship between predictor and predictand remains
linear within the model ensemble, although their relationship becomes non-linear within each model and, crucially, in reality
as well. In other words, as long as the models agree on the occurrence and strength of saturation for given forcing, i.e. the
dynamics of the system, the inter-model variations of predictor and predictand relate linearly within the ensemble (Fig. 6). The

same behavior is also seen in the other three scenarios (Tab. Al; Fig. A5, A6).

Nevertheless, with ever increasing forcing and associated steepening of the emergent linear relationship, the LAI sensitivity
loses its explanatory power at some point because the linear relationship eventually lies within the observational uncertainty
and no meaningful constraint can be derived. This and disagreement between models on system dynamics are ultimate limits
of the EC method. Interestingly, we find that all CMIP5 models agree on the occurrence of saturation, but slightly disagree on
the strength of saturation for given CO, forcing (Fig. 5, A4, and Tab. 2). Further, we find that the ’all non-linear’ scenario best
describes the dynamics of the system in the forcing range from 1xCO; to 4xCO,. However, the saturation of LAI to GPP
happens at a lower COs, level than saturation of GPP to COs. Still, inferences from interpretation of Case 3 (Fig. 6) are equally

applicable.
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Results from the above thought experiment also highlight the importance of matching window locations and lengths between
models and observations, as discussed earlier (Sect. 3.3). For instance, taking LAI sensitivity from past period 2 (green dashed
line, Fig. 6d) as an observational constraint on the multi-model linear relationship based on past period 3 (red solid line, Fig.

6d), results in a significant overestimation of constrained AGPP (intersection of the two lines, Fig. 6d).

The above analysis informs that the constrained GPP estimate at one future period (e.g. 2xCO>) is nearly independent of
the past periods from when the observational sensitivities are derived;for-mostrealistieseenarios. Now, we evaluate the EC
method where sensitivity from one past period is used to obtain constrained GPP estimates at different periods in a potential
future, i.e. progressively farther down the time-line of a COs-enriched world. We utilize the greening sensitivity derived from
35 years of observed LAl .« data (AVHRR, Sect. 2.1) and apply the EC method to CMIP5 1pctCO2 simulations. The sensi-
tivities in this case are due to forcing from both COs increase and associated warming during the observational period (Sect.

2.4). We seek constrained GPP estimates for the NHL at different CO5 levels (2xCOs, 3xCOs, and 4xCOy).

Winkler et al. (2019) previously reported a strong linear relationship between modeled contemporaneous changes in LA, .«
and GPP arising from the combined radiative and physiological effects of CO2 enrichment until 2 xCO5 in the CMIP5 ensem-
ble. As a result, models with low LAl sensitivity to w project lower AGPP for a given increment of CO5 concentration, and
vice versa. Thus, the large variation in modeled historical LAl sensitivities linearly maps to variation in AGPP at 2xCO,
(Winkler et al., 2019, blue line, Fig. 7a). At higher levels, such as 3xCO, (green line, R? = 0.93) and 4xCO; (red line, R?
= 0.88), this linear relationship within the model ensemble, while still present, weakens (Fig. 7a; Tab. 3). This is because the
CMIP5 models do not agree on the strength of the saturation effect at higher CO5 levels (Fig. 5 and A4). The increment in
constrained GPP estimates for successive equal increments of CO- decreases due to the saturation effect in all CMIP5 models
(dashed horizontal lines, Fig. 7a). For example, the change in GPP between 3xCO5 and 4xCOy (AGPP ~1.06 Pg C yr—1,
Tab. 3) is much lower than between 2xCOs and 3xCO3 (AGPP ~2.34 Pg C yr~!, Tab. 3).

