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Abstract. The latest version of RegCM4 with CLM4.5 as land surface scheme was used to 15 

assess the performance and the sensitivity of the simulated West African climate system to 16 

different convection schemes. The sensitivity studies were performed over the West Africa 17 

domain from November 2002 to December 2004, at spatial resolution of 50km x 50km and 18 

involved five (5) convective schemes:  (i) Emanuel; (ii) Grell; (iii) Emanuel over land and Grell 19 

over ocean (Mix1); (iv) Grell over land and Emanuel over ocean (Mix2); and (v) Tiedtke. All 20 

simulations were forced with ERA-Interim data. Validation of surface temperature at 2m and 21 

precipitation were conducted using respectively data from the Climate Research Unit (CRU), 22 

Global Precipitation Climatology Project (GPCP) and Tropical Rainfall Measurement Mission 23 

(TRMM) during June to September (rainy season), while the simulated atmospheric dynamic 24 

was compared to ERA-Interim data. It is worth noting that the few previous similar sensitivity 25 

studies conducted in the region was performed using BATS as land surface scheme and 26 

involved less convective schemes. Compared with the previous version of RegCM, RegCM4-27 

CLM also shows a general cold bias over West Africa whatever the convective scheme used. 28 

This cold bias is more reduced when using Emanuel convective scheme. In term of 29 

precipitation, the dominant feature in model simulations is a dry bias, better reduced when using 30 

Emanuel convective scheme. Considering the good performance with respect to a quantitative 31 

evaluation of the temperature and precipitation simulations over the entire West Africa domain 32 

and its sub-regions, Emanuel convective scheme is recommended for the study of the West 33 

African climate system. 34 

 35 
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 36 

1 Introduction 37 

Agriculture over West Africa relies mainly on rainfall and is strongly dependent on the West 38 

African monsoon. Therefore, the onset, cessation and the amount of expected precipitation 39 

associated with the West African Monsoon are of great importance for farmers and accurate 40 

simulation and prediction of rainfall and temperature are crucial for various sectors, such as 41 

agriculture, energy and health, and for decision-makers. Rainfall over West Africa is strongly 42 

related to the meridional migration of the Inter-Tropical zone of convergence (ITCZ) and is 43 

modulated by successive active and inactive phases of the monsoon system (Sultan et al., 2003a; 44 

Janicot et al., 2011). After a quasi-stationary position around 5° N between mid-April and end 45 

of June, the rainfall maxima present an abrupt shift toward the north to hold another quasi-46 

stationary position around 11°N in July-August, bringing precipitation over Central Sahel 47 

region (Sultan and Janicot, 2000). This abrupt northward shift is the monsoon ‘‘onset’’ over the 48 

Sahel and contrasts with the smooth southward retreat of the ITCZ, followed by the second 49 

rainy season over the Guinean Coast in October–November (Sultan et al., 2003b; Janicot et al., 50 

2011). In addition, atmospheric circulations through African Easterly Jet (AEJ), Tropical 51 

Easterly Jet (TEJ) and their interaction with convection play an important role in the West 52 

African Monsoon (WAM) system (Nicholson 2013) and modulate the summer rainfall (Sylla 53 

et al., 2013a). Various climate modeling tools have been applied over West Africa for studying 54 

and better understanding of the WAM.  55 

General circulation models (GCMs) are unable to include the effects of regional features (Xue 56 

et al., 2010) due to their relatively coarse resolution. Regional Climate Models (RCMs) are 57 

relevant tools for this purpose since they allow land surface heterogeneity and fine-scale forcing 58 

such as complex topography and vegetation variations (Paeth and al., 2006).  Moreover, 59 

previous studies have shown that they are able to reasonably simulate the WAM climatology 60 

(Kamga and Buscarlet, 2006; Sylla et al., 2009) and its variability (Diallo et al., 2012). RCMs 61 

contributed to improve our knowledge of the interactions between atmospheric and surface 62 

factors affecting the precipitation (Sylla et al., 2011; Browne and Sylla, 2012), of the influence 63 

of external forcing such as Sea Surface Temperature (SST, Paeth and A. Hense, 2004), dust 64 

(Konare et al., 2008; N'Datchoh et al., 2017) and land-use changes on the dynamic of the 65 

monsoon system (Abiodun et al., 2012; Zaroug et al., 2012).  66 

RegCM versions (Giorgi et al., 2012; Pal et al., 2007) are the one of the most commonly used 67 

among the large range of RCMs to study the climate of West African and of many regions of 68 

the world.  Compared with the previous version (RegCM3; Pal et al., 2007), the latest release 69 
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(RegCM4) has been improved with substantial development of the software code and of the 70 

physical representations (Giorgi et al., 2012) and with the introduction of CLM (version 3.5 71 

and 4.5) as an option to describe land surface processes. Previously it was Biosphere-72 

Atmosphere Transfer Scheme (BATS; Dickinson et al., 1993) only which was used as land 73 

surface model. Many studies have shown that the model performs well when using BATS over 74 

the West Africa (Sylla et al., 2009; Diallo et al., 2013) but CLM offers improvements in the 75 

land-atmosphere exchanges of moisture and energy and in the associated surface climate 76 

feedbacks (Steiner et al., 2009). Nonetheless it was shown over India that CLM use may lead 77 

to a weaker performance of RegCM than BATS (Halder and al. (2015. Thus, the performance 78 

of RegCM4 when using CLM (RegCM4-CLM4.5) needs to be assessed and sensitivities tests 79 

have to be conducted on physical processes parameterization to find the optimal configuration 80 

of the RCM for a given region and to give the relevant information to RCM users.  81 

Among different physical processes in climate models, the convective parameterization is 82 

usually considered as the most important when simulating the monsoon rainfall (Im et al., 2008; 83 

Leung et al., 2004). Simulations of regional climate are very sensitive to physical 84 

parameterization schemes, particularly over the tropics where convection plays a major role in 85 

monsoon dynamics (Singh et al., 2011; Srinivas et al., 2013; Gao et al., 2016). One of the main 86 

sources of uncertainties in climate prediction is related to the representation of the clouds, which 87 

mainly influences the energy response of the models to a disturbance (Soden and Held, 2006; 88 

