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Abstract.1

Recent research on Emergent Constraints (EC) has delivered promising results in narrowing down uncertainty in climate2

predictions. The method utilizes a measurable variable (predictor) from the recent historical past to obtain a constrained es-3

timate of change in a difficult-to-measure variable
::
an

:::::
entity

::
of

:::::::
interest (predictand) at a potential future

::::
CO2:concentration4

(forcing) from multi-model projections. This procedure critically depends on, first, accurate estimation of the predictor from5

observations and models, and second, on a robust relationship between inter-model variations in the predictor-predictand space.6

We
:::::
Here,

::
we

:
investigate issues related to these two themes in this article, using

:
a
::::::
carbon

::::
cycle

::::
case

:::::
study

:::::
using

::::::::
observed veg-7

etation greening sensitivity to forcing during the satellite era
::::
CO2 ::::::

forcing
:
as a predictor of change in

::::::::::::
photosynthesis

:
(Gross8

Primary Productivity(GPP) of the Northern High Latitudes region (60� N – 90� N, NHL) ,
:::::
GPP) for a doubling of pre-industrial9

concentrationin the atmosphere
::::
CO2 :::::::::::

concentration. Greening sensitivity is defined as changes in annual maximum of green leaf10

area index (LAImax) per unit
::::
CO2 forcing realized through its radiative and fertilization effects. We first address the question11

of how to realistically characterize the greening sensitivity
::::::::
predictor of a large area , the NHL,

::::
(e.g.

:::::::
greening

:::::::::
sensitivity

::
in

:::
the12

:::::::
northern

::::
high

:::::::
latitudes

:::::::
region) from pixel-level LAImax data. This requires an investigation into uncertainties in LAImax :::

the13

:::::::::::
observational data source and an evaluation of the spatial and temporal variability in greening sensitivity to forcing

::
the

::::::::
predictor14

in both the data and model simulations. Second, the relationship between greening sensitivity and �GPP
:::::::::::::::::
predictor-predictand15

:::::::::
relationship

:
across the model ensemble depends on a strong coupling among

:::::::
between

:::
the

::::
two

::::::::
variables,

:::
i.e.

:
simultaneous16

changes in GPP and LAImax. This coupling depends in a complex manner on the magnitude (level), time-rate of application17

(scenarios) and effects (radiative and/or fertilization) of
:::
CO2:forcing. We investigate how each one of these three aspects of18

forcing can impair the EC estimate of the predictand (�GPP). Accounting for uncertainties in greening sensitivity and stability19

of the relation between inter-model variations results in a quantitative estimate of
:::
Our

::::::
results

:::::
show

::::
that

::::::::::
uncertainties

:::
in the20

uncertainty (± 0.2 Pg C yr�1) on constrained GPP enhancement (�GPP = +3.4 Pg C yr�1) for a doubling of pre-industrial21

atmospheric concentration in NHL. This �GPP is 60% larger than the conventionally used average of model projections.22

The illustrated
:::
EC

::::::
method

::::
can

::::::::
primarily

::::::::
originate

::::
from

::
a

::::
lack

::
of

::::::::
predictor

:::::::::::
comparability

::::::::
between

::::::
models

::::
and

:::::::::::
observations,23

:::::::
temporal

:::::::::
variability,

::::
and

:::
the

:::::::::::
observational

::::
data

:::::
source

:::
of

:::
the

::::::::
predictor.

:::
The

::::::::::::
disagreement

:::::::
between

::::::
models

:::
on

:::
the

::::::::::
mechanistic24

1



:::::::
behavior

::
of

:::
the

::::::
system

::::::
under

::::::::::
intensifying

::::::
forcing

:::::
limits

::::
the

:::
EC

:::::::::::
applicability.

:::
The

::::
here

:::::::::
illustrated

:::::::::
limitations

::::
and sources of1

uncertainty and limitations of
::
in the EC method go beyond carbon cycle research and are generally relevant for

:::::::::
applicable

::
in2

Earth system sciences.3

Copyright statement.4

2



1 Introduction1

Earth system models (ESMs) are powerful tools to predict response
::::::::
responses

:
to a variety of forcings such as increasing atmo-2

spheric concentration of greenhouse gases and other agents of radiative forcing (Klein and Hall, 2015). Still, longterm ESM3

projections of climate change can have substantial uncertainties. This can be due to poorly understood processes in some cases,4

and in others, to missing or simplified representations called parameterizations (Flato et al., 2013; Klein and Hall, 2015; Knutti5

et al., 2017). Certain important processes, especially in the atmosphere, happen at spatial scales finer than can be possibly repre-6

sented in current ESMs. Consequently, certain key aspects of the system , such as variability,
::::::
various

::::::::::
phenomena

::
in

:::
the

::::::
system7

::::::
ranging

:::::
from

::::
local extreme precipitation events and

:
to
:
large-scale climate modes, can be poorly simulated (Flato et al., 2013).8

Errors propagate and can be amplified through feedbacks among interacting components in the Earth system, resulting in biases9

whose origins can be difficult to identify (Flato et al., 2013). Furthermore, an inherent component of the Earth climatic sys-10

tem, its internal natural variability, is complicated to represent and simulate in models (Flato et al., 2013; Klein and Hall, 2015).11

12

Model Intercomparison Projects aim is to explore these uncertainties by coordinating a wide range of simulation setups fo-13

cusing on internal variability, boundary conditions, parameterizations, etc. (Taylor et al., 2012; Eyring et al., 2016; Flato et al., 2013; Knutti et al., 2017)14

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Taylor et al., 2012; Flato et al., 2013; Eyring et al., 2016; Knutti et al., 2017). Models developed at various institutions are driven15

with the same forcing information (e.g. historical forcing) or with identical idealized boundary conditions. However, each mod-16

eling group decides which of the processes to consider and implement in their ESM. The conventional approach of handling17

these multi-model ensembles is to use unweighted ensemble averages (Knutti, 2010; Knutti et al., 2017). This assumes that the18

models are independent of one another and equally good at simulating the climate system (Flato et al., 2013; Knutti et al., 2017).19

The large spread between model projections suggests that this assumption is not valid. Therefore, alternate methods have been20

developed to extract results more accurate than multi-model averages (e.g., model weighting scheme based on preformance and interdependence, Knutti et al., 2017)21

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. model weighting scheme based on preformance and interdependence, Knutti et al., 2017). The concept of Emergent Con-22

straints arises in this context, namely,
::
as a method to reduce uncertainty in ESM projections relying on historical simulations23

and observations (Hall and Qu, 2006; Boé et al., 2009; Cox et al., 2013; Klein and Hall, 2015; Cox et al., 2018).24

25

The two key parts of an Emergent Constraint (EC) based method are a linear relationship arising from the collective behavior26

of a multi-model ensemble and an observational estimate for imposing the said constraint (Fig. 1). The linear relationship is27

a physically (or physiologically) based correlation between inter-model variations in an observable entity of the contempo-28

rary climate system (predictor) and a projected variable (predictand) that is usually difficult to observe
::
or

:::
not

::::::::::
observable29

:
at
:::

all. Combining the emergent linear relationship with observations of the predictor sets a constraint on the predictand30

(Knutti et al., 2017; Klein and Hall, 2015; Cox et al., 2013; Flato et al., 2013)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cox et al., 2013; Flato et al., 2013; Klein and Hall, 2015; Knutti et al., 2017)31

. Many such ECs have been identified and reported, as briefly summarized below.32

33

3



Hall and Qu (2006)
::::::::::::::::
Hall and Qu (2006) proposed a constraint on projections of snow-albedo feedback based on the correla-1

tion between large inter-model variations in feedback strength of the current seasonal cycle. The EC was first established for the2

CMIP3 ensemble and confirmed for phase five of the Coupled Model Intercomparison Project (CMIP5) (Qu and Hall, 2014; Flato et al., 2013)3

::::::::::::::::::::::::::::::::::::::
(CMIP5; Flato et al., 2013; Qu and Hall, 2014). Several EC studies followed with the goal of reducing uncertainty in projec-4

tions of the cloud feedback under global warming, as reviewed by Klein and Hall (2015)
::::::::::::::::::
Klein and Hall (2015). It is thought5

that erroneous representation of low-cloud feedback in ESMs contributes essentially to the large uncertainty in equilib-6

rium climate sensitivity (ECS, 1.5 to 5
::
K), i.e. warming for a doubling of pre-industrial atmospheric concentration (2⇥)7

(Klein and Hall, 2015; Sherwood et al., 2014)
:::
CO2::::::::::::

concentration
:::::::::::::::::::::::::::::::::::::::::::::
(2⇥CO2; Sherwood et al., 2014; Klein and Hall, 2015). Re-8

cently, Cox et al. (2018)
::::::::::::::
Cox et al. (2018) presented a different approach to constrain ECS based on its relationship to variabil-9

ity of global temperatures during the recent historical warming period. They report
::::::
reported

:
a constrained ECS estimate of 2.810

K for 2⇥
::::
CO2:(66% confidence limits of 2.2 – 3.4 K).11

12

The concept of EC also found its way into the field of carbon cycle projections. A series of studies analyzed the extent to13

which inter-annual atmospheric
:::
CO2:variability can serve as a predictor of longterm temperature sensitivity of terrestrial tropi-14

cal carbon storage. Cox et al. (2013) and Wenzel et al. (2014)
::::::::::::::
Cox et al. (2013)

:::
and

:::::::::::::::::
Wenzel et al. (2014) reported an emergent15

linear relationship, although with different slopes for CMIP3 and CMIP5 ensembles, resulting in slightly divergent constrained16

estimates (CMIP3: -53 ± 17
::
Pg

::
C

::::
K�1, CMIP5: -44 ± 14 ). Wang et al. (2014)

::
Pg

::
C
::::::

K�1).
::::::::::::::::
Wang et al. (2014) however17

were unable to detect a similar relationship between the proposed predictor and predictand. Recently, Lian et al. (2018)18

::::::::::::::
Lian et al. (2018) presented an EC estimate of the global ratio of transpiration to total terrestrial evapotranspiration (T/ET),19

which is substantially higher (0.62 ± 0.06) than the unconstrained value (0.41 ± 0.11). For the marine tropical carbon cycle,20

Kwiatkowski et al. (2017)
::::::::::::::::::::::
Kwiatkowski et al. (2017) identified an emergent relationship between the longterm sensitivity of21

tropical ocean net primary production (NPP) to rising sea surface temperature (SST) in the equatorial zone and the interannual22

sensitivity of NPP to El Niño/Southern Oscillation driven SST anomalies. Tropical NPP is projected to decrease by 3 ± 1%23

for 1
::
K increase in equatorial SST according to the observational constraint.24

25

Similar results were reported for
:::::::
modeled extra-tropical terrestrial carbon fixation in a 2⇥

:::
CO2:world. Plant productivity is26

expected to increase due to the fertilizing and radiative effects of rising atmospheric concentration. Wenzel et al. (2016)
::::
CO227

:::::::::::
concentration.

