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Abstract. The climate regime shift during the 1980s had a substantial impact on the terrestrial ecosystems 

and vegetation at different scales. However, the mechanisms driving vegetation changes, before and after 

the shift, remain unclear. In this study, we used a biophysical-dynamic vegetation model to estimate large-

scale trends in terms of carbon fixation, vegetation growth and expansion during the period 1958-2007, 

and to attribute these changes to environmental drivers including elevated atmospheric CO2 concentration 5 

(hereafter eCO2), global warming, and climate variability (hereafter CV). Simulated Leaf Area Index 

(LAI) and Gross Primary Product (GPP) were evaluated against observation-based data. Significant 

spatial correlations are found (correlations>0.87), along with regionally varying temporal correlations of 

0.34-0.80 for LAI and 0.45-0.83 for GPP. More than 40% of the global land area shows significant 

positive (increase) or negative (decrease) trends in LAI and GPP during 1958-2007. Regions over globe 10 

show different characteristics in terms of ecosystem trends before and after the 1980s. While 11.7% and 

19.3% of land has consistently positive LAI and GPP trends respectively, since 1958; 17.1% and 20.1% 

of land, saw LAI and GPP trends, respectively, reverse during the 1980s. Vegetation fraction cover 

(FRAC) trends, representing vegetation expansion/shrinking, are found at the edges of semi-arid areas 

and polar areas. Environmental drivers affect the change in ecosystem trend over different regions. 15 

Overall, eCO2 consistently contributes to positive LAI and GPP trends in the tropics. Global warming 

mostly affects LAI, with positive effects in high latitudes and negative effects in subtropical semi-arid 

areas. CV is found to dominate the variability of FRAC, LAI, and GPP in the semi-humid and semi-arid 

areas. The eCO2 and global warming effects increased after the 1980s, while the CV effect reversed during 

the 1980s. In addition, plant competition is shown to have played an important role in determining which 20 

driver dominated the regional trends. This paper presents a new insight into ecosystem variability and 

changes in the varying climate since the 1950s. 

Keywords: Ecosystem variability, dynamic vegetation modelling, elevated CO2, global warming, climate 

change and variability, TRIFFID, SSiB 
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1 Introduction 

Climate variability and change, including global warming, and elevated atmospheric CO2 concentrations 

(referred to as eCO2 in this paper), have profound impacts on the terrestrial biosphere at global and 

regional scales (Garcia et al., 2014); while the terrestrial biosphere, in turn, affects the global climate by 

altering the exchanges of carbon, water and energy between the atmosphere and land surface (Cox et al., 5 

2000; Xue et al., 2004, 2010; Friedlingstein et al., 2006; Ma et al., 2013). Important trends in terrestrial 

ecosystem carbon fixation, growth, and expansion in the past 60 years have been detected (Myneni et al., 

1997; Piao et al., 2011, 2015; Ichii et al., 2013; Los 2013; Zhu et al., 2016). For instance, general earth 

greening has been discovered by analysing satellite-derived Normalized Difference Vegetation Index 

(NDVI) (Myneni et al., 1997; Piao et al., 2011; Ichii et al., 2013; Los 2013) and Leaf Area Index (LAI, 10 

defined as the one-side leaf area per ground area) products (Piao et al., 2011, 2015; Zhu et al., 2016). The 

Earth’s terrestrial vegetation has acted as an important carbon sink in the past 60 years (Ballantyne et al., 

2012; Le Quéré et al., 2013),  with a significantly strengthening carbon sink rate, about 0.06 PgC/yr-2, 

after the 1980s (Sitch et al., 2015), revealing growth in plant productivity (Nemani et al., 2003; Anav et 

al., 2015). In the meantime, vegetation fractional coverage (hereafter FRAC) has been changing, 15 

including some large-scale increases in total vegetation cover (Piao et al., 2005; Donohue et al., 2009; 

McDowell et al., 2015), and shifts in the spatial distributions of plants species, such as woody plants 

encroachment in the savanna area (Stevens et al., 2017) and shrubification in the tundra biome (Epstein 

et al., 2012; Mod and Luoto, 2016).  