IPCC, 2007). Thus, implementing appropriate convective scheme in dynamic models is needed 89 

for realistic simulations.  90 

Several sensitivity studies using previous version of RegCM have been conducted over Africa. 91 

Meinke et al. (2007) and Djiotang and Kamga (2010) showed that in West Africa, the monsoon 92 

precipitations are sensitive to the choice of cumulus parameterization and closure schemes. 93 

Brown and Sylla (2012) performed a sensitivity study of RegCM3 to the domain size over West 94 

Africa and showed that a large domain is required to capture variability of summer monsoon 95 

rainfall and circulation features. Recent study by Adeniyi (2014) using version 4 of RegCM 96 

indicated that all convective schemes give good spatial representation of rainfall with biases 97 

over West Africa. Komkoua and al. (2016) found that the last release of RegCM implementing 98 

Grell as convective scheme with Arakawa-Schubert closure assumption is more suitable to 99 

downscale the diurnal cycle of rainfall over Central Africa. However, none of these studies 100 

have attempted to investigate a sensitivity study of the Regional Climate Model (RegCM4) to 101 

the convective scheme over West Africa with CLM4.5 as the land surface model.  102 
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This study investigates the performance of RegCM4-CLM4.5 over West Africa using different 103 

convection schemes in the aim to identify the “best” configuration option for the region. It is 104 

worth noting that the few previous similar sensitivity studies conducted in the region was 105 

performed using BATS as land surface scheme and involved less convective schemes. The 106 

paper is structured as follows: the description of the model, data and numerical experiments 107 

used to investigate the RegCM4 performance are described in Section 2; Section 3 analyzes and 108 

discusses the model’s performance under different convection processes; and the main 109 

conclusions are summarized in Section 4.  110 

 111 

2 Model description, observation datasets and numerical experiments 112 

2.1 Model description and datasets. 113 

The 4th generation of the ICTP RegCM (hereafter RegCM4) is used in this study. RegCM is a 114 

limited-area model using a terrain-following σ-pressure vertical coordinate system and an 115 

Arakawa B-grid finite differencing algorithm (Giorgi et al., 2012). The model’s dynamical 116 

component is derived from the hydrostatic version of the Pennsylvania State University 117 

Mesoscale Model version 5 (MM5; Grell et al., 1994) with improvements on the coupling with 118 

an advanced and complex land surface model (CLM3.5 and CLM4.5; Oleson et al., 2008 and 119 

2013). In the version used here, the radiation scheme is derived from the NCAR global model 120 

CCM3 (Kiehl et al., 1996) and includes representation of aerosols following Solmon et al. 121 

(2006) and Zakey et al. (2006). Turbulent transports of momentum, water vapor and sensible 122 

heat in the planetary boundary layer over land and ocean are computed as Holtslag et al. (1990), 123 

which allows nonlocal transport in the convective boundary layer. The large-scale precipitation 124 

scheme of Pal et al. (2000) referred as SUBgrid EXplicit moisture scheme (SUBEX) includes 125 

the subgrid variability in clouds (Sundqvist and al., 1989) and the evaporation and accretion 126 

processes for stable precipitation. Ocean surfaces fluxes of momentum, heat and moisture are 127 

represented using the scheme of Zeng and al. (1998) with a drag coefficient-based bulk 128 

aerodynamic procedure and considering the influence of  surface friction velocity on roughness 129 

length computed following Smith (1988) and Brutsaert (1982), respectively for momentum and 130 

heat (and also moisture).  131 

The soil-vegetation-atmosphere interaction processes are parameterized using Community 132 

Land Model (CLM version 4.5; Oleson et al., 2013). CLM4.5 presents in each grid cell the 133 

possibility to have fifteen soil layers, up to five snow layers, five different land unit types  and 134 

sixteen different plant functional types (Lawrence et al., 2011; Wang et al., 2016). RegCM4-135 

CLM4.5 proposes five different convective schemes (Im et al., 2008; Giorgi et al., 2012): the 136 
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modified-Kuo scheme (Anthes et al., 1987), the Tiedtke scheme (Tiedtke, 1989), the Emanuel 137 

scheme (Emanuel, 1991), the Grell scheme (Grell, 1993) and the Kain-Fritsch scheme (Kain-138 

Fritsch, 1990; Kain, 2004) with the possibility to combine different schemes over ocean and 139 

land (called as ‘mixed’ convection).  140 

 141 

2.2 Convective schemes 142 

The convective precipitation parameterizations used in this study are Tiedke (1989), Emanuel 143 

(1991) and Grell (1993) schemes. 144 

The Emanuel (1991) scheme assumes that the mixing in clouds is highly episodic and 145 

inhomogeneous (in contrary to a continuous entraining plume) and takes into account 146 

convective fluxes based on an idealized model of sub-cloud-scale updrafts and downdrafts. 147 

Convection is triggered when the level of neutral buoyancy is greater than the cloud base level. 148 

Between these two levels, air is lifted and a fraction of the condensed moisture forms 149 

precipitation while the remaining fraction forms the cloud. The cloud is supposed to mix with 150 

the air from the environment according to a uniform spectrum of mixtures that ascend or 151 

descend to their respective levels of neutral buoyancy. The mixing entrainment and detrainment 152 

rates depend on the vertical gradients of buoyancy in clouds. Emanuel scheme includes a 153 

formulation of the auto-conversion of cloud water into precipitation inside cumulus clouds.   154 

In the Grell (1993) scheme, deep convective clouds are represented by an updraft and a 155 

downdraft that are undiluted and mix with environmental air only in cloud base and top. Heating 156 

and moistening profiles are derived from latent heat released or absorbed, linked with the 157 

updraft-downdraft fluxes and compensating motion (Martinez-Castro et al., 2006). Two types 158 

of Grell scheme convective closure assumption can be found in RegCM4. In the Arakawa–159 

