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Abstract 10 

This study presents a multi-scale analysis of cross-correlations based on Haar fluctuations 11 

of global-averaged anomalies of precipitation (P), precipitable water vapor (PWV), 12 

surface temperature (T) and atmospheric radiative fluxes. The results revealed an 13 

emergent transition between weak correlations at sub-yearly time-scales (down to ~5-14 

days) to strong correlations at time-scales larger than about ~1-2 years (up to ~1-decade). 15 

At multi-year time-scales, (i) Clausius-Clapeyron becomes the dominant control of PWV 16 

(PWV,T≈0.9); (ii) surface temperature averaged over global-land and over global-ocean 17 

(SST) become strongly correlated (Tland,SST~0.6); (iii) global-averaged precipitation 18 

variability is dominated by energetic constraints - specifically the surface downwelling 19 

longwave radiative flux (DLR) (P,DLR≈-0.8) displayed stronger correlations than the 20 

direct response to T fluctuations; (iv) cloud effects are negligible for the energetic 21 

constraints in (iii), which are dominated by clear-sky DLR. At sub-yearly time-scales, all 22 

correlations underlying these four results decrease abruptly towards negligible values. 23 

Such a transition has important implications to understand and quantify the climate 24 

sensitivity of the global hydrological cycle. The validity of the derived correlation 25 

structure is demonstrated by reconstructing global precipitation time-series at 2-year 26 

resolution, relying on the emergent strong correlations (P vs clear-sky DLR). Such a 27 

simple linear sensitivity model was able to reproduce observed P anomaly time-series 28 

with similar accuracy to an (uncoupled) atmospheric model (ERA-20CM), and two 29 

climate reanalysis (ERA-20C and 20CR). The linear sensitivity breaks down at sub-yearly 30 

time-scales, where the underlying correlations become negligible. Finally, the relevance 31 

of the multi-scale framework and its potential for stochastic downscaling applications is 32 

demonstrated by deriving accurate monthly P probability density functions (PDFs) from 33 
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the reconstructed 2-year P time-series based on scale-invariant arguments alone. The 34 

derived monthly PDFs outperforming the statistics simulated by ERA-20C, 20CR and 35 

ERA-20CM in reproducing observations. 36 

 37 

1. Introduction 38 

The precipitation response to changes in increased concentrations of greenhouse gases is 39 

a central topic for the climate science community. Although its regional variability is 40 

essential to determine the societal impacts, global-averaged precipitation is an important 41 

first-order climate indicator, and a measure of the global water cycle, that must be 42 

accurately simulated if robust climate projections are to be obtained across a wide range 43 

of spatial and temporal scales.  44 

However, even the long-term response of global-averaged precipitation is still poorly 45 

understood, constrained and simulated (Collins et al., 2013; Allan et al., 2014; Hegerl et 46 

al., 2015), largely due to the limited knowledge on the complex interactions between the 47 

key components of the atmospheric branch of the water cycle and its forcing mechanisms. 48 

This problem is tackled here by employing a multi-scale analysis framework to study the 49 

global-averaged precipitation variability, and its relation to two key governing 50 

mechanisms: the Clausius-Clapeyron relationship and the constraints imposed by the 51 

atmospheric energy balance. 52 

The Clausius-Clapeyron relationship is a well-known mechanism controlling the 53 

variability of the global water cycle. Assuming constant relative humidity, it implies that 54 

fractional changes in global-averaged precipitable water vapor (∆𝑃𝑊𝑉/𝑃𝑊𝑉) are 55 

linearly related to fluctuations of global-averaged near-surface air temperature (∆𝑇) (e.g. 56 

Held & Soden, 2006; Schneider et al., 2010):  57 

∆𝑃𝑊𝑉

𝑃𝑊𝑉
≈ 𝛼𝑃𝑊𝑉,𝑇∆𝑇,         (1) 58 

where 𝛼𝑃𝑊𝑉,𝑇 ≈ 0.07 K-1 at temperatures typical of the lower troposphere. Numerous 59 

studies have provided a robust confirmation for the Clausius-Clapeyron mechanism at 60 

multi-decadal to centennial time-scales, while also reporting an analogous linear response 61 

of global-averaged precipitation to surface temperature fluctuations (see e.g. Schneider et 62 

al., 2010; Trenberth, 2011; O’Gorman et al., 2012; and Allan et al., 2014 for reviews). In 63 

general, these previous investigations agree on the ~7%/K sensitivity coefficient for 64 

precipitable water vapor. However, there is large spread on the global precipitation 65 

sensitivity coefficient estimates, typically in the 1%/K to 3%/K range.  66 
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A widely recognized explanation for the sub-Clausius-Clapeyron sensitivity of 67 

precipitation to temperature fluctuations at long temporal scales comes from the 68 

atmospheric energy balance (Allen & Ingram, 2002; Stephens & Ellis, 2008; Stephens & 69 

Hu, 2010). Specifically, averaging over the global atmosphere, the latent heat flux 70 

associated with precipitation formation (𝐿𝑉P, with P being the global-averaged 71 

precipitation flux and 𝐿𝑉 the latent heat of vaporization) should be in balance with the net 72 

atmospheric radiative flux (𝑅𝑎𝑡𝑚) and the surface sensible flux (𝐹𝑆𝐻): 73 

𝐿𝑉𝑃+𝑅𝑎𝑡𝑚 + 𝐹𝑆𝐻 ≈ 0,        (2) 74 

Equation (2) represents a general state of radiative convective equilibrium (Pauluis & 75 

Held, 2002), with energy fluxes defined positive for atmospheric gain, and negative 76 

otherwise. 77 

If the Clausius-Clapeyron relationship was the dominant mechanism controlling the 78 

response of atmospheric moisture content and the global water cycle to temperature 79 

fluctuations, then global-averaged precipitable water vapor and precipitation could be 80 

expected to be strongly correlated to surface temperature. Previously Gu and Adler (2011, 81 

2012) found strong correlations between the inter-annual variability of global-averaged 82 

precipitable water vapor and surface temperature, in tight agreement with the Clausius-83 

Clapeyron mechanism. However, they found weaker (yet significant) correlations 84 

between the inter-annual variability of global-averaged precipitation and surface 85 

temperature, raising doubts on whether the Clausius-Clapeyron mechanism could be 86 

directly extendable to global precipitation. Notice, however, that these results focusing 87 

on a single temporal scale might not represent the entire picture 88 

A further source of complexity comes from the fact that precipitation and other relevant 89 

atmospheric variables (including temperature, atmospheric moisture, wind, etc.) display 90 

a complex statistical structure, with significant variability over a wide range of temporal 91 

scales, and with the possibility of different mechanisms governing variability at different 92 

time-scales (see e.g. Lovejoy & Schertzer, 2013 for a comprehensive review). 93 

Furthermore, it has been shown that this complex multiscale structure plays a role (at 94 

least) as important and the large amplitude periodic components, namely diurnal and 95 

seasonal cycles (Lovejoy, 2015; Nogueira, 2017a). However, our understanding of the 96 

underlying governing mechanisms at different time-scales remains largely elusive, 97 

representing a central problem for future improvements to climate simulation and 98 

projection. 99 
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Recently, Nogueira (2018) analyzed satellite-based observational datasets, a long Global 100 

Climate Model (GCM) simulation and reanalysis products and found a tight correlation 101 

(~0.8) between anomaly (deseasonalized) time-series of global-averaged precipitable 102 

water vapor and surface temperature, which emerged at time-scales larger than ~1-2 103 

years. In contrast, at smaller time-scales the correlation decreased rapidly towards 104 

negligible values (<0.3). In other words, the Clausius-Clapeyron relationship is the 105 

dominant mechanism of atmospheric moisture anomalies at multi-year time-scales, but 106 

not at sub-yearly time-scales. Nogueira (2018) also found that the magnitude of the 107 

correlations between anomaly time-series for global-averaged precipitation and surface 108 

temperature was negligible at sub-yearly time-scales, while at multi-year time-scales the 109 

results showed large spread amongst different data-sets, ranging between negligible 110 