Many studies have attributed these large-scale ecosystem trends to climatic drivers and eCO2 after 20 

applying statistical methods to satellite-based observations or the results from process-based land surface 

models (Myneni et al., 1997; Liu et al., 2006; Ichii et al., 2013; Mao et al., 2013; Piao et al., 2015; Schimel 

et al., 2015; Sitch et al., 2015; Devaraju et al., 2016; Zhu et al., 2016; Smith et al., 2016). Statistical 

regression and cross-correlation have been applied to attribute the recent biosphere changes to 

precipitation, temperature, and solar radiation variability (Zeng et al., 2013; Myers-Smith et al., 2015). 25 

Results from these studies indicated that northern mid- to high- latitude NDVI anomalies were positively 

correlated with temperature, and positively associated with precipitation in temperate to tropical semi-

arid and arid regions (Zeng et al., 2013). However, statistical methods rarely isolate the drivers’ 
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contribution to the inter-annual or decadal variability of the terrestrial ecosystem (Ahlbeck, 2002; Piao et 

al., 2015). Moreover, satellite products only cover the period after 1980 (Zhu et al., 2013).  

Process-based land surface models overcome these limitations and are also able to include 

atmospheric CO2 as an external driver. Dynamic Global Vegetation Models (DGVMs) simulated 

vegetation cover changes in response to changes in climate and atmospheric CO2, and update associated 5 

surface characteristics such as PFT distribution and LAI (Claussen and Gayler, 1997; Smith et al., 2001; 

Bonan et al., 2002; Sitch et al., 2003; Woodward and Lomas, 2004; Krinner et al., 2005; Zeng et al., 2005; 

Zaehle and Friend, 2010; Lawrence et al., 2011; Zhang et al., 2015). By applying DGVMs in a model 

intercomparison project (called TRENDY), a general consensus has been reached that eCO2 explains the 

greater part of the increasing trend of LAI and GPP towards the end of the 1980s (Schimel et al., 2015; 10 

Sitch et al., 2015; Zhu et al., 2016). Air temperature, precipitation, land use and land cover change, and 

nitrogen decomposition, also play roles in the changing terrestrial biosphere (Cramer et al., 2001; Schimel 

et al., 2015; Zhu et al., 2016). However, DGVMs should be applied with caution. The Coupled Model 

Intercomparison Project Phase 5 (CMIP5) reported that most DGVMs overestimated LAI in comparison 

to Global Inventory Monitoring and Modeling System (GIMMS) data (Murray-Tortarolo et al., 2013; Zhu 15 

et al., 2013). In addition, large discrepancies between models were found when predicting ecosystem 

variability and trends (Piao et al., 2013; Zhu et al., 2017). Unsurprisingly, the dominant factors obtained 

from different models are often significantly different (Beer et al., 2010; Huntzinger et al., 2017). 

Furthermore, DGVM simulations were sensitive to meteorological forcing data (Slevin et al., 2017; Wu 

et al., 2017). Therefore, a comprehensive evaluation of large-scale terrestrial ecosystem vegetation trends 20 

and potential drivers is crucial for improved DGVM application. 

Most ecosystem trend detection and attribution studies have focused on the period after the 1980s 

when satellite data has been available (Myneni et al, 1997; Schimel et al., 2015; Zhu et al., 2015). 

However, a climate regime shift, identified by abrupt shifts in temperature, precipitation, and other 

climate variables (e.g. wind speed and sea surface pressure), was observed during the 1980s (Gong and 25 

Ho, 2002; Lo and Hsu, 2010; Reid et al., 2016). The responses of vegetation to these climate shifts have 

not yet been comprehensively investigated, especially at the level of individual Plant Function Types 

(PFTs). 
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In this study, we investigate the effect of eCO2 and climate drivers including global warming and 

climate variability (i.e., meteorological forcing excluding global warming, referred to as “CV”) on the 

trends of FRAC, LAI, and GPP during the period 1958-2007 by using the SSiB4/TRIFFID (Simplified 