Schubert (1974) closure (AS), a quasi-equilibrium condition is assumed between the generation 160 

of instability by grid-scale processes and the dissipation of instability by sub-grid (convective) 161 

processes. In the Fritsch–Chappell (FC) closure (Fritsch and Chappell, 1980), the available 162 

buoyant energy is dissipated during a specified convective time period (between 30 min and 1 163 

hour).  164 

Similarly, the Tiedtke (1989) scheme is a mass flux convection scheme, albeit it considers a 165 

number of cloud types as well as cumulus downdrafts that can represent deep, mid-level and 166 

shallow convection (Singh et al., 2011; Bhatla et al., 2016). The closure assumptions for the 167 

deep and mid-level convection are maintained by large-scale moisture convergence, while the 168 

shallow convection is sustained by the supply of moisture derived from surface evaporation. 169 

 170 
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2.3 Numerical experiments and methodology 171 

Five experiments using the convection schemes of (1) Emanuel over land and Grell over ocean 172 

(mix1), (2) Emanuel, (3) Grell, (4) Tiedtke and (5) Grell over land and Emanuel over ocean 173 

(mix2) are conducted using RegCM4-CLM4.5 with 18 sigma levels at 50 Km horizontal 174 

resolution for the period from November 2002 to September 2004. The two first months (i.e. 175 

November and December 2002) was considered as spin-up time and not included in the 176 

analysis. The years 2003 and 2004 has been selected in this study because they corresponded 177 

respectively to dry and wet year in this region. The analyses will focus on the rainy season from 178 

June to September (JJAS). As quantitative measurements of model skills, we consider mean 179 

bias (MB) which is the difference between the area-averaged value of the simulation and the 180 

observation, the spatial root mean square difference (RMSD) and the spatial correlation called 181 

Pattern Correlation Coefficient (PCC) and the distribution of  Probability Density Function 182 

(PDF) of the temperature bias. The RMSD, PCC and the PDF provide information at the grid-183 

point level while the MB does so at the regional level. A Taylor diagram (Taylor, 2001) is used 184 

to summarize assessments above and to show the deviation of different model configurations 185 

results from observations.  186 

As assumed in Gao et al. (2016), the temperature bias in JJAS present a normal mode type of 187 

distribution. The PDF is expressed as: 188 

ଵ

ఙ√ଶగ
݁
ሺ௫ିఓሻమ

ሺଶఙሻమ
(1),  189 

where ߤ is the mean and ߪ the standard deviation of temperature bias. 190 

The PDF is characterized by its bell shaped curve, the temperature biases distribute 191 

symmetrically around the mean bias temperature value in decreasing numbers as one moves 192 

away from the mean. The empirical rule states that for a normal distribution, nearly all of the 193 

data will fall within three standard deviations of the mean. The empirical rule can be broken 194 

down into three parts: 195 

 68% of grid points fall within the first standard deviation from the mean.  196 

 95% of grid points fall within two standard deviations from the mean.  197 

 99.7% of grid points fall within three standard deviations from the mean.  198 

The rule is also called the 68-95-99.7 Rule or the Three Sigma Rule. Thus, they constitute 199 

measurements of model performance and systematic model errors. These metrics are computed 200 

for each of the sub-regions indicated in Figure 1. 201 

For this sensitivity study, the model was run at its standard configuration with 18 vertical sigma 202 

layers (model top at 50 hPa) and with initial and boundary conditions provided by the European 203 
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Centre for Medium Range Weather Forecasts reanalysis ERA-interim (Simmons et al., 2007; 204 

Uppala et al., 2008) at an horizontal resolution of 50 km and a temporal resolution of 6 hours 205 

(00:00, 06:00, 12:00 and 18:00 UTC). Sea-surface temperatures (SST) were from NOAA 206 

optimal interpolation weekly SST data (Reynolds et al., 2007). The terrain characteristics 207 

(topography and land use data) were derived from United States Geological Survey (USGS) 208 

and Global Land Cover Characterization (GLCC; Loveland et al., 2000) respectively at 10 min 209 

horizontal resolution.  210 

We focus our analysis on the precipitation and on the air temperature at 2m in the summer of 211 

June-July-August-September (JJAS) over mainland West Africa. To reduce uncertainty due to 212 

lack of surface climate observations over the region (Nikulin et al., 2012; Sylla et al., 2013a), 213 

the simulated precipitation is validated using two observational datasets : the GPCP product 214 

(1°×1° resolution) is a satellite-derived dataset developed under the Global Precipitation 215 

Climatology Project and made available from late 1996 to present and the 0.25° high resolution 216 

dataset of Tropical Rainfall Measuring Mission 3B43V7 (TRMM) available from 1998 to 2013 217 

(Huffman et al.2007). The simulated 2m temperature is validated using also two observational 218 

datasets including the Climate Research Unit (CRU) time series version 3.20 gridded at 0.5° 219 

horizontal resolution from the University of East Anglia and available respectively from 1901 220 

to 2011 (Harris et al., 2013), and the University of Delaware version 3.01 (UDEL) gridded 221 

dataset at 0.5° horizontal resolution available from 1900 to 2010 (Legates and Willmott, 1990). 222 

The simulated atmospheric fields are compared with ERA-Interim reanalysis available from 223 

1979 to present at 1.5° horizontal resolution (Dee et al., 2011). All products have been regridded 224 

to 0.44°×0.44° using a bilinear interpolation method to facilitate the comparison with RegCM4 225 

simulations (Nikulin et al., 2012). The model’s performance is further examined in four sub-226 

regions (Fig. 1), each with different characteristics of the annual cycle of rainfall: Central Sahel 227 

(10°W–10°E; 10°N–16°N), West Sahel  (18°W–10°W; 10°N–16°N), Guinea Coast (15°W–228 

10°E; 3°N–10°N) and West Africa (20°W–20°E; 5°S–21°N).  229 

 230 

3 Results and discussion 231 

3.1 Temperature 232 

The spatial distribution of averaged temperature during JJAS over 2003-2004 from CRU and 233 

UDEL observations (resp. Fig. 2a, b) is compared to the temperature simulated by RegCM4 234 

using the convection schemes: Mix1, Emanuel, Grell, Tiedtke and Mix2 (resp. Fig. 2c-g). 235 

