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�e large disagreement of projections of future net land-atmosphere CO2 �ux in Earth-systemmodels is the biggest
uncertainty in future climate projections (Arora et al., 2013; Friedlingstein et al., 2013). To tackle this issue, the
application of emergent constraints (EC) to di�erent carbon-cycle and ecosystem processes to reduce the range of
the future land-sink estimates has become increasingly popular (Cox et al., 2013; Wenzel et al., 2014; Mystakidis
et al., 2016; Wenzel et al., 2016). In this study Winkler et al. discuss the reasoning behind the application of
EC in Earth-system modelling. �ey point to potential limitations, such as the need to accurately measure the
predictor and to �nd a robust relationship between predictor and predictand, and how that might change over
time. �ey then use the sensitivity of Leaf-Area Index (LAI) to CO2 and temperature to constrain future estimates
of Gross Primary Productivity in the Northern High-Latitudes. In my opinion, the theoretical examination of the
EC framework, sources of uncertainty and its limitations is particularly noteworthy and useful for the community
(discussion around Figures 1, 4 and 6). I �nd the manuscript in the present form rather strenuous to read, without
a �uid structure, several repetitions and sometimes omissions and inconsistencies that generate confusion. �is
can easily be improved during the revision: my suggestion would be to have a complete conceptual part discussing
uncertainties and complications of the EC method before moving to the analysis of LAI data. �ere are, however,
other points of this study that I �nd more problematic, and that need consideration before I can recommend its
publication. I �rst describe my general concerns, and then include more speci�c comments for your consideration.

We thank the reviewer for her/his detailed and very constructive review of our manuscript. We
appreciate that the reviewer �nds our study particularly noteworthy and useful for the commu-
nity, but we also notice the reviewer’s concerns. All revisions done in response to the reviewer’s
comments improved the structure and overall readability of the manuscript.

1 General Comments

1.1 �e introduction delves into the assumptions underlying the EC, di�erent studies using EC to constrain the
carbon-cycle sensitivity to global change and their limitations and uncertainties. I �nd that the introduction is
missing a motivation statement that explains: (i) the need for the conceptual study presented here; (ii) why did
the authors focused on the relationship between LAI and GPP (more on this below); (iii) the rationale behind
the choice of trying to constrain ∆GPP in the NHL only, since models that do well at simulating the e�ect of
boreal/temperate ecosystem CO2 �uxes do not necessarily constrain be�er the global terrestrial sink (Schimel
et al. (2015), Figure 3).

We agree, that the introduction lacks a clear motivation why a conceptual approach to the EC
method is needed. In recent years, many studies have been published applying the EC method
to constrain essential entities of the Earth system. �e method will become even more popular
with the upcoming CMIP6 model simulations. However, the literature is missing a detailed de-
scription of the applicability and limitations of the EC method, resulting in a somewhat arbitrary
application and methodological inconsistencies among various studies. To account for that, this
conceptual study is needed, which elaborates on the behavior of the EC method (i); �ere is no
speci�c reason why we based our conceptual study on the relationship between LAI and GPP.
We adduced these variables to build a case study in order to scrutinize the EC method. In the-
ory, the results are qualitatively transmissive to other sets of predictors and predictands (ii); We
focused our analysis on the northern high latitudes (NHL) because of two reasons. First, ecosys-
tems in NHL are barely in�uenced by human land use. �us, the changes of vegetation greenness
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are natural responses to the forcing rather than agricultural artifacts. Second, independent re-
mote sensors (AVHRR, MODIS) yield comparable greening sensitivities for the NHL, although
the MODIS time series is yet too short to derive a statistical robust estimate (iii). We edited the
introduction in the revised manuscript to account for the these comments.

1.2 �e description of Winkler et al. (P2, L25 - P3, L2) is partly (but with less detail) described in the methods. I
suggest mentioning here just the relevant aspects of their study.

In the revised manuscript, we added a description of the methodology in Winkler et al. (2019),
especially, we make abundantly clear how ω is derived and describe its characteristics for models
and observations. Please see also responses to comment 1.5 and 2.26.

1.3 However, from this paragraph, it seems that one of the main conclusions of this manuscript is also an outcome
of Winkler et al. (2018) – I mean the values of 3.4 ± 0.2 Pg C yr−1 which are then presented again in the results
section. �is leaves me wondering to which extent is this study original, compared to that in revision in Nature
Communications. It’s important that the authors clarify this, at least in their reply to the comments.