::::::::::::::::::
Wenzel et al. (2016) focused on constraining the

:::
CO2:fertilization effect on plant productivity in the northern28

high latitudes (60� N – 90� N, NHL) and the entire extra-tropical area in the northern hemisphere (30� N – 90� N) using29

the seasonal amplitude of longterm
:::
CO2:measurements at different latitudes. They presented a linear relationship between30

the sensitivity of
::::
CO2 amplitude to rising atmospheric

::::
CO2:concentration and the relative increase in zonally averaged gross31

primary production (GPP) for 2⇥
::::
CO2. The observed

::::
CO2:amplitude sensitivities at respective stations provided a constraint32

on the strength of the
::::
CO2 fertilization effect, namely 37% ± 9% and 32% ± 9% for the NHL and the extra-tropical region,33

respectively.34

35
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Focusing on the NHL, ?
:::::::::::::::::
Winkler et al. (2019) investigated how both effects of

:::
CO2:enhance plant productivity while assess-1

ing the feasibility of vegetation greenness changes as a constraint(Fig. 1).
:
. Enhanced GPP due to the physiological effect and2

ensuing climate warming is indirectly evident in large-scale increase in summer time green leaf area (Myneni et al., 1997a; Zhu3

et al., 2016). Historical CMIP5 simulations show that the maximum annual leaf area index (LAImax, leaf area per ground area)4

increases linearly with both concentration and growing degree days (above 0�, GDD0)
:::
CO2::::::::::::

concentration
::::
and

::::::::::
temperature5

in NHL. To avoid redundancy from co-linearity between the two driver variables, but retain their underlying time-trend and6

interannual variability, the dominant mode from a principal component analysis of and GDD0 was used as the proxy driver7

(denoted !). This greening sensitivity (i.e.
�LAImax

�!
) can be inferred for the overlapping historical period from simulations8

and observations alike. In all ESMs, changes in
::::
these

:::::::
changes

:::
in

:::::::
LAImax :::::::

strongly
:::::::
correlate

:::
to

:::::::
changes

::
in GPP arising from9

the combined radiative and physiological effects of enrichmentstrongly correlate with changes in LAImax in the historical10

simulations
::::
CO2::::::::::

enrichment. Thus, the large variation in modelled
:::::::
modeled historical LAImax sensitivities

:::::::
responses

:::
to

:::
the11

:::::
effects

::
of

:::::
CO2 linearly maps to variation in �GPP at 2⇥. Hence, this

::::
CO2 ::

in
:::
the

::::::
CMIP5

:::::::::
ensemble.

::::
This linear relationship in12

inter-model variation between �GPP at 2⇥and historical greening sensitivities allows using the observed sensitivity
::::::::
variations13

::::::
enables

:::
the

:::::
usage

::
of

::::
the

:::::::
observed

::::::::
longterm

::::::
change

:::
in

:::::::
LAImax as an EC on �GPP at 2⇥in NHL (3.4 ± 0.2 , Winkler et al.,14

2018).
:::
CO2::

in
:::::
NHL

:::::::::::::::::::::::::::::::::::
(3.4 ± 0.2 Pg C yr�1; Winkler et al., 2019)

:
.15

16

The EC method (Fig. 1) has its limitations.
::::::::
robustness

::
of

:::::
these

:::
EC

::::::::
estimates

::
is
:::::::
debated,

:::::::
mainly

:::::::
because

:::
the

:::
EC

::::::::
approach17

:
is
::::::::::
susceptible

::
to

:::::::::::::
methodological

:::::::::::::
inconsistencies.

:
For example, Cox et al. (2013), Wang et al. (2014) and Wenzel et al. (2015)18

::::::::::::::
Cox et al. (2013),

::::::::::::::::
Wang et al. (2014)

:::
and

::::::::::::::::::
Wenzel et al. (2015) investigated on constraining future terrestrial tropical carbon19

storage using the same set of models and data. However, they arrived at different EC estimates and divergent conclusions.20

Some reasons for the failure and essential criteria required for successful application of the EC approach were described pre-21

viously (Bracegirdle and Stephenson, 2012b; Klein and Hall, 2015), but this list is far from complete. The main focus thus far22

has been on caveats establishing an emergent linear relationship in a multi-model ensemble. However, large uncertainty on the23

constraint could result potentially from how the observational predictor is derived and compared to the modeled estimates.
::
To24

::::::
account

:::
for

:::
this

::::
gap

::
in

:::
the

::::::::
literature,

:
a
:::::::
detailed

:::::::::::
investigation

:::
and

::::::::::
description

::
of

:::
the

:::
EC

::::::
method

::
in

:::::
terms

::
of

:::
its

:::::::
potential

:::::::
sources25

::
of

:::::::::
uncertainty

::::
and

::
the

:::::
range

:::
of

::::::::::
applicability

:::
are

:::::::
needed.26

27

Here, we revisit the study of ?
::::::::::::::::::
Winkler et al. (2019) and elaborate on key issues concerning sources of uncertainty regarding28

the constraint and applicability
:::
the

:::::::::
robustness of the EC method.29

Uncertainty on
:::::::::
Uncertainty

:::
of the constrained estimate depends on (a) observed predictor and (b) modeled relationship,30

aside from the goodness-of-fit of the latter (green shading in Fig. 1). As for (a), the source of observations is an obvious first31

line of inquiry (Sect. 3.1). Spatial aggregation of data and model simulations introduces uncertainties, as the EC method is32

applied on large areal values of predictor and predictand. This is the subject of Sect. 3.2. The observed and modeled predictors33

are from the historical period. The representativeness, duration and match between data and models all introduce an uncertainty34

related to variations in the temporal domain – these are explored in (Sect. 3.3). The yellow shading in Fig. 1 represents the35

5



total uncertainty on observed predictor from these three fronts. Regarding (b), the modeled linear relation varies (grey shading1

in Fig. 1) depending on three attributes of the forcing, i.e.
::::
CO2 concentration change, its magnitude, rate and effect (Sect. 3.42

and 3.5). Lessons learned from analyses along these lines are presented in the conclusion section at the end.3

4
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2 Data and Methods1

2.1 Observational data sets
:::::::::
Remotely

::::::
sensed

:::
leaf

::::
area

::::::
index2

2.1.1 Remotely sensed leaf area index3

We used the recently updated version (V1) of the leaf area index data set
:::::
dataset

:
(LAI3g) developed by (Zhu et al., 2013). It4

was generated using an artificial neural network (ANN) and the latest version (third generation) of the Global Inventory Mod-5

eling and Mapping Studies group (GIMMS) Advanced Very High Resolution Radiometer (AVHRR) normalized difference6

vegetation index (NDVI) data (NDVI3g). The latter have been corrected for sensor degradation, inter-sensor differences, cloud7

cover, observational geometry effects due to satellite drift, Rayleigh scattering and stratospheric volcanic aerosols (Pinzon and8

Tucker, 2014). This data set
:::::
dataset

:
provides global and year-round LAI observations at 15-day (bi-monthly) temporal resolu-9

tion and 1/12 degree spatial resolution from July 1981 to December 2016. Currently, this is the only available record of such10

length.11

12

The quality of previous version (V0) of LAI3g data set
::::::
dataset was evaluated through direct comparisons with ground13

measurements of LAI and indirectly with other satellite-data based LAI products, and also through statistical analysis with14

climatic variables, such as temperature and precipitation variability (Zhu et al., 2013). The LAI3gV0 data set
::::::
dataset (and re-15

lated fraction vegetation-absorbed photosynthetically active radiation data set
::::::
dataset) has been widely used in various studies16

(Anav et al., 2013; Forkel et al., 2016; Zhu et al., 2016; Mao et al., 2016; Mahowald et al., 2016; Piao et al., 2014; Poulter et al., 2014; Keenan et al., 2016)17

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Anav et al., 2013; Piao et al., 2014; Poulter et al., 2014; Forkel et al., 2016; Zhu et al., 2016; Mao et al., 2016; Mahowald et al., 2016; Keenan et al., 2016)18

. The new version, LAI3gV1, used in our study is an update of that earlier version.19

20

We also utilized a more reliable but shorter data set
::::::
dataset

:
from the Moderate Resolution Imaging Spectroradiometer21

(MODIS) aboard the NASA’s Terra satellite (Yan et al., 2016a, b). These data are well calibrated, cloud-screened and corrected22

for atmospheric effects, especially tropospheric aerosols. The sensor-platform is regularly adjusted to maintain a precise orbit.23

All algorithms, including the LAI algorithm, are physics-based, well-tested and currently producing sixth generation data sets.24

The data set
:::::::
datasets.

:::
The

::::::
dataset

:
provides global and year-round LAI observations at 16-day (bi-monthly) temporal resolution25

and 0.05� spatial resolution from 2000 to 2016.26

27

Leaf area index is defined as the one-sided green leaf area per unit ground area in broadleaf canopies and as one-half the28

green needle surface area in needleleaf canopies in both observational and CMIP5 simulation data sets
::::::
datasets. It is expressed29

in units of m2 green leaf area per m2 ground area. Leaf area changes can be represented either by changes in annual maximum30

LAI (LAImax) (Cook and Pau, 2013)
:::::::::::::::::::::::::
(LAImax; Cook and Pau, 2013), or growing season average LAI. In this study, we use the31

former because of its ease and unambiguity, as the latter requires quantifying the start- and end-dates of the growing season,32

something that is difficult to do accurately in NHL (Park et al., 2016) with the low resolution model data. Further, LAImax, is33

7



less influenced by cloudiness and noise; accordingly, it is most useful in investigations of long-term greening and browning1

trends. The drawback of LAImax, is the saturation effect at high LAI values (Myneni et al., 2002). However, this is less of a2

problem in high latitudinal ecosystems which are less-densely vegetated, with LAImax, values typically in the range of 2 to 3.3

4

The bi-monthly satellite data sets
:::::::
datasets were merged to a monthly temporal resolution by averaging the two composites5

in the same month and bi-linearly remapped to the resolution of the applied reanalysis product (0.5�⇥0.5�, CRU TS4.01).6

7

2.1.1 Environmental driver variables8

2.2
::::::::::::

Environmental
::::::
driver

::::::::
variables9

We use temperature, precipitation and data
:::
time

:::::
series

:::
of

::::::::::
temperature

:::
and

::::
CO2:to derive the observed historical forcing (Sect.10

2.4) and
:::::::::::
climatologies

::
of

::::::::::
precipitation

::::
and

::::::::::
temperature to calculate climatic regimes (Fig. 2). Monthly averages of near-surface11

air temperature and precipitation are from the latest version of the Climatic Research Unit Timeseries data set
:::::
dataset

:
(CRU12

TS4.01). The global data are gridded to 0.5�⇥0.5� resolution (?)
::::::::::::::::
(Harris et al., 2014). Global monthly means of atmospheric13

::::
CO2 concentration are from the GLOBALVIEW-CO2 product (obspack_co2_1_GLOBALVIEWplus_v2.1_2016_09_02; for14

details see https://doi.org/10.25925/20190520) provided by the National Oceanic and Atmospheric Administration / Earth Sys-15

tem Research Laboratory (NOAA / ESRL).16

17

2.3 Earth system model simulations18

We analyzed recent climate-carbon simulations of seven ESMs participating in the fifth phase of the Coupled Model Inter-19

comparison Project, CMIP (Taylor et al., 2012). The model simulated data were obtained from the Earth System Grid Federa-20

tion, ESGF (https://esgf-data.dkrz.de/projects/esgf-dkrz/). Seven ESMs provide output for the variables of interest (GPP,
:::
CO2,21

LAI, and near-surface air temperature) for simulations titled esmHistorical, RCP4.5, RCP8.5, 1pctCO2, esmFixClim1, and22

esmFdbk1. It is the same set of models analyzed in Wenzel et al. (2016) and ?.
:::::::::::::::::
Wenzel et al. (2016)

:::
and

:::::::::::::::::
Winkler et al. (2019)

:
.23

:::
The

:::::::::
individual

:::::
model

:::::
setups

::::
and

::::::::::
components

::
are

:::::::::
illustrated

::
in

::::
more

:::::
detail

::
in

::::::
various

:::::::
studies,

::::
such

::
as

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Arora et al. (2013); Wenzel et al. (2014); Mahowald et al. (2016); Winkler et al. (2019)24

:
.25

26

The esmHistorical simulation spanned the period 1850 to 2005 and was driven by observed conditions such as solar forcing,27

emissions or concentrations of short-lived species and natural and anthropogenic aerosols or their precursors, land use, anthro-28

pogenic as well as volcanic influences on atmospheric composition. The models are forced by prescribed anthropogenic
::::
CO229

emissions, rather than atmospheric concentrations.
::::
CO2:::::::::::::

concentrations.30

31

8
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Several Representative Concentration Pathways (RCPs) have been formulated describing different trajectories of greenhouse1

gas emissions, air pollutant production and land use changes for the 21st century. These scenarios have been designed based2

on projections of human population growth, technological advancement and societal responses (van Vuuren et al., 2011; Tay-3

lor et al., 2012). We analyzed simulations forced with specified concentrations of a high emissions scenario (RCP8.5) and4

a medium mitigation scenario (RCP4.5) reaching a radiative forcing level of 8.5 and 4.5 W m�2 at the end of the century,5

respectively. These simulations were initialized with the final state of the historical runs and spanned the period 2006 to 2100.6

7

1pctCO2 is an idealized fully coupled carbon-climate simulation initialized from a steady state of the preindustrial
:::::::::::
pre-industrial8

control run and atmospheric
:::
CO2:concentration prescribed to increase 1% yr�1 until quadrupling of the preindustrial

:::::::::::
pre-industrial9

level. The simulations esmFixClim and esmFdbk are set up similar to the
:::
aim

::
to

::::::::::
disentangle

:::
the

:::
two

::::::
carbon

:::::
cycle

:::::::::
feedbacks10

::
in

:::::::
response

:::
to

:::::
rising

::::
CO2:::::::::

analogous
::
to
::::

the 1pctCO2 with the difference, that in esmFixClim (esmFdbk)only the radiative11

effect from increasing concentration is included
:::::
setup:

::
In

::::::::::
esmFixClim

:::::::::::
CO2-induced

:::::::
climate

::::::
change

:
is
::::::::::
suppressed

:::
(i.e.

