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Dear Editor and Referees: 

 

Thank you for your valuable comments, which greatly helped us to specify weakness and 

unclarity in the manuscript.  

First of all, importantly, I re-conducted all experiments and re-calculated 

carbon flows by the VISIT model and improved accuracy of the mass balance of carbon 

budget, using the input data same to the first manuscript. Also, 146 parameter ensemble 

simulations (i.e. increased from 128 of the first submission) were conducted again. 

Additionally, consideration of leap years was revised to remove small but noisy 4-year-

cycle fluctuations in the time-series of carbon stocks. As a result, all figures and tables 

were updated, and results became more convincing.  

Both referees were interested in uncertainties in the present simulation-based 

estimates of minor carbon flows and carbon budget. In the previous manuscript, the 

simulated results were compared with a few datasets and values in the literature. As 

recommended by the referees, I compared the simulated results with a larger number of 

data in a more comprehensive manner. For example, biomass and soil carbon stocks were 

compared with observational data (Fig. S8) and MCFs estimated in this study were 

compared with previous studies as summarized in new Table 2. 

 The manuscript was revised on the basis of your comments. Otherwise, I tried 

to justify my research strategy in the light of present data availability and time limitation. 

My point-by-point reply to your comments is presented below, and the annotated 

manuscript shows how the manuscript was modified from the previous version.  

I hope this revision is satisfactory for being accepted for publication. 

 

 

Original comments in bold italic.  Sentences in the revised manuscript in blue italic. 

 
Anonymous Referee #1 

[Comment 1-1] General comments: Ito presents an interesting and comprehensive study on 

the net effects of Minor Carbon Flows (MCFs) on the regional and global carbon (C) 

balances. Although this study is highly important for research on the global carbon (C) cycle 

and climate change, many uncertainties remain unaddressed. Uncertainties play an 

important role in this study because the individual effects of the MCFs are much smaller 
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compared to the GPP and respiration fluxes. I believe that sensitivity and ensemble 

simulations are not enough to address the various large uncertainties related to the methods 

and models that quantify the MCFs. I would urge for a more detailed comparison of the 

results to existing observations and to other studies that have addressed certain MCFs in 

more detail in the past. 

[Reply 1-1] 

Thank you for this comment. I agree to include a more comprehensive comparison with existing 

observations and other studies on MCFs. The revised manuscript has an additional table (seen 

as new Table 2, below) for this purpose; more estimates and remarks will be included. 

 
Table 2. Summary of previous estimates of minor carbon flows (MCFs). 

MCF Reference (Pg C yr–1) 

FLUC Houghton et al. (2003): bookkeeping 2.1 ± 0.8 

 Le Quéré et al. (2018): GCP 2018 models 1.5 ± 0.6 
 Le Quéré et al. (2018): GCP 2018 bookkeeping 1.4 ± 0.7 

 This study (EXALL, 1980–1989 mean ± SD) 
                  (EXALL, 1990–2015 mean ± SD) 

0.99 ± 0.02 
0.60 ± 0.16 

FBB Wiedinmyer et al. (2011): FINN 2.18  
 van der Werf et al. (2017): GFED4s 2.2 
 van Marle et al. (2017): BB4CMIP6 1.90  
 This study (EXALL, 1990–2015 mean ± SD) 1.69 ± 0.21 
      

FBVOC Guenther et al. (2012): MEGAN model 0.96  
 Sindelarova et al. (2014): MEGAN model 0.76 
 This study (EXALL, 1990–2015 mean ± SD) 0.75 ± 0.036 

FCH4 Fung et al. (1991) 0.14  
 Saunois et al. (2016): GCP synthesis 0.135 
 This study (EXALL, 1990–2015 mean ± SD) 0.12 ± 0.006 

FAP Bondeau et al. (2007): LPJmL model 2.2 
 Ciais et al. (2007) 1.29 
 Wolf et al. (2015): FAOSTAT-base 2.05 ± 0.05 
 This study (EXALL, 1990–2015 mean ± SD) 1.45 ± 0.073 

FWH Winjum et al. (1998) 0.98 
 Pan et al. (2011): inventory analysis 0.189 

  This study (EXALL, 1990–2015 mean ± SD) 1.03 ± 0.082 

FDOC Meybeck (1993) 0.20  
 Dai et al. (2012) 0.17 
 This study (EXALL, 1990–2015 mean ± SD) 0.14 ± 0.004 
   

FPOC van Oost et al. (2007): agricultural soils 0.25 
 Regnier et al. (2013) 0.1 ± >0.05 
 Galy et al. (2015) 0.157 (0.107–0.231) 
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 Chappell et al. (2016): displacement by erosion 0.3–1.0 
 Naipal et al. (2018): ORCHIDEE + RUSLE 0.16 ± 0.06 

 This study (EXALL, 1990–2015 mean ± SD): riverine export to the 
ocean, 20% of soil displacement 0.19 ± 0.011 

   
   
      

 

Major comments: 

[Comment 1-2] 1) As indicated in this study, many uncertainties remain in the simulation of 

MCFs. There have been several studies in the past that have focused on individual MCFs in 

great detail and tried to address these uncertainties. This study, however, simulates the MCFs 

in a much simpler way. Although this is understandable, the question that remains is: Does 

the combination of MCFs in a single framework lead to new insights in the global C cycle, or 

does it pose more uncertainties and might even lead to the misinterpretation of their net 

effect? I feel that this issue has not been fully addressed by Ito. 

[Reply 1-2] This is a great comment. I’m convinced that this is one of the early attempts to 

include MCFs into a single consistent model framework, and in this sense, that this study carries 

novel implications such as interactions between MCFs and effects on net ecosystem production. 

On the other hand, I agree that these points were not adequately declared in the previous 

manuscript. The sparse observational data and simple parameterization of MCFs can bring 

additional uncertainties, which need to be recognized, into our global carbon accounting. 

However, I believe such attempts would lead to deeper understanding and more accurate 

evaluation of carbon budget. The revised manuscript includes these statements. 

(Sect. 4.5 of the revised manuscript) 

“This study is an early attempt to evaluate the effects of various MCFs. The results have 

convinced me that changes in MCFs will have considerable influences on the global carbon 

budget (e.g., Piao et al., 2018; Lal et al., 2019; Pugh et al., 2019), and more such attempts are 

required to improve our understanding of the global carbon cycle, which plays a critical role in 

future climate projections. However, given the imperfect state of knowledge about these MCFs, 

their inclusion can introduce other errors and biases. I took the estimation uncertainty into 

account by perturbing representative parameters, but this study did not examine other sources 

of uncertainties such as differences among ecosystem models and forcing data. Indeed, many 

ecosystem models have been developed with different degrees of complexity (e.g., dynamic 

global vegetation models), and intercomparison studies have shown that existing ecosystem 

models differ widely in their environmental responsiveness to changes in major carbon flows 
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(e.g., Friend et al., 2014; Huntzinger et al., 2017). For example, the models differ in global 

GPP by more than 30%, even though the processes contributing to primary production are well 

understood and increasingly constrained by observations (Anav et al., 2015). This single-model 

study was necessarily limited in searching the full range of estimation uncertainty, and further 

studies using multiple MCF-implemented models are highly desirable.” 

 

[Comment 1-3] 2) Secondly, it remains unclear to me if including the MCFs leads to a better 

or worse representation of net C fluxes between land and atmosphere and the C stored in 

biomass and soil. This study indicated that the VISIT model has been validated with various 

datasets at field, regional and global scales on ecosystem CO2 exchange. I am curious how 

the inclusion of MCFs changes the performance of the model. For example, do we see a 

better spatial variability in biomass and soil C stocks after including MCFs? 

[Reply 1-3] Thank you for this comment. In the light of uncertainties, it may be too early to 

conclude that including MCFs surely improves quantitative accuracy of terrestrial carbon cycle 

models. At least several aspects, the model encapsulating MCFs performed better than the old, 

no MCF one. For example, the net biome production in 1990–2009 (1.13 Pg C yr–1 of EXALL 

vs 2.78 Pg C yr–1 of EX0) was estimated more closely to the GCP 2018 one (1.22 Pg C yr–1). It 

is an excellent idea to compare the spatial distribution of biomass and soil carbon stocks with 

observation-based data. The revised manuscript includes the comparison of vegetation and soil 

carbon stocks (Fig. S8). 

(Sect. 4.1 of the revised manuscript) 

“EXALL successfully captured the large aboveground vegetation biomass stock in the tropics and 

the small stock in boreal zones seen in observations (Fig. S8a). A similar comparison of soil 

carbon (Fig. S8b) also indicates the model’s ability to capture the spatial gradient in this stock; 

an overestimation in the northern mid-latitudes (around 30°N) is attributable to high soil carbon 

accumulation in the Tibetan Plateau simulated by the model in frigid regions. It is not clear, 

however, whether EXALL (with MCFs) captured the global patterns with greater accuracy than 

EX0 (without MCFs), because observational datasets show considerable discrepancies, and the 

differences between the model simulations were relatively small.” 
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Figure S8. Latitudinal distribution of (a) aboveground biomass carbon and (b) soil organic 

carbon simulated by VISIT in EX0 and EXALL experiments. Also shown in (a) are distribution 

from Liu et al. (2015) and GEOCARBON (Avitabile et al., 2014). Also shown in (b) are 

distributions from the Harmonized World Soil Database (FAO/IIASA/ISRIC-CAS/JRC, 2012) 

and WISE30sec (Batjes, 2016). 

 

References of Fig. S8 

Avitabile, V., Herold, M., Lewis, S. L., Phillips, O. L., Aguilar-Amuchastegui, N., Asner, G. P., 

Brienen, R. J. W., DeVries, B., Gatti, C. R., Feldpausch, T. R., Girardin, C., de Jong, B., 

Kearsley, E., Klop, E., Lin, X., Lindsell, J., Lopez-Gonzalez, J., Lucas, R., Malhi, Y., Morel, 

A., Mitchard, E., Pandey, D., Piao, S., Ryan, C., Sales, M., Santoro, M., Vaglio Laurin, G., 

Valentini, R., Verbeeck, H., Wijaya, A., and Wilcock, S.: Comparative analysis andfusiuon 

for improved global biomass mapping, Global Vegetation Monitoring and Modeling, 

Avignon, France, 2014. 

Batjes, N. H.: Harmonized soil property values for broad-scale modeling (WISE30sec) with 

estimates of global soil carbon stock, Geoderma, 269, 61–68, 

https://doi.org/10.1016/j.geoderma.2016.01.034, 2016. 



  6 

Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M., Canadell, J. G., McCabe, M. F., Evans, J. P., 

and Wang, G.: Recent reversal in loss of global terrestrial biomass, Nature Clim. Change, 5, 

470–474, https://doi.org/10.1038/NCLIMATE2581, 2015. 

 

[Comment 1-4] 3) The various uncertainties in parameter estimation of the MCFs such as for 

the POC and agriculture MCFs are not quantified. For example, in line 21-22 on page 7, the 

implications of a constant harvest index for crop yields is not quantified. In relation to this, 

the study of Hay (1990) shows that for Europe the harvest index increased substantially since 

the 1900s. Furthermore, in line 19-20 on page 8 constant factors have been used for C 

emissions by decomposition, sedimentation and export to rivers. These factors are very 

uncertain. Several previous studies (Berhe et al, 2007; Van Oost et al.,2012) show for 

example that colluvial and alluvial reservoirs play a crucial role in C burial and that the 

fraction of C emitted to the atmosphere as a result of erosion as indicated by the studies of 

Lal et al. might be overestimated. 

[Reply 1-4] Thank you for this insightful comment. In this study, the range of uncertainties in 

each MCFs was assessed by parameter-ensemble simulations. I know that other uncertainties 

(e.g., methodological uncertainties among different schemes) could substantially affect the 

results, but considering them should increase computational cost too much. Instead, in this 

study, I assumed a wide range of parameter uncertainties to harvest the uncertainty range as 

much as possible (Supplementary Figure S2). For example, transition from the low members to 

high members may roughly indicates the effects increased harvest index. I appreciate your 

suggestions on the temporal change in harvest index and reservoir effects on POC export. I 

found a several papers on the reservoir effect on riverine export (e.g., Mendonça et al., 2017, 

Nature Communication, 8, doi:10.1038/s41467-41017-01789-41466). The revised manuscript 

mentions about these effects and associated uncertainties. Straightforward assessments of these 

factors need further data collection, revised parameterization, and systematic simulations, which 

would be done in forthcoming studies. 

(Sect. 4.4 of the revised manuscript) 

“However, this study did not explicitly consider lateral displacement of carbon between 

adjacent grid cells and associated emissions, such as river transport and international commerce 

(e.g., Battin et al., 2009; Bastviken et al., 2011; Peters et al., 2012), and reservoir effects on 

riverine transport (e.g., Mendonça et al., 2017). In this regard, modeling of agricultural practices 

should be improved to obtain more reliable regional carbon budgets. It is particularly important 
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to evaluate efforts to increase harvest index and to raise carbon sequestration into cropland soils, 

as proposed by the “4 per 1000” initiative (Dignac et al., 2017; Minasney et al., 2018).  

More clarity is needed in the parameterization of disturbances. This study considered the 

impacts of wildfires and land-use conversion, but in a conventional manner, possibly leading to 

biased results (see Sect. 4.5 for biomass burning). Other potentially influential disturbances, 

such as pest outbreaks and drought-induced dieback associated with climate extremes, were not 

explicitly considered, although they can perturb ecosystem carbon budgets (Reichstein et al., 

2013). In the long term, ecosystem degradation induced by forest fragmentation, overgrazing, 

and soil loss by wind erosion can further affect carbon budgets (e.g., Paustian et al., 2016; 

Brinck et al., 2017). Integration of these processes awaits future studies.” 

 

[Comment 1-5] 4) Land use change emissions are proven to be highly uncertain, while being 

the largest contributor to C emissions amongst the MCFs. For example, the study of Fuchs et 

al. (2016) shows that gross land use change leads to considerable differences in C emissions 

compared to net land use change. Without taking such issues into account it is difficult to 

assess the overall uncertainty of land use change. I think that the author should go deeper 

into these methodological uncertainties related to the MCFs, especially for land use change. 

[Reply 1-5] Thank you for this comment. I could not find Fuchs et al. (2016) but Fuchs et al. 

(2015, Global Change Biology, 21, 299–313). I completely agree with your statement that there 

remain tremendous uncertainties in the present estimation of C emissions (and uptakes) 

associated with land-use change. In this study, we used gross land-use change derived from the 

land-use transition matrix (Hurtt et al., 2011, Climatic Change, 109, 117–161).  