Winkler et al. (2019) present constraints on projected future plant productivity in NHL using
greening sensitivity as well as independent observational resources such as ground-measurements
of CO2 and atmospheric CO2 inversion products. �e study in hand focuses on the concept of
EC, its applicability and limitations, building on the EC presented in Winkler et al. (2019). We
agree that presenting the ∆GPP constraint of 3.4 ± 0.2 Pg C yr−1 as key result in both studies,
is problematic. We address this issue in the revised manuscript. Please see also our response to
comment 2.4.

1.4 In the Methods section, the authors state that they ”revisit the study of Winkler et al. (2018)” and ”largely
follow the methodology detailed in Winkler et al. (2018)”. However, the reviewers (and potential readers) do not
have access to this study to evaluate the methodology in detail nor to understand what exactly is being revisited.
Moreover, that companion paper is not yet accepted for publication. �erefore, the authors should at least describe
the methodology in more detail.

Yes, we acknowledge that access to the companion article is needed to be�er comprehend the
methodology in this study. �e article by Winkler et al. (2019) is now published and openly
available on the website of Nature Communications (h�ps://rdcu.be/bpELU). We included a more
comprehensive methods section in the revised manuscript. Please see also responses to comments
1.2 and 1.5.

1.5 �is is especially the case for the calculation of ω, which is then used for a big part of the analysis of LAImax

drivers. You explain that a PCA is performed on both variables (CO2 and GDD0) to derive a proxy time-series that
summarizes the evolution of both variables. �e PCA is indeed suitable for such type of analysis and is probably
be�er than multiple linear regressions used in other studies (e.g. Zhu et al. (2016)). However, the authors give very
li�le information about this crucial step of the analysis: is the PCA performed at pixel level, or for the large-scale
aggregated values? What components do they retain from the PCA (I’m assuming only PC1 is retained)? What
fraction of the variance does it explain? How does it relate to GDD0 and CO2? How does it vary over time? Here,
a plot showing ω over time would be very helpful. Moreover, the authors should keep in mind that ω does not
”represent the overall forcing” (P9, L8-9), but only CO2 and temperature.

We agree, that a more detailed description of the derivation of ω needs to be provided. PCA
was performed on large-scale aggregated values as well as on pixel level to investigate on spatial
variations. We only retain the �rst principal component (denoted ω), which explains a large
fraction of the variance, ranging approximately from 70% ot 90% in models and observations
(for more details see Table R1-1, also included in Supplementary Information in the companion
article). Figure R1-1 depicts the temporal development of CO2 and GDD0 as well as the principal
component ω for observations. �is �gure, with some modi�cations, has been included in the
appendix of the revised manuscript. Yes, we acknowledge that CO2 and GDD0 do not represent
the overall historical forcing, but we assume that these are the main drivers causing observed
changes in the NHL region. Please see also response to comment 1.2.
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Figure R1- 1: Standardized temporal anomalies of annual averaged atmospheric CO2 concentration, area-
weighted averaged GDD0 for NHL, and their leading principal component ω in observations.

Table R1- 1: Summary data for Principal Component Analysis and LAImax sensitivity estimation.
Model Explained variance by ω LAImax sensitivity to ω, (m2 m−2 unit ω) Correlation coe�cient

MIROC-ESM 0.89 0.049 ± 3.3e-3 0.93
CESM1-BGC 0.83 0.014 ± 1.4e-3 0.86
GFDL-ESM2M 0.64 0.022 ± 3.2e-3 0.76
CanESM2 0.91 0.013 ± 1.0e-3 0.91
HadGEM2-ES 0.94 0.075 ± 3.5e-3 0.97
MPI-ESM-LR 0.77 0.028 ± 1.8e-3 0.94
NorESM1-ME 0.84 0.0088 ± 0.8e-3 0.88
Observations 0.9 0.045 ± 6.4e-3 0.78

1.6 �e authors correctly state that one requirement of the EC method is that ”a physically (or physiologically)
based correlation between inter-model variations in an observable entity of the contemporary climate system
(predictor) and a projected variable (predictand)” (P2, L26-27) exists. I �nd it, therefore, striking, that the authors
do not discuss in any way why should LAI be used as a predictor of the CO2 fertilization e�ect on GPP, and whether
the linearity between the two variables in ESMs holds true for observations. Experimental CO2 enrichment studies
did not �nd a direct e�ect between CO2 fertilization and increase in LAI (e.g. Körner et al., 2005) and LAI seems
to increase non-linearly with increasing CO2 (Norby et al. (2005)). Moreover, Norby et al. (2010) found strong
in�uence of nutrient availability/limitation (not simulated in most CMIP5 ESMs) in the CO2 fertilization e�ect on
ecosystem productivity, possibly because of mycorrhizal e�ect (Terrer et al. (2016))). ? have also shown that under
increasing CO2, allocation of carbon to leaves decreased, rather than increasing (as implicitly assumed here),
which was not well simulated by DGVMs. �e link between CO2 fertilization, LAI and GPP is further complicated
by how models simulate mortality and disturbances.