(<0.3) and strong (~0.8) correlation values. Building on this previous study, here the 111 

multi-scale analysis of the mechanisms governing global precipitation variability was 112 

extended, including the energetic constraints on precipitation represented in Eq. (2). The 113 

manuscript is organized as follows: section 2 describes the considered datasets and the 114 

multi-scale analysis framework; the results of multi-scale correlation analysis on 115 

precipitation variability are presented and discussed in section 3; in section 4 the validity 116 

of the linear sensitivity correlations derived from the multi-scales analysis is 117 

demonstrated by employing a simple linear model to reconstruct global-averaged 118 

precipitation time-series from energetic constraints. At sub-yearly time-scales, where the 119 

correlations break down, it is shown in section 5 how the monthly statistics can be 120 

reproduced by employing a stochastic downscaling algorithm based on scale-invariant 121 

symmetries of precipitation. Finally, the main conclusions are summarized and discussed 122 

in section 6. 123 

 124 

2. Data and Methodology 125 

2.1. Data sets 126 

Precipitation observations were obtained from the Global Precipitation Climatology 127 

Project (GPCP) version 2.3 monthly precipitation dataset (Adler et al., 2003), which 128 

covers the full globe at 2.5º resolution from 1979 to present. Gridded datasets of monthly 129 

average surface temperatures were obtained from the Goddard Institute for Space Studies 130 

(GISSTEMP) analysis (Hansen et al., 2010), which covers the globe at 2º resolution from 131 

1880 to present, with the values provided as anomalies relative to the 1951-1980 reference 132 

period. GISSTEMP blends near-surface air temperature measurements from 133 
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meteorological stations (including Antarctic stations) with a reconstructed sea surface 134 

temperature (SST) dataset over oceans. Observations of atmospheric radiative fluxes 135 

were obtained from the National Aeronautics and Space Administration (NASA) Clouds 136 

and the Earth’s Radiant Energy System, Energy Balanced and Filled (CERES-EBAF) 137 

Edition 4.0 (Loeb et al., 2009), a monthly dataset covering the full globe at 1º resolution 138 

from March/2000 to June/2017. 139 

Two state-of-the-art reanalyses of the twentieth-century were considered in the present 140 

study. One was the National Oceanic and Atmospheric Administration Cooperative 141 

institute for Research in Environmental Sciences (NOAA-CIRES) twentieth-century 142 

reanalysis (20CR) version 2c (Compo et al., 2011), which covers the full globe at 2º 143 

resolution, spanning from 1851 to 2014. Only surface pressure observations and reports 144 

are assimilated in this reanalysis. SST boundary conditions are obtained from 18 members 145 

of pentad Simple Ocean Data Assimilation with Sparse Input (SODAsi) version 2, with 146 

the high latitudes corrected to the Centennial in Situ Observation-Based Estimates of the 147 

Variability of SST and Marine Meteorological Variables, version 2 (COBE-SST2). Here, 148 

global-mean time-series of precipitation, precipitable water vapor, near-surface 149 

temperature, SST, and atmospheric radiative fluxes were obtained from 20CR at daily 150 

resolution for the 1900-2010 period. Notice that the net atmospheric radiative flux cannot 151 

be obtained from 20CR, because the incoming solar radiation at the top of the atmosphere 152 

is not available for this dataset, due to an error with output processing.  153 

The other reanalysis considered in the present study was the European Centre for 154 

Medium-Range Weather Forecasts (ECMWF) twentieth-century reanalysis (ERA-20C, 155 

Poli et al., 2015), which covers the full globe at 1º resolution spanning from 1900-2010. 156 

It assimilates marine surface winds from the International Comprehensive Ocean-157 

Atmosphere Data Set version 2.5.1 (ICOADSv2.5.1) and surface and mean-sea-level 158 

pressure from the International Surface Pressure Databank version 3.2.6 (ISPDv3.2.6) 159 

and from ICOADSv2.5.1. SST boundary conditions are obtained from the Hadley Centre 160 

Sea Ice and Sea Surface Temperature data set version 2.1 (HadISST2.1). Global-mean 161 

time-series of precipitation, precipitable water vapor, near-surface temperature, SST, and 162 

atmospheric radiative fluxes were obtained from ERA-20C at daily resolution for the 163 

1900-2010 period.  164 

Finally, the uncoupled ECMWF twentieth-century ensemble of ten atmospheric model 165 

integrations (ERA-20CM, Hersbach et al., 2015) was considered, which uses the same 166 

model, grid, initial conditions, radiative and aerosol forcings as ERA-20C. However, no 167 
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observations are assimilated, the simulation is integrated continuously over the full 1900-168 

2010 period, and SST is prescribed by an ensemble of realizations from HadISST2.1, 169 

including one control simulation and nine simulations with perturbed SST and sea-ice 170 

concentration. A 10-member ensemble of global-mean time-series of precipitation, 171 

precipitable water vapor, near-surface temperature, SST, and atmospheric radiative fluxes 172 

were obtained from ERA-20CM at monthly resolution for the 1900-2010 period. 173 

Considering ERA-20CM allowed to test the sensitivity of the multi-scale correlation 174 

structure derived from ERA-20C to data assimilation, but different atmospheric 175 

evolutions associated with perturbations to the forcing fields (particularly to SST). 176 

Notice that the clear-sky radiative fluxes considered here obtained from ECMWF datasets 177 

are computed for the same atmospheric conditions of temperature, humidity, ozone, trace 178 

gases and aerosol, but assuming that the clouds are not there. Clear-sky estimates from 179 

ERA-20C and ERA-20CM cover the full globe area and not just the cloud free regions at 180 

each time instant. However, they are available for net radiative fluxes, but not for 181 

downwelling or upwelling radiation fluxes. 182 

2.2. Multi-scale correlation analysis 183 

Consider two time-series, 𝑦, and 𝑦′, with N data points each. Here the goal is to study the 184 

correlation between the fluctuations 𝛥𝑦(𝛥𝑡) and 𝛥𝑦’(𝛥𝑡) at different time-scales 𝛥𝑡. Due 185 

to the strong yearly cycle present in the considered time-series, the periodic seasonal trend 186 

was first eliminated by subtracting the long-term average (over all the years in the record) 187 

of each calendar day (or month, depending on temporal resolution): 188 

𝑦𝑑𝑠(𝑖) = 𝑦(𝑖) − 〈𝑦〉𝑑,        (3) 189 

where 𝑦𝑑𝑠 is the deseasonalized anomalies time-series.  190 

Traditionally, fluctuations are defined by the difference 𝛥𝑦(𝛥𝑡) = 𝑦(𝑡 + 𝛥𝑡) − 𝑦(𝑡). 191 

However, it has been shown that such definition is only appropriate for fluctuations 192 

increasing with time-scale (Lovejoy and Schertzer, 2013). Consequently, the traditional 193 

definition is not useful for the present study, since the fluctuations for most atmospheric 194 

variables time-series (including temperature, rain, wind, water vapor, amongst others) 195 

decrease with increasing time-scale over the tens of days to tens of years range (e.g. 196 

Lovejoy and Schertzer, 2013; Lovejoy, 2015; Lovejoy et al., 2017; Nogueira, 2017a; 197 

2017b; 2018). In this sense, here the fluctuations were defined using the Haar wavelet, 198 

which is appropriate for the full range of time-scales and all atmospheric variables 199 

considered, in both cases where fluctuations increase or decrease with time-scale. 200 

Furthermore, correlations computed from Haar fluctuation time-series also avoid the low 201 
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frequency biases that emerge in standard correlation analysis due to climate variability 202 

(see Lovejoy et al. (2017) for a detailed description of the Haar fluctuations and 203 

correlations of Haar fluctuations). 204 

The Haar fluctuations are simply defined as the difference of the means from 𝑡 + 𝛥𝑡/2 to  205 