As shown in Supplementary Figure S7, existing biome models and inventories differ widely in 

the historical land-use emissions. The range of parameter-ensemble VISIT simulations was 

roughly comparable with that among biome models, but still I agree that methodology-related 

uncertainties should be considered.  

(Sect. 4.5 of the revised manuscript) 

“Considering the shortcomings of broad-scale and long-term observations of MCFs, estimation 

uncertainties could be larger than presently thought. For example, each of the coefficient factors 

of the erosion scheme (Eq. 6) can be expected to have large ranges of uncertainty, and few data 

are available to constrain for the fate of laterally transported POC and DOC. Data related to 

land-use changes (e.g., gross vs. net land-use transition) and procedures to implement them in 

models are not standardized (e.g., Fuchs et al., 2015).” 
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Minor Comments: 

[Comment 1-6] L 20, page1: The author finds that including MCFs in the global C budget 

reduces the land C storage due to the smaller residence time. This might be seen as 

contrasting to the fact that land is a net C sink, which remains unexplained for a large part. 

Thus, the attempt to capture all the major mechanisms of the C cycle leads to even more 

uncertainty. This is something that needs to be addressed in the paper. 

[Reply 1-6] Thank you this insightful comment. I agree that the shorter mean residence time 

(MRT) and net carbon sink seems contrasting. Clearly, the net carbon sink was not caused by 

elongation of MRT. The MRT of carbon stocks became longer in EX0, implying the it was not 

primarily related to MCFs or certain uncertainty. In Sect 2.3 of the revised manuscript, MRT 

(inverse of turnover rate) of vegetation and soil carbon was approximately calculated by the 

following, assuming a ‘relaxed’ steady state (cf. Carvalhais et al., 2014, Nature, 514, 213–217). 

MRT (vegetation, yr) = Biomass C stock / NPP 

MRT (soil, yr) = Soil C stock / heterotrophic respiration 

Here, increases in NPP and heterotrophic respiration could largely account for the apparent 

shortening of MRT. The historical elevation of atmospheric CO2 concentration and temperature 

rise resulted in enhanced NPP and heterotrophic respiration, in the model simulation. In the 

revised manuscript, I discuss the point with a caution to the definition of MRT. 

 

[Comment 1-7] L 23, page 1: Instead of aggregating results per cropland fraction it would be 

more interesting to see the results per land cover type (forest, grass, crop).  

[Reply 1-8] Thank you for this comment. As you recommended, I aggregated the MCFs per 

land cover types (revised Figure 8a) and would be included in the revised manuscript. The new 

figure clarified the difference among the land cover types, which seems different from the 

aggregation by cropland fraction (revised Figure 8b) and precipitation (revised Figure 8c).  

(Sect 3.3 of the revised manuscript) 

“Certain spatial tendencies become clearer in a global aggregation of the simulated results (Fig. 

8) related to the dominant land-cover type in each grid cell, the cropland fraction, and aridity 

represented by annual precipitation. In forest-dominated grid cells (Fig. 8a), FBB made the 

largest (>30%) contribution, followed by FWH, FBVOC, and FLUC, and in cropland-dominated 

cells, about half of the influence of MCFs was due to agricultural practices (FAP). Because 

grassland-dominated cells contain fractions of woodland and cropland, FAP and FWH as well as 



  9 

FPOC made contributions in these cells. In desert-dominated cells, FBB made up the majority of 

the contributions. In cells with small fractions of cropland including tropical forests (Fig. 8b), 

FWH, FBB, and FBVOC made strong contributions, whereas in cells dominated by crops, FCH4 made 

a substantial contribution reflecting the vast area of paddy fields in Asia. FPOC made large 

contributions at all cultivation intensities, but particularly in moderately cultivated areas. An 

analysis based on precipitation was also informative (Fig. 8c). In arid areas (annual precipitation 

< 500 mm), FBB had the largest impacts, as expected from the dominance of fire-prone 

ecosystems such as boreal forests and subtropical woodlands. In wet areas (precipitation > 1500 

mm), FLUC and FPOC made large contributions, and FBB had a minor effect. The influence of FWH 

was strongest in moderately humid to wet areas.” 

 

 
Figure 8. Relative contribution of MCFs to the terrestrial carbon budget simulated by EXALL in 

2000–2009: (a) aggregated by dominant land cover type, (b) aggregated by cropland fraction 

within grid cells, and (c) aggregated by annual precipitation. 

 

[Comment 1-8] Why did the author use the VISIT model? What would be the difference in 

results if a global land surface model would be used instead? For example, the ORCHIDEE 

land surface model, which simulates explicitly and in great detail the various ecosystem 

processes described in this study, and has the possibility to be coupled to the atmosphere and 

ocean models. 

[Reply 1-8] This is a good comment. In this study, I used the VISIT model, because I have 

developed the model from scratch and therefore know every detail. This is important to 

implement the MCFs into a terrestrial model in a biogeochemically consistent and practically 

efficient manner. Another advantage is the low computational cost of the model (less than 2 

days for a whole simulation with a single CPU), allowing us to conduct >100 ensemble 

simulations with multi-CPU machine in a few weeks. Moreover, the VISIT model has already 
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been coupled with an Earth System Model, which are going to make contributions to CMIP6. I 

acknowledge that there are many terrestrial models (e.g., ORCHIDEE, CLM, LPJmL, JULES, 

etc.), which have great details and sometimes their codes are available as open-source. I expect 

that the present study demonstrates the importance of MCFs and facilitate similar studies by 

other models. 

(Sect 2.1 of the revised manuscript; underline added) 

“In comparison to other carbon cycle models, the model has a computationally efficient 

structure, making it feasible to conduct large numbers of long-term simulations. The model has 

participated in several model intercomparison projects, making it possible to assess the 

limitations of a single-model study.” 

(Sect 4.5 of the revised manuscript; underline added) 

“I took the estimation uncertainty into account by perturbing representative parameters, but this 

study did not examine other sources of uncertainties such as differences among ecosystem 

models and forcing data. Indeed, many ecosystem models have been developed with different 

degrees of complexity (e.g., dynamic global vegetation models), and intercomparison studies 

have shown that existing ecosystem models differ widely in their environmental responsiveness 

to changes in major carbon flows (e.g., Friend et al., 2014; Huntzinger et al., 2017). For 

example, the models differ in global GPP by more than 30%, even though the processes 

contributing to primary production are well understood and increasingly constrained by 

observations (Anav et al., 2015). This single-model study was necessarily limited in searching 

the full range of estimation uncertainty, and further studies using multiple MCF-implemented 

models are highly desirable.” 

 

[Comment 1-9] L 1, page 6: Why are human-prescribed fires not considered? In previous 

studies it is shown that population density and crop fraction are important drivers of burnt 

area (Lasslop and Kloster, 2017). It would be interesting to compare methane emissions from 

the model to observations. 

[Reply 1-9] Thank you for this comment. I checked Lasslop and Kloster (2017, Environmental 

Research Letters, 12, 115011) and associated papers. One possible justification is that the 

present model has already simulated extensive global burnt area (around 600 Mha per year) 

comparable with that by satellite observation including both wild and human-caused fires. 

However, I agree that human impacts on fire regime is significant and related to population and 

land-use. As demonstrated in Supplementary Figure S11, the simulated biomass burning did not 
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capture the decreasing trend after 1998. By using an updated fire scheme (it is beyond the scope 

of this study), I would like to include human impacts on fire regime. Comparison with the 

simulated emissions with observed atmospheric concentrations of methane (and carbon 

monoxide, black carbon etc.) should be effective for model validation. 

 

[Comment 1-10] Page 6, section 2.2.4: How is the wetland fraction determined in the model 

and is that comparable to observed wetland distribution globally? 

[Reply 1-10] Thank you for this comment. I am sorry about the largely simplified description of 

methane simulation, although it was fully described in Ito and Inatomi (2012). The wetland 

fraction for each grid was determined by the Global Lake and Wetland Dataset (Lehner and 

Döll, 2004, Journal of Hydrology, 296, 1–22). I applied this observation-based map through the 

simulation period. The uncertainty of wetland and inundation maps would be addressed in the 

wetland methane model intercomparison project (e.g., Poulter et al., 2017, Environmental 

Research Letters, doi: 10.1088/1748-9326/aa8391). The revised manuscript includes the 

description and reference of wetland map. 

(Sect. 2.2.4 of the revised manuscript) 

“The wetland fraction fwetland was derived from the Global Lake and Wetland Dataset (Lehner 

and Döll, 2004) was held fixed throughout the simulation period. Temporal variations of the 

inundation area and water table depth in the wetland fraction are key factors in estimating 

Fwetland. In this study, seasonal variation of the inundated area was prescribed by satellite data by 

microwave remote sensing (Prigent et al., 2001), and temporal variability of water table depth 

was determined by the water budget estimated by the VISIT model (Ito and Inatomi, 2012). 

Therefore, interannual variability in inundation area, such as that due to droughts and floods, 

could have been underrepresented in this study.” 

 

[Comment 1-11] How is crop harvest simulated in the tropics? And is crop irrigation 

included? 

[Reply 1-11] In the tropics (annual mean temperature > 20°C and lowest monthly temperature > 

10°C), a generic multiple cropping system was assumed; crop harvest occurs through the year 

round at a constant rate. Crop irrigation was considered only in an implicit manner. Namely, 

water stress factor on maximum photosynthesis rate was relaxed in croplands, assuming the 

effect of irrigation. On the other hand, hydrological budget of irrigated water was not 

considered. 
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(Sect. 2.2.5 of the revised manuscript) 

“The scheme assumes a single-cropping cultivation system in temperate regions, where the 

growing period is determined by a critical mean monthly temperature of 5°C. In tropical regions 

(annual mean temperature > 20°C), a continuous (non-seasonal) cropping system is assumed in 

which planting and harvesting occur at constant rates in every month. Irrigation is not explicitly 

included in the model; instead the water-stress factor for cropland plants is relaxed from its 

value for natural vegetation.” 

 

[Comment 1-12] In section 2.2.8, how are the individual erosion parameters calculated? 

Previous studies have shown that erosion rates can be highly uncertain when applying the 

RUSLE model on the global scale using coarse resolution input data. Including the L and P 

factors in the RUSLE at the global scale can also contribute to large uncertainties as they are 

local-scale dependent. 

[Reply 1-12] Thank you for this comment. I found several recent studies explored soil erosion at 

the global scale (e.g., Naipal 2018; Borrelli et al., 2018, Nature Communications, 8, 

doi:10.1038/s41467-017-02142-7; Xiong et al., 2019, Geoderma 343, 31–39). The RUSLE is a 

simple model of soil displacement by water erosion and then has been used widely. In the 

present study, as explained in my previous study (Ito, 2007, Geophysical Research Letters, 

L09403), slope factors (L and S) were calculated using a 1km-mesh topography data 

(GTOPO30 and HYDRO1k); rainfall factor (R) was calculated using an empirical 

parameterization by Renard and Freimund (1994, J. Hydrol., 157, 287– 306) every year; soil 

erodibility factor (K) was calculated on the basis of soil composition (organic matter, clay, silt, 

and sand) with a parameterization by Torri et al. (1997, Catena, 31, 1–22); vegetation coverage 

(C) and management protection (P) factors were derived from look-up tables for each of the 

land cover types from Yang et al. (2003, Hydrol. Processes, 17, 2913– 2928) and Morgan 

(2005, Soil Erosion and Conservation, 3rd ed). The locality effect of L could be ameliorated by 

using a fine-mesh topography data. On the other hand, the P factor could be heterogeneous due 

to farm-by-farm difference in soil management such as mulching and contour farming. It is, 

however, difficult to determine P value for each farm and to obtain a spatially representative 

value for each 0.5° grid, although ongoing development of high-resolution remote sensing and 

AI-based categorization would make it possible in the future. At this stage, I conventionally 

estimated P at each grid from the cropland fraction and whether developed or developing 

country. In relation to soil degradation and conservation, future studies would estimate the P 



  13 

factor in a more realistic manner. The revised manuscript describes how FPOC was estimated 

using the RUSLE and discusses the potential uncertainties. 

(Sect. 2.2.8 of the revised manuscript) 

“Export of POC is assumed to occur mainly in association with soil displacement by water 

erosion, which can cause soil degradation. The VISIT model incorporates the Revised Universal 

Soil Loss Equation (Renard et al., 1997) to estimate the rate of soil displacement by water 

erosion (Ito, 2007). Annual displacement of soil carbon is calculated by: 

 

 FPOC = fC × R × L × S × K × C × P,    (6) 

 

where fC is soil carbon content and R, L, S, K, C, and P are coefficient factors of rainfall, slope 

length, slope steepness, soil erodibility, vegetation coverage, and conservation practices, 

respectively, as described in Ito (2007). fC is obtained from the VISIT simulation, and FPOC is 

extracted from the soil surface litter pool. Although it was developed for management of local 

croplands, this practical scheme and its derivatives have been used for continental-scale studies 

(e.g., Yang et al., 2003; Schnitzer et al., 2013; Naipal et al., 2018). Transport of terrestrial 

carbon to inland waters or the ocean is, however, a complicated process (Berhe et al., 2018); for 

example, large fractions of displaced soil are redistributed in riverbanks, lakeshores, and 

estuaries. The fate of eroded carbon is assumed to be 20% in CO2 evasion by decomposition, 

60% in sedimentation, and 20% in export to lakes and oceans (Lal, 2003; Kirkels et al., 2014). 

The export fraction is highly uncertain and is discussed further in the parameter uncertainty 

analysis of Sect. 4.5.” 

 

[Comment 1-13] L 17, page 8: “The carbon of Fpoc is extracted from the litter pool.” Why is 

the SOC of the topsoil not taken into account? This could produce biases in C erosion rates, 

especially for cropland. 

[Reply 1-13] Thank you for this comment. You are right, because soil erosion can occur not 

only in litter but also in SOC layer in a real world. My assumption of FPOC extraction from litter 

pool is only for simplicity, because I did not have enough data on the fractional contribution of 

litter and SOC to eroded carbon. I will explain this in the revised manuscript and in a 

forthcoming study, I would like to address this issue on the basis of a synthesis of soil erosion. 