We have thus far focused on the magnitude of CO; concentration change and not on the time rate of this change. For example,
a given amount of change in CO, concentration, say 200 ppm, can be realized over different time periods, say over a 100 or 150
years. The problem of varying rates of CO, concentration change is implicitly encountered when ESMs are executed under
different forcing scenarios, such as RCPs (Sect. 2.3). A question then arises whether the constrained predictand estimate is
independent of the time rate of CO- concentration change and dependent only on the magnitude of CO concentration change.
To investigate this aspect of forcing, we extract GPP estimates at the same COz concentration (535 ppm; final concentration
in RCP4.5) from three simulations of different forcing rates and calculate the difference relative to a common initial CO2
concentration (380 ppm; initial concentration of RCP scenarios). Hence, the magnitude of the forcing is the same but applied
over different durations (RCP4.5: ~90yr, RCP8.5: ~45yr, and 1pctCO2: ~30yr). A clear majority of the CMIPS models show
substantial differences in AGPP between the different pathways of CO forcing. In general, GPP changes are higher for lower

time rates of CO, forcing, i.e. forcing over longer time periods. As a consequence, the EC estimates of AGPP for the same
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increase in CO5 concentration are scenario-dependent (Fig. 7b; Tab. 3) — a counter-intuitive result. For instance, AGPP-in-the
low-COy-rate scenario {RCP4.5 +shows the largest GPP enhancement (AGPP ~2.84 Pg C yr—!, Tab. 3) for an increase of 155
ppm COy. This estimates is ~39% fand ~20% larger than in the scenarios with higher CO, rates for the same total increment
in CO, concentration, namely 1pctCO2 +(AGPP ~2.05 Pg C yr—!, Tab. 3) and ~26%~+RCP8.5 -+(AGPP ~2.38 Pg C yrot,
Tab. 3)hi : i ate-seenarios-for-an-inerease-of 152 , respectively. This analysis suggests that the
vegetation response to rising CO, is pathway dependent, at least in the NHL. One of the reasons for this could be species
compositional changes in scenarios of low forcing rates, i.e. over longer time frames. This novel result, however, requires a

separate in-depth study.
3.5 Effects of CO2 Forcing

Higher concentration of CO; in the atmosphere stimulates plant productivity through the fertilization and radiative effects (Ne-
mani et al., 2003; Leakey et al., 2009; Arora et al., 2011; Goll et al., 2017). The two effects can be disentangled in the model
world by conducting simulations in a *COs fertilization effect only’ (esmFixClim1) and a ’radiative effect only’ (esmFdbk1)
setup (Sect. 2.3). These are termed below as idealized model simulations. We investigate here whether historical runs and
observations, which include both effects, can be used to constrain GPP changes in idealized CMIPS simulations (e.g. as in

Wenzel et al., 2016).

We find strong linear relationships between historical LAI,,x sensitivity and AGPP for 2xCO- in both idealized setups
(esmFixClim1: R? = 0.92, esmFdbk1: R? = 0.98, Tab. 3, Fig. 7c). Consequently, this linear relationship is also pronounced for
calculated sums of both effects for each model (esmFixClim1 + esmFdbk1: R% = 0.95, Tab. 3, Fig. 7c). This suggests that the
two effects act additively on plant productivity and, thus, each effect can be simply expressed in terms of a scaling factor of
the total GPP enhancement. Hence, the application of the EC method on idealized simulations using real world observations is

conceptually feasible.

Interestingly, the two effects contribute about the same to the general increase in GPP at 2xCO4 (esmFixClim1: AGPP
~1.35Pg C yr~ !, esmFdbk1: AGPP ~1.38 Pg C yr—!, Tab. 3, Fig. 7c). At higher concentrations, such as 3xCO and 4xCO»,
the enhancement in GPP saturates in both idealized setups. However, the radiative effect becomes dominant relative to the
COy, fertilization effect when CO5 concentration exceeds 2xCOs (e.g. at 4xCOs esmFixClim1: AGPP ~2.42 Pg C yrfl,
esmFdbk1: AGPP ~3.06 Pg C yr~!, Tab. 3). Therefore, we can expect that at some point in the future, NHL photosynthetic

carbon fixation will benefit more from climate change (e.g. warming) than from the fertilizing effect of COs.
3.6 Uncertainties in the Multi-Model Ensemble