::::::::
radiation12

::::::
transfer

:::::
model

::::
sees

:::::::
constant

:::::::::::
pre-industrial

::::
CO2:::::

level), while the carbon cycle sees the preindustrial level (vice versa) (Taylor et al., 2009, 2012; Arora et al., 2013)13

.
:::::::
responds

::
to

::::::::
increasing

:::::
CO2 :::::::::::

concentration
::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(vice versa for esmFdbk; Taylor et al., 2009, 2012; Arora et al., 2013)

:
.14

15

2.4 Estimation of greening sensitivities16

We largely follow the methodology detailed in ?
:::::::::::::::::
Winkler et al. (2019). For both model and observational data, the two-dimensional17

global fields of LAI and the driver variables are cropped according to different classification schemes (namely, vegetation18

classes (Olson et al., 2001), climatic regimes, and latitudinal bands)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(namely, climatic regimes, latitudinal bands and vegetation classes; Olson et al., 2001; Fritz et al., 2015)19

. The aggregated values are area-weighted, averaged in space, and temporally reduced to annual estimates dependent on the20

variable: annual maximum LAI, annual average atmospheric
::::
CO2 concentration, and growing degree days (GDD0, yearly ac-21

cumulated temperature of days where near-surface air temperature > 0� C).22

23

We use a standard linear regression model to derive the greening sensitivity. On a
:::::::
historical

:::::::
greening

::::::::::
sensitivities

::
in
:::::::
models24

:::
and

::::::::::
observations

:::::
alike

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(for details see the Methods section Estimation of historical LAImax sensitivity in Winkler et al., 2019)

:
.25

::
On

:::
the

:
global scale, LAImax is assumed to be a linear function of atmospheric

:::
CO2:concentration. For the temperature-limited26

high northern latitudes, we also have to account for warming and include temperature as an additional driver. We do this us-27

ing GDD0. We derive the dominant mode (denoted !) through
:::::::
Through a principal component analysis of

:::::
(PCA)

::
of

::::
CO2:and28

GDD0 to
::
we avoid redundancy from co-linearity between the two driver variables, but retain their underlying time-trend and in-29

terannual variability . Thus, NHL
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(for details see the Methods section Dimension reduction using principal component analysis in Winkler et al., 2019)30

:
.
::
In

:::::::::
particular,

:::
the

:::::
PCA

::
is

:::::::::
performed

:::
on

:::::::::
large-scale

::::::::::
aggregated

::::::
values

::
as

::::
well

:::
as

:::
on

:::::
pixel

::::
level

:::
to

:::::::::
investigate

:::
on

::::::
spatial31

::::::::
variations.

::::
We

::::
only

::::::
retain

:::
the

::::
first

::::::::
principal

::::::::::
component

::::::::
(denoted

:::
!),

::::::
which

:::::::
explains

::
a
:::::
large

:::::::
fraction

::
of

::::
the

:::::::
variance

:::
in32

::::::
models

:::
and

:::::::::::
observations

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(for more details see Supplementary Table 1 in Winkler et al., 2019).

::::::
Figure

:::
A1

::::::
depicts

:::
the

::::::::
temporal33

::::::::::
development

::
of

:::::
CO2 :::

and
::::::
GDD0

::
as

::::
well

::
as

::::
their

::::::::
principal

:::::::::
component

::
!

:::
for

:::::::::::
observations.

:::
For

:::
the

:::::
NHL,

:
LAImax is

::::
then formu-34

9



lated as a linear function of the proxy driver time series !
:::::::::::::::::
(Winkler et al., 2019). The best-fit gradients and associated standard1

errors of the linear regression model represent the LAImax sensitivities, or greening sensitivities, and their uncertainty esti-2

mates, respectively.For variations of finer spatial scale, the greening sensitivity is similarly calculated at the pixel scale.3

4

10



3 Results and Discussion1

There are two parts to the EC methodology (Fig. 1
:
1) – a statistically robust relationship between modeled matching pairs2

of predictor-predictand values and an observed value of the predictor. The predictors are from a representative historical pe-3

riod. The predictands are modeled changes in a variable of interest at a potential future
::::::
another

:::::::
forcing state of the system4

, typically one that is difficult to measure.
::::
(e.g.

:::::::
potential

:::::::
future).

:
The projection of the observed predictor on the modeled5

relation yields a constrained value of the predictand. A causal basis has to buttress the predictor-predictand relationship,6

else the EC method may be spurious. For example, meaningful coupling between concurrent changes in GPP and LAImax7

with increasing atmospheric
::::
CO2 concentration underpins our specific case study

::
in

:::
the

:::::
NHL, i.e. some of the enhanced8

GPP due to rising
::::
CO2 concentration is invested in additional green leaves by the plants (Winkler et al. , 2018). This

:::::
plants9

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Myneni et al., 1997a; Forkel et al., 2016; Zhu et al., 2016; Mao et al., 2016; Winkler et al., 2019)

:
.
::::::::::::
Supplementary

::::::
Figure

::
1

::
in10

:::::::::::::::::
Winkler et al. (2019)

::::::::
illustrates

:::
the

::::::::
specifics

::
of

:::
the

::::::
causal

::::
link

::::::::::
underlying

:::
this

:::::::::::::::::
predictor-predictand

:::::::::::
relationship.

::::
This

:::::
tight11

:::::::
coupling assures an approximately constant ratio of predictand to predictor across the models within the ensemble, thus setting12

up the potential for deriving an EC estimate.13

Uncertainty on the constrained estimate depends on the observed predictor and modeled relationship, aside from the goodness-14

of-fit of the latter (Fig. 1
:
1). These are detailed below.15

16

3.1 Uncertainty in Observed Sensitivity
:::::::::
Predictor Due to Data Source17

We investigate this
:::::::::::
observational

:::::::::
uncertainty

:
using LAI data from two different sources, AVHRR (1/12 degree) and MODIS18

(1/20 degree), and spatially aggregating these by broad vegetation classes, latitudinal bands and climatic regimes. The ob-19

served large-area sensitivities
:::::::::
large-scale

:::::::
LAImax::::::::::

sensitivities
::
to

:::::
CO2 ::::::

forcing
:
are always positive

::::::::
(greening), irrespective of20

the source data and the method of aggregation (Fig. 2, Tab. 1). This indicates a net increase in green leaf area across the NHL21

during the observational period, as reported previously (Myneni et al., 1997a; Zhu et al., 2016; Forkel et al., 2016). Overall,22

MODIS based estimates have higher uncertainty because of the shorter length of the data record (17 years). The failure to reli-23

ably estimate sensivities
:::::::::
sensitivities

:
in tropical forests (also in the latitudinal band 30� S – 30� N, and in hot, wet and humid24

climatic regimes, see Tab. 1
:::
and

:::
Fig.

::
2) is due to saturation of optical remote sensing data over dense vegetation (LAImax > 5)25

and problems associated with high aerosol content and ubiquitous cloudiness. In general
::::
other

::::::
regions, the estimated sensitivi-26

ties are comparable across sensors and aggregation schemes(e.g. for latitudinal band ,
::
in
:::::::::
particular

::
in

:::
the

::::
high

::::::::
latitudinal

:::::
band27

:
(> 60� N/S, AVHRR: (;

::::::::
AVHRR:

:
[3.4 ± 0.5) ] ⇥ 10�3; MODIS: (,

::::::::
MODIS: [3.6 ± 0.9) ] ⇥ 10�3 ; LAImax ::

m2
::::
m�2

:
ppm�128

). However, there are three interesting exceptions. First, higher sensitivities are seen in croplands, which reflect management29

effects (fertilizer application, irrigation etc.) in addition to effects (Fig. 2a , Tab. 1). Second, lower sensitivities are seen in30

sparsely vegetated areas and biomes (low LAImax, ⇠ 1) which are due to nutritionally poor soils and / or inhospitable climatic31

conditions.Third, similarly low sensitivities are seen in dry regimes where precipitation is limiting and in humid regimes where32

temperature is limiting (Fig. 2c, Tab. 1).
::::
CO2).

:::::
This

:::::
aligns

::::
with

::::::::
previous

::::::
studies

::::::::
reporting

:
a
::::

net
:::::::
increase

::
in

:::::
green

::::
leaf

::::
area33

11



:::::
across

:::
the

::::
high

:::::::
latitudes

::::::
during

:::
the

:::::::::::
observational

::::::
period

::::::::::::::::::::::::::::::::::::::::::::::::
(Myneni et al., 1997b; Zhu et al., 2016; Forkel et al., 2016).1

2

This analysis illustrates the applicability and limitations of using observed greening sensitivities to
:::
CO2:forcing as a con-3

straint on photosynthetic production. For example, data from both AVHRR and MODIS sensors provide a comparable estimate4

of greening sensitivity in the colder high latitudes (boreal forests and tundra vegetation classes) where precipitation is generally5

less than 1000 mm (Winkler et al. , 2018). However, the remote sensing LAI data are not suitable for similar studies in areas6

dominated by croplands and in the tropics for reasons stated above.
::::::::::::::::::::::::::::::::::::::::::::::::::::
(boreal forests and tundra vegetation classes; Winkler et al., 2019)7

:
.
::
In

:::
the

:::::
lower

::::::::
latitudes,

::::::::
however,

:::
the

:::::::::::
discrepancies

::::::
among

:::
the

::::
two

:::::::
sensors

::::::
indicate

::
a
:::::::::::
considerable

:::::::::::
observational

::::::::::
uncertainty8

:::
and

::::
thus

::
no

::::::
robust

:::::::::
estimation

::
of

:::
the

:::::::
observed

::::::::
predictor

::
is

:::::::
possible.9

10

3.2 Uncertainty in Sensitivities Due to Spatial Aggregation11

We focus further analyses on the NHL region (> 60� N; Fig. 2b)only because data from both AVHRR and MODIS sensors yield12

comparable spatially-aggregated greening sensitivities in this region unlike elsewhere, as discussed in Sect.3.1. ,
:::::::

because
:::

of13

:::
two

:::::::
reasons.