(Sect. 2.2.8 of the revised manuscript) 

“fC is obtained from the VISIT simulation, and FPOC is extracted from the soil surface litter 
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pool. Although it was developed for management of local croplands, this practical scheme and 

its derivatives have been used for continental-scale studies (e.g., Yang et al., 2003; Schnitzer et 

al., 2013; Naipal et al., 2018).” 

(Sect. 4.5 of the revised manuscript) 

“For example, each of the coefficient factors of the erosion scheme (Eq. 6) can be expected to 

have large ranges of uncertainty, and few data are available to constrain for the fate of laterally 

transported POC and DOC.” 

 

[Comment 1-14] L 25, page 8: How would neglecting riverine lateral fluxes (POC and DOC) 

contribute to the uncertainty of MCFs? 

[Reply 1-14] Thank you for this comment. The present model does not explicitly simulate 

lateral carbon exchange between grids such as POC and DOC transport by rivers. As a result, 

carbon export in one upstream grid and deposition in another downstream grid were not 

considered. I do not think the magnitude of the effect exceed 1 Pg C per year, but at least in 

certain areas, this process would affect net carbon budget. 

 

[Comment 1-15] L 21, page 9: Why is Fpoc classified as biogeochemical flow and not 

anthropogenic? Fpoc is the result of human-induced erosion, as far as I understand. 

[Reply 1-15] Thank you for this comment. As you pointed out, soil erosion (FPOC) has been 

largely enhanced by human activities, and in my model simulation, the flow was separately 

evaluated for croplands and natural ecosystem. The term, ‘biogeochemical’ flow, is a 

conventional one and does not indicate a ‘natural’ flow. Indeed, other ‘biogeochemical’ flows 

such as FCH4 (including paddy emission) were more or less affected by human activities, but in 

more indirect manners than anthropogenic flows such as land-use and harvests. The revised 

manuscript explains the definition of ‘biogeochemcial’ flow in a clearer manner. 

(Sect. 2.3.1 of the revised manuscript) 

“• EXBGC: biogeochemical flows (FBVOC, FCH4, FDOC, and FPOC) were added to EX0. 

• EXATP: anthropogenic (human-dominated) flows (FLUC, FBB, FAP, and FHW) were added to 

EX0. 

The (last) two simulations (EXBGC and EXATP) sought to evaluate the relative contributions of 

what are conventionally considered biogeochemical and human-affected processes.” 

 

[Comment 1-16] L 5, page 10: Why is only the erodibility perturbed randomly and not the 
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other RUSLE factors that maybe be more sensitive such as erosivity? 

[Reply 1-16] Thank you for this comment. Other factors such as precipitation, slope and its 

length, vegetation cover, and management are influential to FPOC and should have their own 

uncertainties, and I agree that it is desirable to assess them in a systematic manner. In this study, 

I chose the erodibility as a representative one for simplicity, with a sufficient width of 

perturbation. As shown in the result of ensemble simulation (Supplementary Figure S2), the 

simulated FPOC ranged widely from 0.1 to 1.4 Pg C yr–1. Elsewhere, I would like to assess the 

effect of erosion-related factors using multiple input data. 

(Sect. 4.5 of the revised manuscript) 

“For example, each of the coefficient factors of the erosion scheme (Eq. 6) can be expected to 

have large ranges of uncertainty, and few data are available to constrain for the fate of laterally 

transported POC and DOC.” 

 

[Comment 1-17] L 7-15, page 11: It would be useful to compare these results to the findings 

of other studies that quantified one or more of the individual MCFs at the global scale. 

[Reply 1-17] I agree to compare the results with other global-scale model studies that quantified 

one or more MCFs. The results will be summarized into a new table (cf. Table 2 of the revised 

manuscript, also shown above in this reply). 

 

[Comment 1-18] L 15, page 11: I find it surprising that the DOC export has a larger effect on 

SOC stocks in comparison to POC export. What could be the possible cause of this? 

[Reply 1-18] Thank you for this comment. One reason for the stronger impact of DOC export is 

that a large part of POC export occurred in croplands and ecosystems on steep slopes. In 

contrast, DOC export occurred in a vast extent of ecosystems especially in humid tropical area 

(Figures 6h and 6i of the REVISED paper). The impacts of DOC and POC exports were much 

smaller than those by land-use change and biomass burning, and the difference of the impacts 

(about 2 Pg C) could be, at least partly, caused by such spatial patterns. 

 

 [Comment 1-19] L 8, page 36: Soil erosion rates have been compared to the findings of 

Chappell et al. (2016) only, however, Chappell et al. did not calibrate their erosion model for 

other land cover types than cropland. It would be useful to compare the results also to the 

study of Naipal et al. (2018), who estimated gross SOC erosion for the period 1850-2005. 

[Reply 1-19] Thank you for this comment. In the revised manuscript, the result would be 
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compared with that in Naipal et al. (2018) (see Table 2 of the revised manuscript). 

 

[Comment 1-20] Page 37, figure 6: Why is Fap negative in some regions? 

[Reply 1-20] Thank you for this comment. The negative FAP in the previous manuscript was due 

to an inaccurate mass balance calculation in croplands, and it was corrected in the second 

version. As a result, all croplands take positive (i.e. net carbon export) FAP values (see Figure 6e 

and 6f of the revised manuscript). 

 

 

 

Anonymous Referee #2 

Main comments: 

[Comment 2-1] This study estimated the influences of eight minor disturbances (MCFs) on 

global land carbon budget over the historical period 1901-2016 using a process-based 

terrestrial ecosystem model VISIT. Carbon contributions from minor disturbances like CH4, 

BVOC, and carbon loss by water (or river) erosion were often ignored in the past modeling 

studies, but have been evaluated in this study within one model framework. Results from a 

group of sensitivity modeling experiment show notable contributions from MCFs to land 

carbon sink and storage, which is mostly due to land use change, fires, and wood harvest. 

The author also find BVOC has a comparable contribution. This study helps improve 

understanding of land carbon cycle and shows the importance of the MCFs on the land 

carbon budget. Overall, the manuscript is well written and could be acceptable for 

publication in ESD after some minor revisions. Please see my minor comments as below. 

[Reply 2-1] Thank you for this encouraging comment.  

 

Minor comments: 

[Comment 2-2] (1) Line 17 in the abstract: It is unclear the net biome production was 

estimated for which period? 

[Reply 2-2] Thank you. The net biome production was estimated for the same period of the 

previous sentence (i.e. the 2000s). I added “in the same period” after “net biome production”. 

 

[Comment 2-3] (2) Page 11, Lines:29-30: does it mean that NEP dominate the trend of NBP? 

As from other estimates that trend in land-use change emission is relatively small. How are 
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the fires from, e.g. FEEDs? 

[Reply 2-3] Thank you for this comment. In this study, the simulated NEP and NBP show 

comparable linear trends. The simulated FLUC shows a clear decreasing trend after 2000 and 

FBB shows a moderate increasing trend. Such compensation may explain a part of the small 

trend associated with the MCFs. However, a recent study (Andela et al., 2017) indicate a 

decreasing trend in global burnt area, implying the necessity of further improvement of 

temporal trends in MCFs. The revised manuscript includes more comparison with observations 

(Table 2 of the revised manuscript) and discussion about it.  

 
Table 2. Summary of previous estimates of minor carbon flows (MCFs). 

MCF Reference (Pg C yr–1) 

FLUC Houghton et al. (2003): bookkeeping 2.1 ± 0.8 

 Le Quéré et al. (2018): GCP 2018 models 1.5 ± 0.6 
 Le Quéré et al. (2018): GCP 2018 bookkeeping 1.4 ± 0.7 

 This study (EXALL, 1980–1989 mean ± SD) 
                  (EXALL, 1990–2015 mean ± SD) 

0.99 ± 0.02 
0.60 ± 0.16 

FBB Wiedinmyer et al. (2011): FINN 2.18  
 van der Werf et al. (2017): GFED4s 2.2 
 van Marle et al. (2017): BB4CMIP6 1.90  
 This study (EXALL, 1990–2015 mean ± SD) 1.69 ± 0.21 
      

FBVOC Guenther et al. (2012): MEGAN model 0.96  
 Sindelarova et al. (2014): MEGAN model 0.76 
 This study (EXALL, 1990–2015 mean ± SD) 0.75 ± 0.036 

FCH4 Fung et al. (1991) 0.14  
 Saunois et al. (2016): GCP synthesis 0.135 
 This study (EXALL, 1990–2015 mean ± SD) 0.12 ± 0.006 

FAP Bondeau et al. (2007): LPJmL model 2.2 
 Ciais et al. (2007) 1.29 
 Wolf et al. (2015): FAOSTAT-base 2.05 ± 0.05 
 This study (EXALL, 1990–2015 mean ± SD) 1.45 ± 0.073 

FWH Winjum et al. (1998) 0.98 
 Pan et al. (2011): inventory analysis 0.189 

  This study (EXALL, 1990–2015 mean ± SD) 1.03 ± 0.082 

FDOC Meybeck (1993) 0.20  
 Dai et al. (2012) 0.17 
 This study (EXALL, 1990–2015 mean ± SD) 0.14 ± 0.004 
   

FPOC van Oost et al. (2007): agricultural soils 0.25 
 Regnier et al. (2013) 0.1 ± >0.05 
 Galy et al. (2015) 0.157 (0.107–0.231) 
 Chappell et al. (2016): displacement by erosion 0.3–1.0 
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 Naipal et al. (2018): ORCHIDEE + RUSLE 0.16 ± 0.06 

 This study (EXALL, 1990–2015 mean ± SD): riverine export to the 
ocean, 20% of soil displacement 0.19 ± 0.011 

   
   
      

 

 [Comment 2-4] (3) Page 12, Line 7: How the mean residence time (MRT) was calculated? 

What are the assumptions were used to calculated the MRT for each C pool? Also, why MRT 

was decreased in the Fig. 4? 

[Reply 2-4] Thank you for this comment. In this study, MRT at a non-equilibrium state was 

calculated approximately as  

MRT (vegetation, yr) = Biomass C stock / NPP 

MRT (soil, yr) = Soil C stock / heterotrophic respiration 

Such approximation (assuming an equilibrium state at each year) has been adopted in previous 

studies. The revised manuscript includes the explanation how to calculate MRTs. The decadal 

decreasing trends in MRT was largely attributable to enhanced respiration rates due to climate 

change. Because this trend occurred also in EX0, it is not mainly caused by MCFs.  

(Sect. 2.3 of the revised manuscript) 

“This study focused on the carbon budget of terrestrial ecosystems and analyzed the following 

variables: GPP, RE, NEP, NBP, biomass carbon stock, and soil carbon stock. The mean 

residence time (MRT) of the biomass, soil, and total ecosystem carbon stocks at transitional 

states were approximately calculated in a similar manner to Carvalhais et al. (2014): 

 

 MRT = C stock / flux,    (7) 

 

where flux is net primary production (NPP) for biomass (= GPP – RA), RH for soil, and the 

sum of these fluxes (NPP + RH) for the total ecosystem carbon stock.” 

(Sect. 3.1 of the revised manuscript) 

“Note that MRTs also grew shorter in the result of EX0, which ignored MCFs, but including the 

MCFs increased the difference in MRT among the experiments. For example, the difference in 

MRT of vegetation biomass between EX0 and EXALL grew from 0.89 yr in the 1900s to 1.54 yr 

in the 2000s, and the difference for soil carbon stock grew from 0.10 yr in the 1900s to 0.24 yr 

in the 2000s. The definition of MRT (Eq. 7) means that shortened MRTs could result from 

increases of NPP and respiration.” 
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[Comment 2-5] (4) Page 16, section 4.5: It is good to see the uncertainty assessment. Because 

this study is based only one model (i.e., VISIT), and the single-model simulation may cannot 

avoid propagating the uncertainty of other processes to the minor C flows. For example, the 

uncertainty in C partitioning among vegetation, litter and soil pools may affect the 

simulations of FBB and FCH4 in this study. A further discussion on this point is necessary. 

[Reply 2-5] This is an important comment, and I agree to include further discussion on 

estimation uncertainty. This study used a single model (VISIT) aiming at conducting in-depth 

analyses on MCFs. Based on model intercomparison studies (e.g., Ito et al., 2016, 2017; Tian et 

al., 2015), the possible range of uncertainties and their propagation to MCF estimation will be 

discussed. 

(Sect. 1 Introduction of the revised manuscript) 

“However, large uncertainties remain in the current accounting of the global carbon budget. 

Present estimates of terrestrial gross primary production (GPP), the largest component of the 

ecosystem carbon cycle, range from 105 to 170 Pg C yr–1 (Baldocchi et al., 2015), and present 

estimates of soil organic carbon, a large stock in the global biogeochemical carbon cycle, range 

from 425 to 3040 Pg C (Todd-Brown et al., 2013; Tian et al., 2015).” 

(Sect. 4.5 of the revised manuscript) 

“I took the estimation uncertainty into account by perturbing representative parameters, but this 

study did not examine other sources of uncertainties such as differences among ecosystem 

models and forcing data. Indeed, many ecosystem models have been developed with different 

degrees of complexity (e.g., dynamic global vegetation models), and intercomparison studies 

have shown that existing ecosystem models differ widely in their environmental responsiveness 

to changes in major carbon flows (e.g., Friend et al., 2014; Huntzinger et al., 2017). For 

example, the models differ in global GPP by more than 30%, even though the processes 

contributing to primary production are well understood and increasingly constrained by 

observations (Anav et al., 2015). This single-model study was necessarily limited in searching 

the full range of estimation uncertainty, and further studies using multiple MCF-implemented 

models are highly desirable.” 

 

[Comment 2-6] (5) Page 14, Line 31: delete “(” or add a “)” after “: : :Chapin et al. (2006)”. 

[Reply 2-6] Thank you. Corrected (i.e., “)” added after Chapin et al. (2006)). 

 

[Comment 2-7] (6) Fig.3 d and e: Impacts of MCFs on NEP is offset by emissions from 
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MCFs? 

[Reply 2-7] Figure 3d represents the effect of MCFs on NEP leading to higher CO2 uptake by 

terrestrial ecosystems. Figure 3e represents the difference between NEP and NBP including the 

MCFs. Indeed, when comparing Figure 3a and 3c, the effects would offset each other: a large 

fraction of carbon uptake by vegetation was lost by MCFs. 

 

[Comment 2-8] (7) Fig. 6f: For the CH4 emission (FCH4), have you compared the FCH4 in 

this study with some other estimates? Why does the East Asia show much higher values in 

comparison with any other regions? In line 23, you have also mentioned that FCH4 in Asia 

was mostly from paddy field, could you show more details? 