�e link between LAI, GPP, and elevated CO2 concentration is a complicated subject ma�er, as the
referee thoroughly describes. In terms of in-situmeasurements, there is no clear picture emerging.
Körner et al. (2005) �nds no signi�cant coupling between elevated CO2 and increased LAI in a
Swiss forest site for a study period of four years. Norby et al. (2005) analyzed measurements from
four di�erent FACE experiments in the northern mid-latitudes (USA and Italy). �ey detect a non-
linear relationship between increasing CO2 and LAI. However, non-linearity is to be expected
for such a sharp increase of CO2 concentration (quasi-instant forcing of 174 ppm) and is not
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comparable to the real-world response (annual forcing of 2-3 ppm). Please see also our response
to comment 2.14 for a more detailed discussion on the assumption of linearity in the relationship
between LAI and CO2 for the last decades. Norby et al. (2005) also report, that their analysis
suggested that at low LAI, elevated CO2 was causing structural changes and substantial increase
in absorbed photosynthetic active radiation, in general agreement with satellite measurements
of low LAI regions, especially in NHL. De Kauwe et al. (2014) analyzed measurements from two
FACE experiments located in North America (North Carolina and Tennessee, USA). �ey �nd that
speci�c leaf area (SLA, the ratio of leaf area to leaf mass) decreased, but report a general increase
in LAI as response to elevated CO2.

In general, conclusions drawn from FACE experiments, owed to their setup, are not representative
for long-term observed changes on ecosystem-scale. We agree with the referee, that the current
manuscript lacks an in-depth discussion on the causal link between predictor and predictand.
However, this aspect is discussed in more detail in the companion paper by Winkler et al. (2019)
and illustrated in Supplementary Figure 1 - Schematic of the Emergent Constraint concept. In the
revised manuscript we discuss in more detail the causal link between predictor and predictand.
Please see also our response to comment 2.41.

1.7 I understand that the authors have a stronger background on earth-system modelling and I would not expect
them to make a full case on the relationships between CO2 fertilization, LAI and GPP. However, since they describe
so well the need for a physical basis to the EC, they need to explain the choice of LAI as a predictor of future GPP
(i.e. evidence for a mechanistic link), and whether the land-surface models composing the ESMs are able or not
to correctly simulate the relevant processes for this relationship (see also Kolby Smith et al. (2016)). In the current
version of the manuscript, the authors do not make a strong case for their choice, and there is limited evidence
(mostly from model-based studies to the best of my knowledge) to suggest that LAI sensitivity to CO2 can be a
suitable predictor of future GPP. �e authors could, for example, combine their analysis of LAImax sensitivity to
CO2 and temperature with GPP changes estimated from observation-based datasets (e.g. FLUXCOM).

�e referee makes a very good proposal in analyzing other observation-based datasets to corrob-
orate the EC estimate. We already conducted such analysis and is part of Winkler et al. (2019).
Amongst other data resources, we analyzed all available FLUXCOM datasets of upscaled eddy co-
variance �ux measurements for NHL GPP. However, these datasets were designed not to capture
long-term changes as well as interannual variability, and thus, cannot be applied for a temporal
analysis (e.g. Anav et al., 2015). But one can build on the spatial information to investigate the
correlation between LAImax and GPP. Using the climatologic mean of the recommended ensem-
ble median of all FLUXCOM datasets and two independent sets of satellite observed LAI, we �nd
a striking linear relationship for the northern high latitudes (Figure R1-2a and b). �is tight linear
relation between the two variables over a wide range of values suggests that changes in GPP also
result in changes in LAImax. In general, model simulations and large-scale observational datasets
clearly indicate that LAI sensitivity to CO2 (ω for temperature-limited ecosystems) is a suitable
predictor of GPP for increasing CO2 forcing in the NHL.