𝑡 + 𝛥𝑡/2 and from 𝑡 to 𝑡 + 𝛥𝑡/2, i.e.: 206 

(∆𝑦(∆𝑡))𝐻𝑎𝑎𝑟 =
2

∆𝑡
∫ 𝑦(𝑡)𝑑𝑡

𝑡+∆𝑡

𝑡+∆𝑡/2
−

2

∆𝑡
∫ 𝑦(𝑡)𝑑𝑡

𝑡+∆𝑡/2

𝑡
,    (4) 207 

For the sake of simplicity, henceforth the fluctuation notation ∆𝑦(∆𝑡) will be employed 208 

to refer to Haar fluctuations (i.e. ∆𝑦(∆𝑡) ≡ (∆𝑦(∆𝑡))𝐻𝑎𝑎𝑟). A Haar fluctuation time-209 

series was computed by employing Equation 4 at each instant of the deseasonalized 210 

anomalies time-series for each variable considered. Finally, at each time-scale, ∆𝑡, the 211 

correlation coefficient, 𝜌, of the corresponding Haar fluctuations time-series was 212 

computed for each pair of variables considered.  213 

Notice that, in computing correlations at time-scales larger than two times the original 214 

time-series resolution, there is overlapping of the data-points considered in computing the 215 

Haar fluctuations. While this could introduce spurious effects in the computed 216 

correlations, previous works have shown the robustness of the Haar fluctuation-based 217 

correlations methodology used here (e.g. Lovejoy et al., 2017). Additionally, the 218 

analogous method of Detrended Cross-Correlation Analysis has also been employed on 219 

overlapping windows and demonstrated to provide accurate correlation estimates at 220 

different time-scales using overlapping windows(see e.g. Podobnik & Stanley, 2008; 221 

Podobnik et al., 2011; Piao and Fu, 2016). In fact, in Section 3 below it is shown that 222 

identical correlation structures are obtained between correlations of Haar fluctuations and 223 

Detrended Cross-Correlation Analysis. Since the multi-scale cross-correlation structure 224 

obtained with Haar fluctuations is identical to the results using Detrended Cross-225 

Correlations Analysis, it is assumed that critical points for the 95% significance level of 226 

Haar fluctuation correlations are identical to the ones demonstrated by Podobnik et al. 227 

(2011) for Detrended Cross-Correlation Analysis using overlapping windows, where the 228 

significant values can vary between values below 0.1 and up to about 0.4, depending on 229 

the time series length, the considered time-scale, and the power law exponents of both 230 

time-series. In this sense, here it is assumed that correlation magnitudes below 0.3 are 231 

nonsignificant, and that magnitudes in the 0.3 to 0.4 range should be interpreted with care. 232 

 233 

3. Analysis of the mechanisms governing P variability across time-scales 234 
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3.1. Multi-scale structure of the atmospheric water cycle response to surface 235 

temperature fluctuations 236 

The correlations between Haar fluctuations time-series revealed strong correlations (~0.9) 237 

between deseasonalized anomaly time-series for global-averaged precipitable water 238 

vapor and near surface temperature (or, alternatively, SST) at multi-year time-scales (Fig. 239 

1a). However, as the time-scale decreases there is a transition in the correlation structure, 240 

and negligible correlations (<0.3) emerge at sub-yearly time-scales. This result suggested 241 

that the Clausius-Clapeyron relationship (see Eq. (1)) holds to a very good approximation 242 

at multi-year time-scales, but not at sub-yearly time-scales. Interestingly, Lovejoy et al. 243 

(2017) computed the Haar fluctuation correlations for GISSTEMP surface temperatures 244 

and found a similar transition in the multi-scale correlation structure of SST against 245 

global-averaged surface temperature, with low-correlations at time-scales below a few 246 

months and strong correlations (~0.8) at multi-year time-scales. Notice that the latter 247 

strong correlations weren’t surprising, since SST was a major component in their 248 

definition of global-averaged surface temperature (which for GISSTEMP uses SST over 249 

the ocean pixels and 2-meter air temperature over land pixels). Nonetheless, Lovejoy et 250 

al. (2017) also found a similar transition for the correlation between SST and near-surface 251 

air temperature averaged over global-land, with maximum correlation values ~0.6 at 252 

multi-year time-scales. The transition in the correlation structure between SST and 253 

global-land temperature was confirmed here for ERA-20C, ERA-20CM, 20CR and 254 

GISSTEMP (Fig. 1b). Thus, the present results support Lovejoy et al. (2017) argument 255 

that these abrupt correlation changes correspond to a fundamental behavioral transition, 256 

where the atmosphere and the oceans start to act as a single coupled system. Furthermore, 257 

the results presented here suggest that precipitable water vapor anomalies at multi-year 258 

resolution can be derived, to a very good approximation, from SST alone. 259 

Nogueira (2018) also reported a transition in the multi-scale correlation structure between 260 

deseasonalized anomaly time-series of global-averaged precipitation and surface 261 

temperature (considering SST over the oceans and 2-m air temperature over land), with 262 

negligible values at sub-yearly time-scales, but with large spread in the magnitude of the 263 

multi-year correlations, ranging between ~0.3 and ~0.8. Here, a similar result was found 264 

for the multi-scale correlations structure between global-averaged precipitation and 265 

surface temperature and, also, global-averaged precipitation and SST (Fig. 1c), with large 266 

spread in correlation magnitude at multi-year time-scales (~0.7 in ERA-20C and ERA-267 

20CM, ~0.6 in 20CR, and <0.4 in observations). Furthermore, considering different time-268 
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lags in computing the cross-correlations between precipitation and surface temperature 269 

did not reveal the presence of significant lagged correlations over the daily to decadal 270 

time-scale range.  271 

 272 

3.2. Multi-scales structure of the energetic constraints to precipitation variability 273 

A study of the circulation component of the precipitation response to temperature 274 

fluctuations requires a detailed representation of several spatially heterogeneous variables 275 

and their nonlinear interactions. An alternative path towards understanding global-276 

averaged precipitation temporal variability was taken in the present investigation, 277 

focusing on the constraints imposed by the atmospheric energy balance represented in 278 

Equation (2). Fig. 2a (solid lines) shows that the estimated multi-scale correlation 279 

coefficients between the deseasonalized anomaly time-series for precipitation and net 280 

atmospheric radiative fluxes were strongly (negatively) correlated at multi-year time-281 

scales (𝜌~ − 0.8 in ERA-20C, ERA-20CM and observations), in agreement with the 282 

balance in Equation (2). In contrast, at sub-yearly time-scales the correlation magnitude 283 

decreased rapidly, changed sign around monthly time-scales, and reached values ~0.4 at 284 

time-scales below about 10 days.  285 

Considering the combined effect of the net atmospheric radiative fluxes and sensible heat 286 

flux in Equation (2) slightly increased the (positive) correlations at sub-monthly time-287 

scales (Fig. 2a, dashed lines), although the absolute changes are essentially below 0.1. 288 

More importantly, Fig. 2a shows that the magnitude of the correlation at multi-year time-289 

scales between global-averaged precipitation and net atmospheric radiative fluxes is 290 

significantly larger than when the combined effect of net atmospheric radiative fluxes and 291 

sensible heat flux were considered. Indeed, the correlation between global-averaged 292 

precipitation and sensible heat flux displayed values up to about 0.5 at sub-monthly time-293 

scales, but essentially <0.4 at multi-year time-scales (Fig. 2a, dot-dashed lines). Given 294 

the results in Fig. 2a, the following linear relation was hypothesized: 𝐿𝑉∆𝑃 ≈295 

𝑐1 × (−∆𝑅𝑎𝑡𝑚) +  𝑐2, where 𝑐1 and 𝑐2 are arbitrary constants, and ∆ represents 296 

fluctuations taken as deseasonalized anomalies at multi-year resolutions. At sub-yearly 297 

time-scales this simplification is not adequate, since the correlations between global-298 

averaged precipitation and net atmospheric radiative fluxes becomes negligible. In other 299 

words, the energy balance represented in Equation (2) doesn’t represent the dominant 300 

constraint on precipitation variability at sub-yearly time-scales, most likely due to non-301 

negligible changes in atmospheric heat storage. 302 
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The analysis was extended by decomposing net atmospheric radiative fluxes into its net 303 

atmospheric longwave and shortwave radiative flux components, i.e. 𝑅𝑎𝑡𝑚 = 𝑅𝐿𝑊,𝑛𝑒𝑡 +304 

𝑅𝑆𝑊,𝑛𝑒𝑡. On the one hand, the correlation between global-averaged precipitation and net 305 

atmospheric radiative fluxes is nearly identical to the correlation between global-averaged 306 

precipitation and net atmospheric longwave radiative fluxes (i.e. 𝜌𝑃,𝑅𝑎𝑡𝑚
≈ 𝜌𝑃,𝑅𝐿𝑊,𝑛𝑒𝑡