[Reply 2-8] Thank you for this comment. The high methane emissions in East Asia are largely 

attributable to a vast extent of paddy fields, i.e. natural wetlands. In my paper (Ito and Inatomi, 

2012), the model-estimated methane emissions were compared with previous studies. Also, for 

wetland emissions in 2000–2012, the VISIT model estimation was compared with other models 

(Poulter et al., 2017), suggesting validity of the model. Additionally, in my recent work (Ito et 

al., 2019), the model-estimated methane emissions from East Asian paddy fields were compared 

with inventory (EDGAR 4.3.2) value, and total FCH4 was comparable with that by the GCP 

synthesis using multiple data sources (Saunois et al., 2016). The revised manuscript includes 

some more details about the methane emission in East Asia. 

(Sect. 2.2.4 of the revised manuscript) 

“In the wetland fraction, Fwetland was simulated using a mechanistic scheme developed by Walter 

and Heimann (2000) that uses a multi-layer soil model and simulates gaseous methane emission 

by physical diffusion, ebullition, and plant-mediated transportation. The same scheme was 

applied to paddy fields, found mostly in Asia, using seasonal inundation by irrigation.” 

(Sect. 3.2 of the revised manuscript) 

“For FCH4, major sources included monsoon-affected parts of Asia dominated by paddy fields, 

tropical wetlands including floodplains of big rivers, and northern wetlands, whereas other 

uplands were weak sinks.” 

(Sect. 3.3 of the revised manuscript) 

“In Asia (Fig. 7e), FPOC and FAP had the largest effects, and FCH4 emissions from the vast area of 

paddy fields were considerable.” 
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disturbance-induced emissions and non-CO2 carbon export flows: a 
global model assessment 
Akihiko Ito1,2 
1National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 3058506, Japan 5 
2Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, 2360001, Japan 

Correspondence: Akihiko Ito (itoh@nies.go.jp) 

Abstract. The global carbon budget of terrestrial ecosystems is chiefly determined by major flows of carbon dioxide (CO2) 

such as photosynthesis and respiration, but various minor flows exert considerable influence in determining carbon stocks and 

their turnover. This study assessed the effects of eight minor carbon flows on the terrestrial carbon budget using a process-10 

based model, the Vegetation Integrative SImulator for Trace gases (VISIT), which included non-CO2 carbon flows, such as 

methane and biogenic volatile organic compound (BVOC) emissions and subsurface carbon exports and disturbances such as 

biomass burning, land-use changes, and harvest activities. The range of model-associated uncertainty was evaluated through 

parameter-ensemble simulations and the results were compared with corresponding observational and modeling studies. In the 

historical period of 1901–2016, the VISIT simulation indicated that the minor flows substantially influenced terrestrial carbon 15 

stocks, flows, and budgets. The simulations estimated mean net ecosystem production in the 2000–2009 as 3.21 ± 1.1 Pg C 

yr–1 without minor flows and 6.85 ± 0.9 Pg C yr–1 with minor flows. Including minor carbon flows yielded an estimated net 

biome production of 1.62 ± 1.0 Pg C yr–1 in the same period. Biomass burning, wood harvest, export of organic carbon by 

water erosion, and BVOC emissions had impacts on the global terrestrial carbon budget amounting to around 1 Pg C yr–1 with 

specific interannual variabilities. After including the minor flows, ecosystem carbon storage was suppressed by about 440 Pg 20 

C, and its mean residence time was shortened by about 2.4 yr. The minor flows occur heterogeneously over the land, such that 

BVOC emission, subsurface export, and wood harvest occur mainly in the tropics, and biomass burning occurs extensively in 

boreal forests. They also differ in their decadal trends, due to differences in their driving factors. Aggregating the simulation 

results by land-cover type, cropland fraction, and annual precipitation yielded more insight into the contributions of these 

minor flows to the terrestrial carbon budget. Considering their substantial and unique roles, these minor flows should be taken 25 

into account in the global carbon budget in an integrated manner. 

1     Introduction 

The terrestrial ecosystem is a substantial sink of atmospheric carbon dioxide (CO2) at decadal or longer scales and is mainly 

responsible for interannual variability of the global carbon budget (Schimel et al., 2001; Le Quéré et al., 2018). The current 
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and future carbon budgets of terrestrial ecosystems have a feedback effect on the ongoing climate change, and they thus affect 

the effectiveness of climate mitigation policies such as the Paris Agreement (Friedlingstein et al., 2014; Seneviratne et al., 

2016; Schleussner et al., 2016). Many studies have been conducted to elucidate the present global carbon budget, which is 

necessary for making reliable climate predictions (e.g., Sitch et al., 2015). Advances in flux-tower measurement networks, 

satellite observations, and data-model fusion have greatly improved our understanding of the terrestrial carbon budget and our 5 

ability to quantify it (Ciais et al., 2014; Li et al., 2016; Sellers et al., 2018).  

However, large uncertainties remain in the current accounting of the global carbon budget. Present estimates of terrestrial 

gross primary production (GPP), the largest component of the ecosystem carbon cycle, range from 105 to 170 Pg C yr–1 

(Baldocchi et al., 2015), and present estimates of soil organic carbon, a large stock in the global biogeochemical carbon cycle, 

range from 425 to 3040 Pg C (Todd-Brown et al., 2013; Tian et al., 2015). The implication is that detecting deviations of a 10 

few Pg C with high confidence is problematic. Recent products of remote sensing and up-scaled flux measurement data (e.g., 

Zhao et al., 2006; Tramontana et al., 2016) are fairly consistent in their spatial patterns of terrestrial carbon flows, but they still 

differ in their average magnitudes and interannual variability. Observations of isotopes and co-varying tracers (e.g., carbonyl 

sulfide) provide supporting data (e.g., Welp et al., 2011; Campbell et al., 2017), but estimates have not converged to a 

consistent value. Quantifying the net carbon balance is even more difficult, primarily because it is a small difference between 15 

large sink and source fluxes that vary spatially and temporally. A recent synthesis of the global carbon budget using both top-

down and bottom-up data (Le Quéré et al., 2018) gives a plausible estimate for the terrestrial carbon budget, a net sink of 3.0 

± 0.8 Pg C yr–1 in 2007–2016; however, it has the largest range of uncertainty among the components of the global carbon 

cycle. 

The uncertainty in the terrestrial carbon budget arises not only from inadequacies in the observational data, but also from 20 

an over-simplified conceptual framework. A common index of the net ecosystem carbon budget, net ecosystem production 

(NEP), is defined as the difference between GPP and ecosystem respiration (RE), which places plant and soil CO2 exchange, 

as determined by their physiological properties, in the sole controlling role (Gower, 2003). NEP is expected to be equal to the 

change in the ecosystem carbon stocks of biomass and soil organic matter. This conceptual framework has been widely used 

in flux-measurement, biometric, and modeling studies. However, as quantification of the carbon budget has become more 25 

sophisticated and accurate, minor carbon flows (MCFs), consisting of relatively small non-CO2 flows and disturbance-

associated emissions, have grown in importance to close the budget. Among these, emissions and ecosystem dynamics 

associated with wildfires and land-use change have been investigated for decades in various ecosystems such as tropical and 

boreal forests (e.g., Houghton et al., 1983; Randerson et al., 2005). Subsurface riverine export from the land to the ocean also 

has been long investigated from biogeochemical and agricultural perspectives (e.g., Meybeck, 1993; Lal, 2003). Many 30 

subsequent studies have addressed the biogeochemical mechanisms and spatial–temporal patterns of different MCFs at 

ecosystem to global scales (e.g., Raymond et al., 2013; Galy et al., 2015; Arneth et al., 2017; Saunois et al., 2017). Accordingly, 

a revised concept of the net terrestrial carbon budget called net biome production (NBP) has been proposed (Schulze et al., 

2000) to account for the effects of MCFs. Because NBP covers non-CO2, disturbance-induced emissions, and lateral 
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transportations, this term is applicable to both natural and managed agricultural ecosystems. Although there remain 

controversies in the conceptual framework (Randerson et al., 2002; Lovett et al., 2006), NEP and NBP provide a useful basis 

for integrating carbon flows, carbon pools, and the carbon budget.  

Few studies have assessed the importance of MCFs in the global carbon cycle in a quantitative, integrated manner. Several 

studies have implied that the magnitude of MCFs, while small in comparison with gross flows (about 100 Pg C yr–1), is 5 

comparable to the net budget (around 1 Pg C yr–1). It appears, then, that neglecting MCFs can lead to serious accounting biases 

and misunderstanding of regional carbon budgets. Previous studies of carbon observations (e.g., Chu et al., 2015; Webb et al., 

2018) and syntheses (e.g., Jung et al., 2011; Piao et al., 2012; Zhang et al., 2014) have recognized the significance of certain 

MCFs, such as land-use emissions, but have not integrated them into a single framework (Kirschbaum et al., 2019).  

This study estimated MCFs and assessed their influence on the global terrestrial carbon budget in an integrated manner. 10 

In this paper I describe a series of simulations conducted with a process-based terrestrial biogeochemical model, in which 

various MCFs were incorporated into the carbon balance, to distinguish the effect of each MCF and its driving forces. The 

temporal variability and geographic patterns of these MCFs were clarified. Finally, I discuss methodological uncertainty, 

potential leakage and duplication in the MCF accounting, linkages with observations and climate predictions, and future 

research opportunities. 15 

 

2     Methods 

2.1     Model description 

This study adopted the Vegetation Integrative SImulator for Trace gases (VISIT), a process-based terrestrial ecosystem model 

that is more fully described elsewhere (Ito, 2010; Inatomi et al., 2010; a schematic diagram is shown in Fig. S1). In comparison 20 

to other carbon cycle models, the model has a computationally efficient structure, making it feasible to conduct large numbers 

of long-term simulations. The model has participated in several model intercomparison projects, making it possible to assess 

the limitations of a single-model study. The model is composed of biophysical and biogeochemical modules that simulate 

atmosphere–ecosystem exchange and matter flows within ecosystems. The hydrology module simulates land-surface radiation 

and water budgets using forcing meteorological data such as incoming radiation, precipitation, air temperature, humidity, 25 

cloudiness, and wind speed, and biophysical properties such as fractional vegetation coverage, albedo, and soil water-holding 

capacity. The land-surface water budget is simulated using a two-layer soil water scheme that calculates evapotranspiration by 

the Penman-Monteith equation and runoff discharge by the bucket model (Manabe, 1969). Snow accumulation and melting 

are also simulated.  

The carbon cycle is simulated with a box-flow scheme composed of eight carbon pools (leaf, stem, and root carbon for 30 

both C3 and C4 plants, plus soil litter and humus) and gross and net carbon flows. An early version of the model simulated only 

major carbon flows related to CO2 exchange (Ito and Oikawa, 2002), such as photosynthesis, plant (autotrophic) respiration 

(RA), and microbial (heterotrophic) respiration (RH). Net ecosystem production (NEP) is defined as follows: 
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 NEP = GPP – RA – RH.          (1)  

 

The total respiratory CO2 efflux (RA + RH) is called ecosystem respiration (RE). Thus, NEP represents net CO2 exchange 

with the atmosphere through ecosystem physiological processes (Gower, 2003). In the model, these processes are calculated 

using equations that include terms for responsiveness to environmental conditions such as light, temperature, CO2 5 

concentration, and humidity.  

Following carbon fixation by GPP, photosynthate is partitioned to the six plant carbon pools on the basis of production 

optimization and allometric constraints at every time step. Plant leaf phenology from leaf display to shedding is simulated in 

deciduous forests and grasslands, using an empirical procedure based mainly on threshold cumulative temperatures. From each 

vegetation carbon pool, a certain fraction of carbon is transferred to the soil litter pool, which has a specific turnover rate or 10 

residence time representing the decomposition of litter carbon into soil humus and eventually CO2. The VISIT model includes 

a nitrogen dynamics module that simulates nitrous oxide emission from the soil surface and other nitrogen flows, but this study 

was primarily focused on the carbon budget.  

Note that the model has two separate layers, one for natural ecosystems and another for croplands. Almost all 

biogeochemical processes are simulated separately in the two layers and then weighted by their respective areas to obtain mean 15 

values for each grid cell. A transitional change in the fractions of natural ecosystems and cropland, associated with land-use 

conversion, results in interactions between the layers. 

The VISIT model has been calibrated and validated with field data mostly related to the carbon cycle, such as plant 

productivity, biomass, leaf area index, and ecosystem CO2 fluxes (e.g., Ito and Oikawa, 2002; Inatomi et al., 2010; Hirata et 

al., 2014). Also, at regional to global scales, the model has been examined by comparisons with network and remote-sensing 20 

data (e.g., Ichii et al., 2013; Ito et al., 2017). Furthermore, the model has been part of model intercomparison projects. One 

was the Multi-scale Terrestrial Model Intercomparison Project, which examined terrestrial models in terms of the CO2 

fertilization effect on GPP and its seasonal-cycle amplitude (Huntzinger et al., 2017; Ito et al., 2016) and soil carbon dynamics 

(Tian et al., 2015). Another was the Inter-Sectoral Impact Model Intercomparison Project, which compared terrestrial impact 

assessment models with various observational data such as satellite- and ground-measured GPP for benchmarking (Chen et 25 

al., 2017), responses to El Niño events (Fang et al., 2017), and turnover of carbon pools (Thurner et al., 2017). Moreover, the 

model participated in the TRENDY vegetation model intercomparison project and then contributed to the global CO2 synthesis 

(Le Quéré et al., 2018).  

 

2.2     Minor carbon flows  30 

The VISIT version used in this study includes various MCFs, which play unique and important roles in terrestrial ecosystems. 