Besides methodological sources of uncertainty discussed above, the estimate of an EC may also be deficient due to inaccu-

rate assumptions about the model ensemble. First, possible common systematic errors in a multi-model ensemble (i.e. the

entire ensemble misses an unknown but-fer-the-futare-essential-proeessprocess, which plays a key role in a high CO, world)
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are implicitly omitted in the EC approach, however, could cause a general over- or underestimation of the constrained value
(Bracegirdle and Stephenson, 2012b; Stephenson et al., 2012). Second, the set of forcing variables for historical simulations
may be incomplete (i.e. not yet identified drivers of observed changes) and thus the comparability of observations and model
simulations is limited (Flato et al., 2013). Third, the EC method can be overly sensitive to individual models of the ensem-
ble, which has a bearing on the robustness of the constrained value (Bracegirdle and Stephenson, 2012b). Bracegirdle and
Stephenson (2012b) proposed a diagnostic metric (Cook’s distance) to test an ensemble for influential models. Fourth, the
predictand-predictor relationship not only has to rely on a physical, but also on a logical connection within the model en-
semble. For instance, Wenzel et al. (2016) established a linear relationship between relative changes in the predictand taking
the initial state into account (changes in GPP for doubling of CO, relative to the initial pre-industrial state), and a predictor
neglecting the initial state (historical sensitivity of CO, amplitude to rising COs). This statistical relationship can be spurious,
because the model skill of simulating an accurate initial state and a plausible sensitivity to a forcing are not connected. These

issues are to be contemplated when establishing an EC estimate and evaluating its robustness.

4 Conclusions

An in-depth analysis of the EC method is illustrated in this article through its application to projections of change in NHL
photosynthesis under conditions of rising atmospheric CO5 concentration. Key conclusions highlighting the functionality of

the EC method are presented below.

The importance of how the observational predictor is obtained cannot be emphasized enough because the EC method is
particularly sensitive to observational uncertainty. The single observational estimate essentially determines the EC, whereas
the emergent linear relationship is established based on a collection of multi-model estimates (each model gets ’one vote’,
however, some models might be more influential than others; Bracegirdle and Stephenson, 2012b). Hence, the observational
uncertainty has a much larger bearing on the EC than the uncertainty of each individual model. To overcome this source of

uncertainty, various meaningful observations should be taken into consideration when establishing the observed predictor.

Spatially aggregating observations and model output of different resolutions in the EC method constitutes another source
of uncertainty. Predictors and predictands expressed as regional estimates (e.g. area-weighted mean of the NHL) are approxi-
mations of complex fine-scale processes. Aggregation will inevitably introduce a random error component due to inclusion of
estimates from areas where the predictor is not changing or a systematic bias from areas where the predictor has a reversed
sign. Thus, the spatially-aggregated variables are meaningful only if most of the region is in agreement about the response to
CO,, forcing (e.g. more than half of the NHL is greening with rising CO5). However, we find that the source of uncertainty
related to spatial aggregation is of minor importance as long as spatial variations in observations and models simulations are

treated consistently.
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A large source of uncertainty is associated with temporal variability of the predictor variable when comparing models and
observations. Establishing a robust predictor requires evaluating temporal window lengths of sufficient duration (approximately
30 years) and their locations along the forcing time line. Both window length and location should match between models and
observations in the EC method. For example, the analysis in Wenzel et al. (2016) might have yielded different results and
conclusions if model and observational predictor sensitivities were temporally matched. We find that the relevance of window
length decreases with increasing and accelerating forcing, depending on the magnitude of natural/internal variability (signal-

to-noise ratio) of the predictor variable.