) 307 

over the full range of time-scales considered (Fig. 2b).  On the other hand,  𝜌𝑃,𝑅𝑆𝑊,𝑛𝑒𝑡
 also 308 

displayed significant values (~0.6) at multi-year time-scales, but the latter magnitude was 309 

nearly 0.2 lower when compared to 𝜌𝑃,𝑅𝑎𝑡𝑚
 and 𝜌𝑃,𝑅𝐿𝑊,𝑛𝑒𝑡

 (Fig. 2b). Consequently, the 310 

above linear relationship for multi-scale P anomalies was further refined as 𝐿𝑉∆𝑃 ≈311 

𝑐1 × (−∆𝑅𝑎𝑡𝑚) +  𝑐2 ≈ 𝑐3 × (−∆𝑅𝐿𝑊,𝑛𝑒𝑡) + 𝑐4, where 𝑐3 and 𝑐4 are arbitrary constants. 312 

Subsequently, the net atmospheric longwave radiative flux was further decomposed into 313 

the top-of-atmosphere (TOA) and surface net longwave fluxes, i.e. 𝑅𝐿𝑊,𝑛𝑒𝑡 = 𝑅𝐿𝑊,𝑇𝑂𝐴 +314 

𝑅𝐿𝑊,𝑆𝐹𝐶. At multi-year time-scales, 𝜌𝑃,𝑅𝑎𝑡𝑚
≈ 𝜌𝑃,𝑅𝐿𝑊,𝑆𝐹𝐶

 (Fig. 2c), suggesting that the 315 

surface net longwave radiative fluxes provide the main constraint to global-averaged 316 

precipitation variability. The correlation between global-averaged precipitation and TOA 317 

longwave radiative fluxes also displayed significant values at multi-year time-scales, up 318 

to ~-0.6 in ERA-20C and ERA-20CM datasets, but much lower in 20CR where the 319 

magnitude of the correlation was < 0.4 at multi-year time-scales. Nonetheless, the former 320 

correlations (in ERA-20C and ERA-20CM) were in better agreement with observations, 321 

suggesting that significant (negative) correlations existed between global-averaged 322 

precipitation and net longwave fluxes at TOA anomalies at multi-year time-scales. 323 

However, for all datasets, the magnitude of 𝜌𝑃,𝑅𝐿𝑊,𝑇𝑂𝐴
 at multi-year time-scales was 324 

nearly 0.2 lower than for 𝜌𝑃,𝑅𝐿𝑊,𝑆𝐹𝐶
. Consequently, a further approximation was 325 

considered on the linear model for precipitation fluctuations at multi-year time-scales: 326 

𝐿𝑉∆𝑃 ≈ 𝑐1 × (−∆𝑅𝑎𝑡𝑚) + 𝑐2 ≈ 𝑐3 × (−∆𝑅𝐿𝑊,𝑛𝑒𝑡) +  𝑐4 ≈ 𝑐5 × (−∆𝑅𝐿𝑊,𝑆𝐹𝐶) +  𝑐6.  327 

Finally, the surface net longwave radiative flux can be further decomposed into its 328 

upwelling and downwelling (henceforth denoted downwelling longwave radiation, DLR) 329 

components. Fig. 2d shows that, at multi-year time-scales, the differences in the 330 

correlations of global-averaged precipitation against DLR (𝜌𝑃,𝐷𝐿𝑅) or against net 331 

atmospheric radiative fluxes (i.e. 𝜌𝑃,𝑅𝑎𝑡𝑚
) were within 0.1 in observations, ERA-20C and 332 

ERA-20CM (Ratm is unavailable for 20CR). Thus, at multi-year time-scales, the 333 

fluctuations in downwelling surface longwave radiative fluxes are, to a good 334 
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approximation, linearly related to precipitation fluctuations: 𝐿𝑉∆𝑃 ≈ 𝑐7 × (−∆𝐷𝐿𝑅) +335 

 𝑐8. Notice that the correlation structure of global-averaged precipitation against 336 

upwelling surface radiative fluxes or against net atmospheric radiative fluxes are nearly 337 

identical in observations. However, significant difference emerged between these two 338 

quantities (~0.2) in ERA-20CM and ERA-20C. Thus, a similar linear relationship 339 

between ∆𝑃 and ∆𝑅𝐿𝑊,𝑆𝐹𝐶,𝑈𝑃 might also hold to a good approximation, although the 340 

results are less robust than for ∆𝑃 against ∆𝐷𝐿𝑅. 341 

The correlation between global-averaged precipitation and clear-sky net radiative 342 

atmospheric heating (i.e. 𝜌𝑃,𝑅𝑎𝑡𝑚,𝑐𝑠
) was nearly identical to 𝜌𝑃,𝑅𝑎𝑡𝑚

 at multi-year time-343 

scales (Fig. 3a). This suggested that the cloud effects on the multi-year linear dependence 344 

between precipitation variability and net atmospheric radiative fluxes may be neglected. 345 

But the same isn’t true at time-scales below a few months, where significant differences 346 

emerge between 𝜌𝑃,𝑅𝑎𝑡𝑚,𝑐𝑠
 and 𝜌𝑃,𝑅𝑎𝑡𝑚

. The clear-sky approximation holds at multi-year 347 

time-scales for correlations of global-averaged precipitation against net atmospheric 348 

longwave radiative fluxes and, also, and against the global-averaged net surface longwave 349 

fluxes (Fig. 3b). Based on these results, it was further hypothesized that cloud effects are 350 

also negligible for the correlation between global-averaged precipitation and DLR at 351 

multi-year temporal scales. This hypothesis could not be tested directly because clear-sky 352 

DLR time-series were not available for the ECMWF datasets. Nonetheless, the results in 353 

Section 4 based on an empirical algorithm for DLR estimation under a clear-sky 354 

approximation provided support for this hypothesis.  355 

At this point, it is important to notice that the existence of strong correlations does not 356 

necessarily imply causality between two variables. However, the atmospheric energy 357 

balance in Equation (2) provides a physical basis for the obtained strong (negative) 358 

correlations values between precipitation and atmospheric radiative fluxes. In fact, the 359 

multi-scale analysis presented here provided further robustness to previous investigations 360 

on the importance of energetic constraints to global precipitation, the dominant role of 361 

surface longwave fluxes, namely DLR, and the negligible cloud effects in these 362 

relationships (e.g., Stephens and Hu, 2010; Stephens et al., 2012a,b). More importantly, 363 

a clear transition emerged between robust correlations at multi-year time-scales and 364 

negligible correlations at sub-yearly time-scales, which was found for global-averaged 365 

precipitation against atmospheric radiative fluxes (particularly total net, net longwave and 366 

DLR), global-averaged precipitable water vapor against surface temperature (and SST), 367 
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for global SST against global near-surface air temperature and, less robustly, for global-368 

averaged precipitation against surface temperature (or SST).  369 

Notice that the correlation structure derived from Haar fluctuations of different 370 

combinations of variables presented in the present section are identical to the correlation 371 

structure obtained by employing Detrended Cross-Correlation Analysis (DCCA, see 372 

Supplementary Figures 1, 2 and 3). DCCA has been previously shown to robustly 373 

quantify the correlations at different time-scales (Podobnik & Stanley, 2008; Piao and Fu, 374 

2016; Nogueira, 2017b; 2018, where detailed descriptions of DCCA methodology are 375 

also provided). This result provides one of the first empirical verifications for the multi-376 

scale correlation obtained from Haar fluctuations, recently introduced by Lovejoy et al. 377 

(2017). 378 

 379 

4. Evaluation of the multi-year linear relationships between global-averaged 380 

precipitation and clear-sky DLR and surface temperature 381 

The strong correlations between global-averaged precipitation and atmospheric longwave 382 

radiative fluxes imply that simple linear model should be able to reproduce the variability 383 

precipitation anomalies at multi-year time-scales. This hypothesis is tested in the present 384 

section, aiming to provide robustness to the strong multi-year correlations presented in 385 