Further, we assess the relationship between changes in GPP and LAI exclusively using in-situ
�ux measurements, although these records are yet to short for a statistically robust analysis.
We selected the longest FluxNet time series existing for the NHL, Hyytiala, Finland (61.8474◦
N, 24.2948◦ E, 1996 - 2014). We took the surrounding pixels of the long-term but rather coarse
(AVHRR, 1/12◦, 1982 - 2016) as well as short-term but higher resolution (MODIS, 500m, 2000 -
2016) satellite observations of LAI. We �nd contemporary trends in GPP and LAI, but the linear
relation between the in-situ measured GPP and long-term AVHRR satellite datasets is rather weak
due to the coarse resolution. �us, to match the �ux tower footprint, we have to make recourse
to high resolution satellite observations of MODIS. MODIS LAI and AVHRR LAI (both analyzed
in our study) have strong correlation and the latest AVHRR LAI datasets were developed by refer-
encing to MODIS LAI (Zhu et al., 2013). For the MODIS time-series we �nd a much stronger rela-
tionship to the �ux measurements and therefore con�rms the tight connection between changes
in GPP and LAI for the site in Hyytiala, Finland (Figure R1-2c). However, the overlapping period
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of MODIS and FluxNet is yet too short to derive reliable estimates. Anav et al. (2015) also ana-
lyzed other eddy covariance �ux measurement sites and �nd a general agreement on increasing
GPP.
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Figure R1- 2: Strong correlation in the climatologic mean in observational datasets between LAImax derived
from two independent satellite sensors, MODIS (a) and AVHRR (b), and the ensemble median annual average
GPP from the FLUXCOM ensemble for the northern high latitudes. Color density indicates the probability
distribution estimated using Gaussian kernel. c, Contemporary trends in the longest in-situ GPP �ux measure-
ment record in the NHL and the study site surrounding pixels of high resolution LAI satellite observations.
�e blue line shows the best linear �t and the shading shows the 95% con�dence interval.

2 Speci�c comments:

2.1 P1, L 2: ”promising results” of what?

�is sentence has been rewri�en to be more speci�c.

2.2 P1, L3: What do you mean by ”di�cult to measure variable […] at a potential future”? If you are trying to
estimate a future state of a variable, it is by de�nition non-measurable?

�e statement ’di�cult-to-measure’ only refers to ’variable’ and not to ’a potential future’. We
rewrote this paragraph to avoid misunderstandings. Please see also response to comment 2.15

2.3 P1, L7: ”greening sensitivity to the CO2 forcing” … but also temperature, right? (Methods).

We investigate both types of sensitivity, so, the greening response to rising CO2 as well as to
the combined signal of rising CO2 and temperature (GDD0). �e la�er approach is necessary for
temperature-limited ecosystems and is only applied in the analysis focusing on NHL.

2.4 P1, L18: Is the value of the GPP enhancement from this study or from Winkler et al. (in revision)?

�is result is a subject in both studies, however, we discuss it with di�erent perspectives. In the
revised manuscript, we de�ne the focus of this study more precisely to avoid such misunder-
standings. Please see also response to comment 1.3.

2.5 P2, L4: ”can have substantial uncertainties” ? remove can. �ey have.

We agree. �e sentence was modi�ed.

2.6 P2, L8: I’d move the ”large-scale climate modes” to the paragraph about natural variability a few lines below.

�e sentence should give an overview of the range of aspects which are underrepresented in
ESMs, from local short time-scale extreme events to long-term large-scale climatic modes. Hence,
we prefer not to modify this section.
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2.7 P2, L12: ”aims is to explore” ? ”aims to explore”

We corrected the sentence.

2.8 P2, L21: ”namely, AS a method. . .”

We agree, the sentence reads be�er now.

2.9 P2, L24: In theory, could another relationship (non-linear) be used?

Yes, in theory, a non-linear relationship between predictor and predictand in an multi-model en-
semble is conceivable, but this requires a reasonable process-based justi�cation. For instance,
there are a�empts to establish an EC using an exponential relationship between historical warm-
ing (predictor) and equilibrated temperature increase for a doubling of atmospheric CO2 (pre-
dictand, equilibrium climate sensitivity, ECS). �is approach implies that models with strong
historical warming should predict a disproportional high ECS. To build a reliable EC, one has to
identify the process causing this disproportionality in the model ensemble.

2.10 P2, L27: what do you mean by di�cult to observe? Cox et al. (2013) used two variables that are relatively
well observed (CO2 growth rate and tropical temperature).

Cox et al. (2013) used variations in the observables CO2 growth rate and tropical temperature
to constrain land carbon storage in the tropics, the la�er being the variable that is di�cult to
observe.

2.11 P2, L32: What do you mean by ”con�rmed”?

�e relationship between snow-albedo feedback strength of the current seasonal cycle and pro-
jected feedback to long-term warming has been detected in the CMIP3 ensemble and also exists
in the CMIP5 ensemble. If an ”Emergent Relationship” is independent of the analyzed model
ensemble, it is considered as ’con�rmed’ in the EC literature.