The level, effect and time-rate of applied CO, forcing can have a bearing on the linear relationship between the predictand
and predictor variables (Fig. 1). In our case study, the relationship underpinning the EC method, namely, that between concur-
rent AGPP and ALAI,,.« changes non-linearly with increasing forcing level (i.e. saturation with rising CO2 concentration).
The EC method can still be applied, because the CMIP5 models agree on the non-linear behavior of the system. However,
at very high CO;, concentrations the models diverge and this relation breaks down, at which point the EC method fails. The
two dominant effects of rising CO5 concentration on vegetation, namely, the fertilization and radiative effects, appear to be
approximately additive in terms of GPP enhancement to CO; forcing in the NHL. Therefore, the EC method can be applied
to constrain estimates of GPP due to one or the other, or both the effects. The models, however, document a higher radiative
effect than fertilization at high-COs-concentrations—+e-3concentrations exceeding 2x COqand-higher. Another intriguing con-
clusion from our analysis is that the time-rate of forcing has an effect on GPP changes, that is, the projected GPP enhancement
to CO4 forcing seems to be dependent on how the forcing is applied over time, as in different scenarios or RCPs. This aspect

is presently not well understood and requires further study.

The EC framework is widely promoted as observation-based evaluation tool for climate projections, especially in the context
of the nascent CMIP6 ensemble (Eyring et al., 2019; Hall et al., 2019). Previous EC studies, however, exclusively focused on
predictor-predictand combinations which exhibit so-called existent ECs (Hall et al., 2019), i.e. predictor and predictand are
found to relate linearly across the ensemble. In the context of ESM evaluation, non-existent ECs, i.e. predictor and predictand
are found to be unrelated in the ensemble, are equally important. Since predictor and predictand variables are premised on
our mechanistic process understanding, non-existent ECs reveal a fundamental disagreement on the system dynamics among
the models. This study encourages to scrutinize these system dynamics in the predictor-predictand space and also report such

non-existent, yet expected, ECs in order to advance model development and evaluation.

Across different disciplines each EC and its set of predictor and predictand are unique to some extent and require an individ-
ual detailed examination. In this article, we addressed general potential sources of uncertainty and limitations in the EC method
by the means of a case study in carbon cycle research. Thus, the illustrated results are qualitatively transmissive to other sets

of predictors and predictands and are generally relevant in Earth system sciences.
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Predictand

(e.g. increase in photosynthesis)

Observations

Predictor
(e.g. greening sensitivity)

Figure 1. Schematic depiction of the Emergent Constraint (EC) method and factors affecting the uncertainty of the constrained estimate.
The predictor (x axis) is change in annual maximum of green leaf area index (LAlnax) due to unit forcing (CO2 increase and associated
climatic changes) during a representative historical period. It is termed greening sensitivity in this study. The predictand (y axis) is projected
changes in Gross Primary Productivity (GPP) in response to rising CO2 concentration (e.g. for a doubling of the pre-industrial level). Both
the predictor and predictand refer to large area values, in this case, the entire Northern High Latitudes (NHL). Inter-model variations (each
symbol represents a model) in matching pairs of predictor and predictand result in a linear relationship between the two (green band), i.e. the
ratio (predictand/predictor) is approximately constant across the model ensemble. The slope depends on forcing attributes (gray shading),
such as its level (CO2 concentration, Sect. 3.4), time rate of application (scenarios such as various RCPs, Sect. 3.4) and different effects (i.e.
fertilization, radiative, etc., Sect. 3.5). The observed sensitivity (yellow vertical bar) is used to find the constrained estimate of the predictand
(i.e. change in GPP). The ability to accurately estimate the predictor depends on the source of observational data (Sect. 3.1), and its spatial
(Sect. 3.2) and temporal variability (Sect. 3.3). Observed (yellow bar) and modeled predictor values (x coordinate of symbols) must be
obtained from matching time periods, i.e. at the same level of historical forcing, to ensure comparability (Sect. 3.3 and 3.4). All these factors,
together with the goodness-of-fit of inter-model variations (width of green shading), finally define the uncertainty of the derived constrained

