
Interactive comment on “September Arctic Sea Ice minimum prediction – a new skillful statistical 
approach” by Monica Ionita et al. 
Anonymous Referee #1 
 
The authors use a statistical model to skillfully predict the Arctic September sea ice extent and the 
regional East Siberian Sea ice extent up to 4 months ahead. They combine several oceanic and 
atmospheric parameters and sea ice extent itself from previous months and perform a multiple linear 
regression. Variables and regions are selected based on stable teleconnections between the predictors 
and the predictand. This study is an important contribution for seasonal Arctic and regional sea ice 
predictions. The predicted skill is higher compared with previous studies. The identification of relevant 
regions and parameters is useful for understanding processes and changes in climate models. I 
reviewed previous versions of this manuscript and I am pleased with the current version. The focus on 
de-trended time series and the separation into a calibration and validation period increases the 
robustness of the results. I strongly recommend publication and would like to make a few minor 
comments, only. 
 
We thank the reviewer for the comments and useful feedback regarding our manuscript. Please 
find below our responses to the reviewer’s concerns. Comments will carefully be included in the 
revised version, as they will help to improve the clearness and scientific content.  
 
Minor comments: 
1. Section 2.2: Give reference to stability figures and remove sentence about colors. 
 
The text has been modified following the aforementioned suggestion. 
 
2. Section 3.1: Would be nice to get some information about the impact of the individual predictors. It is 
surprising to see that only March ice extent is used for prediction of pan-Arctic sea ice extent based on 
June and July data. Is there no additional benefit from April, May and June ice extent? 
 
The revised version of the manuscript has been substantially modified trying to take into account 
all the reviewers suggestions. 
 
3. Section 3.2: Would recommend to rename header from “Robustness of the methodology” to “Regional 
September ice prediction”. From Table 2, only Lag 0 results are discussed. 
 
The title of Section 3.2 has been renamed from “Robustness of the methodology” to “Application 
of the methodology for regional SSIE prediction”. We discussed just the Lag 0 because our aim 
was to identify the region which shows the highest correlation with the pan-Arctic sea ice extent 
in September. 
 
4. Conclusion: “Moreover, our statistical model is able to properly reproduce the years with extreme low 
/ high sea ice extent, both at pan-Arctic level as well as at regional scale (e.g., 2007 and 2012 – low 
SSIE and 1996 – high SSIE; see Figure 4 and Figure 5).” Given that only 2012 is within the validation 
period, it is questionable how robust this statement is. 
 
We agree with the reviewer’s comment and we took his recommendation into account and we 
have modified the text accordingly. 
 
5. Figure 5: Use same legend for all sub-figures. 
 
Modified as suggested. 
 
6. Missing reference: Petty et al. 2017, 
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016EF000495 

The reference has been added in the revised version of the manuscript. 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016EF000495


Interactive comment on “September Arctic Sea Ice minimum prediction – a new skillful statistical 
approach” by Monica Ionita et al. 
Anonymous Referee #2 
 
In this paper, the authors propose a statistical model to predict the Arctic September sea ice extent 
(SSIE) and East Siberian Sea ice extent (ESSIE) up to 4 months ahead with a high predictive skill 
compared to previous studies. Stability maps and stepwise multiple regression analysis are applied to 
find the optimal predictors for the model in regions and variables respectively. The results of prediction 
here are excellent and reliable. I believe the approach to build statistical prediction model between the 
predictors and predictand could be widely used in more climate predictions. I recommend to publish this 
paper and would like to make a few minor comments. 
 
We thank the reviewer for the comments and useful feedback regarding our manuscript. Please 
find below our responses to the reviewer’s concerns. Comments will carefully be included in the 
revised version, as they will help to improve the clearness and scientific content.  
 
 
Minor comments: 
1. In Figure 1-3 and S1-S3, those regions inside the black boxes are used for SSIE. However, besides 
those regions, there are also other regions with significant correlation coefficients. Some regions are 
even more significant than those regions you choose. Why do you only choose those regions in the 
black boxes? Could you give an explanation? 
 
An explanation why do we only choose those regions in the black boxes has been added in the 
revised version of the manuscript. 
 
2. In Section 3.2, I recommend giving the definition or boundary of East Siberian Sea as well as other 
areas mentioned in Table 2. 
 
Modified as suggested. 
 
3. In Section 3.2, there is a writing mistake in the sentence “. . . coefficient between the observed and 
forecasted ESS SSIE is r = 0.94 (r = 77) . . .”. I think “r = 77” should be corrected as “r = 0.77”. 
 
Modified as suggested. 



Interactive comment on “September Arctic Sea Ice minimum prediction – a new skillful 
statistical approach” by Monica Ionita et al. 
 
Anonymous Referee #3 
Received and published: 15 November 2018 
Review of September Arctic sea ice minimum prediction - a new skillful statistical approach 
By Ionita, M., et al. 
 
Summary: Multi-annual time series of sea-ice extent and various oceanic and atmospheric 
parameters are used to establish so-called stability maps. These maps inform about location, 
degree and significance of linear correlations between sea-ice extent and the other parameters 
where these correlations are particularly stable over time using a 21-year long time window. Based 
on the information provided by these maps a step-wise multiple linear regression analysis is 
carried out to find the optimal parameter combination to predict pan-Arctic and Eastern Siberian 
Sea (ESS) September sea-ice extent (SSIE). Different start months (May to July) are tested. The 
result of this regression analysis is then used to predict pan-Arctic and ESS SSIE based on the 
optimal parameter combination. The predicted time series of SSIE are compared to the observed 
ones. Evaluation of the prediction skill is carried out using various statistical metrics, suggesting 
that the method has a) high predictive skill and that b) the skill improves the more parameters are 
used and c) the closer one moves in time to September. 
 
The manuscript might be a useful addition to existing knowledge. However, the lack of detail in 
description of data and methodology, the lack of transparency in how certain choices in the 
methodology were made, and the lack of a critical discussion of the methodology and its potential 
limitations as well as of the results themselves require that a lot more work needs to be put into the 
manuscript before it can be accepted for publication. It cannot be published in its current form. In 
the following I have listed my main concerns in the general comments which are followed by 
specific comments, which are either a specification of the general comments or point to other 
weaknesses / ways to improve the manuscript; finally there is a small typos section. 
 
We thank the reviewer for the comments and useful feedback regarding our manuscript. 
Please find below our responses to the reviewer’s concerns. We have tried to answer those 
detailed and thoroughly including references to underline our arguments. Comments have 
been carefully included in the revised version, as they helps us to improve the clearness 
and the scientific content.  
 
General Comments:  
 
GC1: The introduction requires a revision of cited literature which partly seems to be outdated and 
partly is simply missing. 
 
The introduction part has been modified and up to date references have been added. 
 
GC2: The introduction should work out better the choice of the statistical method used and of the 
atmospheric and oceanographic parameters used. In my view the attempts listed do not provide a 
clear motivation of the methodology and set of data chosen by you. I suggest to better motivate the 
choice of method & data by providing more quantitative evidence about which methods failed so 
far (and why) and which parameters failed so far (and why). 
 
Introduction part has been modified according the reviewers suggestions. Therefore,  the 
introduction starts with an overview of how Arctic sea ice is changing and which role an 
accurate prediction of the sea ice situation plays in terms of economics. Then we turn to the 
current possibilities of predicting the sea ice situation. This is followed by a paragraph 
discussing the different approaches how they perform and which are there limitations. This 
leads to the final paragraph where we highlight the motivation and why we try to come 
along with the above-mentioned challenges by using a statistical approach that is well 
documented in the literature. Unfortunately, these references where not included in the 
submitted manuscript. We included them in the revised version. By this we can emphasize 
why the method performed is based on a state of the art and good statistical practice and 



we can demonstrate the high expertise we have in regard to the statistical method we are 
presenting here. The same statistical approach is used in pre-operational mode for the 
streamflow prediction for Elbe and Rhine streamflow (Ionita et al., 2009, 2014, 2017; Meißner 
et al., 2017) and we strongly feel that the method as well as our results have both the 
physical and statistical meaning to be published in the context of sea ice prediction. 
We have to mention that the aim of this paper is to show the advantages of our statistical 
approach. It is meant in a more technical direction. We agree that the psychical mechanism 
behind our stable regions have to be properly described and we have tried to do so in the 
revised version, but we have to keep in mind that a full overview for each region would 
require a much more longer manuscript and it is beyond the scope of our paper. 
 
GC3: The description of the used data lacks quite some information and motivation. It appears that 
some of the used data sets are outdated. See the respective specific comments. 
 
We comment on this below in the specific comments in order to avoid any repetition. 
 
GC4: The description of the generation of the stability maps should be improved. There are some 
open questions. See the respective specific comments. 
 
We comment on this below in the specific comments in order to avoid any repetition. 
 
GC5: The description of the stepwise multiple linear regression analysis should be improved. It is 
very short, some information is missing and, in particular, it is not possible to understand why and 
how you ended up with the optimal parameters shown in Figures 1 through 3 and Table 1 as well 
as the supplementary material. 
 
The description of the multiple linear regression has been improved in the revised version 
of the manuscript (see Methods section). 
 