2.12 P3, L17: ”2xCO2 world”: you mean in model simulations, not in CO2 enrichment experiments, right?

Yes, ’2xCO2 world’ refers to model simulations. We rewrote this section to be more speci�c.

2.13 P6, L2: Here you mention that you also use precipitation to derive ω, however later you mention only CO2

and GDD0 were used. If you don’t use, can you justify the exclusion of precipitation (non-signi�cant trends?
Non-signi�cant e�ects?)

Precipitation and temperature are used to derive climatic regimes (see Figure 2 in the manuscript).
For each climatic regime, we derive the greening sensitivity to CO2. First, only the sensitivities
to rising atmospheric CO2 concentration are calculated to obtain comparability between the dif-
ferent climatic regimes, vegetation classes, and latitudinal bands (see Figure 2 in the manuscript).
�en, we focus on the northern high latitudes, where we also have to take temperature into
account and derive the greening sensitivity to ω, the combined signal of CO2 and GDD0. We
rewrote this passage to be more clear on that ma�er.

2.14 P7, L4-5: can you provide any lines of evidence to justify the assumption (non-model based).

�e increase of observed CO2 concentration (annual average) throughout the satellite era can be
considered as quasi-linear (Figure R1-3). Our analyses of remote sensing datasets of LAI from
di�erent sources (AVHRR, MODIS) also suggest linearly increasing trends. �is �nding was also
reported by several preceding studies (Zhu et al., 2016; Mao et al., 2016; Forkel et al., 2016; Ma-
howald et al., 2016). Forkel et al. (2016, Fig. 1 - Ampli�cation of plant activity in the northern
biosphere) analyzed several observational datasets for the northern ecosystems of the last 30 to
40 years and report evidence for a linearly changing system. �e bo�om line is, there is no ob-
servational indication of a non-linear relationship between LAI and CO2, at least not for the CO2

forcing of the last decades (from ∼340 to ∼410 ppm.)
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Figure R1- 3: A quasi-linear increase in observations of global monthly mean CO2 concentrations since 1980;
image taken from h�ps://www.esrl.noaa.gov/gmd/ccgg/trends/gl full.html, February 14, 2019.

2.15 P8, L4-5: What do you mean by ”di�cult to measure”? It’s already repeated 2 times before.

�e concept of Emergent Constraints is to constrain an entity (predictand) of the Earth system
that is not-directly or not-at-all observable (e.g. at a potential future state). �is can be achieved by
using an observable that is physically connected to the predictand. We understand the confusion
about the term ’di�cult-to-measure’ with regard to projected estimates of GPP. To be more clear
on that ma�er, we modi�ed the terminology in the revised manuscript. Please see also response
to comment 2.2.

2.16 P8, L6-9: What evidence do you provide for this? CO2 enrichment experiments contradict this assumption.

Please see responses to comments 1.6 and 2.41.

2.17 P8, L15: ”large area” ? ”large-scale”?

We agree.

2.18 P8, L16-32: �is is somewhat confusing since up until now you mention that you will analyse NHL. Please
reformulate before in other to make clear that �rst you look at global values, and then focus on NHL (and provide
justi�cation to do so).

First, we present the observable on global scale aggregated for di�erent climatic regimes, vege-
tation types, and latitudinal bands. �en, we show that LAI is only a meaningful predictor for
changes in GPP in the northern high latitudes. We rewrote this section and provide be�er justi-
�cation for our approach.

2.19 P8, L19-21: How much does GDD0 contribute to ω in the tropics? Can the low sensitivities in the tropics be
due to your choice of temperature variable? I do not expect GDD0 to be a relevant temperature variable in the
tropical band. . .

Yes, we agree, GDD0 is not a relevant temperature variable for the tropical regions. We only
consider GDD0 in the NHL, as part of ω. When deriving sensitivities for global comparison (e.g.
comparing tropical, mid-latitude, and high-latitude sensitivities; Figure 2 in the manuscript), we
only consider the signal of rising CO2 concentration and neglect temperature. �erea�er, we
focus on the NHL, because there we obtain a clear LAI signal, e.g. not being distorted by human
land use. We derive LAI sensitivity to ω, so, also accounting for temperature and its variations, an
important aspect for temperature-limited ecosystems. Also LAI in the tropics is quite sensitive to
temperature variations, particularly to anomalies associated to ENSO. �us, for a study focused
on the tropics one should also consider temperature in estimating LAI sensitivities.
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2.20 P9, L2-3: Indeed, but perhaps this is because of your inadequate choice of predictor for temperature (GDD0,
rather than annual T, or some other metric)?