Section 3. Specifically, the robustness of the tight correlation between global-averaged 386 

precipitation and clear-sky DLR at multi-year time-scales is tested. Additionally, it is 387 

tested whether the more robust correlation between global-averaged precipitation and 388 

clear-sky DLR at multi-year time-scales compared to global-averaged precipitation 389 

against surface temperature results in a better reconstruction of precipitation variability 390 

by such a linear model.  391 

The clear-sky DLR can be derived, to a good approximation, from the global averaged 392 

near-surface temperature alone (e.g. Stephens et al., 2012b). Furthermore, given the tight 393 

coupling between global-averaged temperature over land and SST at multi-year time-394 

scales (Fig. 1b), it is hypothesized that clear-sky DLR variability could be obtained, to a 395 

good approximation directly from the SST forcing. This hypothesis is also supported by 396 

the nearly identical correlations between global-averaged precipitable water vapor against 397 

surface temperature or against SST (Fig. 1a). 398 

Here two different algorithms to estimate clear-sky DLR are tested: the Dilley-O’Brien 399 

model (Dilley & O’Brien, 1998), and the Prata model (Prata, 1996). In the Dilley-O’Brien 400 

model: 401 
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𝐷𝐿𝑅2𝑦,𝐷𝑂 = 𝑎1 + 𝑎2 (
𝑆𝑆𝑇2𝑦

𝑆𝑆𝑇𝑐
)

6

+ 𝑎3 (
∆𝑃𝑊𝑉2𝑦+𝑃𝑊𝑉𝑐

𝑃𝑊𝑉𝑐
)

1/2

,    (8) 402 

Where 𝑎1 = 59.38 Wm-2, 𝑎2 = 113.7 Wm-2 and 𝑎3 = 96.96 Wm-2 are the model parameters, 403 

and 𝑃𝑊𝑉𝑐 = 22.5 kg m-2 is the climatological value for precipitable water vapor. The 404 

subscript ‘2y’ (e.g. 𝐷𝐿𝑅2𝑦) indicates a fluctuation for ∆𝑡 =2-year. Notice that 𝐷𝐿𝑅𝑐,𝐷𝑂 =405 

𝑎1 + 𝑎2 + 𝑎3 is obtained by replacing the climatological values of PWV and SST in 406 

Equation (8).  407 

The Prata model for ∆𝐷𝐿𝑅2𝑦,𝑃𝑟 is based on the Stefan-Boltzmann equation: 408 

𝐷𝐿𝑅2𝑦,𝑃𝑟 = 𝜀𝑐𝑙𝑟𝜎𝑆𝐵𝑆𝑆𝑇2𝑦
4
        (9) 409 

Where 𝜎𝑆𝐵 = 5.67 × 10−8 Wm-2K-4 is the Stefan-Boltzmann constant and: 410 

𝜀𝑐𝑙𝑟 = 1 − (1 + 𝑃𝑊𝑉2𝑦)exp (−(1.2 + 3𝑃𝑊𝑉2𝑦)
1/2

)    (10) 411 

The anomaly-time series is computed from ∆𝐷𝐿𝑅2𝑦,𝑃𝑟 = 𝐷𝐿𝑅2𝑦,𝑃𝑟 − 𝐷𝐿𝑅𝑐,𝑃𝑟, where 412 

𝐷𝐿𝑅𝑐,𝑃𝑟 is obtained by replacing the climatological values of PWV and SST in Equations 413 

(9) and (10). 414 

The strong correlation between global-averaged precipitable water vapor and SST at 415 

multi-year time-scales (Fig. 1a) allowed to remove the PWV dependence in Equations (8) 416 

and (11), by replacing  𝑃𝑊𝑉2𝑦 ≈ 𝛼𝑃𝑊𝑉,𝑆𝑆𝑇∆𝑆𝑆𝑇2𝑦 + 𝑃𝑊𝑉𝑐. The forcing ∆𝑆𝑆𝑇2𝑦 time-417 

series were obtained by coarse-graining the deseasonalized (using Equation (3)) global-418 

averaged SST obtained from GISSTEMP dataset. The sensitivity coefficient, 𝛼𝑊,𝑆𝑆𝑇 ≈419 

0.08 𝐾−1 was estimated by least-square regression of ∆𝑃𝑊𝑉2𝑦/𝑃𝑊𝑉𝑐 against ∆𝑆𝑆𝑇2𝑦, 420 

pooling together all datasets (ERA-20C, ERA-20CM and 20CR). The 𝛼𝑃𝑊𝑉,𝑆𝑆𝑇 estimates 421 

are summarized in Table 1, including for each individual dataset, ranging between 0.07 422 

and 0.10 K-1. Notice that the obtained values are close to the typical 0.07 K-1 value 423 

predicted by the Clausius-Clapeyron relationship. 424 

In this way, two reconstructed anomaly time-series for global-averaged precipitation were 425 

obtained using the Diley-O’Brien and the Prata algorithms. The climatological global-426 

averaged precipitation 𝑃𝑐 ≈ 2.7 mm/day was estimated from GPCP dataset. The 427 

sensitivity coefficient 𝛼𝑃,𝐷𝐿𝑅 ≈ 0.004 (W/m2)-1 was estimated by least-square regression 428 

of ∆𝑃2𝑦/𝑃𝑐 against ∆𝐷𝐿𝑅2𝑦, pooling together all available datasets (ERA-20C, ERA-429 

20CM, 20CR and GPCP against CERES-EBAF). Notice that, in estimating 𝛼𝑃,𝐷𝐿𝑅, clear-430 

sky DLR time-series were used where available (i.e. for ERA-20C and ERA-20CM) 431 

datasets, but they were replaced by (full-sky) DLR otherwise (i.e. for 20CR and CERES-432 

EBAF). The 𝛼𝑃,𝐷𝐿𝑅  estimates are summarized in Table 2, including values obtained from 433 
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each dataset (no estimate was made for GPCP against CERES-EBAF due to the limited 434 

duration of the latter), ranging between 0.003 (W/m2)-1 and 0.005 (W/m2)-1. 435 

Another simple linear model for reconstruction of multi-year global-averaged 436 

precipitation anomaly time-series was tested, based on the direct response (correlations) 437 

of P to SST fluctuations, i.e. 𝑃2𝑦,𝑆𝑆𝑇 ≈ 𝛼𝑃,𝑆𝑆𝑇∆𝑆𝑆𝑇2𝑦𝑃𝑐 + 𝑃𝑐. Again, the ∆𝑆𝑆𝑇2𝑦 was 438 

obtained from GISSTEMP dataset. The sensitivity coefficient, 𝛼𝑃,𝑆𝑆𝑇 ≈ 0.02 𝐾−1 was 439 

estimated by least-square regression of ∆𝑃2𝑦/𝑃𝑐 against ∆𝑆𝑆𝑇2𝑦, pooling together all 440 

datasets (ERA-20C, ERA-20CM, 20CR and GPCP against GISSTEMP). The 𝛼𝑃,𝑆𝑆𝑇 441 

estimates are summarized in Table 3, including for each individual dataset, ranging 442 

between 0.02 and 0.04 K-1. Notice that the obtained values are close to the 0.01 to 0.03 443 

K-1 range reported in the relevant literature (e.g. Schneider et al., 2010; Trenberth, 2011; 444 

O’Gorman et al., 2012; and Allan et al., 2014). 445 

When compared against ∆𝑃2𝑦 directly derived from GPCP for the 1979 to 2010 period, 446 

the errors in the proposed linear ∆𝑃2𝑦 reconstructions were generally close to those for 447 

atmospheric model-based products (Fig. 4). ∆𝑃2𝑦,𝑃𝑟 displays the highest mean bias, 448 

somewhat higher than for atmospheric model-based datasets, but also higher than the 449 

mean bias for ∆𝑃2𝑦,𝐷𝑂 and ∆𝑃2𝑦,𝑆𝑆𝑇 (Fig. 4a). Notice that all atmospheric model-based 450 

products considered here also display a positive bias. While this may be due a negative 451 

bias of GPCP (e.g. Gehne et al., 2015), this observational dataset represents the longest 452 

reliable dataset for global precipitation studies and thus was considered here as ‘the truth’. 453 