Figure 3 shows the associated mean model biases with areas statically significant at 95% of 236 

confidence level (The dotted area denotes differences which are statistically significant at a 237 
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significance level of 0.05) relatively to CRU for observation (UDEL; Fig.3a) and the model 238 

simulations (Fig. 3b-f). Table 1 reports the PCC and the RMSD between the simulated and 239 

observed temperature calculated for Guinea Coast, Central Sahel, West Sahel and the entire 240 

West Africa domain.  241 

The CRU temperatures presents a zonal distribution in West Africa with maximum (>34°C) in 242 

the Sahara and lowest temperatures (< 22°C) over the Guinea Coast and over complex terrains 243 

such as the Jos plateau, Cameroon mountains and Guinean highlands. The Figure 3 show that 244 

the spatial distribution of the temperature biases is statically significance at 0.05 levels over 245 

most of the domain study. Except over the Guinea coast region and Cameron Mountains.  The 246 

UDEL observation (Fig. 2b) shows similarity with CRU in terms of spatial distribution with 247 

PCC larger than 0.98 over the entire West African domain (see Table 1). However, UDEL 248 

depicts a sparse distribution with a mixture of warm and cold bias over the Sahara and along of 249 

Nigeria/Cameroon border around ±2°C (see Fig. 3a). There is also a good agreement between 250 

model simulated temperatures and CRU observation with the PCCs more than 0.93 (Table 1) 251 

over West Africa. All model configurations well reproduce the general features of the observed 252 

pattern including the meridional surface temperature gradient zone between Guinea Coast and 253 

the Saharan desert. This temperature gradient is important for the evolution of the African 254 

Easterly Jet (AEJ) (Cook 1999; Thorncroft and Blackburn, 1999). All model configurations 255 

(Fig. 3b-d, f) exhibit a similar dominant cold biases except the Tiedtke configuration (Fig. 3e) 256 

in the Sahara desert at the central part of Mauritania and Niger, and along the Guinea Coast 257 

region. The greater cold bias with value up to -5°C occurs when using Grell configuration while, 258 

simulation using Tiedtke configuration depicts a dominant warm bias up to 4°C mainly located 259 

in Central Sahel around 12°N (Fig. 3e). One effect of the warm bias shown in Tiedtke 260 

simulation is to shift the zone of meridional temperature gradient southward relative to its 261 

observed position (Fig. 2f). However, it is difficult to determine the origin of RCM temperature 262 

biases as they involve changes in surface-atmosphere interactions and as they are function of 263 

many factors such as surface albedo, cloudiness, temperature advection and surface water and 264 

energy fluxes (Tadross et al., 2006; Sylla et al., 2012).    265 

For a quantitative evaluation of the performance of these sensitivity tests, the PDF statistical 266 

tool was used. The PDF distributions of the temperature bias in JJAS is shown in Figure 4 for 267 

Guinea Coast, Central Sahel, West Sahel and the entire West Africa domain. The PDF 268 

distribution shows a general dominant cold bias (see Fig. 4a-d) in model simulations over most 269 

of study domain, except with Tiedtke configuration in the Central Sahel region.  270 
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Over Guinea Coast region, Grell configuration presents a colder bias with the maximum of 271 

temperature bias distribution centered around -2°C (see Fig. 4a) compared to the other 272 

configurations. However, Emanuel simulation shows the lower RMSD about 1.29°C with a 273 

PCC larger than 0.77 (see Table 1). For Central Sahel region (Fig. 4b) a warmer bias is found 274 

in Tiedtke simulation, while a colder bias is found in Grell and Mix2 configurations (see Fig. 275 

4b). Emanuel configuration shows a lower value of RMSD about 0.67°C and a higher PCC 276 

larger than 0.95 compared to the other model simulated temperatures (see table 1). In West 277 

Sahel a colder bias is found with Grell scheme (see Fig. 4c) while Emanuel and Tiedtke 278 

simulations show a mixture of cold and warm bias. Configuration of RegCM with Emanuel 279 

presents a better performance with a lower RMSD and higher PCC values compared to the other 280 

simulations in West Sahel. Over the entire West Africa domain (see Fig.4d), Grell and Tiedtke 281 

present respectively a colder and warmer bias. Generally, with respect to temperature 282 

simulations, a better performance of RegCM4 is obtained when using Emanuel scheme. 283 

 284 

3.2 Precipitation 285 

The spatial distribution of mean JJAS precipitation (2003–2004) over West Africa is shown in 286 

Figure 5 for observations GPCP and TRMM (resp. Fig. 5 a-b) and  for RegCM4 simulations 287 

with the following convective schemes Mix1, Emanuel, Grell, Tiedtke and Mix2 (resp. Fig.5 288 

c-g). Sylla et al. (2013a) argued that over Africa, GPCP is more consistent with gauge based 289 

observations, whilst Nikulin et al. (2012) found a significant dry bias over tropical Africa in 290 

TRMM compared to GPCP. We therefore select, for precipitation, GPCP as our main 291 

observational reference in this paper. Figure 6 shows the corresponding precipitation mean 292 

biases with statically significant at 95% of confidence level (The dotted area denotes differences 293 

which are statistically significant at a significance level of 0.05) relatively to GPCP for TRMM 294 

(Fig 6a) and for the different simulations configurations (Mix1, Emanuel, Grell, Tiedtke and 295 

Mix2; Fig 6b-f respectively).  GPCP depicts a zonal band of rainfall decreasing from North to 296 

South (see Fig. 5a). Precipitation maxima are found in orographic regions of Guinea highlands, 297 

Jos Plateau, and Cameroon Mountains. The Figure 6 show that the spatial distribution of the 298 

precipitation biases is statically significance at 0.05 levels over almost the domain study. 299 

Differences between TRMM and GPCP observation products (Table 2) can reach up to -5.26% 300 

at sub-regional levels, while over the entire West Africa it does not exceed 0.82%. Although 301 

both observation products exhibit some differences (Fig.6a), their patterns show a good 302 

agreement, with PCCs more than 0.96 over the entire West Africa domain (Table 2). TRMM 303 

underestimates the rainfall intensity over Guinea Coast and Central Sahel regions (respectively 304 
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no more than -0.86% and -5.12%) and overestimates the rainfall intensity over West Sahel and 305 

the entire West Africa domain reaching respectively 3.48% and 0.83%. The spatial distribution 306 

of rainfall is well reproduced by all model configurations with PCCs values within the range 307 