GC6: A discussion of the results is missing completely. Elements could be, for instance: - critical 
reflections on the method: How physically meaningful are the parameters found to the prediction? 
Only very briefly mentioned is that a change in the period used for the "calibration" between 15 & 
25 years does not make much of a difference. To give this 1-sentence statement a better basis one 
could show similar figures as Figure 4 using development periods of, e.g., 17 and 25 years (a 
symmetric change around the chosen 21 years) and discuss how the prediction skill changes and 
how the improvement in prediction skill from May to July changes. If there is not too much change 
then this is not necessarily a good sign of the credibility of the method, is it? - critical reflection on 
the quality of the data used - reflections on the increase in prediction skill the closer one gets to 
September + an explanation why this increase is more pronounced for the ESS. - reflections on the 
years where the prediction is particularly good or bad because of which reason? - reflections on 
your skill metrics: Have others used these metrics to assess sea-ice prediction skill as well 
already? If yes, which results did they obtain? If not: Which other measures were used and how 
comparable are your results to those of the others? - reflections in the practical side: Optimal skill 
is achieved when using a quite large suite of parameters for July, i.e. just two months ahead of the 
September sea-ice cover minimum. Is this what we aim for? Aren’t we after a minimum set of 
parameters to be used already in May to predict the September sea-ice cover minimum, i.e. four 
months in advance? The more parameters you need the more uncertainties (from the larger 
number of parameters required) might be loaded into your prediction. In that sense it would have 
been extremely useful to see a discussion about what is the minimum set of (which?) parameters 
in May to achieve a prediction skill of X. 
 
 
Following the reviewer’s suggestion we have modified the manuscript substantially, 
especially the introduction and the conclusions part, in order to take into account the 
aforementioned concerns. 
 
 
 
 



#Specific Comments: 
Page 1, Line 23: You include sea-ice thickness here albeit our knowledge about sea ice thickness 
decline seems much less solid than our knowledge about sea-ice extent reduction - and to my 
knowledge there is not yet scientifically proven evidence that the observed sea-ice thickness 
reduction is also caused by climate change. It is very likely from physical principles that this is the 
case, but I am not aware that there has been a paper like Notz and Marotzke, 2012, where this 
issue has been discussed. 
 
We agree with the reviewer’s concern, thus we have removed “sea ice thickness” from the 
text. 
 
Page 1, Lines 27/28: "Grosfeld et al., 2016" –> Albeit I appreciate the activities at AWI to enhance 
its service with regard to informing scientists and the wider public about topics relevant in polar 
research, I doubt that in a publication like this manuscript the citation of Grosfeld et al., 2016, 
should be one of the major citations when it comes to the observed sea-ice decline in the Arctic. 
Also "Serreze et al., 2007" is about ten years old a citation. Please look for more recent citations of 
Arctic sea ice decline in the white literature ... Cavalieri and Parkinson, 2012; Comiso et al., 2017; 
to mention two. 
 
We followed the reviewer’s suggestion and added more recent references in this part of the 
manuscript.  
 
Page 2, Line 4-15: Since your background and motivation to carry out this study seemingly is 
driven by shipping activities I would have expected a more thorough review of what is available in 
the literature towards this topic. I would have liked to see, for example, Melia et al., and Pizzolato 
et al., both 2016, both Geophysical Research Letters; citing the AMAP report is fine (I have it in my 
shelf as well), but this is from 2004 = almost 15 years old and there have been revisions of this 
material. In addition, when it comes to potential challenges, then you could have looked into 
papers such as Lasserre, F., 2014, Polar Record and Larsen, L.-H., et al., 2016, Polar Research 
and I bet there are many more papers you could use to support your statements in the last lines of 
this paragraph. 
 
We have changed to introduction to take into account the aforementioned suggestions and 
references.  
 
Page 2, Line 26: Chevallier et al., 2013 and Sigmond et al., 2013 are missing in the reference list. 
 
We added these references in the reference list. 
 
Page 3, Line 8: This sounds like a valuable approach, however, as you wrote earlier in the 
introduction, the Arctic system is a very complex system and in the light thereof I find this 
statement puzzling. It can well be that the correlation between one pair of predictor and predictand 
changes due to changes in the correlation between another pair which is related to pair one. The 
influence of one particular parameter to SSIE can grow relative to the influence of another 
parameter. While correlation with this latter parameter might stay the same, correlation to the 
former parameter might change (e.g. increase) such that its skill to forecast SSIE increases as 
well. This approach might therefore a-priori exclude skill-improvements over time. 
 
Although we agree with this comment, we have to keep in mind that each model (statistical 
or dynamical) offers room for improvement. In this paper, we want to show a different 
statistical approach, compared to the existing ones, and its potential advantages. By using 
running correlations, we try to avoid, at least partially, the non-stationarity issue between 
different variables. As mentioned above the same statistical approach is used in pre-
operational mode for the streamflow prediction for Elbe and Rhine streamflow (Ionita et al., 
2009, 2014, 2017; Meißner et al., 2017) and we strongly feel that the method as well as our 
results have both the physical and statistical meaning required to work in context of sea ice 
prediction. The method was also used to investigate the “Moisture transport and Antarctic 
sea ice: austral spring 2016 event” (Ionita et. al. 2018).  
 



Page 3, Lines 11-15: This is a fairly larger number of parameters. I am wondering whether, e.g. 
with the SLP distribution one does not already have enough information about USURF and VSURF 
since the latter are primarily driven by the pressure gradient (provided) and the air temperature 
gradient (provided). Or in other words, what is the motivation of your choice of parameters (see 
GC2). 
 
If one looks at the stability maps, you can see that the stable regions are located over 
different regions for SLP, USURF and VSURF. In some cases, SLP is not even selected as a 
potential predictor. It is true that SLP, USURF and VSURF are interconnected, but in the 
current case, the stable regions are independent of each other, thus we choose to use all 
there variables.  
 
Page 3, Lines 21-25: - This paragraph lacks information about the time period, grid type, grid 
resolution, temporal resolution, and satellite from and for which the SIC is obtained. - Please also 
correct "NSIDC bootstrap algorithm" with "Comiso bootstrap algorithm"; NSIDC is simply the 
organization hosting and distributing this data. But see further below. - While it is clear from the 
introduction that you will use certain atmospheric and oceanographic parameters it is not clear why 
you require SIC and in particular the sea-ice index. This needs to be pointed out either in the 
introduction or at the beginning of section 2. - Please check whether it is "sea ice extent index" or 
"sea ice index". - You might also want to mention that the sea-ice index is just one number per 
month while in case of the SIC we are talking about maps. - I do not understand why you are using 
the Comiso Bootstrap algorithm sea-ice concentration from the SIC data set you are citing. If I go 
to the doi cited behind the Meier et al. 2013 reference then I end up with the NOAA/NSIDC climate 
data record (CDR) of sea-ice concentrations, version #2. I would like to know why i) you did not 
use the main CDR, i.e. the combination of Comiso Bootstrap and NASA-Team algorithms, and ii) 
you did not use version #3 of this data set: https://nsidc.org/data/G02202/versions/3 Please note 
also, independent of whether you are using #2 or #3 you would need to cite the Peng et al., 2013 
paper (see "Citing These Data" under the just above given URL). 
 
The data section has been modified following the reviewer’s comment. For the forecast 
purposes in our manuscript we are using just the Arctic sea ice extent index. Thus, the 
other data have been removed from the revised version. We are not using the sea ice 
concentration, so we have deleted all the information about this part. The revised version of 
the manuscript has included a new Table 1, which summarizes all data sets used with 
source, temporal and spatial resolution as well as the references. Therefore, we think that 
the reader can easily catch up with the database of the analysis performed in this study.  
 
Page 3, Line 26-30 / Page 4, Line 1-3: - What is missing here is the time period. For which time 
period did you actually obtain the reanalysis and also the other data sets listed in this paragraph? - 
What is your motivation to use a coarse resolution, outdated atmospheric reanalysis when i) there 
is an updated, finer resolved reanalysis of the same kind available from the same provider: NCEP-
DOE and when ii) there are other reanalyses available which might perform better than 
NCEP/NCAR in the Arctic and the parameters chosen (e.g. JRA-55, ERA-Interim, MERRA-2, 
etc.)? Please motivate your choice. I guess for your approach it is quite important to have a re-
analysis data set which is as accurate and realistic as possible. - What is the advantage of using 
the ERSST data set over using other, finer resolved SST data sets? While you are using Version 
#4b there has been a version #5 out for a while, see: Huang, B., Peter W. Thorne, et. al, 2017: 
Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5), Upgrades, validations, 
and intercomparisons. J. Climate, doi: 10.1175/JCLI-D-16-0836.1 Would you mind checking 
whether version #5 is more accurate in the Arctic Ocean than version #4? I guess it is worth it. It 
might be good as well to cite a paper or two in which you motivate your choice of using this SST 
data set over other SST data sets. - Finally, for the global ocean heat content data sets it would 
also be very good to have a statement pointing towards why this particular data set is chosen. 
 
Again we are thankful for the reviewer comments on our data base. We have to point out 
that the choice of our datasets is mainly based on their availability. Although ERA-interim 
(HadSST) would be a better option compared to NCEP (ERSST) data, ERA-interim (HadSST) 
unfortunately are not updated in real time, thus making it impossible to be used in 
“operational” mode. We are participating in the Sea Ice Prediction Network forecast 



challenge, thus we need the data to be publically available at the beginning of each month. 
We agree that it’s optimal to have the proper reanalysis dataset, but we have to take into 
account also their availability in near real time. Regarding the ERSST data, there was a 
written mistake from our side. We have of course used the last version of the ERSST data 
for the forecast, namely the ERSSTv5, not the previous version. We have corrected this in 
the revised version of the manuscript. To make it easier for the reader, we also added an 
overview table (Table 1), listing all the datasets used in this study, their proper references 
and the link where the data can be downloaded.  
 
Page 4, Lines 6-22_ - Line 8/9: Please place the publications related to streamflow predictions 
behind the "... Danube river)" to ensure easier association of topic and citation. –  
 
Modified as suggested.  
 
Line 9/10: When you are referring to "region" then you mean regions where the spatiotemporal 
distribution of the predictors is stably correlated with the Pan-Arctic SSIE?   
 
The text has been modified accordingly to answer this question. 
 