estimate (blue horizontal bar with black solid lines depicting the upper and lower bound of uncertainty).
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Figure 2. Bar charts showing regression slopes of LAlax against atmospheric CO2 concentration for broad vegetation classes (a; Olson
etal., 2001; Fritz et al., 2015), latitudinal bands (b) and climate regimes (c). The class "Other" includes deserts, mangroves, barren and urban
land, snow and ice, and permanent wetlands. The climatic boundaries are defined as follows - cold: < 10°C; warm: > 10°C & < 25°C; hot:
> 25°C; dry: < 500 mm a~'; wet: > 500 mm a~ ! & < 1000 mm a~*; humid: > 1000 mm a~*. Sensitivities evaluated from data from two
satellite-borne sensors are shown, AVHRR (1982 — 2016; Pinzon and Tucker, 2014) and MODIS (2000 — 2016; Yan et al., 2016a, b). Grey

bars indicate the standard error of the best linear fit.
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Figure 3. Histograms and associated probability density functions (Gaussian kernel density estimation) of observed LAl ax sensitivity to
w at pixel scale for the northern high latitudinal band (> 60° N, data from AVHRR sensor). Blue color depicts the distribution of LALyax
sensitivities of all pixels and the red color for pixels with statistically significant (Mann-Kendall test, p < 0.1) greening or browning trends
(the dashed lines denote the respective mean value). The green dashed line shows the mean value of ’greening’ pixels only, whereas the

yellow dashed line shows the LAl ax sensitivity to w for the entire northern high latitudinal belt.
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Figure 4. Temporal variation of LAlax sensitivity to w in three selected CMIP5 models spanning the full range from low (CESM1-BGC,

a), to closest-to-observations (MIROC-ESM, b), to high-end (HadGEM2-ES, c). The colored lines show LAlax sensitivity variations for

moving windows of varying length of 15 (blue), 30 (green), and 45 (red) years over the historical period from 1860 to 2005.
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Figure 5. Correlation of ALAInax and AGPP with increasing CO» forcing, starting from a pre-industrial concentration of 280 ppm (1xCO2)
to 4xCO2 (CMIP5 1pctCO2 simulations). Results are shown for three selected CMIP5 models spanning the full range of LAl ax sensitivity
to w, low-end: CESM1-BGC (a), closest-to-observations: MIROC-ESM (b), and high-end: HadGEM2-ES (c). Blue colored dots show the
relation between 1xCO2 and 2xCO2, green colored dots between 2xCO» and 3xCO2, and red colored dots between 3xCO2 and 4xCOs. The

respective colored lines represent the best linear fit through those dots and the shading represents the 95% confidence interval.
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Figure 6. Thought experiment to examine the applicability of EC analysis under the assumption of an idealized linear / non-linear behavior
of the system (Case 3, Table Al). a, Changes in GPP relate linearly to changes in CO2 concentration. The yellow band marks the projection
period of interest, i.e. the period of CO2 concentration from z + 4A to x + 5A. b, The increment in LAI with increasing GPP is assumed
to decrease with rising CO2 concentration (described by a hyperbolic tangent function). The parameterization in the linear and non-linear
functions for pseudo observations (dashed black line) as well as models (solid grey lines) are determined randomly for each model. ¢, The
diagnostic variable, LAI sensitivity to COa2, is decreasing with increasing CO2 as a consequence of the non-linear relation between AGPP and
ALAL The colored bands indicate three *past’ periods from z to x + A (blue), z + Atox + 2A (green),and z + 2A to x + 3A (red).
d, Linear relationships among the pseudo model ensembles (Ensemble LR, colored lines) between LAI sensitivities to CO2 of the three
past periods and AGPP from the projected period. Colored dots mark different models and the dashed lines represent associated pseudo

observations for the respective historical period. Yellow solid line depicts the constant EC on projected AGPP irrespective of the past period.
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Figure 7. Linear relationships between historical sensitivity of LAlax to w and absolute increase of GPP at different levels (a), different
time-rates (b) as well as effects of rising CO2 (c). The black solid line depicts the observational sensitivity including the standard error (grey
shading). Each CMIP5 model is represented by a distinct marker (legend at the top). The colored lines show the best linear fits including the
68% confidence interval estimated by bootstrapping across the model ensemble. The colored dashed lines indicate the derived constraints on
AGPP. a, Absolute changes in GPP at different levels of CO3: 2xCOx (blue), 3xCO2 (green), and 4xCO; (red). b, Absolute changes in
GPP for rising CO2 concentration from 380 to 535 ppm at different time-rates: RCP4.5 (90 yr, blue), RCP8.5 (45 yr, green), and 1pctCO2
(30 yr, red). ¢, Absolute changes in GPP due to the two disentangled effects of CO2 at 2xCO3 in idealized simulations: Fertilization effect