Eight MCFs were included in the VISIT model in a common manner (Fig. 1): emissions associated with land-use change 

(FLUC), biomass burning by wildfire (FBB), emission of biogenic volatile organic compounds or BVOCs (FBVOC), methane 

emissions from wetlands and methane oxidation in uplands (FCH4), agricultural practices from cropping to harvesting (FAP), 
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wood harvesting in forests (FWH), export of dissolved organic carbon (DOC) by rivers (FDOC), and displacement of soil 

particulate organic carbon (POC) by water erosion (FPOC). The net carbon balance including MCFs, called net biome production 

(NBP: Schulze et al., 2000), is more closely related than NEP to the changes in the ecosystem carbon pool. Note that NBP has 

similarities with and differences from other terms such as NEP, which has scale dependence (Randerson et al., 2002), and net 

ecosystem carbon balance (Chapin et al., 2006). As discussed later (Sect. 4.4), there remain inconsistencies in the definition 5 

of net terrestrial productions, including riverine export, inland water sedimentation, and human harvest and consumption. In 

this study, NBP is defined as:  

 

 NBP = NEP – (FLUC + FBB + FBVOC + FCH4 + FAP + FWH + FDOC + FPOC).     (2) 

 10 

The MCFs differ markedly in their biogeochemical properties and therefore should be evaluated individually. For example, 

the first four flows are vertical exchanges with the atmosphere (FLUC, FBB, FBVOC, and FCH4), whereas the second four are lateral 

transportations induced by water and human activities (FAP, FWH, FDOC, and FPOC). Flows associated with disturbances, such as 

wildfire (FBB) and land-use conversion (FLUC), are heterogeneous in space and time. To avoid double counting, these two flows 

were calculated separately: FLUC includes burning of debris after deforestation, and FBB excludes human-induced ignition. 15 

 

2.2.1     Land-use change (FLUC) 

Carbon emissions associated with land-use conversion were estimated for the historical period on the basis of a protocol 

proposed by McGuire et al. (2001), using the Land Use Harmonization (LUH) dataset (Hurtt et al., 2006). The LUH dataset 

provides both land-use states and their mutual transition matrix. First, the annual transition rate from primary and secondary 20 

lands to other land-use types was determined by the LUH dataset. This transition rate was multiplies by the average carbon 

stock in natural lands simulated by the VISIT model to estimate the amount of carbon affected by land-use conversion. This 

carbon was then separated into three components with different residence times from less than 1 yr (detritus) to 100 yr (wood 

products). The detritus, including dead root biomass, was transferred to the soil litter pool and then decomposed. The fractions 

of wood products with 10-yr and 100-yr residence times are biome dependent (McGuire et al., 2001). Note that wood harvest 25 

not associated with land-use change (e.g., selective cutting) was separately evaluated as the FWH term (Sect. 2.2.6). The VISIT 

model has been used to assess the effects of land-use change from the point scale (Adachi et al., 2011; Hirata et al., 2014) to 

the global scale (Kato et al., 2013; Arneth et al., 2017). 

 

2.2.2     Biomass burning (FBB) 30 

Wildfire and associated biomass burning have been studied with respect to their effects on land disturbance, carbon 

biogeochemistry, and climatic interactions (e.g., Randerson et al., 2006; Knorr et al., 2016). The biomass burning scheme of 

the VISIT model has been described and evaluated by Kato et al. (2013). Biomass burning emission was calculated as follows: 
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 FBB = fBurnt × DC × BI × EFBB,         (3) 

 

where fBurnt is the burnt area fraction in natural vegetation, DC is the area-based carbon density, BI is the burnt intensity 

(fraction of fire-affected carbon), and EFBB is the emission factor (emission per unit burnt biomass). fBurnt is estimated in a 

prognostic manner using an empirical fire scheme originally developed by Thonicke et al. (2001) for the Lund-Potsdam-Jena 5 

dynamic global vegetation model. This scheme estimates the length of the fire season and the corresponding burnt area fraction 

from monthly values of soil water content and fuel load. Agricultural waste burning and prescribed fires for ecosystem 

management are not considered here. Differences in fire susceptibility among biomes are characterized by a parameter of 

critical moisture content for fire ignition. DC, fuel carbon stock per area, is obtained from the VISIT simulation; it is assumed 

that the plant leaf, stem, root, and soil litter stocks are subject to biomass burning. BI is a biome- and stock-specific parameter 10 

obtained from Hoelzemann et al. (2004), ranging from 0.0 for humid forest root to 1.0 for forest and grassland litter. Emission 

factor EFBB is also a biome- and stock-specific parameter and differs among emission substances; this study considered CO2, 

carbon monoxide, black carbon, and methane. EFBB values for each biome and stock were obtained from Hoelzemann et al. 

(2004). Other carbon flows associated with biomass burning, such as production and burial of charcoal, were not considered. 

 15 

2.2.3     BVOC emission (FBVOC) 

Emissions of BVOCs, such as isoprene and monoterpene, attract particular attention from atmospheric chemists, and several 

emission schemes have been developed. Here, a convenient scheme of Guenther (1997) was incorporated into the VISIT model 

with a few modifications. The scheme estimates BVOC emission as follows: 

 20 

 FBVOC = EFBVOC × FD × DL × fPPFD × fTMP × fPhenology,      (4) 

 

where EFBVOC is the emission factor of BVOC, FD is foliar density, DL is day length, and fPPFD, fTMP, and fPhenology are 

scalar coefficients for light (photosynthetic photon flux density), temperature, and phenological factors, respectively. EFBVOC 

was derived from Lathiére et al. (2006) for representative species such as isoprene, monoterpene, methanol, and acetone. FD, 25 

leaf carbon stock per ground area, and DL were from the VISIT simulation. Due to the difference in biochemical pathways, 

only isoprene emission is responsive to light intensity (fPPFD = 0–1), while other species are insensitive (fPPFD = 1). BVOC 

emission increases with temperature, and fTMP differs between isoprene and other monoterpene families. fPhenology, the 

effect of leaf aging, differs between evergreen and deciduous vegetation. Here, based on the model simulation, leaf age 

distribution was modified to consider this difference explicitly; fPhenology values ranged from 0.05 for immature leaves (leaf 30 

age < 1 month) to 1.2 for mature leaves (leaf age 2–10 months for deciduous and 3–24 months for evergreen leaves). Emission 

reduction due to leaf senescence is evaluated by decreasing fPhenology value. FBVOC was extracted from the leaf carbon pool 

in the model, and impacts of released BVOCs on atmospheric chemistry and their climatic feedback were ignored. 

 

削除: x 35 
削除: x

削除: x

削除: Here it is assumed that the fires occur only in natural 
vegetation, and h…

削除: uman-40 

削除: x

削除: x

削除: x

削除: x

削除: x45 

削除: Only 



7 
 

2.2.4     Methane emission (FCH4) 

Methane is a greenhouse gas second to CO2 in importance, but here I focus on methane exchange in terms of the carbon budget. 

Land surface CH4 exchange was simulated separately for wetland (Fwetland, source) and upland (Fupland, sink) fractions within 

each grid cell, as described in Ito and Inatomi (2012):  

 5 

 FCH4 = fwetland × Fwetland – (1– fwetland) × Fupland,        (5) 

 

where fwetland is the wetland fraction within a grid cell. In the wetland fraction, Fwetland was simulated using a mechanistic 

scheme developed by Walter and Heimann (2000) that uses a multi-layer soil model and simulates gaseous methane emission 

by physical diffusion, ebullition, and plant-mediated transportation. The same scheme was applied to paddy fields, found 10 

mostly in Asia, using seasonal inundation by irrigation.  In this study, the top 1 m of soil was divided into 20 layers, and 

methane gas diffusion was solved numerically with a finite-difference method including the vertical gradient of diffusivity. 

Microbial methane production occurs below the water table and is sensitive to moisture, temperature, and plant activities 

(substrate supply). It is assumed to increase exponentially with the temperature, and it stops below the freezing point. Ebullition 

is assumed to occur when the methane concentration exceeds 500 µmol L–1. Plant-mediated transport depends on the methane 15 

concentration gradient between the atmosphere and soil layers and is strongly influenced by plant type and rooting depth. 

Above the water table, methane oxidation by aerobic soil is calculated as a function of soil temperature and the methane 

concentration of the air space. In the upland fraction such as forests and grasslands, Fupland is calculated using a semi-

mechanistic scheme (Curry, 2007) that calculates methane uptake as a vertical diffusion process affected by soil porosity and 

microbial activity. The wetland fraction fwetland was derived from the Global Lake and Wetland Dataset (Lehner and Döll, 2004) 20 

was held fixed throughout the simulation period. Temporal variations of the inundation area and water table depth in the 

wetland fraction are key factors in estimating Fwetland. In this study, seasonal variation of the inundated area was prescribed by 

satellite data by microwave remote sensing (Prigent et al., 2001), and temporal variability of water table depth was determined 

by the water budget estimated by the VISIT model (Ito and Inatomi, 2012). Therefore, interannual variability in inundation 

area, such as that due to droughts and floods, could have been underrepresented in this study. 25 

 

2.2.5     Agricultural carbon flows (FAP) 

Agricultural practices, including cropping, harvesting, and consumption, are an important component in the global carbon 

budget (Ciais et al., 2007; Wolf et al., 2015). The VISIT model uses a simplified agriculture scheme, in which global croplands 

are aggregated, on the basis of physiology and cultivation practices, into three types: C3-plant cropland (e.g., wheat), C4-plant 30 

cropland (e.g., maize), and paddy field. The scheme assumes a single-cropping cultivation system in temperate regions, where 

the growing period is determined by a critical mean monthly temperature of 5°C. In tropical regions (annual mean temperature 

> 20°C), a continuous (non-seasonal) cropping system is assumed in which planting and harvesting occur at constant rates in 

every month. Irrigation is not explicitly included in the model; instead the water-stress factor for cropland plants is relaxed 
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from its value for natural vegetation. At the start of the growing period, a certain amount of carbon is added to plant biomass 

pools to represent planting. The crops are harvested when the surface temperature falls below the critical temperature. This 

study used a single value of 0.45 for the harvest index (fraction of harvested biomass); however, this index varies among crop 

types and regions, and the uncertainties in this parameter are considered in Sect 4.5. Residual plant biomass was transferred to 

the litter pool as agricultural detritus, and this study ignored manure production and consumption processes. Harvested crops 5 

were exported from the ecosystem, and the complexities of horizontal food displacement and consumption were also ignored.  

 

2.2.6     Wood harvest (FWH) 

Timber harvest by logging in forested lands was evaluated primarily from the LUH dataset (Hurtt et al., 2006), in which the 

annual wood harvest rate was derived from national data compiled by the United Nations Food and Agricultural Organization. 10 

Hurtt et al. (2006) estimated the spatial pattern of wood harvest in each country from land-use data. In this study, regrowth 

and carbon accumulation of forests after logging was simulated as a recovery of the carbon stock to its previous level of mature 

forest. As was done for crops, the harvested wood biomass was assumed to be exported from the ecosystem, specifically the 

stem carbon pool; horizontal transportation to and consumption in other grid cells were ignored. Note that emissions from 

harvested timber associated with land-use change were evaluated as part of the FLUC term.  15 

 

2.2.7     Dissolved organic carbon export (FDOC) 

Production and consumption of DOC are important processes in terrestrial ecosystems, in terms of soil formation and riverine 

transport (Nelson et al., 1993). In this study, the VISIT model included a simple scheme of DOC dynamics developed by 

Grieve (1991) and Boyer et al. (1996), in which the DOC concentration in soil water is determined by the balance of production, 20 

decay, and export. The production and decay rates are determined by soil temperature, and the export rate is determined by 

runoff discharge. In this study, net carbon export by DOC was extracted from the mineral soil pool. Because the VISIT model 

does not include a river routing scheme, DOC extraction was independently evaluated at each grid cell, and lateral 

transportation and decay processes were not simulated.  

 25 

2.2.8     Particulate organic carbon export (FPOC) 

Export of POC is assumed to occur mainly in association with soil displacement by water erosion, which can cause soil 

degradation. The VISIT model incorporates the Revised Universal Soil Loss Equation (Renard et al., 1997) to estimate the 

rate of soil displacement by water erosion (Ito, 2007). Annual displacement of soil carbon is calculated by: 

 30 

 FPOC = fC × R × L × S × K × C × P,        (6) 

 

where fC is soil carbon content and R, L, S, K, C, and P are coefficient factors of rainfall, slope length, slope steepness, soil 

erodibility, vegetation coverage, and conservation practices, respectively, as described in Ito (2007). fC is obtained from the 
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VISIT simulation, and FPOC is extracted from the soil surface litter pool. Although it was developed for management of local 

croplands, this practical scheme and its derivatives have been used for continental-scale studies (e.g., Yang et al., 2003; 

Schnitzer et al., 2013; Naipal et al., 2018). Transport of terrestrial carbon to inland waters or the ocean is, however, a 

complicated process (Berhe et al., 2018); for example, large fractions of displaced soil are redistributed in riverbanks, 

lakeshores, and estuaries. The fate of eroded carbon is assumed to be 20% in CO2 evasion by decomposition, 60% in 5 

sedimentation, and 20% in export to lakes and oceans (Lal, 2003; Kirkels et al., 2014). The export fraction is highly uncertain 

and is discussed further in the parameter uncertainty analysis of Sect. 4.5.  

 

2.3     Simulations and analyses 

Global simulations were conducted from 1901 to 2016 at a spatial resolution of 0.5° × 0.5° in latitude and longitude. The 10 

VISIT model was applied to each grid cell, and lateral interactions such as riverine transport, food and timber export, and 

animal migration were ignored. To obtain the initial stable carbon balance, a spin-up calculation under stationary conditions 

was conducted for each grid cell for 300 to 3000 years, depending on climate conditions and the biome type. This section 

describes sensitivity simulations to analyze the impacts of different forcing variables, ensemble perturbation simulations to 

assess the effect of parameter uncertainty, and several supplementary simulations.  15 

All simulations used climate conditions from CRU TS 3.25 (Harris et al., 2014), consisting of monthly temperature, 

precipitation, vapor pressure, and cloudiness. The historical change in atmospheric CO2 concentration was taken from 

observations (e.g., Keeling and Whorf, 2009). The global distribution of natural vegetation was determined by Ramankutty 

and Foley (1998) for potential vegetation types and Olson et al. (1983) for actual vegetation types. This study classified natural 

vegetation into 28 types after Olson et al. (1983). Historical land-use status, transitional changes, and wood harvest in each 20 

grid cell were derived from the LUH data (Sect. 2.2.1). Until 2005, land-use data were compiled on the basis of statistics and 

various ancillary data, and after 2006 the data were extended by using an intermediate projection scenario (RCP4.5) produced 

with an integrated assessment model. The distribution of dominant crop types was determined from the global dataset of 

Monfreda et al. (2008) and used to calculate FAP and FCH4 (for paddy field). For the calculation of FCH4, the wetland fraction in 

each grid cell was determined from the GLWD (Sect. 2.2.4). For the estimation of FPOC, slope factors (L and K) were calculated 25 

from the GTOPO30 topography data (https://lta.cr.usgs.gov/GTOPO30), and the erodibility factor (S) was calculated from soil 

composition data (Reynolds et al., 1999). Vegetation coverage (C) and conservation practice (P) factors were determined from 

the dominant natural vegetation and cropland types, also considering the difference in management intensity between 

developed and developing countries.  