:::::
First,

:::
the

:::::
direct

::::::
human

:::::
impact

::::
(i.e.

::::
land

:::::::::::
management)

::::
can

::
be

::::::::
neglected

::
in

:::
the

::::
high

::::::::
latitudes,

::::
thus,

:::
we

:::
can

:::::::
assume14

:::
that

:::
the

::::::::
observed

:::::::
changes

:::::
reflect

:::
the

::::::::
response

::
of

::::::
natural

::::::::::
ecosystems.

:::::::
Second,

:::
the

:::::::::::
observational

::::::::
evidence

::
of

::
an

::::::::
increased

:::::
plant15

::::::::::
productivity

::
in

::
the

::::::
recent

::::::
decades

::
is
::::
well

:::::::::
established

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Keeling et al., 1996; Myneni et al., 1997a; Graven et al., 2013; Forkel et al., 2016; Wenzel et al., 2016, and Sect. 3.1)16

:
–
::
an

:::::::::
important

:::::::
requisite

::
in

:::::::
defining

::
a

:::::
robust

::::::::
predictor.17

18

In addition to the physiological effect of
::::
CO2, also warming plays a key role in controlling plant productivity of these

:::
the19

::::
NHL

:
temperature-limited ecosystems, and thus, vegetation greenness. To avoid redundancy from co-linearity between

::::
CO220

and GDD0, we reduce dimensionality by performing a principal component analysis of the two driver variables (Sect. 2.4).21

The resulting first principal component explains most of the variance and retains the trend and year-to-year fluctuations in both22

::::
CO2 and GDD0. Therefore, we obtain a proxy driver (hereafter denoted !) that represents the overall forcing signal causing23

observed vegetation greenness changes in NHL .
::::
(Fig.

::::
A1). Accordingly, greening sensitivity for the entire NHL area is derived24

as response to !, the combined forcing signal of rising
::::
CO2:and warming. This procedure also enables a better comparability25

between observations and models because varying strengths of physiological and radiative effects of
:::
CO2:among models are26

taken into account (Sect. 3.3 – 3.5).27

28

The vegetated landscape in the NHL region is heterogeneous, with boreal forests in the south, vast tundra grasslands to the29

north and shrublands in-between. The species within each of these broad vegetation classes respond differently to changes in30

key environmental factors. Even within a species, such responses might vary due to different boundary conditions, such as31

topography, soil fertility, micrometeorological conditions, etc. How this fine scale variation in greening sensitivity impacts the32

aggregated value is assessed below.33

34
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The distribution of greening sensitivities from all
::::
NHL

:
pixels is slightly skewed towards the positive (blue histogram). The1

mean value of this distribution (blue dashed line) is comparable to the sensitivity estimate derived from the spatially-averaged2

NHL time series (yellow dashed line; Fig. 3). Based on the Mann-Kendall test (p > 0.1), nearly over half the pixels (54%) show3

positive statistically significant trends (greening), while about 10% show browning trends (possibly due to disturbances, Goetz et al., 2005)4

:::::::::::::::::::::::::::::::::::::::
(possibly due to disturbances; Goetz et al., 2005). The distribution of these statistically significant sensitivities (red histogram)5

therefore has two modes, a weak browning and a dominant greening mode, resulting in a substantially higher mean value6

(red dashed line) in comparison to the spatially-averaged estimate (yellow dashed line; Fig. 3). Thus, by taking into account7

the remaining 36% of non-significantly changing pixels (as in the NHL spatially-averaged estimate), an additional source of8

uncertainty is
:::::::
possibly

:
introduced. The mean sensitivity value is, of course, higher when only pixels showing a greening trend9

are considered in the analysis (green dashed line; Fig. 3). These are the only areas in NHL that actually show a large increase10

in plant productivity and consequently significant changes in leaf area.ESMs11

12

:::::
Model

::::::
output

::
of

:::::::
several

:::::
ESMs

::::::::
(CMIP5)

:
reveal similar pixel-level variation in both

:::
the

::::::::
predictor

:
(LAImax sensitivity

::
to13

::
!,

::::::::
historical

:::::::::
simulation;

:::::
Sect.

:::
2.3)

:
and associated changes in GPP in the NHL (Anav et al., 2013, 2015),

:::
the

:::::::::
predictand

:::::
(GPP,14

::::::::
1pctCO2;

::::
Sect.

::::
2.3),

:
although ESMs operate on much coarser resolution

::::::::::::::::::::::::::::::::::
(Fig. A2; see also Anav et al., 2013, 2015). Due to the15

coupling of the predictor and predictand, the distribution of all pixel estimates
:::::
pixels

::::
with

:::::::::
significant

:::::::
changes is approximately16

the same for the two variables .
::::
(Fig.

::::
A2).

:
Accordingly, averaging the equally distributed estimates likely does not affect the17

predictor-predictand relationship in the model ensemble (Fig. 1). Consequently, if all spatial gridded data arrays are consis-18

tently processed to spatially-aggregated estimates, each predictand and predictor (observed and modeled) estimate contain a19

coherent component of spatial variations. In other words, considering browning and non-significant pixels results in a lower20

overall LAImax sensitivity in NHL, which in turn leads to a lower constrained estimate of �GPP in NHL. This is consistent21

with the underlying relationship between predictor and predictand. On a related note, Bracegirdle and Stephenson (2012a)22

::::::::::::::::::::::::::::::
Bracegirdle and Stephenson (2012a) suggest that this source of error is not significantly dependent on the spatial resolution23

when comparing model subsets from high to low resolution.24

25

The above analysis informs that spatially-averaged estimates are approximations containing a random error component26

due to inclusion of data from insignificantly changing pixels and a systematic bias component from browning pixels
:::::
pixels27

::
of

:::::::
reversed

::::
sign. This uncertainty is relevant to the EC method, where the observed sensitivity decisively determines the con-28

strained estimate from the ensemble of ESM projections (?Kwiatkowski et al., 2017)
::::::::::::::::::::::::::::::::::::::
(Kwiatkowski et al., 2017; Winkler et al., 2019)29

. However, if spatial variations are treated consistently as an inherent component of observations and models, the EC method30

is only slightly susceptible to this source of uncertainty.31

32
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3.3 Uncertainty in Sensitivities Due to Temporal Variations1

We seek recourse to longterm CMIP5 ESM simulations covering the historical period 1850 to 2005 (Sect. 2.3) to assess2

temporal variation in the predictor variable, because of the shortness of observational record. Three representative models3

(CESM1-BGC, MIROC-ESM, and HadGEM2-ES) spanning a broad
:::
the

:::
full

:
range of NHL greening sensitivity

::::::::::
sensitivities4

in the CMIP5 ensemble (Winkler et al., 2018)
::::::::::::::::::
(Winkler et al., 2019) are selected for this analysis. For each model, LAImax5

sensitivity to ! in moving windows of different lengths
:::
are

::::::::
evaluated (15, 30, and 45 years; Fig. 4 ) are evaluated

::
and

::::
A3).6

The analysis reveals two crucial aspects that highlight how temporal variations impair comparability of the predictor variable7

between models and observations – an essential component of the EC approach.8

9

First, window locations of modeled and observed predictor variable have to match. If the forcing in the simulations is low, for10

example, as in the second half of the 19th century when
::::
CO2 concentration was increasing slowly, inter-annual variability dom-11

inates and LAImax sensitivity cannot be accurately estimated irrespective of the window length (Fig. 4
:::
and

:::
A3). With increasing12

forcing over time (rising yearly rate of
::::
CO2:infusion, and consequently, the concentration), the signal-to-noise ratio increases13

and LAImax sensitivity to ! estimation stabilizes, for example, as in the second half of the 20th century. Therefore, LAImax14

sensitivities estimated at different temporal locations result in non-comparable values and eventually a false constrained esti-15

mate (details in Sect. 3.4). As an example, modeled sensitivities based on a 30-year window centered on year 1900, when
::::
CO216

level increased by 10 ppm, with
:::
and observed sensitivity estimated from a 30-year window centered on year 2000, when

::::
CO217

level increased by 55 ppm, describe different states of the system and therefore should not be used
::::::::
contrasted in the EC method.18

19

Second, in addition to temporal location,
:::
also

:
window lengths have to match between observations and models. For all three20

models, sensitivities estimated from 15-year chunks show high variability and thus, a 15-year record is perhaps too short to21

obtain robust estimates. The LAImax sensitivity estimation becomes more stable with strengthening forcing and increasing22

window length (Fig. 4
:::
and

:::
A3). As a consequence, using short-term observed sensitivity as a constraint on long-term model23

projections results in an incorrect EC estimate. Hence, the MODIS sensor record is, on the one hand, too short and does not,24

on the other hand, overlap temporally with the historical CMIP5 forcing(Fig. 1).
:
. Therefore, it does not provide a correct25

observational constraint.
:::::
robust

:::::::
predictor

::
in

::::
this

:::
EC

:::::
study.26

27

3.4 Level and Time Rate of
::::
CO2 Forcing28

The EC method raises an obvious question – does it not implicitly assume that the key operative mechanisms underpinning the29

EC relation remain unchanged because a future system state is being predicted based on its past behavior? To be specific, we30

are attempting to predict GPP at a future point in time based on greening sensitivity inferred from the past. Does this not require31

the assumption that the key underlying relationship which makes this prediction possible, namely, a robust coupling between32

contemporaneous changes in GPP and LAImax remains unchanged from the past to the future? To address this question, we33
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resort to the CMIP5 idealized simulation (1pctCO2), where atmospheric
:::
CO2:concentration increases 1% annually, starting1

from a preindustrial
:::::::::::
pre-industrial

:
level of 284 ppm until a quadruple of this value is reached (Sect. 2.3). We limit the analysis2

to the three models (CESM1-BGC, MIROC-ESM, and HadGEM2-ES) which bracket the full range of GPP enhancement and3

LAImax sensitivity in the original seven ESM ensemble (Winkler et al., 2018).
:::::::::::::::::
(Winkler et al., 2019)

:
.4

5

The relationship between simultaneous changes in GPP and LAImax remains linear for all CMIP5 models in the range6

1⇥
:::
CO2:to 2⇥

::::
CO2 (Fig. 5

:::
and

:::
A4, Tab. 2). With concentration increasing beyond 2⇥

::::
CO2, all models show weakening correla-7

tion (R2, Tab. 2) and decreasing slope (b, Tab. 2) of this relationship (Fig. 5
:::
and

:::
A4), suggesting a saturating rate of allocation8

of additional GPP to new leaves at higher levels of
:::
CO2. Consequently, LAImax sensitivity to increasing

:::
CO2:and associated9

warming decreases. At and over 4⇥
:::
CO2:(1140 ppm), a level unlikely to be seen in the near future, there appears to be no10

relationship between �GPP and �LAImax. This raises the question as to what extent does the weakening of
:::
the relationship11

between the predictor and predictand (Fig. 1) at higher concentration affects
:
in
:::::
each

:::::
model

::
at

::::::
higher

::::
CO2 ::::::::::::

concentrations
:::::
affect12

the EC analysis .
::::
(Fig.

::
1).

:
To shed light on this matter, we perform the following Gedankenexperiment.