Lines 10-12: "from previous months (years)" –> unclear. I assume your time step is a month, 
because you are using monthly data. Why years? Further, since you did not specify yet the length 
of the time period you are investigating mentioning of "moving window of 21 years" remains 
unclear. What is the maximum or minimum time lag with which you compute the correlation? Why 
21 years? - Did you carry out any pre-processing before you perform the correlation analysis? 
From the data section it becomes vaguely clear that the involved data sets potentially have a 
different grid resolution and are also on different grids. - Is the Student t-test used a two-sided 
one? - What is the motivation to go down to significance levels of 80%? Usually, researchers are 
using significance levels of 99% or 95%.  
 
This section was rephrased in the revised version of the manuscript to clarify the questions 
raised. We described the time periods and we referred to the references where the method 
is used in order to underline the used moving window of 21 years. We have added also a 
table (table 2) in which we show the time lags used for each variable. The grid of each data 
set is now mentioned in the new table 1. For the statistical significance we used a two-sided 
student t-test – we have inserted a small paragraph stating this in the methods section. As 
we already mentioned we used 80% and 85% level as buffer zones. The data from these 
regions are not taken into account in our forecast exercise. 
 
Line 14: "for more than 80% of the 21-year windows" –> It is not entirely clear what you did here. 
Please be more accurate in the description of how you performed the correlation analysis. If "1979-
2007" is the length of your entire data set (I assume now from Line 15) and your moving window is 
21 years long, then you have 9 years (=108 months or 9 seasonal cycles) in total for which you 
compute the correlation. If the correlation is above a certain significance level in 80% of these 9 
years, i.e. 7.2 years, then the correlation is considered stable? Why? What is scientific rationale 
behind this choosing this threshold? - "significance levels that define the stability of the correlation 
vary within reasonable limits" –> I don’t understand this. What are "reasonable limits"? Do you 
mean that if you are using other significance levels (SL), say 94%, 92%, 87%,and 82% instead of 
the mentioned ones, doesn’t change the result, i.e. the general pattern in the stability maps? Why 
should it? You are showing a whole suite of SLs already anyways and at the end you take the 90% 
SL (Line 21) as the one to base you analysis on. I find this statement confusing. I’d rather ask why 
you did not take a SL of 95% instead of asking whether the stability maps would change with 
different SL. What is the motivation to vary the length of the moving window the way you wrote, i.e. 
15-25 years? After all, the main contributor to the correlation possibly is the seasonal cycle in the 
predictors and the predictand.  
 
We think concerning our method and expertise that parts of this comment are not 

applicable (e.g. the use of 94%, 92%, 87%,and 82% significance level). We use a well-

established and published methodology. For the final predictors we select the regions 

where the correlation is stable above the 90% significance level. Everything below this level 



is not taken into account and it’s used like a buffer zone. Although the length of our time 

series is relatively short (40 years) the methodology proved to work also in cases of timer 

series <40 years (Ionita et al., 2018). Moreover, we use the same methodology, with the 

same number of years (40 years), for the prediction of September Arctic and Antarctic Sea 

Ice (https://www.arcus.org/sipn/sea-ice-outlook/2017/post-season). We varied the length on 

the moving window, just to be sure that the spatial structure of the stability maps remains 

the same. We choose the period 1979-2007 as calibration period, as both extreme years of 

sea ice extent, namely 1996 and 2007, were included and it provides a climate relevant 

period of nearly 30 years.  

 
 
Lines 21/22: How is the detrending done? Did you compute average seasonal cycles - for each 
grid cell - for which time period? - It would not hurt to refer to Figure 1 already in this paragraph 
since you are describing the significance levels in a quite detailed way already. 
 
The detrending procedure has been included in the revised version of the manuscript in the 
section data and methods. We also make reference to Figure 1 in the description of the 
stability maps procedure. 
 
Page 4, Lines 24-28: - Line 26/27: A good place to again refer to Figure 1. 
 
Modified as suggested. 
 
Page 5, Lines 1-7: - This multiple linear regression is one of the key ingredients of your paper. I 
therefore suggest that you give more details, like a) How did you technically implement the 
stepwise linear regression? What is the step size? Are we talking about temporal steps or about 
steps in terms of parameters used for the linear regression? How is the prioritizing of the predictors 
quantified? Are the partial correlations in this step wise approach as high as those shown in the 
stability maps? b) What is the error? How did you derive / quantify the error? c) I assume that Y is 
dimensionless since you term it an index? Otherwise it has unit square kilometers. d) How is 
ensured that the equation in Line 3 provides a correct physical unit at the end? 
 
In the revised version of the manuscript we added more information regarding the stepwise 
regression procedure. We also add a reference for the applied method.  
 
Page 5, Lines 10-25: - This paragraph belongs to either the introduction or the methods section. - 
Since you have given the citations of the data sets used already in the data set subsection there is 
not need to repeat them here.  
 
We removed parts of this paragraph, but we prefer to keep it in it’s current location because 
we use it as an introduction to explain why we opt for the predictors we are using. 
 
Lines 11/12 vs. lines 14/15: You state that sea-ice cover and snow cover belong to the long-term 
memory components but then use OHC, OT100 and SST as long-term predictors. Wouldn’t it be 
more straightforward to only refer to the oceanic components in Lines 11/12 and leave out snow 
cover and ice cover?  
 
Modified as suggested. 
 
Line 18: "if predictable" –> I don’t understand this statement in this context. Why has the 
atmospheric circulation to be predictable if you aim for the prediction of September SIE based on 
spring atmospheric conditions? 
 
We deleted “if predictable” in the revised version of the paper.  
 
Line 21: What do you mean by "advective parameters"? - Lines 22-25: These two sentences 
should perhaps be re-formulating for clarity and to avoid repetition along the lines: "Atmospheric 
moisture content, e.g. clouds, water vapor content, has an impact on the net surface radiation 



balance and hence also on the SSIE (Kapsch et al., 2013, 2014). As a measure for this impact we 
use the precipitable water content (PWC) as an additional predictor." 
 
Parts of this paragraph have been removed and some part have been modified as 
suggested. 
 
Page 5, Line 26 to Page 6, Line 4: - This paragraph belongs to either the introduction or the 
methods section.  
 
The paragraphs has been moved in the methods section. 
 
Line 1: "SSIE index" –> why index? I thought you are after the sea-ice extent? - Lines 2/3: "with 
different lags, depending on the variable" –> It seems you are using different time lags for different 
parameters in the correlation analysis? Please specify why. Please detail the time lags associated 
with which parameter. Line 3/4: "The optimal predictors are defined as the average values over the 
stable regions for each gridded parameter." –> unclear. Did you take a stability map between, say 
SSIE and an arbitrary parameter, e.g. SST, and average over the SST within the region defined as 
having a correlation at 90% significance? And then? Then you have an average SST value ... fine 
... and next? Why is this the "optimal predictor"? Further, when doing this averaging, do you take 
into account the actual correlation value as well or do you only use the significance as a criterion to 
select over which SST values you are averaging? 
 
The text has been modified to properly capture the real meaning behind SSIE index. We are 
not using a gridded field, we are using just one time series, the September Sea Ice Extent, 
that’s why we call it an index. Nevertheless, in the revised version of the manuscript we use 
the same definition throughout the manuscript, namely SSIE. Moreover, we have included 
also a table (Table 2) in which we clearly specify which time lags are involved for each 
variable and which kind of data (monthly and/or seasonal. This frames the analysis and 
helps to follow the method performed.  
All the predictors used in the regression model are calculated based on the significance 
criterion. All the grid point in which the correlation coefficient between SSIE and large-scale 
data are significant at a significance level >90%, for more than 80% of the case, are used 
when defining an index (by averaging the gridded data over the black boxes in the stability 
maps). 
In addition Table S1. showing the skill parameters (see supplementary file for definition) 
based on different statistical methods for the observed and predicted pan-Arctic sea ice 
extent in September with different time lags adds much information to understand the 
approach. 
 
Page 6, Lines 5-30: - It is not clear how you end up with the variables and time periods shown in 
Figures 1 through 3 and Table 1. It is not clear why in particular in some cases optimal predictors 
either are based on monthly values (of one or even two different months) or are based on seasonal 
averages; you have not introduces seasonal averages at all yet. This all seems quite arbitrary. - It it 
not clear what the criterion is to place black boxes in Figures 1 through 3 and what their meaning 
is. It is not clear in particular how the location of the black boxes go along with the notion that only 
in these stability maps only regions with > 90% significance are used. This all seems quite 
arbitrary.  
 
The method and approach is not all “arbitrary” as mentioned by the reviewer. Nevertheless, 
we think the reviewer is correct that we have to present the paragraph more structured and 
clearer concerning the analysis. In the revised version of the manuscript, we have added 
Figure S2 in the supplement, which shows the workflow of our methodology and how we 
end up with the “optimal model”.  
 
-Figures 1 through 3: If the 90% significance level is as important as I think based on what you 
wrote, then I suggest to mark the 90% also by a change in color in the stability maps. Currently, 
90% significance is right in the middle of (regular) red or blue. - In the captions of Figures 2 and 3 
you need to state that these are the ADDITIONAL parameters (additional with respect to May, 
Figure 1) on which the prediction of the September sea-ice extent is based. - Lines 5/6: What is 



meant by "...we have retained all the stable regions ... for all variables based on previous months’ 
data."?   
 
The captions of Figure 2 and 3, as well as for ESS, have been modified following the 
reviewer’s suggestion. Also the text has been modified in the revised version of the 
manuscript. 
 
Lines 11-22: The entire issue about AMO needs to be put into the methods section where you can 
introduce this as an important additional parameter. It should be introduced in the RESULTS 
section. 
 
The AMO paragraph has been moved in the discussion part.  
 
