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Abstract. Sea ice in both Polar Regions is an important indicator for the expression of global climate change and 

its polar amplification. Consequently, a broad interest exists on sea ice coverage, variability and long term 

change. However, its predictability is complex and it depends strongly on different atmospheric and oceanic 

parameters. In order to provide insights into the potential development of a monthly/seasonal signal of sea ice 10 

evolution, we applied a robust statistical model based on different oceanic and atmospheric parameters to 

calculate an estimate of the September sea ice extent (SSIE) on monthly time scale. Although previous statistical 

attempts of monthly/seasonal SSIE forecasts show a relatively reduced skill, when the trend is removed, we show 

here that the September sea ice extent has a high predictive skill, up to 4 months ahead, based on previous 

months’ oceanic and atmospheric conditions. Our statistical model skillfully captures the interannual variability 15 

of the SSIE and could provide a valuable tool for identifying relevant regions and oceanic and atmospheric 

parameters that are important for the sea ice development in the Arctic and for detecting sensitive/critical regions 

in global coupled climate models with focus on sea ice formation. 

 

1 Introduction 20 

Arctic sea ice plays an important role in modulating the global climate system by influencing the atmospheric and 

oceanic circulation in Polar Regions. Moreover, it has a strong impact also on the global economic system 

through changes in marine and natural resources development. The sea ice extent and thickness over the Arctic 

region has undergone an extraordinary decline during the last decades that can be linked to climate change 

(Allison et al., 2009; Kay et al., 2011; Notz and Marotzke, 2012). The trends in the Arctic sea-ice extent are 25 

negative for all months, with the largest trend recorded at the end of the melt season in September (Serreze et al., 

2007), with an average decline of 12.9% per decade relative to the long-term mean of 1981-2010 September 

average (Grosfeld et al., 2016). These negative trends, with their environmental and economic implications as 

well as its impacts on human society, have led to a rising demand for accurate sea ice predictions at monthly, 
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seasonal up to decadal time scales, which in turn will be able to address the growing demands from different 

stakeholders and the scientific community (Meier et al., 2014). As such, an accurate sea ice prediction plays a 

crucial role for ecosystems, coastal communities, planning for new shipping ports, oil and gas exploration and 

marine transportation. For example, the exploitation of shipping via the  Northwest Passage or Northeast Passage 

could reduce the navigational distance between Europe and Asia by ~40% when compared to the route via the 5 

Suez canal (Schøyen and Bråthen, 2011). Overall, the summertime use of these routes by different vessels (i.e. 

cargo ship and tanks) has increased (Eguíluz et al., 2016), thus the need for a proper forecast for the Arctic sea ice 

conditions has become imperative. As such, an early knowledge on the potential opening of the maritime Arctic 

routes could allow a better management for the shipping companies to optimize (in terms of time and costs) 

shipping routes between the Atlantic and the Pacific Oceans (Hassol, 2004; Smith and Stephenson, 2013). 10 

However, the opening of the Northeast and Northwest Passages does not guarantee ice free transects along the 

passages at all times and can always include the possibility of drifting ice flows, which for conventional ships 

poses high risks and potential environmental danger when getting damaged in case of accidents. Hence, a proper 

forecast does not imply a dangerous free transect as long as the Arctic Ocean is ice covered with thick multiyear 

ice for its larger parts over the significant times of the year.  15 

Although the evolution of Arctic sea ice physical properties has been extensively studied, the prediction of 

detrended Arctic sea ice extent, with lead times of 3 months and longer, have not been very promising (Lindsay 

et al., 2008; Blanchard- Wrigglesworth et al., 2011). Currently, there are different approaches used to make sea 

ice forecast: ice-ocean-atmosphere coupled models, statistical models, best guesses model and mixed models 

(Stroeve et al., 2014; Hamilton and Stroeve, 2016). From a statistical point of view, Drobot et al. (2006) showed  20 

that 46% of the pan-Arctic minimum sea ice extent would be predictable as early as February based on monthly 

sea ice concentration, surface albedo, downwelling long-wave radiation and surface skin temperature. Lindsay et 

al. (2008) have shown that their statistical model based on a wide range of predictors (e.g., atmospheric 

circulation indices, sea ice extent and sea ice concentration, ocean temperature at different levels) exhibited a 

greater skill in predicting the September sea ice extent (SSIE) than those by Drobot et al. (2006). The forecasts 25 

based on the state-of-the-art coupled atmosphere-ocean sea ice models (Chevallier et al., 2013; Sigmond et al., 