Simple Biosphere model version 4/Top-down Representation of Interactive Foliage and Flora Including 

Dynamics) DGVM (Xue et al., 1991; Cox, 2001; Zhan et al., 2003; Zhang et al., 2015; Harper et al., 5 

2016) at both grid and PFT levels, and using satellite products whenever they are available. Changes in 

the ecosystem trends are attributed to changes in eCO2 and climate effects, focusing particularly on the 

climate regime shift during the 1980s. The key focuses of this paper are on 1) how the vegetation trends 

change before and after the 1980s; and 2) What is the effect of climate regime shifts during the 1980s on 

the vegetation trend before/after the 1980s. 10 

2. Model description, experimental design and data 

2.1 Model description 

The Simplified Simple Biosphere model (SSiB) is a biophysically based model which simulates fluxes of 

radiation, momentum, sensible heat, and latent heat, as well as runoff, soil moisture, and surface 

temperature (Xue et al., 1991). A photosynthesis model (Collatz et al., 1991, 1992) has been implemented 15 

into SSiB to calculate carbon assimilation, forming SSiB2 (Zhan et al., 2003). The TRIFFID DGVM 

(Cox, 2001) was coupled to SSiB version 4 (Xue et al., 2006) to calculate vegetation dynamics, including 

relevant land-surface characteristics of vegetation cover and structure. Zhang et al. (2015) updated the 

competition dominance hierarchy from tree-shrub-grass (i.e., trees dominate shrubs and grasses, and 

shrubs dominate grasses) to tree-grass-shrub, but still allowed shrubs and grasses to compete for sunshine 20 

and space. SSiB4 estimates net plant photosynthesis assimilation rate, autotrophic respiration and other 

surface conditions such as canopy temperature and soil moisture for TRIFFID. TRIFFID updates the 

coverage of a PFT based on the net carbon available to it and the competition with other PFTs, which is 

controlled by the Lotka-Volterra equations. Vegetation is descripted by leaf, wood, and root with 

associating carbon pools. Leaf phenology is simulated as a function of canopy temperature and soil 25 

moisture. In addition, tundra was separated from the original single shrub category in order to better 
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reflect the arctic biomes.  Evergreen and deciduous broadleaf trees are also separated as different PFTs.  

To date, SSiB4/TRIFFID therefore includes 7 PFTs:  1) Evergreen broadleaf trees, 2) Deciduous 

broadleaf trees, 3) Needle leaf broadleaf trees, 4) C3 grasses, 5) C4 plants, 6) Shrubs, and 7) Tundra. 

2.2 Experimental design 

In this study, SSiB4/TRIFFID was used to simulate the global vegetation distribution and assess the 5 

sensitivity of ecosystem trends to climate and eCO2. Two sets of simulations were performed: 1) a 100-

year quasi-equilibrium simulation driven by climatological forcing, and 2) sensitivity simulations driven 

by real-forcing from 1948-2007 (Table 1). In the first set, SSiB4/TRIFFID was driven with the 

climatological forcing and 1948 CO2 concentration to reach a steady state, which was used as the initial 

condition in the second set of simulations. 10 

Using the quasi-equilibrium simulation results as the initial condition, the historical 

meteorological forcing and yearly updated atmospheric CO2 concentration were used to drive 

SSiB4/TRIFFID from 1948 through 2007. In this control simulation, we evaluated the model performance 

in reproducing the climatology and variability of vegetation coverage, LAI and GPP in comparison with 

multiple observation-based datasets. The long-term trends were diagnosed before and after the climate 15 

regime shift of the 1980s. Furthermore, three sets of experiments were conducted to quantify the effects 

of environmental drivers (climate and CO2) and vegetation competition on the ecosystem trends. These 

experiments were designed as following: 

1. Fixed-CO2: The model was driven by the same meteorological forcing as the control experiment, 

but CO2 concentration was fixed at the level of 1948 (310.33 ppm). The difference between control 20 

experiment and Fixed-CO2 indicates the eCO2 effect.  