Figure 4: I suggest to change the y-axis title to "Sea-ice extent anomaly []"; currently it is "Sie ice 
extent []". This applies also to Figure 5. For Figure 5, I in addition note that the range of the y-axis 
differs between a) and b)&c); I suggest to make this consistent as there is no physical reason to 
have different ranges. Another comment, maybe a matter of taste, but I would not call your 
comparison of the last 7 years’ skill of the prediction a "validation" - this is an evaluation. I would 
not call your 21-year period "calibration". Instruments like a pyranometer, pyrgeometer, 
anemometer, etc., are calibrated. You use that period to develop your method. Hence, I suggest to 
speak of a "development phase" or "training phase" and an "evaluation phase" It would be good, 
finally, to also show a graph of the difference between observation and prediction in relative terms; 
a difference of 300 000 kmˆ2 with respect to the sea-ice extent of the entire Arctic is different in 
relative terms than a difference of 100 000 kmˆ2 with respect to the ESS sea-ice extent. That way 
you can better quantify the skill of your method. 
 
Figure 4 and Figure 5 (now Figure 8) have been modified following the suggestions. 
Regarding the “calibration” and “validation” wording, we like to stress that this is the state 
of the art wording in forecasting. All the papers mentioned in the references, and not only, 
use the terms “calibration” and “validation” to train and evaluate their model. Thus, we 
choose to keep this wording also in the revised version of the manuscript. We also feel that 
by adding two new figures of the difference between observation and prediction in relative 
terms will not add much to the paper.  
 
 
Page 7, Lines 1-13: - Line 8: Please make clear that these are again additional parameters, i.e. on 
top of those for May (Fig. 1) and June (Fig. 2).  
 
Modified as suggested. 
 
Heading of section 3.2: I would reformulate the title of this subsection into: "Application of the 
methodology for regional SIE prediction" Also, my general view is that you should include all the 
supplementary figures and table of this subsection into the regular paper. 
 
We have modified the title of subsection 3.2 following the reviewer’s suggestion. Moreover, 
we have now included all the former supplementary figures into the regular paper. In the 
actual supplementary document we have added new figures, for a better understanding of 
our stability regions determination. 
 
Lines 21-25: I don’t think that Table 2 and these lines starting with "Moreover, when looking ..." are 
required to motivate your look at a specific region of the Arctic Ocean. A link / hint towards how you 
ended up at the optimal parameter combination would be an asset here as well for the correct 
understanding of your results (see also my comments with respect to Figures 1 through 3 and 
Table 1 further up). 
 
We have added a figure, which emphasizes the workflow of the selection of the optimal 
parameter combination (Figure S2 and additional text in the supplementary file). 
 
Page 8, Line 19 3/4: A discussion of the results is missing completely. See GC6 



 
The conclusion part has been modified substantially and now most of the discussion are 
integrated in the new part of the paper called Discussion and conclusions. 
 
Page 8, Line 21 to Page 9, Line 2: - Line 23: "Although" ... –> Why? - I suggest to move Line 24 - 
end of this paragraph to a later place in the conclusions. Generally, starting the conclusion with a 
short summary about what has been done in this study would put whatever information coming 
later in the conclusion into a better context.  
 
Modified as suggested. 
 
L28-30: I am not sure what the mentioning of the Parkinson et al (2006) paper and the excurse on 
modelling has to do with your work. After all, inconsistencies between model and observation with 
regard to sea-ice cover can have MANY reasons. The fact that OHC is one of these is neither new 
nor would I use that as one of the highlights to show why your study is valuable. 
 
The reference of Parkinson et al. (2006) is added as one example. We are aware the OHC is 
not a new highlight in term of predictability, but can be used to discuss  potential issues. 
 
Page 9, Lines 3-24: This is part of the discussion - see GC6. - I suggest to split this paragraph into 
two in Line 16. the first one could talk about the teleconnections with, e.g. AMO and the impact the 
AMO has on which variable used in your method – if you find that relevant. Frankly speaking, if Yu 
et al. (2017) found that a strong link between these large scale pattern - why didn’t you use 
correlations of between sea-ice cover and the strength of these patterns for your predictions? The 
second one could talk and refer to the regionally / locally driven feedbacks between ocean, sea-ice 
and atmosphere. You refer to SLP under these more regional forcings (Line 17) - but isn’t 
particularly the SLP distribution the one which is directly linked to PDO, AMO, AO, NAO, etc.? 
 
As stated before, the conclusion part has been substantially modified and we added the 
discussion in this sub-section. We discuss the different issues raised here by the reviewer 
throughout the whole “Discussion and conclusion” sub-section. 
 
Line 4: What do you mean by "climate variables"? 
 
This wording has been removed from the revised version of the manuscript. 
 
Lines 4-6: - "(the stable regions over the western European coast)" –> I do not find these in your 
figures. - OHC: For most of the areas shown in Figure 1 a) the correlation with OHC of SON of the 
previous year (?) is stable with than 90% significance and hence does not enter your prediction 
according to your description of the method. Does this change for June & July as starting months 
of the prediction? - SST: Figure 1b) shows two areas of significant correlation with SST of MAM, a 
positive one in the Bering Sea and a negative one in the Barents Sea. You only used the one in the 
Bering Sea. Why? 
 
The text has been modified to properly capture what is found in the stability maps. As is 
stated in the description of the methodology we used all the regions which are above the 
90% significance level. Moreover, we have added as supplementary file the original figures 
where we show all the stable regions used in the regressions model. What is shown is 
Figures 1 - 3 and Figures 5 – 8 are just the stable region that are used for the SSIE forecast 
after we applied the linear regression model. 
 
Line 10/11/12: Why "anomaly"? - Line 17 ++: I would about the "and so on" and I would try to be as 
explicit as possible here, referring to the respective Figure(s) for better understanding. It is crucial 
to discuss these influences in the light of which SLP distribution, associated VSURF and USURF 
distributions and PWC and TT patterns belong together physically and whether these are reflected 
in a consistent way in your stability maps. There is a lot to see in these stability maps and 
potentially also a lot to discuss albeit with the danger that one over-interprets correlations. In that 
respect you could improve the value of your paper and the discussion / conclusion in particular. A 



discussion could and should include more information about your choice of regions used for the 
prediction (black boxes in Figures 1-3).  
 
To take into account this suggestion we have added a new section in the revised 
manuscript, namely Discussion (section 4), where we try to incorporate the reviewers 
comments/issues regarding a more detailed explanation of the physical mechanisms and 
some issues related to our methodology. 
 
Line 20-23: You mention PWC and air temperature in Lines 20/21 but then refer to "transport" in 
Line 23 - so how about the meridional transport of PWC? 
  
The text has been modified according to the suggestion. 
 
Page 9, Line 25 - Page 10, Line 5: - Line 28: 1996 and 2007 lie within your development or training 
phase while only 2012 lies outside it. Hence one could argue that the only true year for comparison 
is 2012 for which the agreement is not as good as for 1996, for example. You could include 2013 
as well, for which the prediction is quite good. It is further interesting to see that for ESS a start of 
the prediction in July results in a substantially better agreement for the two years of extreme pan-
Arctic minima 2007 and 2012 (compare Fig. 5c with Fig. 5 a). In contrast, for the entire Arctic it 
does not really make a difference whether you start in May (Fig. 4a) or July (Fig. 4c): the 
discrepancy between observations and prediction remains unchanged. But this of course belongs 
to the discussion, in which you need to critically assess your approach to here, in the conclusions, 
give explicit recommendations about which starting month and which parameters are suited best to 
achieve the best prediction. Lines 4-5: Yes, the concept can be used but how much better is it 
compared to other systems and concept. This you did not demonstrate and/or discuss. Therefore I 
would delete this last sentence. Another argument for deleting this sentence is that, e.g. shipping, 
might not be too much interested in the pan-Arctic sea-ice extent. Sea-ice area or, even better, the 
sea-ice distribution will be a better measure. As an example: The SSIE of the ESS is unchanged 
compared to winter but the sea-ice area reduced to 1/2 of the winter value if half of the ESS is ice 
covered by 75% sea ice and half of the ESS is ice covered by 25% sea ice. Hence the value of 
regional sea-ice extent prediction for shipping remains questionable. 
 
We have modified the revised version of the manuscript substantially trying to incorporate 
the suggestions of the reviewer. We have added a new section for discussion in which we 
discuss some of the issues as well as advantages of our methodology. 
 
Typos: - Please decide whether you use the American or British way of writing "skillful". 
Page 2, L12: "flows" –> "floes" 
Modified as suggested. 
 
Page 3, Lines 20 & 24: "extracted". I suggest to write "obtained" or "downloaded". 
The respective line has been removed from the revised version of the manuscript. 
 
Page 4 Line 14: "level" –> "significance level" Line 24: "forecast m all" –> "m"? Line 
Modified as suggested. 
 
27: "each ... parameters" –> "each ... parameter" 
Modified as suggested. 
 
Page 5 Line 18: "substantial" –> "substantially" 
Modified as suggested. 
 
Page 7 Line 23: "EES" –> "ESS" 
Modified as suggested. 
 
Page 9 Line 11: "EES" –> "ESS" Line 12: "form" –> "from" 
Modified as suggested. 
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Abstract. Sea ice in both Polar Regions is an important indicator for the expression of global climate change and 

its polar amplification. Consequently, a broad interest exists on sea ice coverage, variability and long term 

change. However, its predictability is complex and it depends strongly on different atmospheric and oceanic 

parameters. In order to provide insights into the potential development of a monthly/seasonal signal of sea ice 10 

evolution, we applied a robust statistical model based on different oceanic and atmospheric parameters to 

calculate an estimate of the September sea ice extent (SSIE) on monthly time scale. Although previous statistical 

attempts of monthly/seasonal SSIE forecasts show a relatively reduced skill, when the trend is removed, we show 

here that the September sea ice extent has a high predictive skill, up to 4 months ahead, based on previous 

months’ oceanic and atmospheric conditions. Our statistical model skillfully captures the interannual variability 15 

of the SSIE and could provide a valuable tool for identifying relevant regions and oceanic and atmospheric 

parameters that are important for the sea ice development in the Arctic and for detecting sensitive/critical regions 

in global coupled climate models with focus on sea ice formation. 