2013) do not show better results when compared with the  statistical models (Kapsch et al., 2014; Schröder et al., 

2014; Zhan and Davies, 2017). These caveats indicate that our understanding regarding the controlling factors of 

Arctic sea ice may still be insufficient. Overall, skilful forecasts extend only 2 to 5 months ahead, for the summer 

months (Stroeve et al., 2015; Schröder et al., 2014), regardless of the type of the model used for the forecast 30 

(dynamical or statistical). The results and error margins based on these different approaches have highlighted 
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how difficult it is to make skillful prediction for the SSIE, especially for the years with extreme low September 

sea ice concentrations (e.g., 2012 or 2007), with both, the dynamical and the statistical models showing similar 

limitations (Stroeve et al., 2015; Schröder et al., 2014; Stroeve et al., 2014; Hamilton and Stroeve, 2016). Stroeve 

et al. (2014) have shown that seasonal predictions of the SSIE are most accurate in years when the sea ice extent 

is near the long-term trend, but skillful sea ice extent prediction appear challenging in years when the weather 5 

plays a larger role (Hamilton and Stroeve, 2016). 

In order to improve the monthly/seasonal prediction skill of the sea ice extent one possibility would be to identify 

stable predictors (the correlation coefficient between the predictor and the predictand does not change in time) 

and to develop a statistical forecast model based on these predictors. Following this idea, here we analyze the 

oceanic and atmospheric conditions associated to the SSIE in order to identify potential predictors based on a 10 

simple statistical methodology and placed them in a longer temporal context. Our statistical model takes into 

account different atmospheric and oceanic variables: sea level pressure (SLP), air temperature (TT), precipitable 

water content (PWC), surface zonal wind (USURF), surface meridional wind (VSURF), the ocean heat content 

integrated over the first 700m (OHC), sea surface temperature (SST) and water temperature integrated over the 

first 100m (OT100), in order to calculate an estimate of SSIE. The paper is structured as follows: the data and 15 

methods used in this study are presented in Section 2, while the main results of our analysis are shown in Section 

3. The concluding remarks are presented in Section 4. 

 

2 Data and methods 

2.1 Data 20 

The sea ice concentration has been extracted from the National Snow and Ice Data Center (NSIDC) database.  

The sea ice concentration (SIC) is processed using the NSIDC bootstrap algorithm (Comiso and Nishio, 2008; 

Meier et al., 2013). The sea ice extent (SIE) is defined as the total area of all satellite pixels where the sea ice 

concentration equals or exceeds 15%. The monthly sea ice extent index (Fetterer et al., 2016) has been extracted 

from the NSIDC ftp server (ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/). 25 

For the Northern Hemisphere temperature and atmospheric circulation, we use the monthly means of air 

temperature at 2m (TT), downward longwave radiation flux (DW), zonal wind (USURF), meridional wind 

(VSURF), precipitable water content (PWC) and the mean sea level pressure (SLP) from the NCEP/NCAR 40-

year reanalysis project (Kalnay et al., 1996) on a 2.5º x 2.5º grid. Global sea surface temperature (SST) is 

extracted from the Extended Reconstructed Sea Surface Temperature data (ERSSTv4b) (Huang et al., 2014). This 30 
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dataset covers the period 1854 – present and has a spatial resolution of 2° x 2°. The global heat content data in the 

first 700m (OHC) and the ocean temperature integrated over the first 100m (OT100) is extracted from the Global 

Ocean Heat and Salt Content database (Levitus et al., 2012; Boyer et al., 2013).  