2. Detrend-Temp: The mean warming trend over each 10 degrees of latitude, from 1948 to 2007, 

was subtracted in this experiment. Then the detrended temperature along with other 

meteorological forcing and annually varying CO2 concentration were used to drive the model. 

Subtraction of Detrend-Temp from the control experiment isolates the effect of global warming. 25 

3. Climate Variability: Subtraction of both Fixed-CO2 and Detrend-Temp from the control 

experiment was regarded as representing the effect of CV.   
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2.3 Data 

A SSiB vegetation and soil map is used as the preliminary initial condition for the quasi-equilibrium 

simulation.  A 3-hourly meteorological forcing data from 1948 through 2007 (Sheffield et al., 2006) is 

used for this study. The observation-based LAI and GPP products (Zhu et al., 2013; Xiao et al., 2014; 

Jung et al., 2009) are used to validate and calibrate the model to produce proper vegetation spatial 5 

distribution and temporal variability. 

2.3.1 Initial condition for equilibrium simulation 

There are different ways to initialize the surface condition for the quasi-equilibrium simulation. Based on 

our previous study (Zhang et al., 2015), we set up the initial condition using the SSiB vegetation map and 

SSiB vegetation table, which are based on ground survey and satellite-derived information (Dorman and 10 

Sellers, 1989; Xue et al., 2004b; Zhang et al., 2015) with 100% occupation at each grid point for the 

dominant PFT and zero for other PFTs. 

2.3.2 Meteorological forcing data 

The Princeton global meteorological dataset version 1 for land surface modelling (Sheffield et al., 2006) 

is used to drive SSiB4/TRIFFID for the period of 1948-2007. This dataset is constructed by combining a 15 

suite of global observation-based datasets with the National Centers for Environmental Prediction–

National Center for Atmospheric Research (NCEP–NCAR) reanalysis starting from 1948 

(http://hydrology.princeton.edu/data/pgf/). The spatial resolution is 1o x 1o and temporal interval is 3-

hourly. This dataset, including surface air temperature (K), pressure (Pa), specific humidity (g/kg), wind 

speed (m/s), downward short-wave radiation flux (W/m2), downward long-wave radiation flux (W/m2), 20 

and precipitation (mm/day).  Its 60-year mean climatology with three-hour interval from January 1 

through December 31 was generated to drive quasi-equilibrium simulation. 

2.3.3 Observation-based data 

Two satellite-derived global land cover maps are used to evaluate the vegetation distribution in both quasi-

equilibrium and real-forcing simulations. The Global Land Cover (GLC) database for the year 2000 25 

(Bartholome et al., 2002) is used that was derived from Satellite Poul l’Observation de la Terre at the 



8 
 

spatial resolution about 1 km. This dataset provides a global map with one consistent legend, as well as 

regional maps with separate legends containing more detail for certain regions. For instance, tundra is not 

included in the global legend but is included in the regional product for Northern Eurasia (Bartalev et al., 

2003). The regional land cover maps (download from 

http://forobs.jrc.ec.europa.eu/products/glc2000/glc2000.php) are used to calculate the land cover fraction 5 

by counting the percentage of each PFT in a 1-degree grid, then are merged to form a global land cover 

fraction map.  Other than GLC2000, the Land Cover Type Climate Modeling Grid (CMG) product 

(MCD12C1), which is derived using the same algorithm that produces the V051 Global 500 m Land 

Cover Type product (MCD12Q1) from the observation input of Terra and Aqua on board the Moderate 

Resolution Imaging Spectroradiometer (MODIS), is also used as a reference (Friedl et al., 2010). The 10 

MODIS-MCD12C1 product provides land cover fraction at the spatial resolution of 0.05o, which then 

converted to 1-degree resolution. The SSiB4/TRIFFID only includes primary land cover types, while both 

GLC2000 and MODIS IGBP have more sublevel classes. For easy comparison of the distribution of 

dominant vegetation types with different products, we hierarchically combine the GLC2000 and the 

MODIS IGBP classifications to the SSiB4/TRIFFID PFTs. 15 

To assess the climatology, variation, and trends of simulated LAI, two widely used LAI products 

were used as references in this study: the Global Inventory Modelling and Mapping Studies (GIMMS) 