 

 20 

1 Introduction 

Arctic sea ice plays an important role in modulating the global climate system by influencing the atmospheric and 

oceanic circulation in Polar Regions. Moreover, it has a strong impact also on the global economic system 

through changes in marine and natural resources development. The sea ice extent over the Arctic region has 

undergone an extraordinary decline during the last decades that can be linked to climate change (Allison et al., 25 

2009; Kay et al., 2011; Notz and Marotzke, 2012, Stroeve and Notz, 2018). The trends in the Arctic sea-ice 

extent are negative for all months, with the largest trend recorded at the end of the melt season in September 

(Serreze et al., 2007), with an average decline of 12.9% per decade relative to the long-term mean of 1981-2010 

September average (Cavalieri and Parkinson, 2012; Comiso et al., 2017). These negative trends, with their 

environmental and economic implications as well as its impacts on human society, have led to a rising demand 30 

for accurate sea ice predictions at monthly, seasonal up to decadal time scales, which in turn will be able to 

address the growing demands from different stakeholders and the scientific community (Meier et al., 2014). As 

such, an accurate sea ice prediction plays a crucial role for ecosystems, coastal communities, planning for new 

shipping ports, oil and gas exploration and marine transportation. The ten lowest September sea ice extents all 

occurred in the past 10 years and climate projections indicate that the Arctic Ocean could be ice free (sea ice less 35 

than 1x 106 km² for at least five consecutive years) in September in the second half of the 21st century (IPPC, 

2013) . As a result, the ship traffic and Arctic resources extraction have already increased (Pizzolato et al., 2014). 

For example, the exploitation of shipping via the Northwest Passage or Northeast Passage could reduce the 
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navigational distance between Europe and Asia by ~40% compared to the route via the Suez canal (Schøyen and 

Bråthen, 2011). The reduction in distance compared to the Suez and/or Panama Canal routes could result in large 

cost saving due to reduced fuel consumption and an increase in the number of ships (Lassere, 2015). Melia et al. 

(2016) have shown that by mid-century, the frequency of navigable period will double and the routes across the 

central Arctic will become available. For example, for a high-emission scenario they have shown that by late 5 

century trans-Arctic shipping might become a commonplace, with the shipping season ranging from four to eight 

months. Overall, the summertime use of these routes by different vessels (i.e. cargo ship and tanks) has increased 

(Eguíluz et al., 2016), thus the need for a proper forecast for the Arctic sea ice conditions has become imperative. 

Currently, forecasting the open water route through the Arctic basin is accurate within 200 km when the 

predictions are initialized in July (Melia et al., 2016). As such, an early knowledge on the potential opening of the 10 

maritime Arctic routes could allow a better management for the shipping companies to optimize (in terms of time 

and costs) shipping routes between the Atlantic and the Pacific Oceans (Hassol, 2004; Smith and Stephenson, 

2013). However, the opening of the Northeast and Northwest Passages does not guarantee ice free transects along 

the passages at all times and can always include the possibility of drifting ice floes, which for conventional ships 

poses high risks and potential environmental danger when getting damaged in case of accidents. Pizzolato et al. 15 

(2016) have shown, that despite the persistence of low sea ice condition since 2007, very little shipping activities 

has been recorded within the northern route of the Northwest Passage. This might be attributed to the multiyear 

ice concentrations in the Canadian Arctic waters, which strongly influences the shipping activity. Hence, a proper 

forecast does not imply a dangerous free transect as long as the Arctic Ocean is ice covered with thick multiyear 

ice for its larger parts over the significant times of the year.  20 

Although the evolution of Arctic sea ice physical properties has been extensively studied, the prediction of 

detrended Arctic sea ice extent, with lead times of 3 months and longer, have not been very promising (Lindsay 

et al., 2008; Blanchard- Wrigglesworth et al., 2011). From a forecasting point of view, the evolution of autumn 

Arctic sea ice is closely associated with initial conditions in previous winter and spring. Different studies have 

emphasized that some parameters contribute significantly to the improvement of the seasonal sea ice forecast 25 

skill at different time lags (Holland and Stroeve, 2011; Lindsay et al., 2008). For example, sea surface 

temperature and sea ice concentration in spring are highly relevant predictors for the minimum Arctic sea ice 

extent (Drobot et al., 2006). Some studies suggested that accurate sea ice thickness could increase the forecast 

skill 2 months ahead (Day et al., 2014; Dirkson et al., 2017). Also, the spring melt pond fraction has been 

employed to improve the forecast skill of the Arctic minimum sea ice extent (Schröder et al., 2014). 30 

Currently, there are different approaches used to make sea ice forecast: ice-ocean-atmosphere coupled models, 

statistical models, best guesses model and mixed models (Stroeve et al., 2014; Hamilton and Stroeve, 2016). 

From a statistical point of view, Drobot et al. (2006) showed  that 46% of the pan-Arctic minimum sea ice extent 

would be predictable as early as February based on monthly sea ice concentration, surface albedo, downwelling 

long-wave radiation and surface skin temperature. Lindsay et al. (2008) have shown that their statistical model 35 

based on a wide range of predictors (e.g., atmospheric circulation indices, sea ice extent and sea ice 

concentration, ocean temperature at different levels) exhibited a greater skill in predicting the September sea ice 

extent (SSIE) than those by Drobot et al. (2006). The forecasts based on the state-of-the-art coupled atmosphere-

ocean sea ice models (Chevallier et al., 2013; Sigmond et al., 2013) do not show better results when compared 
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with the statistical models (Kapsch et al., 2014; Schröder et al., 2014; Zhan and Davies, 2017). These caveats 

indicate that our understanding regarding the controlling factors of Arctic sea ice may still be insufficient. 

Overall, skillful forecasts extend only two to five months ahead, for the summer months (Stroeve et al., 2015; 

Schröder et al., 2014), regardless of the type of the model used for the forecast (dynamical or statistical). The 

results and error margins based on these different approaches have highlighted how difficult it is to make skillful 5 

prediction for the SSIE. This is particular true for the years with extreme low September sea ice concentrations 

(e.g., 2012 or 2007), with both, the dynamical and the statistical models showing similar limitations (Stroeve et 

al., 2015; Schröder et al., 2014; Stroeve et al., 2014; Hamilton and Stroeve, 2016). Stroeve et al. (2014) have 

shown that seasonal predictions of the SSIE are most accurate in years when the sea ice extent is near the long-

term trend, but skillful sea ice extent prediction appear challenging in years when the weather plays a larger role 10 

(Hamilton and Stroeve, 2016).  

In order to improve the monthly/seasonal prediction skill of the sea ice extent one possibility would be to identify 

stable predictors (the correlation coefficient between the predictor and the predictand does not change in time) 

and to develop a statistical forecast model based on these predictors. Following this idea, here we analyze the 

oceanic and atmospheric conditions associated to the SSIE in order to identify potential predictors based on a 15 

simple statistical methodology and placed them in a longer temporal context. Our statistical model takes into 

account different atmospheric and oceanic variables following the approach in Ionita et al. (2008, 2014, 2017, 

2018). These parameters are: sea level pressure (SLP), air temperature (TT), precipitable water content (PWC), 

surface zonal wind (USURF), surface meridional wind (VSURF), the ocean heat content integrated over the first 

700m (OHC), sea surface temperature (SST) and water temperature integrated over the first 100m (OT100), in 20 

order to calculate an estimate of SSIE. The paper is structured as follows: the data and methods used in this study 

are presented in Section 2, while the main results of our analysis are shown in Section 3. The discussion and 

concluding remarks are presented in Section 4 and 5. 

 

2 Data and methods 25 

2.1 Data 

The monthly sea ice extent has been extracted from the National Snow and Ice Data Center ftp server 

(ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/) (Fetterer et al., 2016). 

For the Northern Hemisphere temperature and atmospheric circulation, we use the monthly means of air 

temperature at 2m (TT), downward longwave radiation flux (DW), zonal wind (USURF), meridional wind 30 

(VSURF), precipitable water content (PWC) and the mean sea level pressure (SLP) from the NCEP/NCAR 40-

year reanalysis project (Kalnay et al., 1996) on a 2.5º x 2.5º grid. Global sea surface temperature (SST) is 

extracted from the Extended Reconstructed Sea Surface Temperature data (ERSSTv4b) (Huang et al., 2014). This 

dataset covers the period 1854 – present and has a spatial resolution of 2° x 2°. The global heat content data in the 

first 700m (OHC) and the ocean temperature integrated over the first 100m (OT100) is extracted from the Global 35 

Ocean Heat and Salt Content database (Levitus et al., 2012; Boyer et al., 2013).  

The monthly Atlantic Multidecadal Oscillation (AMO) index The AMO index has been calculated as the average 

of monthly SST anomalies with respect to the mean over the North Atlantic north of 25◦N (75◦W–7◦W, 25◦N–

60◦N). For the AMO index computation, we used the RRSSTv5 data set (Huang et al., 2014). In this study, we 

ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/
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use the yearly mean of AMO index. Table 1 gives an overview of all the data sets included in the study. All used 

data sets have been detrended before the analysis by computing the linear trend for the entire time series/gridded 

fields in question. This trend was then subtracted from the initial time series/gridded data set. The linear trend 

was estimated using a least-square linear regression. 