More importantly, the mean bias is easy to correct, simply by subtracting its value from 454 

the time-series. This correction was implemented here for all atmospheric model-based 455 

and linear-model based ∆𝑃2𝑦 time-series.  Figure 4c shows that the normalized standard 456 

deviation (𝜎𝑛 = 𝜎2𝑦,𝑚𝑜𝑑𝑒𝑙/𝜎2𝑦,𝑜𝑏𝑠) estimated from ∆𝑃2𝑦,𝐷𝑂 (~0.4) and, particularly, from 457 

∆𝑃2𝑦,𝑆𝑆𝑇 (~0.3) were lower than the values estimated from atmospheric model-based 458 

products (~0.5-0.9). In contrast, 𝜎𝑛 estimated from ∆𝑃2𝑦,𝑃𝑟 was nearly 0.8, which was 459 

higher than 20CR and most members in the ERA-20CM ensemble, only outperformed by 460 

ERA-20C dataset. The root-mean squared error after bias-correction (RMSEbc) estimated 461 

from ∆𝑃2𝑦,𝑃𝑟 and ∆𝑃2𝑦,𝐷𝑂 were well within the range of the values obtained from 462 

atmospheric model-based products (Fig. 4b), with the Prata model slightly 463 

overperforming the Dilley-O’Brien model. RMSEbc estimated from ∆𝑃2𝑦,𝑆𝑆𝑇 was on the 464 

high-end of the atmospheric model-based range of values, and somewhat worse than for 465 



15 
 

the DLR-based linear models. Finally, the Pearson correlation coefficient between models 466 

and observations (Fig. 4d) was similar amongst all linear-based models and well within 467 

the range of values estimated from the atmospheric model-based products. The latter 468 

result was expected since all linear models were forced by the same SST time-series.  469 

Overall, these results suggested that ∆𝑃2𝑦,𝑃𝑟 (after bias correction) reproduced the 470 

observations with similar accuracy to atmospheric model-based products, including 471 

similar RMSEbc, variability amplitude and phase of the signal. ∆𝑃2𝑦,𝐷𝑂 displayed similar 472 

performance for RMSEbc and for the phase, but not for the variability amplitude. Finally, 473 

∆𝑃2𝑦,𝑆𝑆𝑇 had the worst performance concerning RMSEbc, but also in capturing the 474 

variability amplitude, while it displayed similar ability to the other linear models in 475 

reproducing the phase. The overall weakest performance of ∆𝑃2𝑦,𝑆𝑆𝑇 was coherent with 476 

the less robust correlations underlying this model. Additionally, the results indicate that 477 

the non-linear transformations on SST employed in the Prata and the Dilley-O’Brien 478 

algorithms improved the linear models.  479 

 480 

5. Exploring scale-invariance for stochastic downscaling of precipitation to 481 

monthly resolution 482 

At sub-yearly time-scales, the magnitude of the correlations between global-averaged 483 

precipitable water vapor and SST, precipitation and DLR, and precipitation and 484 

SST decreases abruptly to negligible values (cf. Section 3). Additionally, the cloud-485 

effects on the energetic constraints of precipitation variability become non-negligible 486 

(Fig. 3). Consequently, the linear relationships underlying the above simple linear 487 

reconstructions of global-averaged precipitation at 2-year resolution are no longer 488 

appropriate at sub-yearly time-scales. Previous investigations have suggested that this 489 

transition should be related to a fundamental transition in the stochastic scale-invariant 490 

behavior of climate variables, which separates a high-frequency weather regime that 491 

extends up to about the synoptic scales (around 10 days to 1-month in the atmosphere, 492 

and around 1-year in the oceans) from a low-frequency weather (or macroweather) regime 493 

that extends up to a few decades (see e.g. Lovejoy et al., 2017; Nogueira, 2018). In the 494 

weather regime the amplitude of the fluctuations tends to increase with time-scale, while 495 

in the macroweather regime the amplitude of the fluctuations tends to decrease with 496 

increasing time-scale, hence implying a convergence toward the ‘climate normal’ at time-497 

scales of a few decades (Lovejoy, 2015). 498 
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In the present section, it is shown that the multi-scale analysis framework can also be 499 

taken advantage to perform stochastic downscaling from the multi-year to monthly 500 

resolution. This exercise allows to demonstrate the relevance of understanding and 501 

characterizing the multi-scale structure of atmospheric variables and its remarkable 502 

potential for stochastic downscaling applications. 503 

Building on the strong scale-invariant symmetries present in the variability of global and 504 

regional precipitation across wide ranges of time-scales (e.g. Lovejoy and Schertzer, 505 

2013; Nogueira et al., 2013; Nogueira and Barros, 2014, 2015; Nogueira, 2017, 2018), an 506 

algorithm was proposed here to derive the sub-yearly statistics from the multi-year 507 

information alone. The physical basis for this algorithm is that while the atmosphere is 508 

governed by continuum mechanics and thermodynamics, it simultaneously obeys 509 

statistical turbulence cascade laws (e.g., Lovejoy & Schertzer, 2013; Lovejoy et al., 510 

2018). 511 

Conveniently, precipitation (and many other atmospheric variables) is characterized by 512 

low spectral slopes 𝛽 < 1, with quasi-Gaussian and quasi-non-intermittent statistics, at 513 

time-scales between ~10 days and a few decades (Lovejoy & Schertzer, 2013; de Lima 514 

& Lovejoy, 2015; Lovejoy et al., 2015, 2017; Nogueira, 2017b, 2018). Grounded by these 515 

scale-invariant properties, fractional Gaussian noise was used here to generate multiple 516 

realizations of downscaled ∆𝑃 at monthly resolution from each member of each ∆𝑃2𝑦 517 

time-series: 518 

∆𝑃1𝑚(𝑡) = 𝑓𝐺𝑛1𝑚(𝑡)
∆𝑃2𝑦(𝑡)

𝑓𝐺𝑛2𝑦(𝑡)
       (11) 519 

where 𝑓𝐺𝑛1𝑚 is a fractional Gaussian noise, which was computed by first generating a 520 

random Gaussian noise (𝑔), then taking its Fourier transform (�̃�), multiplying by 𝑘−𝛽/2, 521 

and finally taking the inverse transform to obtain 𝑓𝐺𝑛1𝑚. The mean of 𝑓𝐺𝑛1𝑚 was forced 522 

to be equal to the number of data-points of ∆𝑃2𝑦. Then 𝑓𝐺𝑛2𝑦 was obtained by coarse-523 

graining 𝑓𝐺𝑛1𝑚using 24-point (i.e. 2 years) length boxes. In this way, ∆𝑃1𝑚,𝐷𝑂, ∆𝑃1𝑚,𝑃𝑟, 524 

∆𝑃1𝑚,𝑆𝑆𝑇 ensembles are generated respectively from the bias-corrected ∆𝑃2𝑦,𝐷𝑂, ∆𝑃2𝑦,𝑃𝑟 525 

and ∆𝑃2𝑦,𝑆𝑆𝑇 time-series. One hundred plausible realizations are generated for each 526 

ensemble, corresponding to one hundred different realizations of 𝑓𝐺𝑛1𝑚. Based on recent 527 

investigations on P scale-invariance properties, a spectral exponent 𝛽 ≈ 0.3 is assumed 528 

(de Lima & Lovejoy, 2015; Nogueira, 2018). In Equation (11), the 2-year resolution time-529 

series were assumed to have a constant value for every month inside each 2-years period.  530 
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Notice that a resolution limit should exist to the proposed stochastic downscaling 531 

algorithm, namely at time-scales below ~10 days where a fundamental transition occurs 532 

in the scaling behavior of most atmospheric fields (including global-averaged 533 

precipitation, see e.g. Lovejoy & Schertzer, 2013; Lovejoy, 2015; de Lima & Lovejoy, 534 

2015; Nogueira, 2017a,b, 2018). At faster time-scales intermittency becomes non-535 

negligible and the quasi-Gaussian approximation to the statistics is no longer robust.  536 

The proposed downscaling methodology corresponds to treating the sub-yearly 537 

frequencies as random ‘weather noise’, which is characterized, to a good approximation, 538 

by scale-invariant behavior with quasi-Gaussian statistics (Vallis, 2009; Lovejoy et al., 539 