LAI (refer to LAI3g, the third generation, Zhu et al., 2013) was downloaded from 

https://ecocast.arc.nasa.gov/data/pub/gimms. A neural network algorithm was trained to using the 

AVHRR GIMMS NDVI3g (covering the period July 1981 to December 2011) and best-quality Terra 20 

MOIDS LAI (covering the period 2000 to 2009) for the overlapping period 2000-2009. Then the trained 

neural network algorithm was used to generate corresponding LAI dataset at 15-day temporal resolution 

and 1/12-degree spatial resolution for the period from July 1981 to December 2011. The Global Land 

Surface Satellite (GLASS) LAI was downloaded from http://www.bnu-datacenter.com. The GLASS LAI 

was generated from AVHRR reflectance (1982-1999) and MODIS reflectance (2000-2012) (Xiao et al., 25 

2014). The GLASS LAI provides observations at 8-day temporal resolution and 1 km spatial resolution 

for the period from 1982 to 2012. Both datasets have general consistence in LAI spatial distribution, 

however, GIMMS shows 25% of the vegetated areas are greening during the 1982 to 2009, whereas 50% 
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in GLASS LAI (Zhu et al., 2016).  GIMMS and GLASS LAI, and the meteorological forcing data for 

overlap period 1982 to 2007, were resampled to 1-degree spatial resolution and a monthly temporal 

interval. 

SSiB4/TRIFFID GPP was evaluated using the FLUXNET-MTE GPP, which was downloaded 

from https://www.bgc-jena.mpg.de/geodb/projects/Data.php. The FLUXNET-MTE GPP was upscaled 5 

from FLUXNET observations of carbon dioxide flux to the global scale using the machine learning 

technique, model tree ensembles (MTE).  This method was trained to predict site-level GPP based on 

remote sensing indices, climate and meteorological data, and information on land use (Jung et al., 2009).  

This data set provides global monthly mean GPP at 0.5-degree spatial resolution for the period from 1982 

to 2011. The FLUXNET-MTE GPP was resampled to 1-degree spatial and monthly temporal resolution.  10 

3. Results 

3.1 Vegetation initial conditions 

The DGVM’s initial conditions for long-term simulations is obtained from a quasi-equilibrium solution 

in a long term simulation using the climatological forcing as presented in Section 2.3.2.  The effect of 

Large-scale disturbance (LSD) on regulating tree fraction over the savanna areas is also investigated. The 15 

parameter for LSD is tuned to generate a reasonable tree cover distribution there. 

3.1.1 Quasi-equilibrium simulation 

DGVMs requires initial conditions for a number of state variables.  DGVMs normally take 50-1000 years' 

simulation under specified meteorological forcing to reach this steady-state (Bonan and Levis, 2006; Zeng 

et al., 2008). Since our purpose was to generate initial condition for the decadal simulations, we applied 20 

a shortcut to reach the quasi-equilibrium coexistence of PFTs under the climatological forcing. We started 

the model from a SSiB 1-degree dominant vegetation map (Xue et al., 2004), with 100% occupation of 

the dominant PFT and zero for other PFTs at each grid point. The 1948-2007 averaged meteorological 

forcing along with 1948 CO2 concentration was used to drive the SSiB4/TRIFFID for 100 years. 

SSiB4/TRIFFID is a water, energy, and carbon balanced model. Plants expansion, and biotic properties 25 
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such as vegetation height and LAI are constrained by carbon allocation. FRAC links the carbon 

accumulation within plants and intra-species competition via a system of the Lotka-Volterra equations 