0.61 and 0.89 over the entire West African domain. The dominant feature in these simulations 308 

is the dry bias over West Africa domain (Fig. 6b-f), which is more pronounced in the Tiedtke 309 

configuration (see Table 2). The warmer bias over Central Sahel in Tiedtke configuration 310 

(Fig.3e) is consistent with the drier bias found in the same region (see Table 2 and Fig.6e), as 311 

less rainfall would induce less evaporative cooling (decrease of latent heat flux) and therefore 312 

less favorable conditions for cloud cover (Feddema et al. 2005). The decrease of the cloud cover 313 

will lead to an increase of incident radiation inducing an increase of sensible heat flux and 314 

warmer surface temperatures. Moreover, a drier bias may be associated with a heating induced 315 

by the adiabatic subsidence to compensate effect of the increase of the surface albedo (Charney 316 

1975). However, the Table 2 reveals that Mix1 and Emanuel show a better performance with a 317 

lower mean biases and greater PCC compared to the other model simulations over the entire 318 

West African domain and its sub-regions. 319 

In order to understand the origins of the model rainfall biases, we analyzed the JJAS midlevel 320 

(850–300 hPa) vertically integrated water vapor mixing ratio and the 650 hPa low-level wind 321 

(African Easterly jet, AEJ) over West Africa averaged over the 2003–2004 period (Fig. 7). The 322 

AEJ is the most prominent feature affecting the West African Monsoon through its role in 323 

organizing convection and precipitation over the region (Cook, 1999; Diedhiou et al., 1999; 324 

Mohr and Thorncroft, 2006; Sylla et al., 2011). Areas with larger water vapor mixing ratio 325 

corresponds to the areas of maximum precipitation in observations (see Fig. 5a-b). Around 9°N 326 

the weaker easterly wind (AEJ) contributes to enhance the moisture convergence which results 327 

in an increase of water vapor and precipitation (see Fig. 5a-b). All model configurations show 328 

some quantitative differences compared to ERA-Interim in both the wind flux and the water 329 

vapor mixing ratio. 330 

The underestimation of vertically integrated water vapor mixing ratio is larger in Grell and 331 

Mix2 simulations (Fig. 7 c, e) over the Guinea Coast and Atlantic Ocean compared to those of 332 

Mix1, Emanuel and Tiedtke (Fig. 7 a, b, e). Mix1 and Emanuel configurations reproduce better 333 

the spatial extent of the moisture convergence than the other model configurations (Fig.7b, c). 334 

All model configurations simulate a stronger easterly wind flux (AEJ) than observed in 335 

particular over the Guinea Coast and Atlantic Ocean inducing a negative impact on simulated 336 

precipitations in the sub-regions (see Fig. 5c–g).   Another possible explanation of model 337 

rainfall biases is further discussed in Brown and Sylla (2011) whereby a sensitivity study on 338 
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the domain size with RegCM3 over West Africa showed that RegCM3 simulates drier 339 

conditions over a default domain (RegCM-D1) quite similar to our domain size used in this 340 

study.  341 

A Taylor diagram is used to give a combined synthetized view of the pattern correlation 342 

coefficient and the JJAS standard deviation of precipitation from the different sensitivity studies 343 

with respect to GPCP over Guinea Coast, Central Sahel, West Sahel and West Africa.  Model 344 

standard deviations are normalized by the observed value from GPCP (indicated by REF, see 345 

Fig.8). For the entire West Africa domain, the diagram shows Tiedtke and Emanuel outperform 346 

the other configurations with values of standard deviation normalized much closer to 1. 347 

However Emanuel configuration present a better spatial correlation reaching 0.8 as compared 348 

to Tiedke configuration. Over Guinea Coast sub-region Grell and Emanuel present better values 349 

of standard deviation normalized. However, in regarding the spatial correlation value about 0.7 350 

Emanuel configuration is the best. For West and Central Sahel, Mix1 and Emanuel are closer 351 

to observation. However, Emanuel outperforms Mix1 configuration with a good spatial 352 

correlations scores between 0.7 and 0.8 respectively over Central and West Sahel sub-regions. 353 

From the Taylor diagram, it can be inferred that Emanuel performs better regarding the standard 354 

deviation normalized and the pattern correlation over the entire West African domain and its 355 

sub-regions. 356 

Based on previous experience and studies, Gao and al. (2016) noted that use of the Emanuel 357 

convection scheme in RegCM3 and RegCM4 over China tends to simulate too much 358 

precipitation when using BATS as the land surface scheme. They explained that it is mainly 359 

due to the fact that the Emanuel scheme responds quite strongly to heating from the surface 360 

land as compared to Grell and Tiedtke convection schemes, once convection is triggered. BATS 361 

with only two soils levels depth maximizes this response; this is why Emanuel is too wet when 362 

using BATS as compared to Grell and Tiedtke. By contrast, CLM uses several soil layers down 363 

to a depth of several meters; therefore, the upper soil temperatures respond less strongly to the 364 

solar heating. Precipitation amount is much reduced when using CLM, which is good for 365 

Emanuel but not good for Grell and Tiedtke (Gao and al., 2016) while the combination of BATS 366 

with Grell and Tiedtke shows good performance (Gao et al., 2012; Ali et al., 2015).  367 

 In conclusion, although RegCM4-CLM4.5 shows some weaknesses, such as a dry bias over 368 

most of Central Sahel and Guinea Coast region, its performance in replicating the spatial 369 

distribution of rainfall appears in line with that documented in previous studies using the 370 

previous version RegCM3 (Sylla et al., 2009; Abiodun et al., 2012).  371 

 372 
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3.3 Mean annual cycle 373 