 5 

2.2 Stability Maps 

The statistical model used in this study for the estimation of SSIE is based on a methodology successfully used to 

make monthly/seasonal streamflow predictions for the central European rivers (e.g., Elbe river, Rhine river, 

Danube river, Ionita et al., 2008, 2014, 2017, 2018; Meißner et al., 2017). Furthermore, for identifying the drivers 

of the Antarctic sea ice variability (Ionita et al., 2018). The basic idea of this method is to identify regions where 10 

the spatio-temporal distribution of the predictors is stable correlated with the Pan-Arctic SSIE. The SSIE has 

been correlated with the potential predictors from previous months (Table 2) in a moving window of 21 years and 

the statistical significance of the correlation coefficient was tested using a two-sided Student t-test. The 

correlation is considered stable for those grid-points where SSIE and the large-scale predictors (e.g., OHC, 

OT100, SST, SLP, TT, PWC, DW, USURF and VSURF) are significantly correlated at 95%, 90%, 85% and 80% 15 

significance level for more than 80% of the 21-year windows, covering the period 1979-2007. We choose the 

period 1979-2007 as calibration period, as both extreme years of sea ice extent, namely 1996 and 2007, were 

included and it provides a climate relevant period of nearly 30 years. The area where the correlation coefficient is 

stable and positive are represented as dark red (95%), red (90%), orange (85%) and yellow (80%), while the 

regions where correlation coefficient is stable and negative are represented as dark blue (95%), blue (90%), green 20 

(85%) and light green (80%). Such maps are referred in our study as stability maps and their spatial structures 

remain qualitatively the same if the significance levels that define the stability of the correlation vary within 

reasonable limits and if the length of the moving window varies between 15 to 25 years. The optimal predictors 

are defined as the average values over the stable regions for each gridded parameter. For the current analysis only 

regions where the correlation is above 90% significance level, are retained for further analysis (Figure 1). The 25 

raw stability maps between SSIE (pan-Arctic and regional) and the potential predictors are shown in Figures S3 – 

S15. Although the length of our time series is relatively short (40 years) the methodology proved to work also in 

cases of timer series <40 years (Ionita et al., 2018). Moreover, we use the same methodology, with the same 

number of years (40 years), for the prediction of September Arctic and Antarctic Sea Ice 

(https://www.arcus.org/sipn/sea-ice-outlook/2017/post-season).  30 

As a further main contributor to our forecast model, we use persistence, defined here as the sea ice extent from 

previous months (e.g., January, February up to August). Persistence of sea ice anomalies stands as the first source 

of predictability for sea ice (Guemas et al., 2016; Walsh et al., 1979; Blanchard-Wrigglesworth et al., 2011).  

 

2.3 Multiple Linear Regression 35 

For the forecast all datasets were separated into two parts: 1) the calibration period (1979–2007) and 2) the 

validation period (2008 – 2017). The optimal predictors are identified by employing stepwise multiple regression 

analysis (e.g., von Storch and Zwiers, 1999). Although the “stability maps” methodology (Figure 1) identifies 

multiple stable regions for each atmospheric/oceanic parameter (Figures S3 – S15), after applying the stepwise 

https://www.arcus.org/sipn/sea-ice-outlook/2017/post-season
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multiple regression, the optimal/final prediction model is based just on the regions shown in Figures 1 - 3 and 5 - 

7. To forecast the September Sea Ice Extent we have used a multiple linear regression model with the regression 

equation: 

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛 + 𝜀 

where Y represents the SSIE, βo, β1, β2,…βn are constants determined by the least squares procedure, x1, x2,…xn 5 

the predictors used (e.g., OHC, OT100, etc) and ε the error. 

In this study, we choose stepwise regression. Thus, each predictor was prioritized based on its correlation 

coefficient with the SSIE and was added to the model in that order. As we added more predictors to the model, 

the F statistic was used to determine whether the added predictors were significant in the regression equation. 

Entrance and exit criteria for the F statistic were set to 0.05 and 0.1, respectively. Stepwise regression was used 10 

because it prioritizes predictors based on the partial correlation and it is likely that high and significant 

correlations will reflect underlying physical processes. In order to estimate possible over fitting, we make use of 

the Akaike information criterion (AIC) (von Storch and Zwiers, 1999), the explained variance, R2 and the residual 

standard error. A workflow of the selection of the optimal model for the SSIE prediction is shown in the 

supplementary file and Figure S2. 15 

3 Results 

3.1 Pan-Arctic September sea ice prediction 

The skill of a long-range forecast for the Arctic SSIE is associated with the predictors that represent the slow 

varying components of the climate system that are able to integrate the climate information such as ocean heat 

content and SST (Guemas et al., 2016, Lindsay et al., 2008). These variables can be used as potential predictors 20 

for months and even seasons in advance due to their long-term memory. Thus, here we investigate the potential 

link between the Arctic SSIE (Fetterer et al., 2016) and OHC, OT100 (Levitus et al., 2012; Boyer et al., 2013) 

and SST (Huang et al., 2014) as long-term predictors (lags ~4 years (AMO index) up to 2 months in advance, see 

Table 2 for a detailed description of all the lags used in the study). On shorter time-scales (2 – 4 months) the 

atmospheric circulation, especially during the summer months, plays a major role in driving the Arctic sea ice 25 

variability (Guemas et al., 2016). The atmospheric circulation can substantially contribute to the skill of the sea 

ice predictions. As such, for the SSIE prediction we have also tested the skill of atmospheric variables (up to 4 

months in advance), e.g., SLP, TT, PWC, USURF and VSURF (Kalnay et al., 1996). Atmospheric moisture 

content (e.g., clouds, water vapor content) has an impact on the net surface radiation balance and hence also on 

the SSIE (Kapsch et al., 2013, 2014). As a measure for this impact, we use the precipitable water content (PWC) 30 

as an additional predictor. 

For the final forecast, based on data available at the end of May (4 months ahead forecast) we have retained all 

identified stable regions shown as black boxes in Figure 1. For the forecast based on June data, we have included 

also the stable regions based on all June stability maps (Figure 2). We have applied the same technique for the 

July data (Figure 3). For SSIE prediction based on the end of May data, the optimal model is based on a 35 

combination of: OHC SON, SST MAM, PWC Apr, VSURF MAM and SLP May (Table 3). Together with these 

identified stable regions, the optimal model includes also the persistence of sea ice extent (here the sea ice extent 

from previous March (SIE Mar), as well as the annual Atlantic Multidecadal Oscillation index, with a lag 4 of 



6 

 

years (AMO L4). The highest correlation between SSIE and the annual AMO index was found at a time lag of 4 

years (AMO leads SSIE). The time lag identified in our analysis is in line with previous studies (Day et al., 2012; 

Mahajan et al., 2011). The observed and forecasted values based on the May data are shown in Figure 4a. The 

explained variance of the model, over the calibration (validation) period, is 81% (71%) and the correlation 

coefficient between the observed and forecasted SSIE is r = 0.90 (r = 84) (99.9% significance level). To better 5 

assess the skill of the SSIE prediction, the root mean square error (RMSE), the Nush-Sutcliffe efficiency (NSE) 

and the index of agreement (d) are calculated, among other statistical tests (see Table S1 and supplementary file 

for a definition of all the metrics used to test the skill of the model). The forecasted model based on May data 

shows a very good skill (Table S1) NSE = 0.82 (0.68) (NSE = 1 means perfect model) and d = 0.95 (0.88) (d = 1 

indicates a perfect match between the observed and forecasted values, d = 0 indicates no agreement at all). 10 

Following the same steps as in the case of May data, for the model based on June data, the parameters 

contributing to the optimal forecast model are shown in Figure 2. As additional predictors, on top of those for 

May (Figure 1), we have: VSURF Jun, USURF Jun and TT Jun (Table 3). The observed and forecasted values of 

SSIE based on June data are shown in Figure 4b. The overall explained variance of the June-based model, over 

the calibration (validation) period, is 85% (79%) and the correlation coefficient between the observed and 15 

forecasted SSIE values is r = 0.92 (r = 0.89) (99.9% significance level). The June-based model exhibits also a 

very good skill and shows slight improvements compared to the May – based model (NSE = 0.85 (0.78) and d = 

0.96 (0.93). For the model based on July data, the parameters contributing to the optimal forecast model, on top 

of those based on May (Figure 1) and June (Figure 2), are shown in Figure 3 and Table 3. The observed and 

predicted values of SSIE based on July data are shown in Figure 4c. The overall explained variance of the June-20 

based model, over the calibration (validation) period, is 86% (81%) and the correlation coefficient between the 

observed and forecasted SSIE values is r = 0.93 (r = 0.90) (99.9% significance level). The July-based model 

exhibits also a very good skill and shows also slight improvements compared to the May and June – based 

models (NSE = 0.86 (0.80) and d = 0.96 (0.94)). 

3.2 Application of the methodology for regional SSIE prediction 25 

To test the robustness of our statistical model and to move towards stakeholder-relevant regions, in this study we 

are investigating also the skill of our model at regional scale. Thus, we have repeated the same analysis as in the 

previous section but for the sea ice extent averaged over the East Siberian Sea (ESS) (Figure S1). In this study, 

we focus on the ESS because in September 2007 and 2012, negative ice concentration anomalies were 

particularly pronounced over this region of the Arctic Ocean (Figure S1a and S1b, respectively) and the highest 30 

variability of the SSIE is recorded here (Figure S1c).In addition, since 2011 the eastern ESS has been nearly ice-

free (<10% SSIE) at the end of summer (Polyakov et al., 2017). Moreover, when looking at the correlation 

coefficients between the pan-Arctic SSIE and regional September SIE, the highest correlation, at lag 0, is found 

with the ESS-SIE (r = 0.72, Table 4).  