::::::
thought

::::::::::
experiment.13

14

Understanding the relationship and interplay between forcing (increasing
:::
CO2:concentration), predictor (LAImax sensitiv-15

ity), and the predictand (�GPP) is key to evaluating the EC method. We conceive four possible scenarios of how the system16

might behave with increasing forcing. For simplicity, we assume linearly increasing concentration, use LAI instead of
::::
CO217

:::::::::::
concentration,

:
LAI

::::::::
represents

::::
LAImax, and GPP refers to its annual value below (Fig. 6). The four scenarios are: All linear, all18

non-linear (saturation), and two mixed linear / non-linear cases (Tab. A1). We emulate a multi-model ensemble by applying19

different random parameterizations for the linear and saturation (the hyperbolic tangent function) responses
::
of

::::
GPP

::
to
:::::

CO220

:::
and

::
of

::::
LAI

::
to

::::
GPP. One of these realizations is assumed to represent pseudo-observations (dashed lines, Fig. 5

:
6). We discuss21

one case in detail for illustrative purposes (No. 3, Tab. A1).22

23

In scenario 3, �GPP increases linearly with increasing
::::
CO2 (Fig. 6a), while �LAI/�GPP saturates (Fig. 6b). The LAI sen-24

sitivity to
::::
CO2 weakens with increasing forcing (Fig. 6c) as a response to saturation of GPP allocation to leaf area. We derive25

LAI sensitivities to
::::
CO2 for three different periods (’past periods’ in Fig. 6c) to constrain �GPP at a much higher

:::
CO2:level26

(’projected period’ in Fig. 6a). Next, we apply the EC method on these pseudo-projections of �GPP relying on LAI sensitivi-27

ties derived from the three past periods (Fig. 6d). The EC method is applicable even at a low forcing level (past period 1) in this28

simplified scenario because we neglect stochastic internal variability of the system. The slope of emergent linear relationship29

increases (Fig. 6d) as modeled LAI sensitivities decrease with rising
:::
CO2:concentration (Fig. 6c). The observational constraint30

on future �GPP, however, remains nearly the same, because pseudo-observed LAI sensitivity also weakens at higher
:::
CO2:lev-31

els (dashed lines, Fig. 6c, d). Thus, the three EC estimates of �GPP are approximately identical (Fig. 6d) and independent of32

the forcing level during past periods. With intensified forcing, the relationship between predictor and predictand remains linear33

within the model ensemble, although their relationship becomes non-linear within each model and, crucially, in reality as well.34

In other words, as long as the models agree on the occurrence and "timing" of saturation , changes in
::::::
strength

:::
of

::::::::
saturation

:::
for35
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::::
given

:::::::
forcing,

:::
i.e.

:::
the

::::::::
dynamics

::
of
:::

the
:::::::
system,

:::
the

::::::::::
inter-model

::::::::
variations

::
of

:
predictor and predictand relate linearly within the1

model ensemble .
:::::::
ensemble

::::
(Fig.

:::
6).

:
The same behavior is also seen in the other three scenarios (Tab. A1; Fig. A5, A6).2

3

Nevertheless, with ever increasing forcing and associated steepening of the emergent linear relationship, the LAI sensitivity4

loses its explanatory power at some point because the linear relationship eventually lies within the observational uncertainty5

and no meaningful constraint can be derived. This and disagreement between models on system dynamics are ultimate limits6

of the EC method. Interestingly, we find that all CMIP5 models agree on
:::
the

:::::::::
occurrence

:::
of saturation, but slightly disagree7

on the timing of saturation .
::::::
strength

::
of

:::::::::
saturation

:::
for

:::::
given

::::
CO2:::::::

forcing
::::
(Fig.

::
5,
::::
A4,

:::
and

::::
Tab.

:::
2).

:
Further, we find that the8

’all non-linear’ scenario best describes the dynamics of the system in the forcing range from 1⇥
::::
CO2:

to 4⇥
::::
CO2. However,9

the saturation of LAI to GPP happens at a lower
::::
CO2 level than saturation of GPP to (Fig. A6).

::::
CO2.

:
Still, inferences from10

interpretation of Case 3 (Fig. 6) are equally applicable.11

12

Results from the above Gedankenexperiment
::::::
thought

::::::::::
experiment also highlight the importance of matching window loca-13

tions and lengths between models and observations, as discussed earlier (Sect. 3.3). For instance, taking LAI sensitivity from14

past period 2 (green dashed line, Fig. 6d) as an observational constraint on the multi-model linear relationship based on past15

period 3 (red solid line, Fig. 6d), results in a significant overestimation of constrained �GPP (intersection of the two lines, Fig.16

6d).17

18

The above analysis informs that the constrained GPP estimate at one future period
:::
(e.g.

::::::::
2⇥CO2) is nearly independent of19

the past periods from when the observational sensitivities are derived, for most realistic scenarios. Now, we evaluate the EC20

method where sensitivity from one past period is used to obtain constrained GPP estimates at different periods in the
:
a
::::::::
potential21

future, i.e. progressively farther down the time-line
::
of

::
a

:::::::::::
CO2-enriched

:::::
world. We utilize the greening sensitivity derived from22

::
35

:::::
years

::
of

:
observed LAImax data

::::::::
(AVHRR,

::::
Sect.

::::::
2.1.1) and apply the EC method to CMIP5 1pctCO2 simulations. The sen-23

sitivities in this case are due to forcing from both
:::
CO2:increase and associated warming during the observational period (Sect.24

2.4). We seek constrained GPP estimates at future
:::
for

:::
the

::::
NHL

::
at

::::::::
different

::::
CO2 levels (2⇥

:::
CO2, 3⇥

:::
CO2, and 4⇥).

::::
CO2).25

26

?
:::::::::::::::::
Winkler et al. (2019) previously reported a strong linear relationship between modeled contemporaneous changes in LAImax27

and GPP arising from the combined radiative and physiological effects of
::::
CO2 enrichment until 2⇥

::::
CO2 in the CMIP5 en-28

semble(Fig. 5).
:
. As a result, models with low LAImax sensitivity

:
to

::
!
:
project lower �GPP for a given increment of

::::
CO229

concentration, and vice versa. Thus, the large variation in modeled historical LAImax sensitivities linearly maps to variation in30

�GPP at 2⇥(Winkler et al. , 2018; blue line, Fig. 7a).
::::
CO2 ::::::::::::::::::::::::::::::::

(Winkler et al., 2019, blue line, Fig. 7a).
:

At higher levels, such as31

3⇥
:::
CO2:(green line, R2 = 0.93) and 4⇥

::::
CO2 (red line, R2 = 0.88), this linear relationship within the model ensemble, while still32

present, weakens (Fig. 7a; Tab. 3). This is because the CMIP5 models do not agree on the timing and magnitude
::::::
strength

:
of33

the saturation effect at higher
::::
CO2 levels (Fig. 7a

:
5

:::
and

:::
A4). The increment in constrained GPP estimates for successive equal34

increments of
::::
CO2:decreases due to the saturation effect in all CMIP5 models (dashed horizontal lines, Fig. 7a). For example,35

16



the change in GPP between 3⇥
::::
CO2:and 4⇥

:::
CO2:(�GPP ⇠1.06 Pg C yr�1, Tab. 3) is much lower than between 2⇥

:::
CO2:and1

3⇥
:::
CO2:(�GPP ⇠2.34 Pg C yr�1, Tab. 3).2

3

We have thus far focused on the magnitude of
::::
CO2:concentration change and not on the time rate of this change. For4

example, a given amount of change in
::::
CO2:

concentration, say 200 ppm, can be realized over different time periods, say over5

a 100 or 150 years. The problem of varying rates of
::::
CO2:

concentration change is implicitly encountered when ESMs are6

executed under different forcing scenarios, such as RCPs .
:::::
(Sect.

::::
2.3).

:
A question then arises whether the constrained GPP7

::::::::
predictand

:
estimate is independent of the time rate of

::::
CO2 concentration change and dependent only on the magnitude of8

::::
CO2 concentration change. To investigate this aspect of forcing, we extract GPP estimates at the same

:::
CO2:concentration (5359

ppm; final concentration in RCP4.5) from three simulations of different forcing rates and calculate the difference relative to a10

common initial
:::
CO2:concentration (380 ppm; initial concentration of RCP scenarios). Hence, the magnitude of the forcing is11

the same but applied over different durations (RCP4.5: ⇠90yr, RCP8.5: ⇠45yr, and 1pctCO2: ⇠30yr). A clear majority of the12

CMIP5 models show substantial differences in �GPP between the different pathways of
::::
CO2:forcing. In general, GPP changes13

are higher for lower time rates of
:::
CO2:forcing, i.e. forcing over longer time periods. As a consequence, the EC estimates of14

�GPP for the same increase in
::::
CO2:

concentration are scenario-dependent (Fig. 7b; Tab. 3) – a counter-intuitive result. For15

instance, �GPP in the low-
:::::::
low-CO2-rate scenario (RCP4.5: �GPP ⇠2.84 Pg C yr�1, Tab. 3) is ⇠39% (1pctCO2: �GPP16

⇠2.05 Pg C yr�1, Tab. 3) and ⇠20% (RCP8.5: �GPP ⇠2.38 Pg C yr�1, Tab. 3) higher than the high-
::::::::
high-CO2-rate scenarios17

for an increase of 155 ppm
:::
CO2. This analysis suggests that the vegetation response to rising

::::
CO2:is pathway dependent, at18

least in the NHL. One of the reasons for this could be species compositional changes in scenarios of low forcing rates, i.e. over19

longer time frames. This novel result, however, requires a separate in-depth study.20

3.5 Effects of
::::
CO2:

Forcing21

Higher concentration of
::::
CO2:in the atmosphere stimulates plant productivity through the fertilization and radiative effects (Ne-22

mani et al., 2003; Leakey et al., 2009; Arora et al., 2011; Goll et al., 2017). The two effects can be disentangled in the model23

world by conducting simulations in a ’
::::
CO2:fertilization effect only’ (esmFixClim1) and a ’radiative effect only’ (esmFdbk1)24

setup (Sect. 2.3). These are termed below as idealized model simulations. We investigate here whether historical runs and25

observations, which include both effects, can be used to constrain GPP changes in idealized CMIP5 simulations (e.g. as in26

Wenzel et al. (2016)).
::::::::::::::::::::::::
(e.g. as in Wenzel et al., 2016)

:
.27

28

We find strong linear relationships between historical LAImax sensitivity and �GPP for 2⇥
::::
CO2 in both idealized setups29

(esmFixClim1: R2 = 0.92, esmFdbk1: R2 = 0.98, Tab. 3, Fig. 7c). Consequently, this linear relationship is also pronounced for30

calculated sums of both effects for each model (esmFixClim1 + esmFdbk1: R2 = 0.95, Tab. 3, Fig. 7c). This suggests that the31

two effects act additively on plant productivity and, thus, each effect can be simply expressed in terms of a scaling factor of32

the total GPP enhancement. Hence, the application of the EC method on idealized simulations using real world observations is33

17



conceptually feasible.1

2

Interestingly, the two effects contribute about the same to the general increase in GPP at 2⇥
::::
CO2:

(esmFixClim1: �GPP3

⇠1.35 Pg C yr�1, esmFdbk1: �GPP ⇠1.38 Pg C yr�1, Tab. 3, Fig. 7c). At higher concentrations, such as 3⇥
:::
CO2:and 4⇥

:::
CO2,4

the enhancement in GPP saturates in both idealized setups. However, the radiative effect becomes dominant relative to the5

::::
CO2 fertilization effect when

:::
CO2:concentration exceeds 2⇥

::::
CO2 (e.g. at 4⇥

::::
CO2:esmFixClim1: �GPP ⇠2.42 Pg C yr�1,6

esmFdbk1: �GPP ⇠3.06 Pg C yr�1, Tab. 3). Therefore, we can expect that at some point in the future, NHL photosynthetic7

carbon fixation will benefit more from climate change (e.g. warming) than from the fertilizing effect of
:::
CO2.8

3.6 Uncertainties in the multi-model ensemble
::::::::::
Multi-Model

:::::::::
Ensemble9

Besides methodological sources of uncertainty discussed above, the estimate of an EC may also be deficient due to inaccurate10

assumptions about the model ensemble. First, possible common systematic errors in a multi-model ensemble (i.e. the entire en-11

semble misses an unknown but for the future essential process) are implicitly omitted in the EC approach, however, could cause12

a general over- or underestimation of the constrained value (Bracegirdle and Stephenson, 2012b; Stephenson et al., 2012). Sec-13

ond, the set of forcing variables for historical simulations may be incomplete (i.e. not yet identified drivers of observed changes)14

and , thus ,
::::
thus the comparability of observations and model simulations is limited (Flato et al., 2013). Third, the EC method15

can be overly sensitive to individual models of the ensemble, which has a bearing on the robustness of the constrained value16