 

2.2 Stability Maps 5 

The statistical model used in this study for the estimation of SSIE is based on a methodology successfully used to 

make monthly/seasonal streamflow predictions for the central European rivers (e.g. Elbe river, Rhine river, 

Danube river), as well as for identifying the drivers of the Antarctic sea ice variability (Ionita et al., 2008, 2014, 

2017, 2018; Meißner et al., 2017). The basic idea of this procedure is to identify regions with stable 

teleconnections between the predictors and the predictand. The SSIE has been correlated with the potential 10 

predictors from previous months (years), in a moving window of 21 years and the statistical significance of the 

correlation coefficient was tested using a Student t-test. The correlation is considered stable for those grid-points 

where SSIE and the large-scale predictors (e.g. OHC, OT100, SST, SLP, TT, PWC, DW, USURF and VSURF) 

are significantly correlated at 95%, 90%, 85% and 80% level for more than 80% of the 21-year windows, 

covering the period 1979-2007. The area where the correlation coefficient is stable and positive are represented 15 

as dark red (95%), red (90%), orange (85%) and yellow (80%), while the regions where correlation coefficient is 

stable and negative are represented as dark blue (95%), blue (90%), green (85%) and light green (80%). Such 

maps are referred in our study as stability maps and their spatial structures remain qualitatively the same if the 

significance levels that define the stability of the correlation vary within reasonable limits and if the length of the 

moving window varies between 15 to 25 years. For the current analysis only regions where the correlation is 20 

above 90% significance level, are retained for further analysis. All the data sets have been detrended before the 

analysis. 

2.3 Multiple Linear Regression 

For the forecast m all datasets were separated into two parts: 1) the calibration period (1979–2007) and 2) the 

validation period (2008 – 2017). The optimal predictors are identified by employing stepwise multiple regression 25 

analysis. Although the “stable maps” methodology identifies multiple stable regions for each 

atmospheric/oceanic parameters, after applying the stepwise multiple regression, the optimal/final prediction 

model is based just on the most significant regions.  
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To forecast the September Sea Ice Extent we have used a multiple linear regression model with the regression 

equation: 

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛 + 𝜀 

where Y represents the SSIE index, βo, β1, β2,…βn are constants determined by the least squares procedure, x1, 

x2,…xn the predictors used (e.g., OHC, OT100, etc) and ε the error. 5 

In this study we choose stepwise regression because it prioritizes predictors based on the partial correlation and it 

is likely that high and significant correlations will reflect underlying physical processes. 

3 Results 

3.1 Pan-Arctic September sea ice prediction 

The skill of a long-range forecast for the Arctic SSIE is associated with the predictors that represent the slow 10 

varying components of the climate system that are able to integrate the climate information such as sea ice, snow 

cover, ocean heat content and SST (Guemas et al., 2014, Lindsay et al., 2008). These variables can be used as 

potential predictors for months and even seasons in advance due to their long-term memory. Thus, here we 

investigate the potential link between the Arctic SSIE (Fetterer et al., 2016) and OHC, OT100 (Levitus et al., 

2012; Boyer et al., 2013) and SST (Huang et al., 2014) as long-term predictors (lags ~4 years up to 4 months in 15 

advance). On shorter time-scales (2 – 4 months) the atmospheric circulation, especially during the summer 

months, plays a major role in driving the Arctic sea ice variability (Guemas et al., 2014). The atmospheric 

circulation, if predictable, can substantial contribute to the skill of the sea ice predictions. As such, for the SSIE 

prediction we have also tested the skill of atmospheric variables (up to 4 months in advance), e.g., SLP, TT, 

PWC, USURF and VSURF (Kalnay et al., 1996). Sea level pressure is seen as an estimate of the general 20 

atmospheric circulation pattern, while USURF and VSURF fields are treated as advective parameters (Guemas et 

al., 2014). As an additional predictor we have used PWC, which can give an indication of the water vapor content 

in the atmosphere, which in turn affects the SSIE via the greenhouse effect (Kapsch et al, 2013). Increased 

cloudiness and humidity also lead to an enhanced greenhouse effect, which again enhances sea ice melt, 

especially during the spring months (Kapsch et al., 2013; Kapsch et al., 2014).  25 

As a further main contributor to our forecast model, we use persistence, defined here as the sea ice extent from 

previous months (e.g., January, February up to August). Persistence of sea ice anomalies stands as the first source 

of predictability for sea ice (Guemas et al., 2014; Walsh et al., 1979; Blanchard-Wrigglesworth et al., 2011). In 

order to identify possible stable relationships between these identified predictors and the SSIE, the stability 
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correlation maps (see Methods for definition) are calculated between the SSIE index on the one hand and the 

gridded fields of the above mentioned atmospheric/oceanic variables on the other hand, with different lags, 

depending on the variable. The optimal predictors are defined as the average values over the stable regions for 

each gridded parameter. 