The stability maps between the detrended ESS SSIE and the large scale oceanic and atmospheric fields are shown 35 

in Figure 5 (stability maps based on May and previous months data), Figure 6 (stability maps based on June and 

previous months data) and Figure 7 (stability maps based on July and previous months data), respectively. For 

ESS SSIE prediction based on the end of May data, the optimal model is based on a combination of: annual 
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OT100, SST MAM, SLP Jan, VSURF MAM, PWC May, TT May and DW MAM (Table 5). The observed and 

forecasted values based on the May data are shown in Figure 8a. The explained variance of the model, over the 

calibration (validation) period, is 88% (58%) and the correlation coefficient between the observed and forecasted 

ESS SSIE is r = 0.94 (r = 0.77) (99.9% significance level). The forecasted model based on the May shows a very 

good skill (Table S2) NSE = 0.88 (0.57) (NSE = 1 means perfect model) and d = 0.97 (0.86) (d = 1 indicates a 5 

perfect match between the observed and forecasted values, d = 0 indicates no agreement at all). 

For the model based on June data, the parameters contributing to the optimal forecast model in addition to the 

May variables are shown in Figure 6 and Table 5. As additional predictors, on top of May data (Figure 5), we 

have: SIE Jun, and TT Jun (Table 5). The observed and forecasted values of ESS-SSIE based on June data are 

shown in Figure 8b. The overall explained variance of the June-based model, over the calibration (validation) 10 

period, is 91% (71%) and the correlation coefficient between the observed and forecasted SSIE values is r = 0.95 

(r = 0.84) (99.9% significance level). The June-based model exhibits also a very good skill and shows slight 

improvements compared to the May – based model (NSE = 0.91 (0.69) and d = 0.98 (0.91). For the model based 

on July data, the parameters contributing to the optimal forecast model, on top of May data (Figure 5) and June 

data (Figure 6), are shown in Figure 7 and Table 5. The observed and predicted values of SSIE based on July data 15 

are shown in Figure 8c. The overall explained variance of the July-based model, over the calibration (validation) 

period, is 94% (81%) and the correlation coefficient between the observed and forecasted SSIE values is r = 0.97 

(r = 0.90) (99.9% significance level). The July-based model exhibits also a very good skill and shows slight 

improvements compared to the May and June – based models (NSE = 0.94 (0.78) and d = 0.98 (0.93)). 

4 Discussion  20 

The results of this study demonstrate that statistically based models are able to predict SSIE with high skill, if the 

accurate drivers and their regional localizations (herein stable regions) are identified via various statistical 

techniques. In this paper, our analysis was focused on a single month - September, but the same methodology has 

been be successfully applied also for other months/seasons and also for the Antarctic region (Ionita et al., 2018).  

Our results highlight the potential for skillful prediction of SSIE, both at pan-Arctic level as well as for ESS, 25 

based on large-scale drivers from stable regions. The ocean drivers (OHC, TT100 and SST) from the identified 

stable regions are strongly related with the Atlantic inflow or with the SST variability over regions strongly 

influenced by decadal modes of variability (e.g., Pacific Decadal Oscillation (PDO) in the central and north 

Pacific) to multidecadal modes of variability (e.g., Atlantic Multidecadal Oscillation (AMO) in the Atlantic 

Ocean region). The Atlantic inflow, AMO and PDO play a significant role in driving the Arctic sea ice variability 30 

(Polyakov et al., 2017; Miles et al., 2014; Ionita et al., 2016; Screen et al., 2016). For example, the North Atlantic 

might act as a source for the OHC anomaly identified over the Kara Sea, Laptev Sea and ESS (Figure 1 and 

Figure 5), thus contributing to the skill of our forecast. The OHC anomalies form the North Atlantic flow into the 

Arctic basin, via advection, affect the sea ice distribution (Polyakov et al., 2017, Ono et al., 2018). In a recent 

study, Yu et al., (2017) have shown that the leading mode of variability of global sea-ice concentration is 35 

positively correlated with the AMO and negatively correlated with the PDO. Furthermore, two thirds of the total 

global sea ice trend can be explained by a combination of these two modes of variability. Over-imposed on the 

interannual variability, the temperature and salinity of the Atlantic inflows to the Arctic Ocean shows also 
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pronounced decadal to multidecadal variability (Zhang, 2015). This aligns with the concept of different previous 

studies, which suggest that the decreasing trend in the Artic sea ice is partially driven by AMO (Park and Latif, 

2008; Lindsay et al., 2005; Ding et al., 2014; Yu et al., 2017). Moreover, starting at the beginning of 1990’s the 

AMO has switched to a positive phase, at the same time when the Arctic sea ice extent started its abrupt decline. 

Thus, in this study we have tested previous years AMO index as a potential driver of the Arctic sea ice extent. 5 

The stability maps based on the predictors related to the atmospheric variables (Figures 1-3) show significant and 

stable correlations with regions restricted to the Artic basin, indicating a much regional connection between the 

September sea ice variability and large-scale atmospheric circulation. The state of the Arctic SSIE depends both 

on the state of the ice in spring as well as on the atmospheric condition during summer (Ding et al., 2017). In this 

respect, the precipitable water content and air temperature in spring and early summer were found to show 10 

significant predictive skill for the SSIE both at pan-Arctic as well as regional level. This is also in agreement with 

previous studies (Kapsch et al., 2013; 2014) which have shown a significantly increased cloudiness and humidity 

over the Arctic region in spring, thus accelerating the sea ice retreat in the upcoming summer.  

Overall, such a methodology can be valuable also for the modelling community. If the coupled models, used for 

forecasting purposes, face problems to simulate the ocean and/or the climate background over the areas that play 15 

a significant role in driving the SSIE variability (stable regions), one expects a relatively small forecast skill. The 

opposite case is also valid: a good representation of the key regions that drive SSIE could imply a good forecast 

skill. For example, Parkinson et al. (2006) determined that many climate models tend to simulate more winter sea 

ice in the Barents Sea compared to observations. One hypothesis for this overestimation is that the models 

underestimate the heat content in the Atlantic Basin (which has proved to be one of the main contributors for a 20 

skillful prediction for SSIE in our model). By using a simple and computationally inexpensive statistical 

approach, one can anticipate more than 80% of SSIE up to four months in advance, based on the antecedent 

atmospheric and oceanic conditions over stable regions. Moreover, our statistical model is able to properly 

reproduce the years with extreme low / high sea ice extent, both at pan-Arctic level as well as at regional scale 

(e.g., 2007 and 2012 – low SSIE and 1996 – high SSIE; see Figure 4 and Figure 8). The predictability of these 25 

extreme years poses big challenges for the sea ice prediction community (Hamilton and Stroeve, 2016).  

For example, one of the most unpredictable years was 2012. Most of the models (statistical and dynamical) were 

unable to properly forecast the extremely low value of the sea ice extent in September 2012 (Stroeve et al., 2014). 

Overall, the statistical predictions came closer to the unexpected low sea ice extent in September 2012 than the 

dynamical-based predictions. In this respect, our statistical model was able to capture the overall decline in the 30 

SSIE and we forecasted the lowest sea ice extent since the observational period (Figure 4). Nevertheless, in terms 

of amplitude, our forecast has underestimated the observed values (Figure 4). One of the reasons for this 

underestimation could come from the fact that in August 2012 a strong storm prevailed over the Arctic basin, 

which triggered extreme sea ice melt by bringing heat and moisture from the south towards the central Arctic 

(Parkinson and Comiso, 2013). Because the atmosphere is mostly unpredictable beyond 1 or 2 weeks, we were 35 

not able to accurately predict, in terms of amplitude, the sea ice conditions that developed because of the Arctic 

storm in August 2012.  

Another challenge for the sea ice community was the predictability of SSIE in 2013. Sea ice extent in September 

2013 was characterized by a revival compared to the low values recorded in September 2012 (SSIE in 2013 was 
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1.69 million square kilometers above the record minimum extent in September 2012). Most of the models, 

involved in the SIPN, have underestimated the September 2013 sea ice extent, despite the fact that this was not an 

extreme low sea ice year like 2012. The observed September 2013 sea ice extent lied outside the intervals given 

with 13 out of 16 predictions, but the modelling methods performed better than the statistical ones (Stroeve et al., 

2014). For September 2013, our statistical model performed almost perfectly, giving one of the best predictions 5 

(in terms of amplitude) over the validation period. The revival of the sea ice extent in 2013 was mostly due to a 

colder summer over the Arctic basin, compared to 2012 and no storms prevailing throughout the summer months. 

Summer 2013 was characterized by an unusual low pressure system over much of the Arctic Ocean, which acted 

as a limiting factor for the heat transport from the south. Both the SLP and air temperature over the Arctic basin 

were part of our final predictors for the sea ice extent in 2013 (Figure 2 and Figure 3). As such, the accurate 10 

predictions based on our statistical model for 2013 may arise from the fact that no extreme weather events were 

occurring throughout the summer months over the Arctic region. In addition, we had persistent negative 

temperature anomalies and a long lasting low pressure system prevailing in June and July over the Arctic basin, 

variables which were used in our forecast model. A high/low skill in the predictability of extreme September sea 

ice can be the results of extreme spring preconditioning (e.g., very low ice thickness) and/or the results of 15 

extremely anomalous summer weather systems, independent of the spring preconditioning. In observation not all 

extremes are the results of the same forcing, thus implying that different extremes events will have a different 

level of predictability. 