(Bracegirdle and Stephenson, 2012b). Bracegirdle and Stephenson (2012b)
::::::::::::::::::::::::::::::
Bracegirdle and Stephenson (2012b) proposed a17

diagnostic metric (Cook’s distance) to test an ensemble for influential models. Fourth, the assumption behind the predictand-18

predictor relationship
::
not

::::
only

:
has to rely on a

:::::::
physical,

:::
but

::::
also

::
on

:
a
:
logical connection within the model ensemble, meaning19

that the analyzed characteristic of the predictor variable (e. g. sensitivity to the forcing, or historical relative/absolute changes)20

is causally linked to changes in the predictand variable.
:
.
:
For instance, Wenzel et al. (2016) reported

:::::::::::::::::
Wenzel et al. (2016)21

:::::::::
established a linear relationship between relative changes in

::
the

:::::::::
predictand

::::::
taking

:::
the

:::::
initial

::::
state

:::
into

:::::::
account

::::::::
(changes

::
in GPP22

for doubling of , so changes
::::
CO2 relative to the preindustrial state, and

::::
initial

::::::::::::
pre-industrial

:::::
state),

::::
and

:
a
::::::::
predictor

:::::::::
neglecting23

::
the

::::::
initial

::::
state

:
(historical sensitivity of

::::
CO2 amplitude to rising , so neglecting the initial state

::::
CO2). This statistical relationship24

can be spurious, because the model skill of simulating an accurate initial state and a plausible sensitivity to a forcing are not25

connected.26

These issues are to be contemplated when establishing an EC estimate and evaluating its robustness.27

4
::::::::::
Conclusions28

An in-depth analysis of the EC method is illustrated in this article through its application to projections of change in NHL29

photosynthesis under conditions of rising atmospheric
:::
CO2:concentration. Key conclusions highlighting the functionality of30

the EC method are presented below.31

32

18



The importance of how the observational predictor is obtained cannot be emphasized enough because it essentially defines1

the constrained estimate. Thus, considerable care is required when selecting and processing the observational datasets. The2

LAI data products of both AVHRR and MODIS sensors provide comparable estimates of greening sensitivity in the colder3

northern high latitudes (i. e. boreal forests and tundra vegetation classes). In these ecosystems, factors associated with GPP4

enhancement from forcing and consequent investment in leaf area dominate. This is not the case in croplands and tropical5

areas. Therefore, the use of greening sensitivity as an observational constraint is not feasible in regions where croplands and/or6

tropical vegetation dominate.
:::
EC

::::::
method

::
is

::::::::::
particularly

:::::::
sensitive

::
to

:::::::::::
observational

::::::::::
uncertainty.

:::
The

:::::
single

::::::::::::
observational

:::::::
estimate7

::::::::
essentially

::::::::::
determines

:::
the

::::
EC,

:::::::
whereas

:::
the

::::::::
emergent

:::::
linear

::::::::::
relationship

::
is
::::::::::

established
:::::
based

:::
on

:
a
:::::::::
collection

::
of

:::::::::::
multi-model8

:::::::
estimates

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(each model gets ’one vote’, however, some models might be more influential than others; Bracegirdle and Stephenson, 2012b)9

:
.
::::::
Hence,

:::
the

:::::::::::
observational

:::::::::
uncertainty

::::
has

:
a
:::::
much

:::::
larger

:::::::
bearing

::
on

:::
the

:::
EC

::::
than

:::
the

::::::::::
uncertainty

::
of

::::
each

:::::::::
individual

::::::
model.

:::
To10

::::::::
overcome

:::
this

::::::
source

::
of

::::::::::
uncertainty,

::::::
various

::::::::::
meaningful

::::::::::
observations

::::::
should

::
be

:::::
taken

::::
into

:::::::::::
consideration

:::::
when

::::::::::
establishing

:::
the11

:::::::
observed

::::::::
predictor.12

13

Spatially aggregating observations and model output of different resolutions in the EC method is
::::::::
constitutes

:
another source14

of uncertainty. Regional estimates of greening sensitivity
::::::::
Predictors

::::
and

::::::::::
predictands

::::::::
expressed

:::
as

:::::::
regional

::::::::
estimates

:::::
(e.g.15

:::::::::::
area-weighted

:::::
mean

:::
of

:::
the

:::::
NHL)

:
are approximations of complex fine-scale processes. Aggregation will inevitably introduce16

a random error component due to inclusion of data
:::::::
estimates

:
from areas where LAI

::
the

::::::::
predictor

:
is not changing and

::
or

:
a17

systematic bias from areas where LAI is decreasing (browning). The
:::
the

:::::::
predictor

::::
has

:
a
::::::::

reversed
::::
sign.

:::::
Thus,

::::
the spatially-18

aggregated greening sensitivity is
:::::::
variables

::::
are meaningful only if most of the region is greening in response to forcing .19

However,
::
in

:::::::::
agreement

:::::
about

:::
the

::::::::
response

::
to

:::::
CO2 ::::::

forcing
:::::
(e.g.

::::
more

:::::
than

:::
half

:::
of

:::
the

:::::
NHL

::
is

::::::::
greening

::::
with

:::::
rising

::::::
CO2).20

::::::::
However,

:::
we

:::
find

::::
that

:::
the

::::::
source

::
of

::::::::::
uncertainty

::::::
related

::
to

::::::
spatial

::::::::::
aggregation

::
is

::
of

:::::
minor

::::::::::
importance as long as spatial vari-21

ations in observations and models simulations are treated consistently, this source of uncertainty is likely of minor importance.
:
.22

23

A large source of uncertainty is associated with temporal variability of the predictor variable throughout the historical period.24

The evaluation of greening sensitivity requires
:::::
when

:::::::::
comparing

:::::::
models

:::
and

::::::::::::
observations.

::::::::::
Establishing

::
a
::::::
robust

::::::::
predictor25

::::::
requires

:::::::::
evaluating

:
temporal window lengths of sufficient duration ,

:
(approximately 30 years, and location

:
)
:::
and

::::
their

::::::::
locations26

along the forcing time line. And, these
::::
Both

:::::::
window

::::::
length

:::
and

:::::::
location

:
should match between models and observations

::
in27

::
the

:::
EC

:::::::
method. For example, the analysis in Wenzel et al. (2016)

:::::::::::::::::
Wenzel et al. (2016) might have yielded different results and28

conclusions if model and observational predictor sensitivities were temporally matched. The
::
We

::::
find

::::
that

:::
the

:
relevance of29

window length decreases with increasing and accelerating forcing, depending on the magnitude of natural/internal variability30

(signal-to-noise ratio) of the predictor variable.31

32

The level, effect and duration of forcing
:::::::
time-rate

::
of

:::::::
applied

::::
CO2::::::

forcing
::::
can have a bearing on the linear relationship be-33

tween GPP enhancement and predictor sensitivities
::
the

:::::::::
predictand

:::
and

::::::::
predictor

::::::::
variables (Fig. 1). For example

::
1).

:::
In

:::
our

::::
case34

::::
study, the relationship underpinning the EC method, namely, that between concurrent �GPP and �LAImax , changes

:::::::
changes35
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::::::::::
non-linearly with increasing forcing level (

::
i.e.

:::::::::
saturation

::::
with

:::::
rising

::::
CO2:concentration). This relation breaks down

::::
The

:::
EC1

::::::
method

:::
can

::::
still

::
be

:::::::
applied,

:::::::
because

:::
the

::::::
CMIP5

::::::
models

:::::
agree

:::
on

:::
the

::::::::
non-linear

::::::::
behavior

::
of

:::
the

:::::::
system.

::::::::
However, at very high2

concentrations
::::
CO2::::::::::::

concentrations
:::
the

::::::
models

:::::::
diverge

:::
and

:::
this

:::::::
relation

::::::
breaks

:::::
down,

:
at which point the EC method fails. The3

two dominant effects of rising
::::
CO2:

concentration on vegetation, namely, the fertilization and radiative effects, appear to be4

approximately additive in terms of GPP enhancement to forcing
:::
CO2:::::::

forcing
::
in

:::
the

:::::
NHL. Therefore, the EC method can be5

applied to constrain estimates of GPP due to one or the other, or both the effects. The models, however, document a higher ra-6

diative effect than fertilization at high
::::
CO2:concentrations, i.e. 3⇥

:::
CO2:and higher. An

:::::::
Another intriguing conclusion from our7

analysis is that the time-rate of forcing has an effect on GPP changes, that is, the projected GPP enhancement to
:::
CO2:forcing8

seems to be dependent on how the forcing is applied over time, as in different scenarios or RCPs. This aspect is presently not9

well understood and requires further study.10

11

The analyses and inferences presented in this article lead to the following concrete result. The uncertainty on EC estimate of12

GPP enhancement in NHL (�GPP = +3.4 Pg C yr�1) for a doubling of pre-industrial atmospheric concentration is ± 0.2 Pg13

C yr�1 (Winkler et al. , 2018). This EC estimate is 60% larger than the conventionally used average of model projections14

(44% higher at the global scale), leading ? to conclude that most CMIP5 models included in their analysis were largely15

underestimating photosynthetic production.
::
EC

:::::::::
framework

::
is
::::::
widely

::::::::
promoted

::
as

:::::::::::::::
observation-based

:::::::::
evaluation

::::
tool

::
for

:::::::
climate16

:::::::::
projections,

:::::::::
especially

:::
in

:::
the

:::::::
context

::
of

:::
the

:::::::
nascent

:::::::
CMIP6

::::::::
ensemble

:::::::::::::::::::::::::::::::
(Eyring et al., 2019; Hall et al., 2019)

:
.
:::::::
Previous

::::
EC17

::::::
studies,

::::::::
however,

:::::::::
exclusively

:::::::
focused

::
on

:::::::::::::::::
predictor-predictand

:::::::::::
combinations

:::::
which

::::::
exhibit

::::::::
so-called

::::::
existent

::::
ECs

::::::::::::::
(Hall et al., 2019)18

:
,
::
i.e.

::::::::
predictor

::::
and

:::::::::
predictand

:::
are

:::::
found

::
to

:::::
relate

:::::::
linearly

:::::
across

:::
the

:::::::::
ensemble.

::
In

:::
the

::::::
context

::
of

:::::
ESM

:::::::::
evaluation,

:::::::::::
non-existent19

::::
ECs,

:::
i.e.

::::::::
predictor

::::
and

:::::::::
predictand

:::
are

::::::
found

::
to

:::
be

::::::::
unrelated

:::
in

:::
the

:::::::::
ensemble,

:::
are

:::::::
equally

:::::::::
important.

:::::
Since

::::::::
predictor

::::
and20

::::::::
predictand

::::::::
variables

:::
are

::::::::
premised

::
on

:::
our

::::::::::
mechanistic

::::::
process

::::::::::::
understanding,

:::::::::::
non-existent

:::
ECs

::::::
reveal

:
a
::::::::::
fundamental

:::::::::::
disagreement21

::
on

:::
the

::::::
system

::::::::
dynamics

::::::
among

::
the

:::::::
models.