For the final forecast, based on data available at the end of May (4 months ahead forecast) we have retained all 5 

the stable regions (black boxes in Figure 1) for all variables based on previous month’s data. For the forecast 

based on June data, we have included also the stable regions based on all June stability maps (Figure 2). We have 

applied the same technique for the July data (Figure 3). For SSIE prediction based on the end of May data, the 

optimal model is based on a combination of: OHC SON, SST MAM, PWC Apr, VSURF MAM and SLP May 

(Table 1). Together with these identified stable regions, the optimal model includes also the persistence of sea ice 10 

extent (here the sea ice extent index from previous March (SIE Mar), as well as the annual Atlantic Multidecadal 

Oscillation index, with a lag 4 of years (AMO  L4). Overimposed on the interannual variability, the temperature 

and salinity of the Atlantic inflows to the Arctic Ocean shows also pronounced decadal to multidecadal 

variability (Zhang, 2015). This aligns with the concept of different previous studies, which suggest that the 

decreasing trend in the Artic sea ice is partially driven by AMO (Park and Latif, 2008; Lindsay et al., 2005; Ding 15 

et al., 2014; Yu et al., 2017). In a recent study, Yu et al., (2017) have shown that two thirds of the total global sea 

ice trend can be explained by a combination of AMO and Pacific Decadal Oscillation (PDO). Moreover, starting 

at the beginning of 1990’s the AMO has switched to a positive phase, at the same time when the Artic sea ice 

extent started its abrupt decline. Thus, in this study we have tested previous years AMO index as a potential 

driver of the Arctic sea ice extent. The highest correlation between SSIE and the annual AMO index was found at 20 

a time lag of 4 years (AMO leads SSIE). The time lag identified in our analysis is in line with previous studies 

(Day et al., 2012; Mahajan et al., 2011). The observed and forecasted values based on the May data are shown in 

Figure 4a. The explained variance of the model, over the calibration (validation) period, is 81% (71%) and the 

correlation coefficient between the observed and forecasted SSIE is r = 0.90 (r = 84) (99.9% significance level). 

To better assess the skill of the SSIE prediction, the root mean square error (RMSE), the Nush-Sutcliffe 25 

efficiency (NSE) and the index of agreement (d) are calculated, among other statistical tests (see Table S1 and 

supplementary file for a definition of all the metrics used to test the skill of the model). The forecasted model 

based on May data shows a very good skill (Table S1) NSE = 0.82 (0.68) (NSE = 1 means perfect model) and d = 

0.95 (0.88) (d = 1 indicates a perfect match between the observed and forecasted values, d = 0 indicates no 

agreement at all). 30 
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Following the same steps as in the case of May data, for the model based on June data, the parameters 

contributing to the optimal forecast model are shown in Figure 2. As additional predictors we have: VSURF Jun, 

USURF Jun and TT Jun (Table 1). The observed and forecasted values of SSIE based on June data are shown in 

Figure 4b. The overall explained variance of the June-based model, over the calibration (validation) period, is 

85% (79%) and the correlation coefficient between the observed and forecasted SSIE values is r = 0.92 (r = 0.89) 5 

(99.9% significance level). The June-based model exhibits also a very good skill and shows slight improvements 

compared to the May – based model (NSE = 0.85 (0.78) and d = 0.96 (0.93). For the model based on July data, 

the parameters contributing to the optimal forecast model are shown in Figure 3 and Table 1. The observed and 

predicted values of SSIE based on July data are shown in Figure 4c. The overall explained variance of the June-

based model, over the calibration (validation) period, is 86% (81%) and the correlation coefficient between the 10 

observed and forecasted SSIE values is r = 0.93 (r = 0.90) (99.9% significance level). The July-based model 

exhibits also a very good skill and shows also slight improvements compared to the May and June – based 

models (NSE = 0.86 (0.80) and d = 0.96 (0.94)). 