In this section, we examine the effect of the convection scheme in the characterization of the 374 

three distinct phases of the West African Monsoon: the onset, the high rain period and the 375 

southward retreat of the monsoon rain band (Sultan et al., 2003). Such behavior is best 376 

represented by a meridional cross-section (time-latitude Hovmoller diagram). This diagram 377 

provides a robust framework to assess RCM’s skills in simulating seasonal and intraseasonal 378 

variations of the WAM, and thus the mechanisms of the region’s rainfall (Hourdin et al., 2010). 379 

Figure 9 shows the time-latitude diagrams of rainfall averaged over the region between 10°E 380 

and 10°W for observations GPCP and TRMM (resp. Fig 9a-b) and for model simulations using 381 

Mix1, Emanuel, Grell, Tiedtke and Mix2 convection schemes (resp. Fig 9c-g). The averages 382 

are taken for the period 2003–2004 and displayed throughout the year. This figure shows that 383 

the cores of the different phases are well marked in TRMM than in GPCP (resp. Fig.9a, b). 384 

TRMM observation shows a first rainy season from mid-March up to mid-June over the Gulf 385 

of Guinea and Guinea Coast with a northward extension of the rain belt up to about 5°N 386 

(Fig.9b). The monsoon jump is characterized by a sudden cessation of precipitation intensities 387 

(Sultan and Janicot, 2000, 2003) and occurs from mid-June to early July, when the rain band 388 

core moves suddenly northward to about 10°N (Fig.9b). This indicates the beginning of the 389 

rainy season over the Sahel with a peak reached in August between 9° and 12°N over Central 390 

Sahel.  A gradual retreat of the monsoon starts in end of August and it is well shown by GPCP 391 

(Fig.9a), with a decrease in intensity and a southward migration of the rain band. There are both 392 

similarities and differences across the two observation datasets TRMM and GPCP. Both 393 

datasets agree in area of rainfall maximum intensity around 4°N despite a more intense peak of 394 

rainfall for TRMM compare to GPCP (resp. Fig.9a, b). The monsoon jump characterized by a 395 

discontinuity sharp is not well defined in GPCP compared to TRMM. In addition, GPCP shows 396 

wet conditions during the retreat phase in July to September compared to TRMM (Fig.9a, b).  397 

Mix1, Emanuel, and Grell model configurations (resp. Fig.9c-e) capture the three phases of the 398 

seasonal evolution of the WAM, while Tiedke and Mix2 simulations fail to reproduce them in 399 

particular the rainy season over Central Sahel. However Emanuel and Mix model 400 

configurations (resp. Fig. 6c, d) overestimate rainfall amounts during the two rainy seasons over 401 

Guinea Coast, mostly as a result of an overestimate of the precipitation over the orographic 402 

regions of Guinea highlands, Jos Plateau, and Cameroon Mountains. Mix1 and Mix2 403 

configurations are respectively wetter and drier compared to the other model configurations 404 

(resp. Fig. 9c, g). Generally, the three monsoon phases are well shown by Grell simulation, 405 

albeit it is drier compared to the other model simulations.  406 



13 
 

Another analysis of the annual cycle consists of considering the area-averaged (land-only grid 407 

points) value of monthly rainfall and temperature over the Gulf of Guinea, the Central Sahel 408 

and the entire West African domain (Figures 10 and 11). This allows better identification of 409 

rainfall and temperature minima and peaks. Figure 10a-d shows respectively the annual cycle 410 

of precipitation averaged over Guinea Coast, Central Sahel, West Sahel and the entire West 411 

African domain. Over the Guinea Coast (Fig 10a), both GPCP and TRMM observations show 412 

a primary maximum in June and a secondary one in September. The Mix1 and Tiedtke model 413 

configurations simulate an early first peak in May while Emanuel, Grell and Mix2 414 

configurations well capture the observed peak in June. We note that all model configurations 415 

well reproduce the timing of the mid-summer break and second rainfall peak in September but 416 

they underestimate its magnitude, although Mix1 simulation result is higher and much closer 417 

to observations compared to the other model simulations.  418 

In both Central Sahel and West Sahel, observations (GPCP and TRMM) display a dry spring 419 

(from January to March) and winter (from October to December) and a wet summer (from June 420 

to September) with a well-defined peak occurring in August. Model configurations reproduce 421 

both phase of the annual cycle and the observed rainfall peak in August except Emanuel 422 

configuration which shifts it in September over West Sahel region. Model simulations 423 

underestimate the peak intensity compare to observations. However Mix1 configuration rainfall 424 

peak is much closer to observation for both Central Sahel and West Sahel regions (resp. Fig 425 

10b, d) compared to the other model simulations. Over the entire West African domain, the 426 

annual cycle (Fig 10c) is smoother with a notable shift of the peak in September in the different 427 

model configurations. All the model configurations underestimate the rainfall peak and shift it 428 

in October. However, Mix1 and Emanuel model simulations are much closer to observed annual 429 

cycle of precipitation compared to the others. In resume Mix1 simulation compared to the others 430 

better reproduces the observed annual cycle of precipitation over the sub-regions and the entire 431 

West African domain.   432 

The annual cycles of temperature for Central Sahel, West Sahel and the entire West African 433 

domain of Mix1, Emanuel, Grell, Tiedtke and Mix2 convection schemes are shown in Figure 434 

11b-d. The observations (CRU and UDEL) indicate a cooler winter from December to February 435 

and warmer pre and post-monsoon periods with relative minima occurring during August. 436 

While over Guinea Coast, both winter and post monsoon are cooler and only the pre monsoon 437 

phase is warmer (Fig. 11a). Models configurations present similar seasonal variation of the 438 

mean monthly temperature at 2 m compared to observations, but do exhibit some differences.  439 
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Over Guinea Coast model simulations underestimate the magnitude of the temperature 440 

compared to observations. However, Tiedtke configuration is higher and much closer to 441 

observations compared to the other model simulations throughout the year (Fig.11a). Over 442 

Central Sahel region, Grell and Tiedtke capture well the seasonal variation from November to 443 