::::
This

:::::
study

:::::::::
encourages

::
to

::::::::
scrutinize

:::::
these

::::::
system

::::::::
dynamics

::
in

::
the

:::::::::::::::::
predictor-predictand22

::::
space

::::
and

::::
also

:::::
report

::::
such

:::::::::::
non-existent,

:::
yet

::::::::
expected,

::::
ECs

::
in

::::
order

:::
to

:::::::
advance

:::::
model

:::::::::::
development

:::
and

:::::::::
evaluation.23

24

::::::
Across

:::::::
different

::::::::::
disciplines

::::
each

:::
EC

::::
and

:::
its

:::
set

::
of

::::::::
predictor

::::
and

:::::::::
predictand

::::
are

::::::
unique

::
to

:::::
some

::::::
extent

::::
and

::::::
require

:::
an25

::::::::
individual

:::::::
detailed

:::::::::::
examination.

:
In this article, we scrutinized

:::::::
addressed

:::::::
general

:
potential sources of uncertainty and limi-26

tations of the applicability of the EC method . Our findings are illustrated by
::
in

:::
the

:::
EC

::::::
method

:::
by

:::
the means of a case study in27

carbon cycle research, however, are generally relevant and applicable .
:::::
Thus,

:::
the

:::::::::
illustrated

:::::
results

:::
are

::::::::::
qualitatively

:::::::::::
transmissive28

::
to

::::
other

::::
sets

::
of

::::::::
predictors

::::
and

:::::::::
predictands

::::
and

:::
are

::::::::
generally

:::::::
relevant in Earth system sciences.29
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Figure 1. Schematic depiction of the Emergent Constraint (EC) method and factors affecting the uncertainty of the constrained estimate.

The predictor (x axis) is change in annual maximum of green leaf area index (LAImax) due to unit forcing (
:::
CO2:

increase and associated

climatic changes) during a representative historical period. It is termed greening sensitivity in this study. The predictand (y axis) is projected

changes in Gross Primary Productivity (GPP) in response to rising
:::
CO2:

concentration (e.g. for a doubling of the pre-industrial level). Both

the predictor and predictand refer to large area values, in this case, the entire Norther
::::::
Northern

:
High Latitudes (NHL). Inter-model variations

(each symbol represents a model) in matching pairs of predictor and predictand result in a linear relationship between the two (green band),

i.e. the ratio (predictand/predictor) is approximately constant across the model ensemble. The slope depends on forcing attributes (gray

shading), such as its level (
:::
CO2:

concentration, Sect. 3.4), time rate of application (scenarios such as various RCPs, Sect. 3.4) and different

effects (i.e. fertilization, radiative, etc., Sect. 3.5). The observed sensitivity (yellow vertical bar) is used to find the constrained estimate of

the predictand (i.e. change in GPP). The ability to accurately estimate the predictor depends on the source of observational data (Sect. 3.1),

and its spatial (Sect. 3.2) and temporal variability (Sect. 3.3). Observed (yellow bar) and modeled predictor values (x coordinate of symbols)

must be obtained from matching time periods, i.e. at the same level of historical forcing, to ensure comparability (Sect.
::

3.3
:::
and

:
3.4). All

these factors, together with the goodness-of-fit of inter-model variations (width of green shading), finally define the uncertainty of the derived

constrained estimate (blue horizontal bar with black solid lines depicting the upper and lower bound of uncertainty).
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Figure 2. Bar charts showing regression slopes of LAImax against atmospheric CO2 concentration for broad vegetation classes

(a
:::::::::::::::::::::::::::::
(a; Olson et al., 2001; Fritz et al., 2015), Olson et al. (2001), latitudinal bands (b) and climate regimes (c). The class "Other" includes

deserts, mangroves, barren and urban land, snow and ice, and permanent wetlands. The climatic boundaries are defined as follows -

cold: < 10�
:
C; warm: > 10�

:
C
:
& < 25�

::
C; hot: > 25�

:
C; dry: < 500

:::
mm

:::
a�1; wet: > 500

:::
mm

:::
a�1

:
& < 1000

:::
mm

:::
a�1; humid: > 1000

:::
mm

:::
a�1. Sensitivities evaluated from data from two satellite-borne sensors are shown, AVHRR (1982 – 2016, Pinzon and Tucker (2014))

::::::::::::::::::::::::::::::
(1982 – 2016; Pinzon and Tucker, 2014) and MODIS (2000 – 2016, Yan et al. (2016a, b))

:::::::::::::::::::::::::
(2000 – 2016; Yan et al., 2016a, b). Grey bars in-

dicate the standard error of the best linear fit.
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Figure 3. Histograms and associated probability density functions (Gaussian kernel density estimation) of observed LAImax sensitivity to

! at pixel scale for the northern high latitudinal band (> 60� N, data from AVHRR sensor). Blue color depicts the distribution of LAImax

sensitivities of all pixels and the red color for pixels with statistically significant (Mann-Kendall test, p < 0.1) greening or browning trends

(the dashed lines denote the respective mean value). The green dashed line shows the mean value of ’greening’ pixels only, whereas the

yellow dashed line shows the LAImax sensitivity to ! for the entire northern high latitudinal belt.
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Figure 4. Temporal variation of LAImax sensitivity to ! in three selected CMIP5 models spanning the full range from low (CESM1-BGC,

a), to closest-to-observations (MIROC-ESM, b), to high-end (HadGEM2-ES, c). The colored lines show LAImax sensitivity variations for

moving windows of varying length of 15 (blue), 30 (green), and 45 (red) years over the historical period from 1860 to 2005.
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1

Figure 5. Correlation of �LAImax and �GPP with increasing
::::
CO2 forcing, starting from a pre-industrial concentration of 280 ppm

(1x
::::::
1xCO2) to 4x

:::::
4xCO2 (CMIP5 1pctCO2 simulations). Results are shown for three selected CMIP5 models spanning the full range of

LAImax sensitivity to !, low-end: CESM1-BGC (a), closest-to-observations: MIROC-ESM (b), and high-end: HadGEM2-ES (c). Blue col-

ored dots show the relation between 1x
:::::
1xCO2:

and 2x
:::::
2xCO2, green colored dots between 2x

:::::
2xCO2 and 3x

::::::
3xCO2, and red colored dots

between 3x
:::::
3xCO2:

and 4x
:::::
4xCO2. The respective colored lines represent the best linear fit through those dots and the shading represents the

95% confidence interval.
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1

Figure 6. Gedankenexperiment
::::::
Thought

:::::::::
experiment to examine the applicability of Emergent Constraints

:::
EC analysis under the assumption

of an idealized linear / nonlinear
:::::::
non-linear

:
behavior of the system (Case 3, Table A1). a, Changes in GPP relate linearly to changes in

::::
CO2

concentration. The yellow band marks the projection period of interest, i.e. the period of
:::
CO2:

concentration from x + 4� to x + 5�. b, The

increment in LAI with increasing GPP is assumed to decrease with rising
:::
CO2:

concentration (described by a hyperbolic tangent function).

The parameterization in the linear and nonlinear
:::::::
non-linear

:
functions for pseudo observations (dashed black line) as well as models (solid

grey lines) are determined randomly for each model. c, The diagnostic variable, LAI sensitivity to
:::
CO2, is decreasing with increasing

::::
CO2

as a consequence of the nonlinear
:::::::
non-linear

:
relation between �GPP and �LAI. The colored bands indicate three ’past’ periods from x to

x + � (blue), x + � to x + 2� (green), and x + 2� to x + 3� (red). d, Linear relationships among the pseudo model ensembles

(Ensemble LR, colored lines) between LAI sensitivities to
::::
CO2 of the three past periods and �GPP from the projected period. Colored dots

mark different models and the dashed lines represent associated pseudo observations for the respective historical period. Yellow solid line

depicts the constant Emergent Constraint
::
EC

:
on projected �GPP irrespective of the past period.
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1

Figure 7. Linear relationships between historical sensitivity of LAImax to ! and absolute increase of GPP at different levels (a), different

time-rates (b) as well as effects of rising
::::
CO2 (c). The black solid line depicts the observational sensitivity including the standard error (grey

shading). Each CMIP5 model is represented by a distinct marker (legend at the top). The colored lines show the best linear fits including the

68% confidence interval estimated by bootstrapping across the model ensemble. The colored dashed lines indicate the derived constraints on

�GPP. a, Absolute changes in GPP at different levels of
:::
CO2: 2⇥

:::
CO2 (blue), 3⇥

:::
CO2:

(green), and 4⇥
:::
CO2 (red). b, Absolute changes in

GPP for rising
:::
CO2:

concentration from 380 to 535 ppm at different time-rates: RCP4.5 (90 yr, blue), RCP8.5 (45 yr, green), and 1pctCO2

(30 yr, red). c, Absolute changes in GPP due to the two disentangled effects of
::::
CO2 at 2⇥

::::
CO2 in idealized simulations: Fertilization effect

(esmFixClim1, blue), radiative effect (esmFdbk1, green), and the sum of both effects (red).
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Table 1. Coefficients of determination (R2) of LAImax sensitivity to
:::
CO2:

for different large-scale aggregated regions. Data are from two

optical remote sensors of different time length, AVHRR (1982 – 2016) and MODIS (2000 – 2016). Asterisks denote non-significant values:

** p > 0.1; * p > 0.05.

1

2

3

Correlation coefficient R2 AVHRR MODIS

Biomes

Boreal forests 0.49 0.58

Temperate forests 0.47 0.81

Tropical forests 0.41 0.06**

Graslands 0.75 0.83

Croplands 0.75 0.8

Other 0.35 0.2*

Latitudinal Bands

> 60� N/S 0.51 0.61

30� N/S – 60� N/S 0.67 0.83

30� S – 30� N 0.65 0.26

Climate Space

cold dry 0.29 0.27

cold wet 0.49 0.4

cold humid 0.33 0.21*

warm dry 0.33 0.36

warm wet 0.37 0.18*

warm humid 0.25 0.12**

hot dry 0.08* 0.08**

hot wet 0.15 0.00**

hot humid 0.13 0.01**
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Table 2. Slopes (b) and coefficients of determination (R2) for regression between changes of LAImax against changes in annual mean GPP

at different atmospheric CO2 levels in all available CMIP5 models (1pctCO2 simulation). Asterisks denote non-significant values: ** p >

0.1; * p > 0.05.

1

2

3

Correlation details < 2xCO2 > 2xCO2 & < 3xCO2 > 3xCO2

b R2 b R2 b R2

MIROC-ESM 0.23 0.97 0.16 0.89 0.08 0.63

CESM1-BGC 0.45 0.93 0.36 0.82 0.27 0.62

GFDL-ESM2M 0.37 0.89 0.04 0.07** 0.01 0.12**

CanESM2 0.22 0.95 0.19 0.83 0.17 0.67

HadGEM2-ES 0.13 0.99 0.08 0.96 0.06 0.78

MPI-ESM-LR 0.13 0.94 0.09 0.78 0.04 0.51

NorESM1-ME 0.26 0.94 0.2 0.77 0.09 0.27
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Table 3. Coefficients of determination (R2) of the emergent linear relationships in Figure 7 (asterisks denote non-significant values: ** p >

0.1; * p > 0.05). Emergent Constraints
:::
ECs on �GPP (upper and lower bound of uncertainty in square brackets) for different atmospheric

:::
CO2:

levels and fully-coupled as well as idealized setups. The rightmost column shows the increase of �GPP for an increment of 1⇥
:::
CO2.

The lowermost section compares EC estimates of �GPP for equivalent changes in
:::
CO2 concentration (

::::
CO2 rises from 380 to 535 ppm), but

for different time-rates.