This study focused on the carbon budget of terrestrial ecosystems and analyzed the following variables: GPP, RE, NEP, 30 

NBP, biomass carbon stock, and soil carbon stock. The mean residence time (MRT) of the biomass, soil, and total ecosystem 

carbon stocks at transitional states were approximately calculated in a similar manner to Carvalhais et al. (2014): 

 

 MRT = C stock / flux,          (7) 
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where flux is net primary production (NPP) for biomass (= GPP – RA), RH for soil, and the sum of these fluxes (NPP + RH) 

for the total ecosystem carbon stock. 

 

2.3.1     Sensitivity simulations 5 

To evaluate and separate the effects of MCFs, 12 simulation experiments were conducted: 

 

• EX0: no MCF was included, and the terrestrial carbon budget was determined by GPP, RA, and RH, such that NBP was 

identical to NEP. 

• EXLUC: only FLUC was added to EX0. 10 

• EXBB: only FBB was added to EX0. 

• EXBVOC: only FBVOC was added to EX0. 

• EXCH4: only FCH4 was added to EX0. 

• EXAP: only FAP was added to EX0. 

• EXWH: only FWH was added to EX0. 15 

• EXDOC: only FDOC was added to EX0. 

• EXPOC: only FPOC was added to EX0. 

• EXALL: all eight MCFs were considered, equivalent to the baseline simulation. 

• EXBGC: biogeochemical flows (FBVOC, FCH4, FDOC, and FPOC) were added to EX0. 

• EXATP: anthropogenic (human-dominated) flows (FLUC, FBB, FAP, and FHW) were added to EX0. 20 

 

The differences between EX0 and the next eight simulations indicate the effects of individual MCFs, and the difference 

between EXALL and EX0 shows the combined effect of these MCFs. Interactions among the MCFs through changes in the 

terrestrial carbon stock may mean that their effects are not linearly additive. For example, land-use changes have indirect 

impacts on biomass burning, BVOC emission, and water erosion (e.g., Nadeu et al., 2015). Also, inclusion of the MCFs affects 25 

the major flows of primary production and respiration. For example, BVOC emission reduces the carbon stored in leaves, 

which leads to reductions of light absorption and GPP. In croplands, planting and harvest substantially influence GPP and 

respiration. The last two simulations (EXBGC and EXATP) sought to evaluate the relative contributions of what are 

conventionally considered biogeochemical and human-affected processes. 

 30 

2.3.2     Parameter ensemble simulations 

Large uncertainties remain in the estimates for each MCF and its impacts. These uncertainties can emerge among different 

models, forcing data, and parameters, and evaluating them is important but difficult. The schemes used in this study include 

empirical formulations and parameters, some of which are not well constrained by observational data. Upscaling locally 
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adapted schemes and parameters can lead to biased results at the global scale. To characterize the range of uncertainty caused 

by poorly determined parameters, I conducted a set of ensemble simulations, based on EXALL, in which the values of the 

following representative parameters of the eight MCFs were randomly perturbated at the same time: annual deforestation rate 

in FLUC, biomass burning emission factors in FBB, BVOC emission factors in FBVOC, wood harvest rate in FWH, crop harvest 

index in FAP, methane production and oxidation potentials in FCH4, DOC export rate in FDOC, and erodibility and land-export 5 

fraction in FPOC. It should be noted here that other parameters have their own uncertainties and that this study focused on these 

eight representative parameters for explanatory purposes. Also, these uncertainties may increase as they incorporate the 

differences among models with differing structures and assumptions. A total of 146 ensemble simulations were conducted 

(Fig. S2) in which these parameters were perturbed by randomly selecting values from the Gaussian distribution within the 

range of ±30%. All other configurations were those of EXALL. Means, medians, and 95% confidence intervals were calculated 10 

from the 146 resulting terrestrial carbon budgets. 

 

2.3.3     Supplementary simulations 

To further investigate the characteristics and influence of MCFs, five supplementary simulations were conducted. In the first, 

based on the protocol of EXALL, land-use status was held fixed at its initial state in 1901 (EXfxLUC). This simulation differs 15 

from EXLUC by also removing the effects of land-use change on FAP and FPOC from alterations in cropland area. In the second, 

the climate condition was held fixed at its initial state in 1901 (EXfxCL). This simulation removed the effect of temperature and 

precipitation changes on MCFs and the terrestrial carbon budget. Many carbon flows, including the major ones (GPP, RA, and 

RH) as well as minor ones (FBB, FBVOC, FCH4, FAP, FDOC, and FPOC), are more or less influenced by climate conditions. In the 

third simulation, atmospheric CO2 concentration was held fixed at its level in 1901 (EXfxCO2). Although no MCFs are directly 20 

sensitive to ambient CO2 conditions, the fertilization effect of rising CO2 concentration affects GPP and related carbon 

dynamics, including MCFs.  

The fourth and fifth simulations focused on biomass burning. As explained earlier, the fire scheme in the VISIT model 

does not explicitly consider human activities such as prescribed fires and fire prevention, probably leading to biases in burnt 

area and subsequent emission patterns. For example, the fire scheme poorly captures the recent declining trend in burnt area 25 

(Andela et al., 2017) due to human suppression. These two simulations used satellite remote sensing data to evaluate the effect 

of model-estimated burnt area. In the fourth simulation, based on EXALL, interannual variability in burnt area was prescribed 

by the Global Fire Emission Database 4s (GFED4s) remote sensing product (Randerson et al., 2012) during the period 1998–

2016 (EXBB1). In the fifth simulation (EXBB2), the simulated mean burnt area for 1901–2016 was adjusted with respect to 

GFED4s. For example, if the control run (EXALL) had estimated burnt areas that averaged 20% higher than GFED4s, an 30 

adjustment coefficient of 100/120 would have been applied to the burnt area simulated in this run to remove the systematic 

overestimation. 

 

3     Results  
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3.1     Global terrestrial carbon budgets 

The mean annual global terrestrial GPP in 1990–2013 (a period when comparative estimates were available) was simulated as 

144.0 ± 4.4 Pg C yr–1 in EX0 and 125.4 ± 4.0 Pg C yr–1 in EXALL (mean ± standard deviation of interannual variability). 

Ecosystem respiration (RE) was simulated as 141.0 ± 3.6 Pg C yr–1 in EX0 and 118.8 ± 3.2 Pg C yr–1 in EXALL. Mean vegetation 

and soil carbon storage differed in the two simulations: EX0 produced 648 Pg C in vegetation and 1560 Pg C in soil organic 5 

matter, and EXALL produced 477 Pg C in vegetation and 1290 Pg C in soil organic matter. The mean annual net CO2 budget 

determined by the major flows, NEP (= GPP – RE), was simulated as 2.99 ± 1.18 Pg C yr–1 in EX0 (which ignores MCFs) and 

6.57 ± 1.07 Pg C yr–1 in EXALL. Because both simulations used the same climate, atmospheric CO2, and land-use data, these 

differences — lower carbon stocks, smaller GPP and RE flows, and a large sink by NEP — are attributable to inclusion of the 

MCFs.  10 

The individual MCFs had different impacts on the global terrestrial carbon budget. For the vegetation carbon stock, 

impacts were negligible (< 1 Pg C) from methane emission, DOC and POC exports by water movement, and agricultural 

practices, whereas impacts were substantial from land-use change (–88.5 Pg C), biomass burning (–46.4 Pg C), wood harvest 

(–28.5 Pg C), and BVOC emission (–24.2 Pg C). For the soil carbon stock, the two largest negative impacts were from land-

use change (–108 Pg C) and biomass burning (–71.2 Pg C). Interestingly, inclusion of BVOC emission reduced the soil carbon 15 

stock (–18.1 Pg C) through the loss of photosynthate carbon and decreased carbon supply to the soil. Inclusion of agricultural 

carbon flows (planting and harvesting, other than land-use change) decreased the soil carbon stock (–55.6 Pg C), although 

planting enhanced vegetation productivity and carbon supply to the soil. Inclusion of DOC and POC exports moderately 

reduced the soil carbon stock (–5.9 and –3.6 Pg C, respectively).  

Most of the difference in GPP between EX0 and EXALL was attributable to land-use change (–12.8 Pg C yr–1), wood 20 

harvest (–0.9 Pg C yr–1), and BVOC emission (–0.9 Pg C yr–1). Biomass burning, though it has substantial impacts on biomass, 

also slightly decreased GPP (–0.75 Pg C yr–1). The simulated impacts of MCFs on RE were mostly similar to those for GPP. 

The relatively high NEP in EXALL was largely attributable to compensatory regrowth in response to biomass burning (2.03 Pg 

C yr–1), BVOC emission (0.69 Pg C yr–1), and wood harvest (0.41 Pg C yr–1).  

Human activities (EXATP) had greater impacts on terrestrial carbon stocks than biogeochemical processes (EXBGC), as 25 

mean ecosystem carbon stock decreased by 172 Pg C in EXBGC and 296 Pg C in EXATP. The sum of these two depressions in 

carbon stock, 467 Pg C, was larger than that estimated in the all-inclusive experiment (EXALL), 440 Pg C, which points to 

nonlinear offsetting effects among the MCFs. 

The carbon budget including the MCFs (NBP) in 1990–2013 was estimated as 1.36 ± 1.12 Pg C yr–1 of net sink in EXALL, 

that is, 20.7% of NEP (see Table 1 for decadal summary). Figure 2 shows the temporal change in global annual NEPs and 30 

NBPs in each experiment for the 1901–2016 study period (see Fig. S3 for details of the 1990–2013 period). The inclusion of 

MCFs considerably altered the mean state of the terrestrial carbon budget through the simulation period. Little difference was 

found among the experiments in interannual variability and decadal trends. For example, linear trends of NBP in 1980–2013 

were estimated as (0.0783 Pg C yr–1) yr–1 in EX0 and (0.0890 Pg C yr–1) yr–1 in EXALL. Interestingly, the larger differences 
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among experiments for NEP (±1.15 Pg C yr–1, standard deviation among EX0 to EXALL) than for NBP (±0.52 Pg C yr–1) 

indicated a convergence of estimated carbon budgets after including MCFs.  

The spatial distribution of carbon budgets shows that EX0 identified a vast area of tropical, temperate, and boreal forests 

as moderate net carbon sinks (Fig. 3a). The inclusion of MCFs in EXALL (Fig. 3b) intensified this net sink in tropical forests 

and parts of the temperate and boreal forests, but it decreased NEP in grasslands and pastures in central North America and 5 

Europe, turning parts of them into net carbon sources (Fig. 3d). The spatial distribution of NBP in EXALL (Fig. 3c) was a 

heterogeneous pattern of sink and source. Several tropical and subtropical forests had negative NBP, although NEP in these 

areas was estimated as positive or neutral. As shown in Fig. 3e, with the addition of MCFs, a large part of the terrestrial 

ecosystem was simulated to lose carbon. The contributions of each flow are described in the next section. 

The decrease in carbon stocks in terrestrial ecosystems after the addition of MCFs indicates that the mean residence time 10 

(MRT) of these stocks became shorter than would be estimated solely from major carbon flows (see Fig. S4 for the spatial 

distribution of stocks and MRTs). As shown in Fig. 4, simulated terrestrial carbon stocks in EXALL were steady or slightly 

declining until around 1960, especially when land-use change (e.g., tropical deforestation) was included. After 1960, carbon 

stocks in vegetation and soil began to gradually increase. As described earlier, the simulated carbon stocks differed among the 

experiments by as much as 440 Pg C as a consequence of including MCFs. Also, the inclusion of MCFs made large impacts 15 

on GPP and RE (Fig. S5) by altering vegetation structure and soil carbon storage. Simulated MRTs grew clearly shorter (i.e., 

turnover was accelerated), as a result of global changes such as temperature rise enhancing respiratory emissions. Note that 

MRTs also grew shorter in the result of EX0, which ignored MCFs, but including the MCFs increased the difference in MRT 

among the experiments. For example, the difference in MRT of vegetation biomass between EX0 and EXALL grew from 0.89 

yr in the 1900s to 1.54 yr in the 2000s, and the difference for soil carbon stock grew from 0.10 yr in the 1900s to 0.24 yr in the 20 

2000s. The definition of MRT (Eq. 7) means that shortened MRTs could result from increases of NPP and respiration. 

 

3.2     Simulated patterns of MCFs 

Figure 5 shows the temporal changes in the eight simulated MCFs in their individual sensitivity simulations (EXLUC to EXPOC) 

as well as the EXALL simulation. The emissions associated with land-use change (FLUC) peaked around the 1950s at 1.2–1.4 Pg 25 

C yr–1 and then gradually decreased. Biomass burning emission (FBB) remained around 1 Pg C yr–1 until the 1970s and then 

increased slightly to 1.5 Pg C yr–1, with a large interannual variability. BVOC emission (FBVOC) increased gradually from 0.5 

Pg C yr–1 in the early 20th century to 0.6 Pg C yr–1 in the 21st century. Methane emission (FCH4) gradually increased from 0.11 

Pg C yr–1 in the first decades of the 1900s to 0.13 Pg C yr–1 in the 2000s (representing 160 – 170 Tg CH4 yr–1). Wood harvest 

(FWH) likewise increased from 0.5 Pg C yr–1 in the 1900s to 1.1 Pg C yr–1 in the 2000s, as did POC export by water erosion 30 

(FPOC), which increased from 0.55 Pg C yr–1 in the 1900s to 0.95 Pg C yr–1 in the 2000s. Crop planting and harvest (FAP) had 

a mixed effect on the terrestrial carbon budget, because planting enhances productivity, whereas the harvesting is a direct 

carbon loss. As a result, FAP had both negative (net uptake) and positive (net emission) values. DOC export (FDOC) remained 

steady at around 0.14 ± 0.004 Pg C yr–1 through the simulation period.  
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The supplementary simulations showed that temporal changes in the MCFs were caused by different forcing factors. For 

example, when the atmospheric CO2 concentration was fixed at its level in 1901 (EXfxCO2, data not shown), the increasing 

trend in FBVOC (Fig. 5c) nearly vanished, whereas other flows such as FWH and FPOC were insensitive to CO2. When climate 

conditions were held fixed (EXfxCL), FBB showed only a decadal trend in response to changes in fuel load, and climate-induced 

interannual variability in burnt area and fire-induced emissions (Fig. 5b) disappeared. 5 

The MCFs considered in this study showed distinct spatial patterns (Fig. 6). FLUC occurred mainly in the tropical forests 

of South America, Africa, and South Asia. FBB occurred in subtropical areas in Africa, tropical forests in South America and 

Southeast Asia, the Mediterranean area, and boreal forests in North America and East Siberia. FBVOC was highest in tropical 

forests and elevated in other forested areas. For FCH4, major sources included monsoon-affected parts of Asia dominated by 

paddy fields, tropical wetlands including floodplains of big rivers, and northern wetlands, whereas other uplands were weak 10 

sinks. For FAP, croplands in Europe, East Asia, and North America exported large amounts of carbon (see Fig. 6f for the crop 

harvesting effect alone). FWH occurred mainly in tropical forests in southern East Asia, South America, and southern North 

America. FPOC occurred mainly in humid and steep areas such as mountainous regions of monsoon Asia and cultivated areas. 