3.2 Robustness of the methodology 

To test the robustness of our statistical model and to move towards stakeholder-relevant regions, in this study we 15 

are investigating also the skill of our model at regional scale. Thus, we have repeated the same analysis as in the 

previous section but for the sea ice extent averaged over the East Siberian Sea (ESS) (Figure S1). In this study we 

focus on the ESS due to the fact that in September 2007 and 2012, negative ice concentration anomalies were 

particularly pronounced over East Siberian Sea sector of the Arctic Ocean (Figure S1a and S1b, respectively) and 

the highest variability of the SSIE is recorded over this region (Figure S1c). Overimposed on this, since 2011 the 20 

eastern ESS has been nearly ice free (<10%) at the end of summer (Polyakov et al., 2017). Moreover, when 

looking at the correlation coefficients between the pan-Arctic SSIE and regional September SIE, the highest 

correlation, at lag 0, is found with the EES sea ice extent (r = 0.72, Table 2). At seasonal time scale, for the 

Laptev Sea and ESS, a high predictive skill was found for the sea ice thickness, mainly due to persistence, while 

for the sea ice concentration the prediction skill is very low (Koenigk and Mikolajewicz, 2009).  25 

The stability maps between the detrended ESS September sea ice extent and the large scale oceanic and 

atmospheric fields are shown in Figure S2 (stability maps based on May and previous months data), Figure S3 

(stability maps based on June and previous months data) and Figure S4 (stability maps based on July and 

previous months data), respectively. For ESS SSIE prediction based on the end of May data, the optimal model is 

based on a combination of: annual OT100, SST MAM, SLP Jan, VSURF MAM, PWC May, TT May and DW 30 
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MAM (Table 3). The observed and forecasted values based on the May data are shown in Figure 5a. The 

explained variance of the model, over the calibration (validation) period, is 88% (58%) and the correlation 

coefficient between the observed and forecasted ESS SSIE is r = 0.94 (r = 77) (99.9% significance level). The 

forecasted model based on the May shows a very good skill (Table S2) NSE = 0.88 (0.57) (NSE = 1 means 

perfect model) and d = 0.97 (0.86) (d = 1 indicates a perfect match between the observed and forecasted values, d 5 

= 0 indicates no agreement at all). 

For the model based on June data, the parameters contributing to the optimal forecast model are shown in Figure 

S3 and Table 3. As additional predictors, compared to end of May data, we have: SIE Jun, and TT Jun (Table 3). 

The observed and forecasted values of ESS SSIE based on June data are shown in Figure 5b. The overall 

explained variance of the June-based model, over the calibration (validation) period, is 91% (71%) and the 10 

correlation coefficient between the observed and forecasted SSIE values is r = 0.95 (r = 0.84) (99.9% 

significance level). The June-based model exhibits also a very good skill and shows slight improvements 

compared to the May – based model (NSE = 0.91 (0.69) and d = 0.98 (0.91). For the model based on July data, 

the parameters contributing to the optimal forecast model are shown in Figure S4 and Table 3. The observed and 

predicted values of SSIE based on July data are shown in Figure 5c. The overall explained variance of the July-15 

based model, over the calibration (validation) period, is 94% (81%) and the correlation coefficient between the 

observed and forecasted SSIE values is r = 0.97 (r = 0.90) (99.9% significance level). The July-based model 

exhibits also a very good skill and shows also slight improvements compared to the May and June – based 

models (NSE = 0.94 (0.78) and d = 0.98 (0.93)). 

4 Conclusions 20 

The results of this study demonstrate that statistically based models are able to skillfully predict SSIE, if the 

accurate drivers and their regional localizations (stable regions) are identified via various statistical techniques. 

Although our analysis was focused on a single month - September, a similar statistical model will be applied also 

for other months/seasons and also for the Antarctic region. Overall, such a methodology can be valuable also for 

the modelling community. If the coupled models, used for forecasting purposes, face problems to simulate the 25 

ocean and/or the climate background over the areas that play a significant role in driving the SSIE variability 

(stable regions), one expects a relatively small skill in their forecast. The opposite case is also valid: a good 

representation of the key regions that drive SSIE could imply a good forecast skill. For example, Parkinson et al. 