1

2

3

4

5

R2 EC �GPP estimate (Pg C yr�1) EC �GPP for �1⇥
:::
CO2:

(Pg C yr�1)

2xCO2

Fully coupled (1pctCO2) 0.96 3.36 [3.15, 3.56] –

CO2 fertilization only (esmFixClim1) 0.88 1.35 [1.29, 1.62] –

Radiative effect only (esmFdbk1) 0.94 1.38 [1.13, 1.51] –

Sum of both effects (esmFixClim1 + esmFdbk1) 0.95 2.74 [2.6, 2.9] –

3xCO2

Fully coupled (1pctCO2) 0.93 5.7 [5.26, 6.16] 2.34

CO2 fertilization only (esmFixClim1) 0.92 2.15 [2.02, 2.37] 0.79

Radiative effect only (esmFdbk1) 0.98 2.53 [2.3, 2.66] 1.15

Sum of both effects (esmFixClim1 + esmFdbk1) 0.96 4.68 [4.38, 4.97] 1.94

4xCO2

Fully coupled (1pctCO2) 0.88 6.76 [6.08, 7.53] 1.06

CO2 fertilization only (esmFixClim1) 0.88 2.42 [2.23, 2.74] 0.28

Radiative effect only (esmFdbk1) 0.97 3.06 [2.83, 3.2] 0.53

Sum of both effects (esmFixClim1 + esmFdbk1) 0.95 5.49 [5.09, 5.85] 0.81

380 – 535 ppm CO2

Slow increase in
::::
CO2 (RCP4.5) 0.93 2.84 [2.54, 3.08] -

Medium-fast increase in
:::
CO2:

(RCP8.5) 0.96 2.38 [2.18, 2.55] -

Rapid increase in
:::
CO2:

(1pctCO2) 0.96 2.05 [1.94, 2.16] -
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1

Figure A1. Gedankenexperiment to examine the applicability
::::::::::
Standardized

:::::::
temporal

::::::::
anomalies

:
of the Emergent Constraints analysis

assuming an idealized linear / linear behavior of the system (Case 1, Table A1). a, Changes in GPP relate linearly to changes in
:::::
annual

::::::
averaged

::::::::::
atmospheric

::::
CO2 concentration . The yellow band marks the projection period of interest, i.e. the period of concentration from

x + 4� to x + 5�. b, Changes in LAI relate linearly to changes in GPP. The parameterization in the linear functions for pseudo

observations (dashed black
:::
blue

::::
solid

:
line)as well as models (solid grey lines) are determined randomly for each model. c, The diagnostic

variable, LAI sensitivity to , remains constant with increasing as a consequence of the overall linear characteristics of the system. The colored

bands indicate three ’past’ periods from x to x + �
:::::::::::
area-weighted

:::::::
averaged

:::::
GDD0

::
for

:::::
NHL (blue), x + � to x + 2� (green

::::
solid

:::
line),

and x + 2� to x + 3�
:::
their

::::::
leading

:::::::
principal

::::::::
component

::
! (red ). d, Linear relationships among the pseudo model ensembles (Ensemble

LR 1-3 on top of each other, red) between LAI sensitivity to of the three past periods and �GPP from the projected period. Red dots mark

different models and the dashed linerepresents associated pseudo
:
)
:
in
:
observationsfor all three historical periods.Yellow solid line depicts the

constant Emergent Constraint on projected �GPP irrespective of the past period .
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1

2

Figure A2.
::::::
Similar

::::
pixel

::::::::
distribution

::
of

:::::::
predictor

:::
and

::::::::
predictand

::
in

:::
each

::::::
model,

:::::
except

:::::::::::
HadGEM2-ES.

:::::::::
Histograms

:::
and

:::::::
associated

:::::::::
probability

:::::
density

:::::::
functions

::::::::
(Gaussian

:::::
kernel

::::::
density

:::::::::
estimation)

::
of

:::
LAI

::::::::
sensitivity

::
to

::
!

::::
(red,

:::
left

:
y
::::
-axis,

:::::::
historical

::::::::::
simulations)

:::
and

:::::::
temporal

:::::
trends

:
in
::::

GPP
:::::

(blue,
:::::

right
:
y
::::
-axis,

::::::::
1pctCO2,

::::
until

:::::::
2⇥CO2)

:::
for

::::
NHL

:::
are

::::::
shown

:::
for

::
all

:::::::
CMIP5

::::::
models.

::::
Only

:::::::::
significant

:::::
pixels

:::
are

:::::::
included

:::::::::::
(Mann-Kendall

:::
test,

::
p

::
<

:::
0.1).

::
To

:::::
obtain

:::::::::::
comparability

::::::
between

:::
the

:::::::::
distributions,

:::
the

:
x
::::
-axis

:::
was

::::::::
normalized

:::
and

:::
has

::::
only

::::::::
qualitative

:::::::
meaning.
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1

2

Figure A3.
:::::::
Temporal

:::::::
variation

::
of

::::::
LAImax::::::::

sensitivity
:::

to
:
!
::

in
::::

four
::::::
CMIP5

::::::
models

::::::::
analogous

::
to

:::
Fig.

::
4.
::::

The
::::::
colored

::::
lines

::::
show

:::::::
LAImax

:::::::
sensitivity

::::::::
variations

::
for

::::::
moving

:::::::
windows

::
of

::::::
varying

:::::
length

::
of

::
15

:::::
(blue),

:::
30

::::::
(green),

:::
and

::
45

::::
(red)

::::
years

::::
over

:::
the

:::::::
historical

:::::
period

::::
from

::::
1860

:
to
:::::
2005.
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2

Figure A4.
::::::::
Correlation

::
of
:::::::::
�LAImax :::

and
:::::
�GPP

::::
with

::::::::
increasing

::::
CO2:::::::

forcing,
::::::
starting

::::
from

:
a
:::::::::::

pre-industrial
::::::::::
concentration

::
of
::::

280
::::
ppm

::::::
(1xCO2)

::
to
::::::
4xCO2::::::

(CMIP5
:::::::
1pctCO2

::::::::::
simulations).

::::::
Results

:::
are

:::::
shown

::
for

::::
four

::::::
CMIP5

:::::
models

::::::::
analogous

::
to

:::
Fig.

::
5.
::::
Blue

::::::
colored

:::
dots

:::::
show

::
the

::::::
relation

:::::::
between

:::::
1xCO2:::

and
::::::
2xCO2,

:::::
green

::::::
colored

:::
dots

:::::::
between

:::::
2xCO2:::

and
::::::
3xCO2,

:::
and

:::
red

::::::
colored

::::
dots

::::::
between

::::::
3xCO2 :::

and
::::::
4xCO2.

:::
The

:::::::
respective

::::::
colored

::::
lines

:::::::
represent

:::
the

:::
best

:::::
linear

::
fit

::::::
through

::::
those

:::
dots

::::
and

::
the

::::::
shading

::::::::
represents

:::
the

:::
95%

:::::::::
confidence

::::::
interval.
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1

2

Figure A5.
::::::
Thought

::::::::
experiment

::
to

:::::::
examine

::
the

::::::::::
applicability

::
of

::
the

:::
EC

::::::
analysis

::::::::
assuming

::
an

:::::::
idealized

::::
linear

:
/
:::::
linear

:::::::
behavior

::
of

::
the

::::::
system

::::
(Case

::
1,

:::::
Table

::::
A1).

:
a
:
,
:::::::
Changes

::
in

::::
GPP

::::
relate

:::::::
linearly

::
to

::::::
changes

::
in
::::

CO2:::::::::::
concentration.

::::
The

:::::
yellow

::::
band

::::::
marks

::
the

::::::::
projection

::::::
period

:
of
:::::::

interest,
:::
i.e.

:::
the

:::::
period

::
of

::::
CO2:::::::::::

concentration
::::
from

:::::::
x + 4�

::
to

::::::::
x + 5�.

:
b
:
,
:::::::
Changes

::
in

:::
LAI

:::::
relate

::::::
linearly

::
to
:::::::

changes
::
in

::::
GPP.

::::
The

::::::::::::
parameterization

::
in

:::
the

:::::
linear

:::::::
functions

:::
for

::::::
pseudo

:::::::::
observations

:::::::
(dashed

::::
black

::::
line)

::
as

::::
well

::
as

::::::
models

:::::
(solid

:::
grey

:::::
lines)

:::
are

:::::::::
determined

:::::::
randomly

::
for

::::
each

::::::
model.

:
c,
::::
The

:::::::
diagnostic

:::::::
variable,

::::
LAI

:::::::
sensitivity

::
to

::::
CO2,

:::::::
remains

::::::
constant

::::
with

:::::::
increasing

::::
CO2::

as
:
a
::::::::::

consequence
::
of

:::
the

:::::
overall

:::::
linear

::::::::::
characteristics

:::
of

::
the

::::::
system.

::::
The

::::::
colored

::::
bands

:::::::
indicate

::::
three

:::::
’past’

:::::
periods

:::::
from

:
x
::
to

::::::
x + �

::::::
(blue),

::::::
x + �

::
to

:::::::
x + 2�

::::::
(green),

:::
and

:::::::
x + 2�

:
to
:::::::
x + 3�

:::::
(red).

:
d
:
,
:::::
Linear

:::::::::
relationships

::::::
among

::
the

::::::
pseudo

:::::
model

::::::::
ensembles

::::::::
(Ensemble

:::
LR

:::
1-3

::
on

:::
top

:
of
::::

each
:::::
other,

:::
red)

::::::
between

::::
LAI

::::::::
sensitivity

:
to
::::

CO2::
of

:::
the

::::
three

:::
past

::::::
periods

:::
and

:::::
�GPP

::::
from

:::
the

:::::::
projected

::::::
period.

:::
Red

::::
dots

::::
mark

::::::
different

::::::
models

:::
and

:::
the

:::::
dashed

:::
line

::::::::
represents

::::::::
associated

:::::
pseudo

::::::::::
observations

::
for

:::
all

::::
three

:::::::
historical

::::::
periods.

::::::
Yellow

::::
solid

:::
line

:::::
depicts

:::
the

:::::::
constant

::
EC

:::
on

:::::::
projected

:::::
�GPP

:::::::::
irrespective

::
of

::
the

::::
past

:::::
period.
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2

Figure A6. Gedankenexperiment
::::::
Thought

:::::::::
experiment to examine the applicability of the Emergent Constraints

:::
EC analysis assuming an

idealized nonlinear
::::::::
non-linear / nonlinear

:::::::
non-linear

:
behavior of the system (Case 4, Table A1). a, �GPP decreases with increasing

::::
CO2

concentration (described by a hyperbolic tangent function). The yellow band marks the projected period of interest, i.e. the period of
::::
CO2

concentration from x + 4� to x + 5�. b, Also �LAI decreases with increasing GPP (described by a hyperbolic tangent function).

The parameterization in the hyperbolic tangent functions for pseudo observations (dashed black line) as well as models (solid grey lines) are

determined randomly for each model. c, The diagnostic variable, LAI sensitivity to
::::
CO2, is decreasing with increasing

:::
CO2 as a consequence

of the overall saturating characteristics of the system. The colored bands indicate three ’past’ periods from x to x + � (blue), x + � to

x + 2� (green), and x + 2� to x + 3� (red). d, Linear relationships among the pseudo model ensembles (Ensemble LR, colored lines)

between LAI sensitivity to
::::
CO2 of the three past periods and �GPP from the projected period. Colored dots mark different models and

the dashed lines represent associated pseudo observations for respective historical period. Yellow solid line depicts the constant Emergent

Constraint
::
EC

:
on projected �GPP irrespective of the past period.
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Table A1. Overview of four possible cases of interaction between forcing, non-observable and observable identified in the

Gedankenexperiment
::::::
thought

::::::::
experiment: All linear, all nonlinear

:::::::
non-linear, and two mixed cases.

1

2

Different assumptions d[non�observable]

d[forcing]
, e.g. d[GPP]

d[CO2]

d[observable]

d[non�observable]
, e.g. d[LAI]

d[GPP]

1 linear linear

2 nonlinear
::::::::
non-linear linear

3 linear nonlinear
::::::::
non-linear

4 nonlinear
::::::::
non-linear nonlinear

::::::::
non-linear
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