FDOC occurred mainly in warm and humid areas such as tropical forests in South America, Africa, and Southeast Asia. 

 15 

3.3     Effects of MCFs on the carbon budget 

The effects of the eight studied MCFs on the global carbon budget, resulting in a lower net sink by NBP than by NEP, were 

dominated by five MCFs: biomass burning (FBB), wood harvest (FWH), POC export by water erosion (FPOC), BVOC emission 

(FBVOC), and emission caused by land-use change (FLUC) (Fig. 7a). The contributions of MCFs differed among regions. FAP and 

FBB had dominant effects in Europe (Fig. 7b) and North America (Fig. 7g), where the effects of FLUC and FDOC were negligible. 20 

In Africa (Fig. 7c), South America (Fig. 7h), and the global tropics (Fig. 7i), all five MCFs had similar effects. In Asia (Fig. 

7e), FPOC and FAP had the largest effects, and FCH4 emissions from the vast area of paddy fields were considerable. In semi-arid 

regions (Fig. 7j), FAP and FBB were the largest.  

Certain spatial tendencies become clearer in a global aggregation of the simulated results (Fig. 8) related to the dominant 

land-cover type in each grid cell, the cropland fraction, and aridity represented by annual precipitation. In forest-dominated 25 

grid cells (Fig. 8a), FBB made the largest (>30%) contribution, followed by FWH, FBVOC, and FLUC, and in cropland-dominated 

cells, about half of the influence of MCFs was due to agricultural practices (FAP). Because grassland-dominated cells contain 

fractions of woodland and cropland, FAP and FWH as well as FPOC made contributions in these cells. In desert-dominated cells, 

FBB made up the majority of the contributions. In cells with small fractions of cropland including tropical forests (Fig. 8b), 

FWH, FBB, and FBVOC made strong contributions, whereas in cells dominated by crops, FCH4 made a substantial contribution 30 

reflecting the vast area of paddy fields in Asia. FPOC made large contributions at all cultivation intensities, but particularly in 

moderately cultivated areas. An analysis based on precipitation was also informative (Fig. 8c). In arid areas (annual 

precipitation < 500 mm), FBB had the largest impacts, as expected from the dominance of fire-prone ecosystems such as boreal 
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forests and subtropical woodlands. In wet areas (precipitation > 1500 mm), FLUC and FPOC made large contributions, and FBB 

had a minor effect. The influence of FWH was strongest in moderately humid to wet areas. 

 

4     Discussion and conclusions 

4.1     Comparison with previous carbon studies 5 

This study showed that MCFs have notable impacts on the terrestrial carbon budget; they disequilibrate ecosystem carbon 

stocks and affect MRTs. Most of the simulated magnitudes of MCFs were comparable to results of previous studies (Fig. 5 

and Table 2), and their impacts on the carbon budget were consistent with other model studies (e.g., Yue et al., 2015; Naipal 

et al., 2018). In terms of FLUC, the model estimated clearly lower emissions than the GCP synthesis (Le Quéré et al., 2018) and 

other studies, surely because this study did not use actual land-use data after 2005. Updated data would likely improve the 10 

VISIT model’s performance. The fact that the simulated FBB was slightly low compared to previous estimates implies that 

there is a need to refine the fire module in the model (discussed further in Sect. 4.5). The simulated FPOC was comparable to 

results in other studies, but there remain inconsistencies in the fate terms (riverine transport, burial, and CO2 evasion) and the 

ratio of ocean and inland water export. Similarly, the simulated FAP and FWH appear comparable to results in other studies, but 

this study largely ignored their transport and consumption. Further detailed comparisons and comprehensive assessments are 15 

clearly required. 

Most models have been calibrated and validated with observational data of major carbon flows (e.g., GPP, RE, and NEP) 

and carbon stocks. Although recent models have begun to take account of land-use change and biomass burning, most still 

ignore the contributions of many other minor flows. The global GPP simulated in this study is similar to a satellite-based 

product of the Breathing Earth System Simulator (BESS) of Jiang and Ryu (2016): for the 2001–2013 period, the coefficient 20 

of determination (R2) was 0.77 for EX0 and 0.71 for EXALL (Fig. S5). All three simulations show increasing trends. In contrast, 

the up-scaled flux measurement data of FLUXCOM (Tramontana et al., 2016) and the MOD15 satellite product (Zhao et al., 

2006) show smaller interannual variability and trends, and they were only weakly correlated with the VISIT simulations (R2 = 

0.21 – 0.39). Compared with the terrestrial carbon budget in the integrated synthesis of the Global Carbon Project (GCP) for 

1959–2016 (Le Quéré et al., 2018), the simulated NEP in EXALL was much higher in the same period: 5.7 Pg C yr–1 in EXALL 25 

and 2.1 Pg C yr–1 in GCP. Removing the land-use emission of 1.3 Pg C yr–1 would reduce the provisional NBP from GCP to 

0.85 Pg C yr–1, putting it closer to the simulated NBP in EXALL (0.68 Pg C yr–1) than to the NBP in EX0 (2.33 Pg C yr–1). 

(Figures S6 and S7 compare the results of NEP and FLUC from the individual models in the GCP synthesis.) EXALL successfully 

captured the large aboveground vegetation biomass stock in the tropics and the small stock in boreal zones seen in observations 

(Fig. S8a). A similar comparison of soil carbon (Fig. S8b) also indicates the model’s ability to capture the spatial gradient in 30 

this stock; an overestimation in the northern mid-latitudes (around 30°N) is attributable to high soil carbon accumulation in 

the Tibetan Plateau simulated by the model in frigid regions. It is not clear, however, whether EXALL (with MCFs) captured 

the global patterns with greater accuracy than EX0 (without MCFs), because observational datasets show considerable 

discrepancies, and the differences between the model simulations were relatively small. The estimated MRT of the ecosystem 
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carbon stock in EXALL (14–17 yrs) was shorter than the MRT of 23 yr (95% confidence interval, 18–29 yr) found by the data-

oriented study of Carvalhais et al. (2014). This difference is attributable to the high soil carbon stock in the latter study (2397 

Pg C) rather than to differences in the vegetation carbon stock and flows; both studies had similar spatial patterns of MRT.  

Considering the remaining uncertainties in observational terrestrial carbon accounting, it is still difficult to perform a 

conclusive validation. Nevertheless, this study demonstrated the possibility of integrating various carbon flows into a single 5 

model framework. 

 

4.2     Impacts of MCFs on regional and global carbon budgets 

The simulated MCFs affect the amount of the terrestrial carbon stock by as much as 440 Pg C. The size of this difference is 

comparable to differences, or the model estimation uncertainty, found among biome models (e.g., Friend et al., 2014; Tian et 10 

al., 2015). By definition, NBP including the effect of MCFs is likely to correspond closely to carbon stock change as well as 

carbon budgets obtained by atmospheric inversions. MCFs affect the carbon budget in two major ways: first by their 

instantaneous carbon exports and second by the ensuing carbon uptake during recovery from these disturbances, which occurs 

with time lags of decadal to centennial scale, depending on the types of disturbance and their intensities (e.g., Fu et al., 2017). 

Assessments of MCFs would help characterize the “missing sink”, which is now primarily ascribed to terrestrial carbon uptake 15 

(Houghton et al., 1998; Le Quéré et al., 2018) by mechanisms that are still arguable. Although previous studies (e.g., Jung et 

al., 2011; Zscheischler et al., 2017) have noted the potential importance of MCFs and the difference between NEP and NBP 

(or corresponding metrics such as the net ecosystem carbon balance of Chapin et al. (2006)), these issues have not been 

comprehensively evaluated by global and regional carbon syntheses, such as the REgional Carbon Cycle Assessment and 

Processes (RECCAP; Sitch et al., 2015). Indeed, biome models used to simulate the terrestrial carbon cycle in RECCAP differ 20 

in how they parameterize the MCFs, and their estimations of net budget are not easily compared. 

In the VISIT model simulation, interannual variability of NBP and NEP were closely correlated (Fig. S9), although 

several MCFs such as FBB and FCH4 did not share in that correlation. These interannual variations were largely determined by 

the major flows, except for extreme events such as huge fires in 1997 and 2015 (e.g., Huijnen et al., 2016). Therefore, 

establishing an empirical model may make it possible to approximately estimate NBP from NEP. To evaluate the similarities 25 

and differences between these two quantities, further observation data are required for each flow and its determinant processes.  

This study demonstrated that the VISIT modeling approach is effective in integrating the major and minor carbon flows 

into a single framework and obtaining a consistent carbon budget, although this approach has its own uncertainties and biases, 

as shown by benchmarking and intercomparison studies (e.g., Arneth et al., 2017; Huntzinger et al., 2017). Biogeochemical 

models like VISIT have advantages in reconciling inconsistencies, filling gaps, and specifying underlying mechanisms, as well 30 

as reconstructing historical changes and making future projections. Intimate collaborations between modeling and 

observational studies (Sitch et al., 2015; Schimel et al., 2015) should lead to more reliable carbon accounting.  

 

4.3     Ancillary impacts on hydrology 
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This study focused on the terrestrial carbon budget, but the MCFs also affect the hydrological properties of land systems. As 

shown in Fig. S10, land-use change, biomass burning, and BVOC emission lead to a loss of vegetation leaf area, except in 

croplands. The loss in turn decreases evapotranspiration and increases runoff discharge regionally by as much as 20 mm yr–1. 

In the simulation, runoff discharge increased through time, more steeply in EXALL than in EX0. This effect was evident in 

many tropical to temperate regions, implying the importance of comprehensive understanding of carbon–water interactions.  5 

However, it should be noted that the actual impacts of MCFs on land systems can be much more complicated than 

assumed here. For example, loss of soil organic carbon by biomass burning and water erosion may decrease the water-holding 

capacity of soils, leading to higher runoff discharge and lower tolerance to droughts. Also, several MCFs should change along 

with translocations and biogeochemical reactions of nutrients such as nitrogen and phosphorus, followed by changes in 

vegetation productivity and water use. To fully include these processes in the model, comprehensive understanding of 10 

biogeochemistry and ecohydrology is required. 

 

4.4     Complexities of MCF accounting 

Although this study incorporated some of the known MCFs, fully or partially, others are unrecognized or assumed to be 

negligible. Indeed, many studies have investigated MCFs that were not included in this and most previous carbon cycle studies 15 

(Table 3). Few studies have taken comprehensive account of all carbon flows. For example, for lack of parameterization data, 

this study did not explicitly consider carbon sequestration in pyrogenic organic matter or charcoal (e.g., Santín et al., 2015), in 

phytoliths (Song et al., 2017), or by means of abiotic geochemical processes (Schlesinger, 2017). This study tried to include 

the effects of DOC and POC exports and obtained results comparable to other studies (e.g., Dai et al., 2012; Galy et al., 2015; 

Chappell et al., 2016). However, this study did not explicitly consider lateral displacement of carbon between adjacent grid 20 

cells and associated emissions, such as river transport and international commerce (e.g., Battin et al., 2009; Bastviken et al., 

2011; Peters et al., 2012), and reservoir effects on riverine transport (e.g., Mendonça et al., 2017). In this regard, modeling of 

agricultural practices should be improved to obtain more reliable regional carbon budgets. It is particularly important to 

evaluate efforts to enhance harvest index and to raise carbon sequestration into cropland soils, as proposed by the “4 per 1000” 

initiative (Dignac et al., 2017; Minasney et al., 2018).  25 

More clarity is needed in the parameterization of disturbances. This study considered the impacts of wildfires and land-

use conversion, but in a conventional manner, possibly leading to biased results (see Sect. 4.5 for biomass burning). Other 

potentially influential disturbances, such as pest outbreaks and drought-induced dieback associated with climate extremes, 

were not explicitly considered, although they can perturb ecosystem carbon budgets (Reichstein et al., 2013). In the long term, 

ecosystem degradation induced by forest fragmentation, overgrazing, and soil loss by wind erosion can further affect carbon 30 

budgets (e.g., Paustian et al., 2016; Brinck et al., 2017). Integration of these processes awaits future studies. 

 

4.5     Uncertainties and possibility of constraints 
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This study is an early attempt to evaluate the effects of various MCFs. The results have convinced me that changes in MCFs 

will have considerable influences on the global carbon budget (e.g., Piao et al., 2018; Lal et al., 2019; Pugh et al., 2019), and 

more such attempts are required to improve our understanding of the global carbon cycle, which plays a critical role in future 

climate projections. However, given the imperfect state of knowledge about these MCFs, their inclusion can introduce other 

errors and biases. I took the estimation uncertainty into account by perturbing representative parameters, but this study did not 5 

examine other sources of uncertainties such as differences among ecosystem models and forcing data. Indeed, many ecosystem 

models have been developed with different degrees of complexity (e.g., dynamic global vegetation models), and 

intercomparison studies have shown that existing ecosystem models differ widely in their environmental responsiveness to 

changes in major carbon flows (e.g., Friend et al., 2014; Huntzinger et al., 2017). For example, the models differ in global GPP 

by more than 30%, even though the processes contributing to primary production are well understood and increasingly 10 

constrained by observations (Anav et al., 2015). This single-model study was necessarily limited in searching the full range of 

estimation uncertainty, and further studies using multiple MCF-implemented models are highly desirable.  