2015). A similar downscaling methodology has been previously demonstrated to 540 

reproduce the spatial sub-grid scale variability of topographic height (Bindlish & Barros, 541 

1996), precipitation (Bindlish & Barros, 2000; Rebora et al., 2006; Nogueira et al., 2013; 542 

Nogueira & Barros, 2015) and clouds (Nogueira & Barros, 2014).  543 

Figure 5a showed that the PDFs computed from ∆𝑃1𝑚,𝐷𝑂, ∆𝑃1𝑚,𝑃𝑟 and ∆𝑃1𝑚,𝑆𝑆𝑇 were in 544 

remarkable agreement with PDFs obtained from GPCP observational dataset for the 545 

1979-2010 period, representing a significant improvement compared to all atmospheric 546 

model-based products. This improved PDF accuracy was quantified using the Perkins 547 

skill score, S-Score (Perkins et al., 2007), defined as: 548 

S-Score=100 × ∑ 𝑚𝑖𝑛[𝑓𝑚𝑜𝑑(𝑖), 𝑓𝑜𝑏𝑠(𝑖)]𝑀
𝑖=1       (12) 549 

where 𝑓𝑚𝑜𝑑(𝑖) and 𝑓𝑜𝑏𝑠(𝑖) are respectively the frequency of the modeled and observed P 550 

anomaly values in bin i, M is the number of bins used to compute the PDF (here M=15), 551 

and min[x,y] is the minimum between the two values. The S-Score is a measure of 552 

similarity between modeled and observed PDFs, such that if a model reproduces the 553 

observed PDF perfectly then S-Score=100%.  554 

The linear-based models showed S-Score values around 95%, which were significantly 555 

higher than then ~80% found for the atmospheric model-based products (Fig. 6). 556 

Furthermore, the stochastic model captured the change in the PDFs between two separate 557 

periods (1979-1990 and 1999-2010, Fig. 5b), while preserving the remarkably high 558 

(≥90%) S-Scores (Fig. 6, blue and red markers). Indeed, the S-Scores for linear-based 559 

were consistently better than the S-Scores obtained from atmospheric model-based 560 

products (~80%). Despite some differences between PDFs obtained from ∆𝑃1𝑚,𝐷𝑂, 561 

∆𝑃1𝑚,𝑃𝑟 and ∆𝑃1𝑚,𝑆𝑆𝑇, their similar performance in reproducing observations was 562 

somewhat unexpected, given the distinct performances in reproducing the observed time-563 
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series at multi-year resolutions. While the error analysis here was based on a limited 564 

sample (mainly due to short duration of the satellite-period), these results suggested that 565 

the proposed stochastic downscaling mechanism is quite robust in reproducing the 566 

monthly statistics of global-averaged precipitation, with only moderate sensitivity to the 567 

coarse resolution forcing. 568 

 569 

6. Discussion and Conclusions 570 

Atmospheric variables display significant variability over a wide range of temporal 571 

scales, both due changes in external forcings (including surface fluxes, changes to 572 

greenhouse gases and aerosol concentrations, solar forcing, and volcanic eruptions), but 573 

also due to intrinsic modes of atmospheric variability. Additionally, external and internal 574 

atmospheric processes interact nonlinearly amongst themselves, resulting in an intricate 575 

multi-scale structure, which is still ill understood and responsible for significant 576 

uncertainties in climate models. Here a multi-scale analysis framework was employed, 577 

aiming to disentangle the complex structure of global-averaged precipitation variability.  578 

The multi-scale correlation structure obtained from Haar fluctuations suggested that 579 

global-mean precipitation variability at multi-year time-scales is linearly related to the 580 

net atmospheric radiative fluxes, corresponding to the dominant effect of energetic 581 

constraints on precipitation variability. Furthermore, this linear relationship is dominated 582 

by its longwave component and, more specifically, by the surface longwave radiative 583 

fluxes, particularly DLR. The results also suggest that clouds play a negligible effect in 584 

these linear correlations at multi-years scales. 585 

Building on previous works of Lovejoy et al. (2017) and Nogueira (2018), the present 586 

manuscript highlights a critical transition in the multi-scale correlation structure at time-587 

scales ~1-year, revealing a change in the control mechanisms of several atmospheric 588 

variables, including precipitation. Specifically, at multi-year time-scales: (i) global-589 

averaged precipitation becomes tightly correlated to the net atmospheric radiative fluxes 590 

(|𝜌| ≳ 0.8), and this correlation is dominated by the downwelling longwave radiative flux 591 

at the surface; (ii) the cloud effects on the atmospheric radiative fluxes in (i) can be 592 

neglected; (iii) global-averaged precipitable water vapor becomes tightly correlated 593 

(𝜌~0.9) to surface temperature. The respective sensitivity coefficient for multi-year 594 

fluctuations of precipitable water vapor to surface temperature is estimated here to be 595 

0.07%/K, close to the value predicted by the Clausius-Clapeyron relationship; (iv) global-596 

averaged SST and near-surface air temperature over land become strongly correlated 597 
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(𝜌~0.7), implying a strong atmosphere-ocean coupling in agreement and extending the 598 

results from Lovejoy et al. (2017) based on one observational dataset. In contrast, at sub-599 

yearly time-scales, the magnitude of all these correlations decreases abruptly towards 600 

negligible values, and cloud effects are no longer negligible in the correlations between 601 

atmospheric radiative fluxes and precipitation.  Hints of a similar, but less robust, 602 

transition also emerged for the correlation structure between global-averaged 603 

precipitation and surface temperature - with negligible correlations at sub-yearly time-604 

scales, which tend increase at multi-year time-scales, although the latter displayed 605 

significant spread amongst different datasets (ranging between ~0.4 to ~0.7).  606 

The transition found here also contributes to sharpen the picture from previous studies 607 

reporting a ‘slow’ response where global-averaged precipitation increases due to 608 

increasing surface temperature, and a ‘fast’ response in which the atmosphere rapidly 609 

adjusts to changes in top of atmosphere radiative forcing, and that is independent of 610 

temperature fluctuations (Allen & Ingram, 2002; Bala et al., 2010; Andrews et al., 2010; 611 

O’Gorman et al., 2012; Allan et al., 2014). The correlation structure found here suggests 612 

that the ‘slow’ component corresponds to multi-year time-scales, and that radiative 613 

constraints (particularly surface longwave fluxes) are the key mechanism controlling 614 

precipitation variability rather than temperature, while cloud effects are negligible. On 615 

the other hand, the correlations here confirm the break down of the linear relation between 616 

temperature fluctuations at fast (sub-yearly) time-scales, but the dominant effect of top of 617 

atmosphere radiative forcing is not evident and, most likely, the situation is much more 618 

complex (for example surface sensible heat fluxes seem to become relevant at these time-619 

scales). 620 

The robustness of this emergent multi-scale correlation structure is demonstrated by 621 

proposing simple models for reconstruction of global-averaged at multi-year time-scales. 622 

Anomaly time-series for global-averaged precipitation at 2-year resolution were derived 623 

from SST observations alone, either directly based on precipitation vs SST correlation 624 

structure, or by combining the more robust energetic constraints of global-averaged 625 

precipitation (namely the precipitation vs clear-sky DLR correlation) with empirical 626 

algorithm for clear-sky DLR estimation, and the Clausius-Clapeyron relationship. After 627 

correcting for their systematic mean bias, the highly-idealized model for ∆𝑃2𝑦 based on 628 

clear-sky DLR estimated from the Prata algorithm displayed similar accuracy in 629 

reproducing observations as atmospheric model-based products, as measured by RMSEbc, 630 