 

5 Conclusions 20 

In this study we have developed a statistical method based on different oceanic and atmospheric variables to 

estimate the monthly signal and variability of the Arctic sea ice extent. Based on stepwise multi-regression 

analysis optimal predictors are identified in terms of stability maps to forecast SSIE on pan-Arctic or regional 

scale. We have demonstrated that our well-established statistical approach can be used as a promising tool to 

improve the skill of sea ice extent prediction. In the future, the same methodology will be applied to test the 25 

potential predictability, up to two  years ahead, by taking into account variables with long-term memory (e.g., 

heat content and water temperature integrated over different depths) for the whole Arctic.  For other regions 

prone to extreme decrease in the sea ice extent (e.g., Chukchi Sea, Beaufort Sea, Barents Sea) as well as for 

Antarctica the method will also be adopted. Finally, since the concept can be used as an early warning system for 

September sea ice extent, both at pan-Arctic level as well as regionally, the potential environmental and 30 

economic benefits can be very high. 
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Figure 1. Stability map of the correlation between September Sea Ice Extent and a) OHC SON, b) SST MAM, c) SLP May, 

d) PWC Apr, and e) VSURF MAM. Regions where the correlation is stable, positive and significant for at least 80% of the 

21-year windows are shaded with dark red (95%), red (90%), orange (85%) and yellow (80%). The corresponding regions 

where the correlation is stable, but negative, are shaded with dark blue (95%), blue (90%), green (85%) and light green 

(80%). The black boxes indicate the regions used for the September sea ice extent at the end of May. 
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Figure 2. Stability map of the correlation between September Sea Ice Extent and a) TT Jun, b) USURF Jun and c) VSURF 

Jun. Regions where the correlation is stable, positive and significant for at least 80% of the 21-year windows are shaded with 

dark red (95%), red (90%), orange (85%) and yellow (80%). The corresponding regions where the correlation is stable, but 

negative, are shaded with dark blue (95%), blue (90%), green (85%) and light green (80%). The black boxes indicate the 

regions used for the September sea ice extent at the end of June in addition to the variables of May. 
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a) 
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Figure 3. Stability map of the correlation between September Sea Ice Extent and a) SLP Jul, b) PWC Jul, c) TT Jul and d) 

USURF Jul. Regions where the correlation is stable, positive and significant for at least 80% of the 21-year windows are 

shaded with dark red (95%), red (90%), orange (85%) and yellow (80%). The corresponding regions where the correlation is 

stable, but negative, are shaded with dark blue (95%), blue (90%), green (85%) and light green (80%). The black boxes 

indicate the regions used for the September sea ice extent at the end of July in addition to the variables of May and June. 
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Figure 4. Observed (black) and predicted (red) September Sea Ice Extent detrended anomalies over the period 1979-2017 

based on a) May, b) June and c) July predictors from the stable regions. The shaded area represents the 95% uncertainty 

bounds. 
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Figure 5. Stability map of the correlation between East Siberian September Sea Ice Extent and a) OT100 Annual (L4), b) 

OT100 Annual (L1), c) SST MAM, d) TT May, e) DW MAM, f) PWC May, g) SLP Jan and h) VSURF MAM. Regions where 

the correlation is stable, positive and significant for at least 80% of the 21-year windows are shaded with dark red (95%), red 

(90%), orange (85%) and yellow (80%). The corresponding regions where the correlation is stable, but negative, are shaded 

with dark blue (95%), blue (90%), green (85%) and light green (80%). The black boxes indicate the regions used for the 

September sea ice extent at the end of May. 
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Figure 6. Stability map of the correlation between East Siberian September Sea Ice Extent and TT Jun. Regions where the 

correlation is stable, positive and significant for at least 80% of the 21-year windows are shaded with dark red (95%), red 

(90%), orange (85%) and yellow (80%). The corresponding regions where the correlation is stable, but negative, are shaded 

with dark blue (95%), blue (90%), green (85%) and light green (80%). The black boxes indicate the regions used for the 

September sea ice extent at the end of June in addition to the variables of May. 
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Figure 7. Stability map of the correlation between East Siberian September Sea Ice Extent and a) SST Jul, b) TT Jul, c) PWC 

Jul and d) VSURF Jul. Regions where the correlation is stable, positive and significant for at least 80% of the 21-year 

windows are shaded with dark red (95%), red (90%), orange (85%) and yellow (80%). The corresponding regions where the 

correlation is stable, but negative, are shaded with dark blue (95%), blue (90%), green (85%) and light green (80%). The 

black boxes indicate the regions used for the September sea ice extent at the end of July in addition to the variables of May 

and June. 
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a) 

 

b) 

 

c) 

 

Figure 8. Observed (black) and predicted (red) East Siberian Sea Ice Extent detrended anomalies over the period 1979-2017 

based on a) May, b) June and c) July predictors from the stable regions. The shaded area represents the 95% uncertainty 

bounds. 
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Table 1. Name, acronym, source, spatial and temporal resolution of the data sets used in this study 

Name Source Temporal resolution Spatial resolution Reference 

Arctic sea ice extent ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/monthly/ 1979 - 2017  Fetterer et al., 2016 

AMO index https://climexp.knmi.nl/data/iamo_ersst.dat 1979 - 2017  Huang et al., 2014 

Mean air temperature at 

2m (TT) 

ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface_gauss/ 

 
1979 -2017 2.5° X 2.5° Kalnay et al., 1996 

Downward longwave 

radiation (DLR) 

ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface_gauss/ 

 
1979 - 2017 2.5° X 2.5° Kalnay et al., 1996 

Zonal surface wind 

(USURF) 

ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface/ 1979 - 2017 2.5° X 2.5° Kalnay et al., 1996 

Meridional surface wind 

(VSURF) 

ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface/ 1979 - 2017 2.5° X 2.5° Kalnay et al., 1996 

Precipitable water 

content (PWC) 

ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface/ 1979 - 2017 2.5° X 2.5° Kalnay et al., 1996 

Sea level pressure (SLP) ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface/ 1979 - 2017 2.5° X 2.5° Kalnay et al., 1996 

Sea surface temperature 

(ERSSTv5) 

ftp://ftp.ncdc.noaa.gov/pub/data/cmb/ersst/v5/netcdf/ 1979 - 2017 2.0° X 2.0° Huang et al., 2014 

Ocean heat content in 

the first 700m (OHC) 

https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/ 1979 - 2017 2.5° X 2.5° Levitus et al., 2012 

Boyer et al., 2013 

Ocean temperature in the 

first 100m (OT100) 

https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/ 1979 - 2017 2.5° X 2.5° Levitus et al., 2012 

Boyer et al., 2013 
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Table 2. Time lags used for the forecast of SSIE. Seasonal averages are indicated as winter (December/January/February – 

DJF), spring (March/April/May – MAM), summer (JJA – June/July/August) and autumn (September/October/December – 

SON). 

 

Variable 

Time lag Month Season 

TT, DLR, USURF, VSURF,  PWC, SLP  1 – 7 months, 1 – 2 seasons January - July DJF, MAM 

ERSSTv5 1 – 7 months, 1 – 2 seasons January - July DJF, MAM 

OHC, OT100 1 – 4 seasons, 1- 4 years  Annual, DJF, MAM, JJA, 

SON 

AMO index 1- 4 years  Annual mean 
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Table 3. Variables retained for the September pan-Arctic sea ice extent forecast (black boxes in Figure 1, 2 and 3). Single 

months are abbreviated with the first three letters of the month. 

 

 May Data June Data July Data 

Persistence SIE Mar SIE Mar  SIE Mar  

 

Ocean variables 

OHC SON OHC SON OHC SON 

SST MAM SST MAM SST MAM 

AMO – L4 AMO – L4 AMO – L4 

 

Atmospheric variables 

SLP May SLP May SLP May 

  SLP  Jul 

VSURF MAM VSURF MAM VSURF MAM 

 VSURF Jun VSURF Jun 

  USURF Jun USURF Jun 

  USURF Jul 

PWC Apr PWC Apr PWC April 

  PWC Jul 

 TT Jun TT Jun 

  TT Jul 

 

 5 

 

 

 

 

 10 

 

 

 

 

 15 

 

 

 

 



26 

 

Table 4. The correlation coefficients between the detrended pan-Arctic September sea ice extent and the regional September 

sea ice extent. A detailed description about the definition of each region is given here: 

ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/seaice_analysis/ 

 

 
Lag 4 Lag 3 Lag 2 Lag 1 Lag 0 

Baffin 0.07 0.09 0.34 0.40 0.39 

Barents 0.20 0.16 0.27 0.13 0.14 

Beaufort 0.15 0.24 0.37 0.51 0.60 

Bering -0.30 -0.02 0.14 0.00 -0.04 

Canadian 0.07 -0.16 0.01 0.52 0.49 

Chukchi -0.26 0.03 0.09 0.53 0.60 

East Siberian 0.19 0.24 0.39 0.61 0.72 

Greenland 0.04 0.06 0.22 0.16 -0.07 

Hudson 0.44 0.51 0.46 0.38 0.47 

Kara 0.09 -0.03 0.05 -0.08 -0.07 

Laptev 0.34 0.32 0.40 0.37 0.53 
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Table 5. Variables retained for the September East Siberian sea (ESS) ice extent forecast (black boxes in Figure 5, 6 and 7). 

Seasonal averages are indicated as spring MAM (March, April, May); single months are abbreviated with the first three 

letters of the month. 

 

 May Data June Data July Data 

Persistence  SIE Jun SIE Jun 

  SIE Jul 

 

Ocean variables 

OT100 – L4, L1 OT100 – L4, L1 OT100 – L4, L1 

SST MAM SST MAM SST MAM 

 

Atmospheric variables 

SLP Jan SLP Jan SLP Jan 

VSURF MAM VSURF MAM VSURF MAM 

  VSURF Jul 

PWC May PWC May PWC May 

  PWC Jul 

TT May TT May TT May 

 TT Jun TT Jun 

  TT Jul 

DW MAM DW MAM DW MAM 
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