 Considering the shortcomings of broad-scale and long-term observations of MCFs, estimation uncertainties could be 

larger than presently thought. For example, each of the coefficient factors of the erosion scheme (Eq. 6) can be expected to 

have large ranges of uncertainty, and few data are available to constrain for the fate of laterally transported POC and DOC. 15 

Data related to land-use changes (e.g., gross vs. net land-use transition) and procedures to implement them in models are not 

standardized (e.g., Fuchs et al., 2015). One exception is that multiple satellites have produced long global records of biomass 

burning. Indeed, a comparison of FBB in the VISIT model simulation and these observations clearly shows a problem in this 

study (Fig. 5b): the VISIT model systematically underestimated fire-induced CO2 emission in most years relative to the 

BB4CMIP6 multi-satellite (combined with proxies) product of biomass burning (van Marle et al., 2017). It also showed an 20 

increasing trend of fire activity after 1998, a trend inconsistent with a recent analysis of global burnt area (Andela et al., 2017) 

that showed a declining trend of burnt area due to human activities such as agricultural expansion and intensification.  

To evaluate the bias caused by this inconsistency, a simulation was conducted (EXBB1) in which interannual anomalies 

of burnt area were prescribed by the GFED4s satellite product in 1998–2016 (Fig. S11, green line). As a result, the model-

simulated FBB showed a decreasing trend, implying that prognostic modeling of fire regimes is problematic. Additionally, the 25 

high fire-induced emission in 1998, a strong El Niño year, was appropriately captured. The model, however, was likely to 

overestimate average burnt area (561 × 106 ha yr–1) relative to satellite-based estimates. Therefore, another simulation was 

conducted (EXBB2) in which not only anomalous but also average burnt area were prescribed by GFED4s. That simulation (Fig. 

S11, orange line) yielded an even lower FBB resulting from a smaller burnt area (437 × 106 ha yr–1), although its interannual 

variability was little changed. The low FBB despite a large burnt area indicates that fire intensity or emission factors in the 30 

model were not properly determined. Such estimation biases and uncertainties can remain in other carbon flows and should be 

clarified and reduced using observational data.  

 

4.6     Implications for observations 
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This study has implications not only for improving models, but also for strategic observations of the carbon cycle. MCFs may 

account for much or all of the discrepancy among top-down atmospheric inversions, CO2 flux measurements, and bottom-up 

biometric carbon stock surveys (e.g., Jung et al., 2011; Kondo et al., 2015; Takata et al., 2017). Furthermore, investigations of 

MCFs may help reveal the mechanisms underlying the apparent net carbon sequestration by mature forests (Luyssaert et al., 

2008), as observed in CO2 flux measurements and biometric surveys. Major carbon flows (GPP, RE, and NEP) have been 5 

observed using the standardized FLUXNET method at many flux measurement sites (Baldocchi et al., 2001). These 

observations have given us an overview of the terrestrial carbon budget and its tendencies (e.g., Jung et al., 2017). Recent 

satellite observations allow us to monitor vegetation coverage and biomass globally at fine spatial resolutions (e.g., Saatchi et 

al., 2011; Baccini et al., 2017). Nevertheless, it is still difficult to directly observe some MCFs, including non-CO2 trace gases, 

disturbance-induced non-periodic emissions, and subsurface transport and sequestration. For example, flux measurements of 10 

BVOC emissions are technically challenging (Guenther et al., 1996; Geron et al., 2016) because of the low concentrations of 

BVOC compounds, their wide variety, and their spatial and temporal heterogeneity. Quantification of DOC and POC dynamics 

at the landscape scale appears to require intensive observation networks (e.g., Dai et al., 2012; Raymond et al., 2013). 

Emissions associated with land-use change, which have attracted much attention from researchers, still have large uncertainties 

(Houghton and Nassikas, 2017; Erb et al., 2018). Further integrated studies of ground-based, airborne, and satellite 15 

observations of carbon flows are necessary that include minor flows, pools, and relevant properties (e.g., isotope ratios). The 

spatial and temporal patterns of influential MCFs obtained in this study will be useful for planning effective observational 

strategies. 

 

 20 

Code and data availability. Simulation code and data are available on request from the author. The CRU TS3.25 dataset was 

from the Climate Research Unit, University of East Anglia (https://crudata.uea.ac.uk/cru/data/hrg/). The land-use dataset was 

from the University of Maryland (http://luh.umd.edu/data.shtml). The Global Lake and Wetland Database was from the World 

Wildlife Fund (https://www.worldwildlife.org/pages/global-lakes-and-wetlands-database). 
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Table 1. Decadal summary of simulation results of net global terrestrial carbon budget (Pg C yr–1). 

 1990-1999    2000-2009    2010-2017   

  NEP NBP   NEP NBP   NEP NBP 

EX0  2.35  2.35   3.21  3.21   3.95  3.95  

EXLUC 2.61  1.70   3.43  2.80   4.13  3.67  

EXBB 4.33  1.99   5.28  2.82   6.07  3.55 

EXBVOC 3.03  2.21   3.91  3.04   4.66  3.75  

EXCH4 2.39  2.35   3.24  3.21   3.98  3.95  

EXAP 2.88  2.23   3.76  3.08   4.47  3.82  

EXWH 2.74  1.65   3.63  2.48   4.42  3.18  

EXDOC 2.49  2.34   3.35  3.19   4.09  3.93  

EXPOC 2.50  2.32   3.37  3.17   4.10  3.91  

EXALL 5.88  0.64  
 

6.85  1.62  
 

7.60  2.34  

EXBGC 5.30  1.87   6.28  2.67   7.08  3.38  

EXATP 3.45  0.96   4.33  2.00   5.03  2.80  

EXfxCO2 2.81  -1.85   2.85  -1.65   2.61 -1.73  

EXfxCL 6.37  1.35   7.19  2.19   8.13  3.03  

EXfxLUC 5.37  1.03   6.36  1.87   7.14  2.50  

NEP, net ecosystem production; NBP, net biome production. 

Model designations are defined in the text. 
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Table 2. Summary of previous estimates of minor carbon flows (MCFs). 
MCF Reference (Pg C yr–1) 
FLUC Houghton et al. (2003): bookkeeping 2.1 ± 0.8 

 Le Quéré et al. (2018): GCP 2018 models 1.5 ± 0.6 
 Le Quéré et al. (2018): GCP 2018 bookkeeping 1.4 ± 0.7 
 This study (EXALL, 1980–1989 mean ± SD) 

                  (EXALL, 1990–2015 mean ± SD) 
0.99 ± 0.02 
0.60 ± 0.16 

FBB Wiedinmyer et al. (2011): FINN 2.18  
 van der Werf et al. (2017): GFED4s 2.2 
 van Marle et al. (2017): BB4CMIP6 1.90  
 This study (EXALL, 1990–2015 mean ± SD) 1.69 ± 0.21       

FBVOC Guenther et al. (2012): MEGAN model 0.96  
 Sindelarova et al. (2014): MEGAN model 0.76 
 This study (EXALL, 1990–2015 mean ± SD) 0.75 ± 0.036 

FCH4 Fung et al. (1991) 0.14  
 Saunois et al. (2016): GCP synthesis 0.135 
 This study (EXALL, 1990–2015 mean ± SD) 0.12 ± 0.006 

FAP Bondeau et al. (2007): LPJmL model 2.2 
 Ciais et al. (2007) 1.29 
 Wolf et al. (2015): FAOSTAT-base 2.05 ± 0.05 
 This study (EXALL, 1990–2015 mean ± SD) 1.45 ± 0.073 

FWH Winjum et al. (1998) 0.98 
 Pan et al. (2011): inventory analysis 0.189 

  This study (EXALL, 1990–2015 mean ± SD) 1.03 ± 0.082 

FDOC Meybeck (1993) 0.20  
 Dai et al. (2012) 0.17 
 This study (EXALL, 1990–2015 mean ± SD) 0.14 ± 0.004    

FPOC van Oost et al. (2007): agricultural soils 0.25 
 Regnier et al. (2013) 0.1 ± >0.05 
 Galy et al. (2015) 0.157 (0.107–0.231) 
 Chappell et al. (2016): displacement by erosion 0.3–1.0 
 Naipal et al. (2018): ORCHIDEE + RUSLE 0.16 ± 0.06 
 This study (EXALL, 1990–2015 mean ± SD): riverine 

export to the ocean, 20% of soil displacement 0.19 ± 0.011 
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Table 3. Summary of studies on other minor carbon flows.   

Process Flow (Pg C yr–1) Reference 

Fragmentation of tropical forests 0.34 Brinck et al. (2017) 

Pyrogenic organic matter production 

in boreal regions 
~0.1 Satín et al. (2015) 

Mangrove production including 

burial, POC and DOC export, and 

others 

~0.218 ± 0.072 Bouillon et al. (2008) 

In-reservoir burial and mineralization 0.048±0.011 Maavara et al. (2017) 

Lake and reservoir burial 0.15 (0.06–0.25) Mendonça et al. (2017) 

Export to inland water 5.1 Drake et al. (2018) 

C sequestration in phytoliths 0.042 ± 0.025 Song et al. (2017) 

Chemical weathering of rocks 0.237 Hartmann et al. (2009) 

Uptake by cryptogamic covers 3.9 (2.1–7.4) Elbert et al. (2012) 

Cement carbonation (in urban areas) 0.1–0.25 Xi et al. (2016) 
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Figure 1. Schematic diagram of the carbon budget of the terrestrial ecosystem as simulated in this study. Thick lines show 5 

major carbon flows, and thin lines show minor carbon flows. 
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Figure 2. Temporal changes in the simulated global terrestrial carbon budget from this study (black lines), CarbonTracker 

2017 (CT2017; Peters et al., 2007; red lines), and the Global Carbon Project (GCP; blue lines). (a) NEP and (b) NBP. See 5 

the text for the simulation experiments. Figure S3 presents extracted results for the period 1980–2016. 
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Figure 3. Global distribution of simulated terrestrial carbon budget in the 2000s. (a) NEP in EX0, (b) NEP in EXALL, (c) 

NBP in EXALL, (d) difference between (b) and (a) showing the apparent effects of MCFs on NEP, and (e) difference between 5 

(c) and (b) showing the apparent effects of MCFs on NBP. 

  

削除: 

削除: and 

削除: . 10 
削除: Difference 

削除: NEP and 

削除: , respectively



40 
 

 

 

 

Figure 4. Time series of simulated carbon stocks and their mean residence time (MRT) in different experiments. (a) 

Vegetation biomass and (b) its MRT, (c) soil organic carbon and (d) its MRT, and (e) total ecosystem carbon stock and (f) 5 

its MRT. 
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Figure 5. Time series of minor carbon flows simulated by the VISIT model and previous studies. Dashed lines are results of 

individually simulated flows, and solid lines are results of the EXALL simulated, and shading shows the 95% confidence 

interval for the EXALL result obtained from ensemble simulations (Fig. S2). Blue and red lines in (a) show data of the Global 

Carbon Project (GCP2018) and Houghton (2003). Orange line in (b) shows data of BB4CMIP6 (van Marle et al., 2017). 5 

Arrows indicate the values of (1) biomass burning emission by Randerson et al. (2012), (2a) total BVOC and (2b) isoprene 

emissions by Guenther et al. (2012), (3) wetland and paddy methane emission by Saunois et al. (2017), (4) wood harvest by 

Arneth et al. (2017), (5) DOC export by Dai et al. (2012), and (6) soil erosion by Chappell et al. (2016). 
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Figure 6. Global distribution of the simulated MCFs (plus crop harvest) in 2000–2009. Results of EXALL are shown. 
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Figure 7. Regional portions of the terrestrial carbon budget in 2000–2009. Columns show the mean results of EXALL and 

error bars show the standard deviation of interannual variability. Red lines show the mean and standard deviation of NEP in 

EX0. Note the differences in vertical scale. 
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 5 

Figure 8. Relative contribution of MCFs to the terrestrial carbon budget simulated by EXALL in 2000–2009: (a) aggregated by 

dominant land cover type, (b) aggregated by cropland fraction within grid cells, and (c) aggregated by annual precipitation. 
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Figure S1. Schematic diagram of the VISIT model. Red arrows indicate minor carbon flows. 
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Figure S2. Results of 146 ensemble simulations using perturbed parameter values for MCFs.  
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Figure S3. Time series of simulated terrestrial carbon budget in late decades. (a) NEP and (b) NBP simulated in various 5 

experiments. Shaded areas show the 95% confidence interval for EXALL. Also shown are estimates from CarbonTracker 

2017 (CT2017), two Global Carbon Project (GCP) syntheses (land and land + residual), and FLUXCOM data (anomalies 

from the mean) as rendered by three upscaling methods. 
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Figure S4. Maps of vegetation carbon, soil organic carbon, and ecosystem carbon in 2000–2009 from EXALL showing their 

distributions (top three plots, left column) and mean residence times (bottom three plots, left column) and their differences 

from EX0 estimates (right column).  5 
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Figure S5. Time series of (a) GPP and (b) RE simulated by VISIT in various experiments plus estimates from BESS (Jiang 

and Ryu, 2016), MODIS (Zhao et al., 2006), and FLUXCOM data as rendered by three upscaling methods (Tramontana et 

al., 2016). 5 
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Figure S6. Comparison of (a) NEP and (b) NBP from simulations by VISIT and other models in the GCP synthesis (Le 

Quéré et al., 2018).  5 

 

  

削除: 



7 
 

 

 

 

Figure S7. Comparison of simulated land-use emissions (FLUC) from VISIT and other models in the GCP synthesis (Le 

Quéré et al., 2018). 5 
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Figure S8. Latitudinal distribution of (a) aboveground biomass carbon and (b) soil organic carbon simulated by VISIT in EX0 

and EXALL experiments. Also shown in (a) are distribution from Liu et al. (2015) and GEOCARBON (Avitabile et al., 2014). 5 

Also shown in (b) are distributions from the Harmonized World Soil Database (FAO/IIASA/ISRIC-CAS/JRC, 2012) and 

WISE30sec (Batjes, 2016). 
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Figure S9. Scatter diagram of global annual NEP and NBP for the period 1901–2016. Error bars shown in grey. Red dashed 

line shows the linear regression (R2 = 0.97).  
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Figure S10. Global distribution of the simulated water budget from EXALL for 2000–2009. (a) Mean annual leaf area index 

(LAI) and (b) its difference from EX0, (c) actual evapotranspiration (AET) and (d) its difference from EX0, and (e) runoff 5 

discharge (ROF) and (f) its difference from EX0.  
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Figure S11. Time series of FBB in the EXALL simulation, the interannual variability (IAV) constrained by satellite data (GFED4s), and the 
IAV and mean burnt area constrained by the observational data. Regression curves for 1998–2017 are shown by dashed lines. 
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