Pearson correlation coefficient and normalized standard deviation. Finally, the model 631 
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based on precipitation vs SST correlation showed the weakest performance, which agrees 632 

with the less robust correlations underlying this idealized model. 633 

The proposed linear models cannot be extended to sub-yearly the time-scales because all 634 

the correlations upon which they rely become negligible. This abrupt transition in the 635 

multi-scale correlation structure implies that at sub-yearly time-scales the tight linear 636 

coupling between atmospheric and ocean temperature, the Clausius-Clapeyron 637 

relationship, and the atmospheric energy balance are no longer dominant linear 638 

constraints for global-averaged. Nonetheless, the multi-scale analysis framework 639 

provides another path for reconstruction of the precipitation statistics at sub-yearly 640 

resolution. A stochastic downscaling algorithm based on scale-invariant symmetries of 641 

precipitation was applied to ∆𝑃2𝑦 reconstructed time-series, resulting in monthly global-642 

averaged precipitation PDFs. Remarkably, the reconstructed PDFs at monthly resolution 643 

showed better accuracy in reproducing observed statistics than atmospheric model-based 644 

products, as measured by the PDF matching S-Score computed over decadal and 30-year 645 

periods. These results highlight the relevance and potential applications of multi-scale 646 

frameworks for atmospheric sciences. 647 

 648 
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Table 1 Linear regression coefficient 𝛼𝑊,𝑆𝑆𝑇 estimated from ΔPWV/PWVc against ΔSST 806 

at 2-year resolution, assuming a relationship as given by Equation (1). The respective 807 

coefficient of determination is also provided. The 𝛼𝑊,𝑆𝑆𝑇 are computed for ERA-20C, 808 

20CR, and for the ensemble of ERA-20CM simulations. Additionally, the coefficient is 809 

estimated by pooling together ERA-20C, ERA-20CM (ensemble) and 20CR datasets. 810 

Dataset 𝛼𝑃𝑊𝑉,𝑆𝑆𝑇 [𝐾−1] 𝑅2 

ERA-20C 0.09 0.97 

20CR 0.10 0.92 

E20CM (Ensemble) 0.07 0.92 

All Datasets 0.08 0.91 

 811 

 812 

Table 2. Linear regression coefficient 𝛼𝑃,𝐷𝐿𝑅 estimated from ΔP/Pc against ΔDLR at 2-813 

year resolution, assuming a relationship as given by Equation (11). The respective 814 

coefficients of determination are also provided. The 𝛼𝑃,𝐷𝐿𝑅 values are computed for ERA-815 

20C, 20CR, and for the ensemble of ERA-20CM simulations. Additionally, the 816 

coefficient is estimated by pooling together all datasets, including GPCP observations 817 

against DLR from CERES-EBAF. 818 

Dataset 𝛼𝑃,𝐷𝐿𝑅 [(𝑊𝑚−2)−1] 𝑅2 

ERA-20C 0.005 0.88 

20CR 0.003  0.51 

E20CM (Ensemble) 0.004 0.81 

All datasets (includes observations) 0.004 0.70 

 819 

 820 

Table 3. Linear regression coefficient 𝛼𝑃,𝑆𝑆𝑇 estimated from ΔP/Pc against ΔSST at 2-821 

year resolution. The respective coefficients of determination are also provided. The 𝛼𝑃,𝑆𝑆𝑇 822 

values are computed for ERA-20C, 20CR, for the ensemble of ERA-20CM simulations, 823 

and for GPCP against ERA-20CM control SST forcing. Additionally, the coefficient is 824 

estimated by pooling together all datasets. 825 

Dataset 𝛼𝑃,𝑆𝑆𝑇 [𝐾−1] 𝑅2 

ERA-20C 0.04 0.89 

20CR 0.02 0.35 

E20CM (Ensemble) 0.02 0.73 

GPCP 0.04 0.42 

All datasets (includes observations) 0.02 0.53 
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 826 

Figure 1. Cross-correlation coefficients against temporal scale computed from Haar 827 

fluctuations for global-mean time-series of a) 𝑃𝑊𝑉 vs 𝑇2𝑚 (solid) and P𝑊𝑉 vs 𝑆𝑆𝑇 828 

(dashed); b) 𝑆𝑆𝑇 vs 𝑇𝑙𝑎𝑛𝑑; and c) 𝐿𝑣𝑃 vs 𝑇2𝑚 (solid) and 𝐿𝑣𝑃 vs 𝑆𝑆𝑇 (dashed). Red lines 829 

represent results from ERA-20C, blue lines are from ERA-20CM, pink lines are from 830 

20CR and black lines are estimated from observational products. 831 

 832 

 833 

 834 
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 835 

Figure 2. Cross-correlation coefficients against temporal scale computed from Haar 836 

fluctuations of a) 𝐿𝑣𝑃 vs 𝑅𝑎𝑡𝑚 (solid), 𝐿𝑣𝑃 vs (𝑅𝑎𝑡𝑚 + 𝐹𝑆𝐻) (dashed) and 𝐿𝑣𝑃 vs 𝐹𝑆𝐻 837 

(dot-dashed); b) 𝐿𝑣𝑃 vs 𝑅𝑎𝑡𝑚 (solid), 𝐿𝑣𝑃 vs 𝑅𝐿𝑊,𝑛𝑒𝑡 (dashed), and 𝐿𝑣𝑃 vs 𝑅𝑆𝑊,𝑛𝑒𝑡 (dot-838 

dashed); c) 𝐿𝑣𝑃 vs 𝑅𝑎𝑡𝑚 (solid), 𝐿𝑣𝑃 vs 𝑅𝐿𝑊,𝑆𝐹𝐶  (dashed), and 𝐿𝑣𝑃 vs 𝑅𝐿𝑊,𝑇𝑂𝐴 (dot-839 

dashed); and d) 𝐿𝑣𝑃 vs 𝑅𝑎𝑡𝑚 (solid), 𝐿𝑣𝑃 vs 𝐷𝐿𝑅 (dashed), and 𝐿𝑣𝑃 vs 𝑅𝐿𝑊,𝑆𝐹𝐶,𝑈𝑃 (dot-840 

dashed). Red lines are computed from ERA-20C, blue lines are from ERA-20CM, pink 841 

lines are from 20CR and black lines are computed from GPCP and CERES-EBAF 842 

observational products. Notice that 𝑅𝑎𝑡𝑚 and 𝑅𝑆𝑊,𝑛𝑒𝑡 weren’t available from 20CR, while 843 

sensible heat flux wasn’t available from observations.  844 
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 845 

Figure 3. Cross-correlation coefficients against temporal scale computed from Haar 846 

fluctuations of a) 𝐿𝑣𝑃 vs 𝑅𝑎𝑡𝑚 (solid) and 𝐿𝑣𝑃 vs 𝑅𝑎𝑡𝑚,𝐶𝑆 (dashed); b) 𝐿𝑣𝑃 vs 𝑅𝐿𝑊,𝑆𝐹𝐶  847 

(solid) and 𝐿𝑣𝑃 vs 𝑅𝐿𝑊,𝑆𝐹𝐶,𝐶𝑆 (dashed). Red lines are computed from ERA-20C and blue 848 

lines are from ERA-20CM. 849 

  850 
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 851 

 852 

Figure 4. Error estimates from simulated anomaly time-series for P at 2-year resolution 853 

against GPCP, computed for the 1979-2010 period, including a) mean bias (Bias); b) root-854 

mean-square error after bias correction (RMSEbc); c) model standard deviation 855 

normalized by observed standard deviation (𝜎𝑛); and d) Pearson correlation coefficient 856 

(r). For ERA-20CM dataset the range for all ensemble members is shown, while ‘x’ marks 857 

their mean value. The p-value for all correlations shown in panel (d) are <0.05. 858 
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 860 

Figure 5. PDFs estimated from monthly anomaly time-series for P from ERA-20C (red), 861 

ERA-20CM (dark blue), 20CR (pink), GPCP (black), ∆𝑃1𝑚,𝐷𝑂 (dark green), ∆𝑃1𝑚,𝑃𝑟 862 

(light green), and ∆𝑃1𝑚,𝑆𝑆𝑇 (light blue). In panel a) the PDFs are estimated for the 1979-863 

2010 period, and in panel b) the PDFs are estimated for the 1979-1990 period (solid) and 864 

the 1999-2010 period (dashed). 865 

 866 

  867 
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 868 

Figure 6. S-Score computed from the different P simulations against GPCP. The values 869 

estimated for the full satellite period (1979-2010) are presented in black, for the 1979-870 

1990 period are presented in red, and for 1990-2010 period are presented in blue. For 871 

ERA-20CM dataset, the S-Score is estimated from the 10-member ensemble PDF. 872 