(2006) determined that many climate models tend to simulate more winter sea ice in the Barents Sea compared to 

observations. One hypothesis for this overestimation is that the models underestimate the heat content in the 30 
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Atlantic Basin (which has proved to be one of the main contributors for a skillful prediction for SSIE in our 

model). 

Our results highlight the potential for skillful prediction of SSIE, both at pan-Arctic level as well as for EES, 

based on ocean and climate variables from stable regions. The ocean drivers (OHC, TT100 and SST) from the 

identified stable regions are strongly related with the Atlantic inflow (the stable regions over the western 5 

European coast) or with the SST variability over regions strongly influenced by decadal modes of variability 

(e.g., Pacific Decadal Oscillation (PDO) in the central and north Pacific) to multidecadal modes of variability 

(e.g., Atlantic Multidecadal Oscillation (AMO) in the Atlantic Ocean region). The Atlantic inflow, AMO and 

PDO play a significant role in driving the Arctic sea ice variability (Polyakov et al., 2017; Miles et al., 2014; 

Ionita et al., 2016; Screen et al., 2016). For example, the North Atlantic might act as a source for the OHC 10 

anomaly identified over the Kara Sea, Laptev Sea and EES (Figure 1a), thus contributing to the skill of our 

forecast. The OHC anomalies form the North Atlantic flow into the Arctic basin, via advection, affect the sea ice 

distribution (Polyakov et al., 2017, Ono et al., 2018). In a recent study, Yu et al., (2017) have shown that the 

leading mode of variability of global sea-ice concentration is positively correlated with the AMO and negatively 

correlated with the PDO and two thirds of the total global sea ice trend can be explained by a combination of 15 

these two modes of variability. The stability maps based on the predictors related to the atmospheric variables 

(e.g., SLP, PWC, TT and so on) show significant and stable correlations with regions restricted to the Artic basin, 

indicating a much regional connection between the September sea ice variability and large-scale atmospheric 

circulation. The state of the Arctic SSIE depends both on the state of the ice in spring as well as on the 

atmospheric condition during summer (Ding et al., 2017). In this respect, the precipitable water content and air 20 

temperature in spring and early summer were found to show significant predictive skill for the SSIE both at pan-

Arctic as well as regional level. This is also in agreement with previous studies (Kapsch et al., 2014; 2015) which 

have shown that a significantly enhanced transport of humid air during spring produces increased cloudiness and 

humidity, thus accelerating the sea ice retreat in the upcoming summer.  

By using a simple and computationally inexpensive statistical approach, one can anticipate more than 80% of 25 

SSIE up to 4 months in advance, based on the antecedent atmospheric and oceanic conditions over stable regions. 

Moreover, our statistical model is able to properly reproduce the years with extreme low / high sea ice extent, 

both at pan-Arctic level as well as at regional scale (e.g., 2007 and 2012 – low SSIE and 1996 – high SSIE; see 

Figure 4 and Figure 5). The predictability of these extreme years poses big challenges for the sea ice prediction 

community (Hamilton and Stroeve, 2016). We argue that our statistical approach can be used as a promising tool 30 

to improve the skill of sea ice extent prediction. The same methodology will be applied in the future to test the 
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potential predictability, up to 2 years ahead, by taking into account variables with long-term memory (e.g., heat 

content and water temperature integrated over different depths) for the whole Arctic, for other regions prone to 

extreme decrease in the sea ice extent (e.g., Chukchi Sea, Beaufort Sea, Barents Sea) as well as for Antarctica . 