June in particular the first peak in August compared to the other models simulations. During 444 

the summer (JJAS) Emanuel and Mix1 quite well reproduce the observed precipitation annual 445 

cycle (Fig.11b). Therefore, model simulations underestimate the seasonal variation of 446 

temperature over the entire West African domain. Although Tiedtke simulation overestimates 447 

the mid-summer break period, it is much closer to observed annual cycle of temperature 448 

throughout the year compared to the other model simulations. Over the West Sahel, model 449 

simulations quite well reproduce the annual cycle of temperature except Grell and Mix2 450 

configurations in particular during the summer (JJAS). In summary Tiedtke simulation better 451 

reproduces the observed annual cycle of temperature throughout the year over the sub-regions 452 

and the entire West African domain compared to the other model configurations.  453 

The divergences in the RCMs annual cycles arise mostly from their different abilities to 454 

simulate the main features responsible of triggering and maintaining the WAM precipitation 455 

(Gbobaniyi E. et al., 2013). Among them, we have the monsoon flow, the African Easterly Jet 456 

(AEJ), the Tropical Easterly Jet (TEJ) and the Africa Easterly Waves (AEWs) (Diedhiou et al., 457 

1999; Sylla et al., 2013b). . 458 

 459 

3.4 Wind profile 460 

The atmospheric circulations and their interactions with ITCZ play an important role in the 461 

WAM system (Nicholson, 2013). Thus, this section aims to analyze the impact of the choice of 462 

convection scheme in the simulations of zonal winds features, including the near-surface 463 

westerly component (the West African Monsoon, WAM), the African Easterly Jet (AEJ) and 464 

the Tropical Easterly Jet (TEJ) in the mid and upper troposphere respectively. Figure 12 depicts 465 

the vertical cross section of the JJAS mean of the zonal wind averaged between 10°W and 10°E 466 

for ERA-Interim (Fig.12a) and model configurations in Mix1, Emanuel, Grell, Tiedtke and 467 

Mix2 convection schemes (resp. Fig.12 b-f). The reanalyse ERA-Interim (Fig. 12a) displays 468 

the monsoon flow winds below 800 hPa at 2-18°N with two cores merged over both Guinea 469 

Coast (centered at 6°N) and Central Sahel (centered at 15°N) sub-regions, the AEJ in the mid-470 

levels centered at 12°N and the TEJ in the upper tropospheric levels at 200 hPa centered at 5°N 471 

(Fig12 a). All model configurations well reproduce the zonal wind features despite some biases.  472 
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Model simulations Mix1, Emanuel, Grell and Tiedtke present a strong core of monsoon flow 473 

compared to Era-Interim (reaching 6m/s). The stronger and weaker monsoon flows are found 474 

with Mix1 and Mix2 configurations respectively compared to the other configurations. 475 

However, model simulations well reproduce the limit of the surface westerly flow compared to 476 

its position. Of particular interest is the core of the AEJ in the mid-tropospheric levels, which 477 

is greatly weakened with Mx1 and Emanuel. While AEJ magnitude core is well defined in Grell 478 

and Mix2 simulations at 12°N, but its spatial extent is somewhat reduced. This location of the 479 

AEJ in Grell and Mix2 simulation is consistent with the location of the region of zonal 480 

temperature gradient (see resp. Fig. 3e, g), as the AEJ is associated with the surface temperature 481 

gradient (Cook, 1999; Thorncroft and Blackburn, 1999). While Tiedtke simulation shifts the 482 

location of AEJ core at 8°N in agreement with the warm bias shown in Tiedtke configuration 483 

(see Fig.4e). The TEJ at 200 hPa and 5°N is very similar in model simulations compared to the 484 

ERA-Interim reanalysis. However, the core of the jet is weaker in Tiedtke configuration 485 

compared to the other model simulations. An overall, Grell configuration outperforms 486 

simulations of the main features of the zonal wind compared to the other model simulations.  487 

 488 

4 Summary and conclusion 489 

The latest released RegCM4 have been performed over West Africa for two years (2002-2003) 490 

to assess its performance using five convective parameterizations: (a) the Emanuel scheme, (b) 491 

Emanuel over land and Grell over Ocean (Mix1), (c) the Grell scheme, (d) the Tiedke scheme 492 

and (e) Grell over land and Emanuel over Ocean scheme (Mix2). The sensitivity of the model 493 

to different convection schemes were validated using observations. The main findings and 494 

conclusions can be summarized as follows: 495 

(1) Compared with the previous version of RegCM, RegCM4-CLM also shows a general 496 

cold bias over West Africa. However in Central Sahel region, Tiedtke simulation 497 

presents a warm bias. This warms bias tends to displace the meridional temperature 498 

gradient southward relative to its observed position. An overall, with respect to 499 

temperature, better performance are obtained when using Emanuel scheme. 500 

(2) With respect to the precipitation, the dominant feature in model simulations is a dry bias 501 

which is more pronounced when using Tiedtke convection scheme.  Considering the 502 

good performance over the entire West Africa domain and its sub-regions in the 503 

temperature and precipitation simulations, we suggest Emanuel convection scheme 504 

when using RegCM4-CLM4.5 over West Africa. 505 
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(3) Simulations when using Mix1 and Emanuel schemes well reproduce the spatial extent 506 

of moisture convergence of the ERA-Interim reanalyses compared to the other 507 

convection schemes. However, in the mid-levels of the atmosphere, model simulations 508 

show an easterly wind flux (AEJ) stronger than observed in particular over the Guinea 509 

Coast and Ocean Atlantic below the latitude 4°N, creating an increased subsidence and 510 

has a negative effect on simulated precipitations there. This is a possible explanation of 511 

a dry bias over West Africa domain. However, the vertical features of the zonal wind, 512 

including the near-surface westerly component, the AEJ and the TEJ in the mid and 513 

upper troposphere are better simulated when using Grell convection scheme compared 514 

to the other model simulations 515 

(4) The time evolution of simulation when using Grell convection scheme rainfall matches 516 

well with the observed evolution, including the timing of the discontinuous northward 517 

jump of the main rainfall band in late June, albeit it is drier compared to Mix1 and 518 

Emanuel convection scheme. 519 

(5) Over Central Sahel and West Sahel, the mean annual cycle of precipitation and 520 

temperature, with the single peaked rainy season is especially well captured in terms of 521 

timing despite the fact that all model simulations underestimated the magnitude. 522 