(esmFixClim1, blue), radiative effect (esmFdbk1, green), and the sum of both effects (red).
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1 Table 1. Coefficients of determination (R?) of LAI.x sensitivity to CO, for different large-scale aggregated regions. Data are from two
2 optical remote sensors of different time length, AVHRR (1982 — 2016) and MODIS (2000 — 2016). Asterisks denote non-significant values:
3 *#p>0.1;*p>0.05.

Correlation coefficient R®> AVHRR MODIS

Biomes
Boreal forests 0.49 0.58
Temperate forests 0.47 0.81
Tropical forests 0.41 0.06%*
Graslands 0.75 0.83
Croplands 0.75 0.8
Other 0.35 0.2%
Latitudinal Bands
> 60° N/S 0.51 0.61
4 30° N/S — 60° N/S 0.67 0.83
30°S-30°N 0.65 0.26

Climate Space

cold dry 0.29 0.27
cold wet 0.49 0.4
cold humid 0.33 0.21*
warm dry 0.33 0.36
warm wet 0.37 0.18*
warm humid 0.25 0.12%*
hot dry 0.08* 0.08°%*
hot wet 0.15 0.00%*
hot humid 0.13 0.01%%*
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1 Table 2. Slopes (b) and coefficients of determination (R?) for regression between changes of LAI,.x against changes in annual mean GPP
2 for the NHL at different atmospheric CO2 levels in all available CMIP5 models (1pctCO2 simulation). Asterisks denote non-significant
3 values: ** p > 0.1; * p > 0.05.

Correlation details < 2xCO2 > 2xCO2 & < 3xCO2 > 3xCO2

b R? b R? b R?
MIROC-ESM 0.23 0.97 0.16 0.89 0.08 0.63
CESM1-BGC 0.45 0.93 0.36 0.82 0.27 0.62

4 GFDL-ESM2M 0.37 0.89 0.04 0.07** 0.01 0.12%*

CanESM2 0.22 0.95 0.19 0.83 0.17 0.67
HadGEM2-ES 0.13 0.99 0.08 0.96 0.06 0.78
MPI-ESM-LR 0.13 0.94 0.09 0.78 0.04 0.51
NorESM1-ME 0.26 0.94 0.2 0.77 0.09 0.27
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Table 3. Coefficients of determination (R?) of the emergent linear relationships in Figure 7 (asterisks denote non-significant values: ** p

> 0.1; * p > 0.05). ECs on AGPP (upper and lower bound of uncertainty in square brackets) for different atmospheric CO> levels and

fully-coupled as well as idealized setups. The rightmost column shows the increase of AGPP for an increment of 1xCO,. The lowermost

section compares EC estimates of AGPP for equivalent changes in CO2 concentration (COz rises from 380 to 535 ppm), but for different

time-rates.
R?  EC AGPP estimate (Pg Cyr~!) EC AGPP for Alx COs (PgCyr %)