No, this is not the case. Please see response to comment 2.19. We only take temperature into
account when focusing on NHL.

2.21 P9, L8-9: not the overall forcing, just two components of the forcing (CO2 and temperature). Please show the
time-series of ω.

Please see our response to comment 1.5, Table R1-1 and the time-series of ω in Figure R1-1.

2.22 P9, L17: ”all pixels”: of the globe, or just NHL?

In the manuscript, we state ”We focus further analyses on the NHL region […]” (P9, L2). Hence,
we only show global comparison of LAI sensitivities to CO2 in section 3.1 and, therea�er, we
concentrate on LAI sensitivity to ω in NHL. We modi�ed this section to be more precise.

2.23 P9, L26-29: Where do you show the corresponding increase in plant productivity? Where can I see that the
distribution is approximately the same for the two variables? And if you have this data, where do you get GPP
from, models or observations? Can you plot the GPP distribution for the same choice of pixels?

We use CMIP5 model output to show that the distribution of pixels with signi�cant changes of
the predictor (LAI sensitivity to ω, historical simulation) and the predictand (GPP, 1pctCO2) are
approximately the same. Figure R1-4 compares respective distributions for all CMIP5 models. All
models, except HadGEM2-ES, con�rm that the pixels that show signi�cant historical LAI sen-
sitivity to ω are approximately also the pixels showing signi�cant changes in GPP for 2×CO2,
resulting in similar distributions. Note, that the variables LAI and GPP had to be normalized for
comparison in the same �gure. �is analysis is corroborating our statement in the manuscript,
that averaging the equally distributed estimates does not a�ect the predictor-predictand rela-
tionship in the model ensemble (P9, L29-30). Also, the results shown in Anav et al. (2013, 2015)
indicate spatial correlation of increasing GPP and LAI.
Long-term and large-scale changes in GPP still cannot be obtained form observations. Upscaled
FluxNet measurements (i.e. FLUXCOM datasets) also rely on statistical models (e.g. neuronal
networks) and are designed not to capture long-term changes (e.g. Anav et al., 2015). �us, these
datasets can only be applied for certain types of analyses, e.g. spatial pa�erns or natural vari-
ability. Please see also our response to comment 1.7. For completeness, we include a modi�ed
version of Figure R1-4 in the appendix of the manuscript.

2.24 P10, L3-8: Is this also valid for ESM outputs?

Yes, this statement is also valid for ESM simulation output. We discuss this aspect in the manuscript
(P10, L27-30).

2.25 P10, L19: What do you mean by ”LAImax sensitivity cannot be accurately estimated irrespective of the
window length”.

�is statement refers to Figure 4 in the manuscript. Figure 4 shows LAImax sensitivity to ω for the
historical period from 1860 to 2005 for di�erent moving window lengths (15yr, 30yr, and 40yr).
In the decades around the turn of the 20th century, LAImax sensitivity to ω is �uctuating from
negative to positive numbers for all window lengths. �is is, because CO2 forcing is low, and
thus, natural variability dominates. Under these circumstances, LAImax sensitivity to ω cannot
be accurately estimated.

2.26 P10, L20-21: Do you me an the signal to noise ratio of ω? Unfortunately you don’t show the time-series, so
it’s hard to follow.

When CO2 forcing is low, natural variability (noise) is dominating and in�uencing the estimation
of LAImax sensitivity to ω. But, when CO2 forcing grows stronger, the LAI response (signal) is
exceeding the noise and LAImax sensitivity to the forcing can be estimated. Please see also our
responses to comment 1.5 and 2.25., Table R1-1 and the time-series of ω in Figure R1-1.
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2.27 P10, L23-26: But, in theory, that’s the aim of the EC method. Do you mean that before considering using a
given EC, one should evaluate the stability of the sensitivities?

�is section is refereeing to the comparability of sensitivities in window length and location
between observations and models. In other words, the observed and modeled predictors have to
be obtained from the same point in time (level of CO2 forcing) and comparable temporal window
lengths, so, all predictors have to be representative for the same state of the system. Yes, besides
evaluating the stability of the predictor, one has to evaluate the comparability of predictors. So,
the aim of the EC method is to use these predictors to constrain an entity of interest (predictand)
at a di�erent state (forcing) of the system.

2.28 P10, L29-30: It’s not really shown in Figure 4.

We argue, that Figure 4 in the manuscript clearly shows that LAImax sensitivity estimation be-
comes more stable with strengthening forcing and increasing window length. Please compare
di�erent colored lines representing di�erent window lengths and variability for di�erent points
in time, i.e. CO2 concentration.