Finally, since the concept can be used as an early warning system for September sea ice extent, both at pan-Arctic 

level as well as regionally, the potential environmental and economic benefits can be very high. 5 
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Figure 1. Stability map of the correlation between September Sea Ice Extent and a) OHC SON, b) SST MAM, c) SLP May, 

d) PWC Apr, and e) VSURF MAM. Regions where the correlation is stable, positive and significant for at least 80% 

windows are shaded with dark red (95%), red (90%), orange (85%) and yellow (80%). The corresponding regions where the 

correlation is stable, but negative, are shaded with dark blue (95%), blue (90%), green (85%) and light green (80%). The 

black boxes indicate the regions used for the September sea ice extent at the end of May. 
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Figure 2. Stability map of the correlation between September Sea Ice Extent and a) TT Jun, b) USURF Jun and c) VSURF 

Jun. Regions where the correlation is stable, positive and significant for at least 80% windows are shaded with dark red 

(95%), red (90%), orange (85%) and yellow (80%). The corresponding regions where the correlation is stable, but negative, 

are shaded with dark blue (95%), blue (90%), green (85%) and light green (80%). The black boxes indicate the regions used 

for the September sea ice extent at the end of June. 
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Figure 3. Stability map of the correlation between September Sea Ice Extent and a) SLP Jul, b) PWC Jul, c) TT Jul and d) 

USURF Jul. Regions where the correlation is stable, positive and significant for at least 80% windows are shaded with dark 

red (95%), red (90%), orange (85%) and yellow (80%). The corresponding regions where the correlation is stable, but 

negative, are shaded with dark blue (95%), blue (90%), green (85%) and light green (80%). The black boxes indicate the 

regions used for the September sea ice extent at the end of July. 
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Figure 4. Observed (black) and predicted (red) September Sea Ice Extent detrended anomalies over the period 1979-2017 

based on a) May, b) June and c) July predictors from the stable regions. The shaded area represents the 95% uncertainty 

bounds. 
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Figure 5. Observed (black) and predicted (red) East Siberian Sea Ice Extent detrended anomalies over the period 1979-2017 

based on a) May, b) June and c) July  predictors from the stable regions. The shaded area represents the 95% uncertainty 

bounds. 
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Table 1. Variables retained for the September pan-Arctic sea ice extent forecast (black boxes in Figure 1, 2 and 3). Seasonal 

averages are indicated as spring MAM and autumn SON; single months are abbreviated with the first three letters of the 

month. 

 5 

 May Data June Data July Data 

Persistence SIE Mar SIE Mar  SIE Mar  

 

Ocean variables 

OHC SON OHC SON OHC SON 

SST MAM SST MAM SST MAM 

AMO – L4 AMO – L4 AMO – L4 

 

Atmospheric variables 

SLP May SLP May SLP May, Jul 

VSURF MAM VSURF MAM, Jun VSURF MAM, Jun 

PWC Apr PWC Apr PWC April, Jul 

 USURF Jun USURF Jun, Jul 

 TT Jun TT Jun, Jul 
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Table 2. The correlation coefficients between the detrended pan-Arctic September sea ice extent and the regional September 

sea ice extent 

 5 

 
Lag 4 Lag 3 Lag 2 Lag 1 Lag 0 

Baffin 0.07 0.09 0.34 0.40 0.39 

Barents 0.20 0.16 0.27 0.13 0.14 

Beaufort 0.15 0.24 0.37 0.51 0.60 

Bering -0.30 -0.02 0.14 0.00 -0.04 

Canadian 0.07 -0.16 0.01 0.52 0.49 

Chukchi -0.26 0.03 0.09 0.53 0.60 

East Siberian 0.19 0.24 0.39 0.61 0.72 

Greenland 0.04 0.06 0.22 0.16 -0.07 

Hudson 0.44 0.51 0.46 0.38 0.47 

Kara 0.09 -0.03 0.05 -0.08 -0.07 

Laptev 0.34 0.32 0.40 0.37 0.53 
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Table 3. Variables retained for the September East Siberian sea ice extent forecast (black boxes in Figure S2, S3 and S4). 

Seasonal averages are indicated as spring MAM; single months are abbreviated with the first three letters of the month. 

 5 

 May Data June Data July Data 

Persistence  SIE Jun SIE Jun, Jul  

 

Ocean variables 

OT100 – L4, L1 OT100 – L4, L1 OT100 – L4, L1 

SST MAM SST MAM, SST MAM 

 

Atmospheric variables 

SLP Jan SLP Jan SLP Jan 

VSURF MAM VSURF MAM VSURF MAM, Jul 

PWC May PWC May PWC May, Jul 

TT May TT May, Jun TT May, Jun, Jul 

DW MAM DW MAM DW MAM 
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