2xCO2
Fully coupled (1pctCO2) 0.96 3.36 [3.15, 3.56] -
CO., fertilization only (esmFixClim1) 0.88 1.35[1.29, 1.62] -
Radiative effect only (esmFdbk1) 0.94 1.38 [1.13, 1.51] -
Sum of both effects (esmFixClim1 + esmFdbk1l)  0.95 2.74 2.6, 2.9] -
3xCO2
Fully coupled (1pctCO2) 0.93 5.7 [5.26, 6.16] 2.34
CO., fertilization only (esmFixClim1) 0.92 2.15[2.02, 2.37] 0.79
Radiative effect only (esmFdbk1) 0.98 2.53[2.3,2.66] 1.15
Sum of both effects (esmFixClim1 + esmFdbkl) 0.96 4.68 [4.38,4.97] 1.94
4XC02
Fully coupled (1pctCO2) 0.88 6.76 [6.08, 7.53] 1.06
COs, fertilization only (esmFixClim1) 0.88 2.42[2.23, 2.74] 0.28
Radiative effect only (esmFdbk1) 0.97 3.06 [2.83, 3.2] 0.53
Sum of both effects (esmFixClim1 + esmFdbk1l) 0.95 5.49 [5.09, 5.85] 0.81
380 — 535 ppm CO-
Slow increase in CO2 (RCP4.5) 0.93 2.84 [2.54, 3.08] -
Medium-fast increase in COz (RCP8.5) 0.96 2.38 [2.18, 2.55] -
Rapid increase in CO2 (1pctCO2) 0.96 2.05[1.94, 2.16] -
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Standardized anomaly

1985 1990 1995 2000 2005 20
Years

10

2 Figure Al. Standardized temporal anomalies of annual averaged atmospheric CO2 concentration (blue solid line), area-weighted averaged

3 GDDO for NHL (green solid line), and their leading principal component w (red dashed line) in observations.
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Figure AS. Thought experiment to examine the applicability of the EC analysis assuming an idealized linear / linear behavior of the system
(Case 1, Table Al). a, Changes in GPP relate linearly to changes in CO> concentration. The yellow band marks the projection period
of interest, i.e. the period of COy concentration from x + 4A to  + 5A. b, Changes in LAI relate linearly to changes in GPP. The
parameterization in the linear functions for pseudo observations (dashed black line) as well as models (solid grey lines) are determined
randomly for each model. ¢, The diagnostic variable, LAI sensitivity to CO2, remains constant with increasing CO2 as a consequence of the
overall linear characteristics of the system. The colored bands indicate three *past’ periods from x to x + A (blue), z + Atox + 2A
(green), and z + 2A to x + 3A (red). d, Linear relationships among the pseudo model ensembles (Ensemble LR 1-3 on top of each other,
red) between LAI sensitivity to COz of the three past periods and AGPP from the projected period. Red dots mark different models and the
dashed line represents associated pseudo observations for all three hl‘?s’g)rical periods. Yellow solid line depicts the constant EC on projected

AGPP irrespective of the past period.
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Figure A6. Thought experiment to examine the applicability of the EC analysis assuming an idealized non-linear / non-linear behavior of
the system (Case 4, Table Al). a, AGPP decreases with increasing CO2 concentration (described by a hyperbolic tangent function). The
yellow band marks the projected period of interest, i.e. the period of CO; concentration from = + 4A toxz + 5A. b, Also ALAI decreases
with increasing GPP (described by a hyperbolic tangent function). The parameterization in the hyperbolic tangent functions for pseudo
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LAI sensitivity to CO2, is decreasing with increasing CO2 as a consequence of the overall saturating characteristics of the system. The
colored bands indicate three *past’ periods from z to x + A (blue), z + Atox + 2A (green), and x + 2A to x + 3A (red). d, Linear
relationships among the pseudo model ensembles (Ensemble LR, colored lines) between LAI sensitivity to CO2 of the three past periods
and AGPP from the projected period. Colored dots mark different ngels and the dashed lines represent associated pseudo observations for

respective historical period. Yellow solid line depicts the constant EC on projected AGPP irrespective of the past period.



1 Table Al. Overview of four possible cases of interaction between forcing, non-observable and observable identified in the thought experi-

2 ment: All linear, all non-linear, and two mixed cases.

d[non—observable] d[GPP] d[observable]

d[LAT]
d[forcing] > C.8 d[CO2] d[non—observable] *

* d[GPP]

Different assumptions e.g

1 linear linear

3 2 non-linear linear ]

3 linear non-linear ~ |
non-linear non-linear ~ |
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