However, simulations using Mix1 reproduce better the annual cycle of precipitation 523 

compared to the other schemes. 524 

(6) Over Guinea Coast, Mix1 and Tiedtke model simulations failed to reproduce the double 525 

peaks rainy seasons, while Emanuel, Grell and Mix2 simulations well reproduce them 526 

but underestimate their amplitude. The bimodal nature of rainfall associated with the 527 

Guinea sub-region is not so well defined when averaging rainfall over the entire West 528 

African domain. This emphasizes the importance of separating regions into 529 

homogeneous precipitation sub-regions for evaluation analyses.  530 

(7) The mean annual cycle of temperature is well reproduce in simulation when using 531 

Tiedtke convection scheme throughout the year over the sub-regions and the entire West 532 

Africa domain compared to the other model simulations. 533 

 534 

As more advanced package compared to the previously version of RegCM with BATS, CLM4.5 535 

can be considered as the primary land surface processes option in RegCM4. Therein, the use of 536 

Emanuel scheme is recommended over the West African region. We plan to use this 537 

configuration in long-term multi-decadal simulations to further evaluate the model capability 538 

in reproducing the mean climatology. To bring up this study more complete, we will study the 539 
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sensitivity of temperature and precipitation extremes simulated by RegCM4-CLM4.5 to 540 

different convective schemes. 541 
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Table 1: Pattern correlation coefficient (PCC) and root mean square difference (RMSD) 883 

for JJAS 2m-temperature for model simulations and observation (UDEL) with respect to 884 

CRU over sub-regions Guinea Coast, Central Sahel, West Sahel and West Africa domain 885 

during the period 2002-2003. 886 

 887 

 888 

 889 

 890 

Table 2: Mean bias (MB) and the pattern correlation coefficient (PCC) for JJAS 891 

precipitation for model simulations and observation (TRMM) with respect to GPCP for sub-892 

regions Guinea Coast, Central Sahel, West Sahel and West Africa domain. The PCC is 893 

calculated only for the West African domain during the period 2002-2003. 894 
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Figure 1: Topography of the West African domain. The analysis of model result is 902 

emphasis over the whole West African domain and the three sub-regions Guinea Coast, 903 

Central Sahel and West Sahel which are marked with black boxes. 904 
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Figure 2: Averaged 2003–2004 JJAS 2m-temperature (in °C) over West Africa from: (a) 926 

CRU, (b) UDEL, (c) Mix1, (d) Emanuel, (e) Grell, (f) Tiedtke and (g) Mix2. 927 
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 942 

Figure 3: JJAS 2m-temperature bias (in °C), over West Africa, with respect to CRU from: 943 

(a) UDEL, (b) Mix1, (c) Emanuel, (d) Grell, (e) Tiedtke and (f) Mix2 during the period 944 

2002-2003. The dotted area denotes differences which are statistically significant at a 945 

significance level of 0.05. 946 
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  953 

Figure 4: PDF distributions (%) of temperature bias in JJAS over Guinea, Central Sahel, 954 

West Sahel and West Africa, derived from the model simulations using different convection 955 

schemes (land only; units: °C) during the period 2002-2003. 956 
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 973 

Figure 5: Averaged 2003–2004 JJAS precipitation (in mm/day) over West Africa from: (a) 974 

GPCP, (b) TRMM, (c) Mix1, (d) Emanuel, (e) Grell, (f) Tiedtke and (g) Mix2. 975 
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 996 

Figure 6: JJAS  precipitation bias (in %), over West Africa, with respect to GPCP  from : 997 

(a) TRMM, (b) Mix1, (c) Emanuel, (d) Grell, (e) Tiedtke  and (f) Mix2 during the period 998 

2002-2003. 999 
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 1019 

Figure 7: The (a) observed and (b–f) simulated vertically mean midlevel (850–300 hPa) 1020 

integrated specific humidity (shaded) superimposed at  zonal winds in JJAS at 650 hPa, 1021 

over West Africa, from: (a) ERA-Interim, (b) Mix1 (c) Emanuel, (d) Grell (e) Tiedtke and 1022 

(f) Mix2. Arrows are in m/s and specific humidity is expressed in 10−3 kg/kg during the 1023 

period 2002-2003. 1024 
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Figure 8: Taylor diagram showing the pattern correlation and the standard deviation 1039 

(Normalized)  for JJAS precipitation with respect to GPCP from:  Mix1, Emanuel, Grell, 1040 

Tiedtke and Mix2 over Guinea Coast, Central Sahel, West Sahel and West Africa during 1041 

the period 2002-2003. 1042 
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 1055 

Figure 9: Hovmoller diagram of monthly precipitation (mm/day) averaged between 10°W 1056 

and 10°E and for the period 2003-2004 for (a) GPCP, (b) TRMM, (c) Mix1, (d) Emanuel, 1057 

(e) Grell, (f) Tiedtke and (g) Mix2 under different convective schemes: Mix1, Emanuel, 1058 

Grell, Tiedke and Mix2.  1059 
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 1074 

Figure 10: Annual cycle of monthly precipitation (mm.day−1) averaged over, (a) the Guinea 1075 

Coast West and (b) Central Sahel, (c) West Africa and (d) West Sahel for the period 2003–1076 

2004 under different convective schemes: Mix1, Emanuel, Grell, Tiedke and Mix2. 1077 
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 1087 

Figure 11: Annual cycle of 2m-Temperature (°C) averaged over, (a) the Guinea Coast, (b) 1088 

Central Sahel, (c) West Africa and (d) West Sahel for the period 2003–2004 under different 1089 

convective schemes: Mix1, Emanuel, Grell, Tiedke and Mix2. 1090 
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Figure 12: Vertical cross section of the JJAS mean zonal wind (in m/s) averaged between 1109 

10°W–10°E, over West Africa, from: (a) ERA-Interim (b) Mix1, (c) Emanuel, (d) Grell, (e) 1110 

Tiedtke and (f) Mix2. The mean is calculated using the 2003–2004 period. 1111 
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