2.29 P11, 4-6: Very good way to pose the question. But can you answer this in a pure model world? I’m not fully
convinced.

In this section, we show that the EC method can be applied also when the underlying relationship
between predictor and predictand is changing with increasing forcing (e.g. from linear to non-
linear). Predictions of future GPP are based on our current understanding of the system. We
expect that saturation will occur with increasing CO2. In spite of this non-linear response, we
illustrate that the EC relationship in the model ensemble can remain linear. From observations
only, we cannot obtain ecosystem-scale estimates of GPP increase for a high CO2-world. So, yes,
we can and must answer this question in a pure model world.

2.30 P11, L8-10: Before (and a�er) you always use 7 models. It’s not clear which model set is being used for which
analysis. Are you using only 3 models to constrain future GPP changes? �is does not seem consistent with Figure
6.

Yes, we agree, this is confusing. In general, we use as many models as possible for the EC analysis
(here, 7 models). In Figure 4 and 5 in the manuscript, we only show 3 of the 7 models, because
all models show qualitatively the same. We selected these three models, because they span the
full range of GPP predictions (CESM1-BGC: lowest estimate, HadGEM2-ES: highest estimate,
and MIROC-ESM: closest to EC estimate). We generated two additional �gures (shown in the
appendix of the revised manuscript) which display the results of the other 4 models analogous to
Figure 4 and 5 in the manuscript.

2.31 P11, L11-18: Not that surprising since all models are based in some way or another in the Farquhar photosyn-
thesis model, which for the ppm ranges of 1xCO2 and 2xCO2 can possibly be approximated by a linear function,
and in DGVMs the allocations schemes to leaves are strongly coupled to GPP (e.g. models don’t simulate well
non-structural carbon reserves, or changes in allocation)? Also, if models prescribe �xed LAImax (as some do),
then this will strongly depend on the chosen model parametrization.

Yes, we agree, it is not surprising that all models show saturation at higher CO2 levels. However,
here we make the point, that despite the expected non-linearity of the predictor-predictand re-
lationship at higher CO2 levels, the inter-model relationship in the ensemble space can remain
linear. �is is a somewhat counter-intuitive aspect of the EC method and essential for its inter-
pretation.

2.32 P11, L18: Why not call it simply ”thought experiments” or ”conceptual experiments”, for non-german readers?

Gedankenexperiment is an universal scienti�c term such as the German word Ansatz.

2.33 P11, L21: What do you mean by LAI? Annual values? Growing-season average? And why not LAImax?
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We intended to simplify the terminology in the Gedankenexperiment. Since the time dimension
does not play a role in this conceptual framework, LAI expressed as annual average, growing
season average, or annual maximum has no meaning. However, we acknowledge that the changed
terminology can cause some confusion. �erefore, we stick to LAImax in the revised manuscript.

2.34 P11, L24: ”. . . responses” ? add something like ”of GPP to CO2 and of LAI to GPP” for clarity.

We rewrote the sentence for clarity.

2.35 P11, L26 - P12, L5: Why did you choose Scenario 3? Scenario 4 in Figure A2 is much more plausible (GPP
saturating for high levels of CO2 because of basic physiology (Farquhar)).

We chose Scenario 3 to highlight the interplay of linear and non-linear relationships between
forcing, predictor, and predictand. But we agree with the referee that Scenario 4 is the most
plausible, which we also discuss in the manuscript (P12, L9-11).

2.36 P12, L9-10: ”timing of saturation”: where can we see this?

Figure 4 and Table 2 in the manuscript illustrate that the CMIP5 models show saturation of the
relationship between ∆LAImax and ∆GPP with increasing CO2 forcing. �e slopes in Figure
4 (detailed estimates in Table 2) reveal that the strength and ’timing’ of saturation (i.e. at what
level of CO2 concentration) di�ers among the models. In the revised manuscript, we implemented
more accurate description and references to tables and �gures.

2.37 P12, L20: what LAImax are you referring to here? I assume you used AVHRR, since you explained (well) why
MODIS is not suitable. But you need to clarify.

Yes, we used AVHRR data. We added more details to this section in the manuscript.

2.38 P12, L24-26: in the model world. You need to discuss whether observations support this.

Please see response to general comment 1.6.

2.39 P12, L26: I assume you mean ”LAImax sensitivities” to ω. Is this simulated ω or ω from observations? Over
which period? If it is simulated ω you need to show how ω from historical simulations compares with ω from
observations.

LAImax sensitivity to ω is calculated for observations and each model separately for approxi-
mately the same time period. Please see Table R1-1 for more details. �is approach enables an
accurate comparison between the simulated and observed predictor variables. Also, more details
on ω can be looked up in the supplementary information for Winkler et al. (2019).

2.40 P13, L14: do models simulate compositional changes in these simulations? I.e. do they all include dynamic
vegetation changes?

Yes, most of the models include dynamic vegetation. In the revised manuscript, we include a short
description of the representation of dynamic vegetation in CMIP5 models. In general, the histor-
ical and idealized model setups of the CMIP5 land components are comprehensively explained in
several studies, such as Wenzel et al. (2014); Mahowald et al. (2016); Arora et al. (2013); Winkler
et al. (2019). �is is why we refrain from providing a detailed overview of the CMIP5 models in
this study.

2.41 P13, L34: But observations seem to point out that climate change (warming and drying) probably cancels
out the CO2 fertilization e�ect (Peñuelas et al., 2017), because of processes not well simulated by CMIP5 models
- climate extremes, particularly heatwaves, mortality, disturbance and further reinforced by nutrient limitations
(also not simulated by most CMIP5 models).
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�e referee addresses one of the key problems in current climate and carbon cycle research. On
the one hand, we expect that CO2 fertilization is causing enhanced plant growth based on our
physiological understanding. Many studies �nd evidence for this expectation. Especially, the
Global Carbon Project suggests that ∼30% of the anthropogenic CO2 emissions are taken up the
terrestrial biosphere (so, current land sink is ∼ 12 Pg C yr−1, �éré et al., 2018). On the other
hand, observations (esp. on local scale) suggest that the net carbon uptake by plants for a higher
CO2 world is not changing due compensating e�ects (e.g. Peñuelas et al., 2017). Obviously, there
is a paradox in place: Where do the 12 Pg carbon go every year, if plants do not take up more
carbon with rising CO2? Future research needs to address this issue in more depth. For the NHL,
however, we �nd robust observational evidence (Keeling et al., 1996; Myneni et al., 1997; Graven
et al., 2013; Forkel et al., 2016; Winkler et al., 2019) that carbon uptake by plants is increasing,
which is the baseline for the study in hand.

2.42 P14, L8-9: Can you provide references for this?

We assume the comment is referring to P15. �ere are several studies indicating that greening
in the high northern latitudes is caused by indirect drivers associated to increasing CO2, such as
warming and CO2 fertilization (Myneni et al., 1997; Forkel et al., 2016; Zhu et al., 2016). At high
LAI regions, GPP might also increase due to CO2 fertilization without an enhancement of LAI. In
rural areas, the observed greening is mainly caused by direct drivers such irrigation, application of
fertilizers, and double cropping as shown recently by Chen et al. (2019). We added the references
in the manuscript.

2.43 P14, L2: is this an original result from this manuscript or from Winkler et al. in revision?

We assume the comment is referring to P16. As we explained in response to comment 2.4, this
result is subject in both studies, but discussed with di�erent perspectives.
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Figure R1- 4: Similar pixel distributions of LAI sensitivity to ω (red, historical simulations) and temporal
trends in GPP (blue, 1pctCO2, until 2×CO2) for NHL. All CMIP5 models are shown. Only signi�cant pixels
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Mao, J., Ribes, A., Yan, B., Shi, X., �ornton, P. E., Séférian, R., Ciais, P., Myneni, R. B., Douville, H., Piao, S.,
Zhu, Z., Dickinson, R. E., Dai, Y., Ricciuto, D. M., Jin, M., Ho�man, F. M., Wang, B., Huang, M., and Lian,
X. (2016). Human-induced greening of the northern extratropical land surface. Nature Climate Change,
6(10):959–963.

13



Myneni, R., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R. (1997). Increased plant growth in the
northern high latitudes from 1981 to 1991. Nature, 386:698–702.

Mystakidis, S., Davin, E. L., Gruber, N., and Seneviratne, S. I. (2016). Constraining future terrestrial car-
bon cycle projections using observation-based water and carbon �ux estimates. Global Change Biology,
22(6):2198–2215.

Norby, R. J., DeLucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P., King, J. S., Ledford, J., McCarthy,
H. R., Moore, D. J. P., Ceulemans, R., Angelis, P. D., Finzi, A. C., Karnosky, D. F., Kubiske, M. E., Lukac,
M., Pregitzer, K. S., Scarascia-Mugnozza, G. E., Schlesinger, W. H., and Oren, R. (2005). Forest response to
elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of
Sciences, 102(50):18052–18056.
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