(Cox, 2001). In the early first ten years of the simulation, most PFTs' FRACs change rapidly, but then 

take decades to reach a steady state (Figure 1). To qualify the steady state, we define quasi-equilibrium 

status as occurring when the rate of change of vegetation fraction is less than 2% of the mean vegetation 5 

fraction, over the last ten years of simulation. The result shows 100-year spin-up time is sufficient for our 

model. Overall, in the tropical areas (23.5°S~23.5°N), C4 plants and evergreen broadleaf trees are of 

mixed dominance and coexistent with C3 grasses, shrubs, and deciduous broadleaf trees. The subtropical 

areas (23.5°~35° in both hemispheres) are dominated by C3 grasses, C4 plants, and shrubs with similar 

occupation for each (~18%), whereas 40% of the subtropical areas are occupied by bare land. Needle leaf 10 

trees, C3 grasses, shrubs, and deciduous broadleaf trees are mix dominant the temperate zones (35°~66.5°, 

particularly in North Hemispheres). Over the polar areas (66.5°~90° in both hemispheres), shrubs and 

tundra are of mixed dominance (Figure 1).  

3.1.2 Effect of large-scale disturbance 

large-scale disturbance such as fire, and insect outbreaks alter physical structure and/or arrangement of 15 

biotic elements with great effect.  TRIFFID introduce only a global uniform and PFT depended parameter 

to represent the rate of vegetation loss caused by LSD (units: yr-1). The preliminary quasi-equilibrium run 

shows that under this approach, trees extended into the South American and African savanna areas 

(Figure 2a), where the climate acting alone would seem to favour tree growth (Bond et al., 2005). 

However, major ecological disturbances vary spatially and temporally (Giglio et al., 2006).  We raised 20 

the LSD coefficient (largely representing fire at this scale) from 0.004 to 0.04 (yr-1) for tree PFTs that 

coexist with C3 grasses and C4 plants. With the updated setting, the SSiB4/TRIFFID produced reasonable 

dominant tree coverage over the tropical rainforest areas (Figure 2b) in comparison with the GLC2000 

dataset (Figure 2c). The global PFT distributions in the equilibrium run are close to the results using the 

real meteorological forcing. 25 
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3.2 Model evaluation of simulated vegetation distribution, LAI and GPP 

Using initial conditions derived from the equilibrium run for both biotic and abiotic variables such as 

FRAC, LAI, vegetation height, soil moisture, and temperature, the model is then driven with the historical 

meteorological forcing and yearly updating atmospheric CO2 concentration from 1948 to 2007. In this 

section, the global (hereafter referring to the regions of 180oW to 180oE, 60oS to 75oN) distributions of 5 

the simulated FRAC, LAI, and GPP are compared to the observation-based datasets to ensure 

SSiB4/TRIFFID generates reasonable spatial pattern and temporal variability of those variables, which 

provides a base for further assessment of the impact of external drivers on some surface variables. 

 

3.2.1 Vegetation spatial distribution 10 

 Satellite-derived products are used to assess the model-simulated mean FRAC averaged over last ten-

year (Figure 2). Overall, the model simulated vegetated land cover of 79.6% of the global land surface, 

less than GLC2000 estimation, 80.8%, and higher than the MODIS estimation, 79.3% (Figure S1). There 

is no human activity included in the model simulation, as such an agricultural category is not included. 

Therefore, in the following vegetation coverage comparison with the GLC products, Simulated PFT 15 

coverage in the grid boxes with agriculture is reduced based on the GLC agriculture fraction.  On this 

basis, the total simulated tree cover (the sum of evergreen broadleaf trees, deciduous broadleaf trees, and 

needle leaf trees) is 28.8%, close to 29.8% in GLC2000. The evergreen broadleaf trees in the Amazon, 

Central Africa, and Southeast Asia, deciduous broadleaf trees in southeast North America, and needle 

leaf trees in the high-mid latitudes of North America and Eurasia are reasonably predicted. The 20 

SSiB4/TRIFFID simulates 12.7% C3 grass occupation, which is slightly higher than 11.9% in the 

GLC2000, with reasonably simulation in the mid-latitudes in both hemispheres such as the central U.S., 

Eurasian Steppes, South America, South and East Africa, and East Australia. The model simulates 10.1% 

natural C4 plants, compared to 7.9% in the GLC2000. The discrepancy could be partially attributed to the 

absence of C4 plants in some GLC2000 regional maps (such as Southeast Asia). The global GLC2000 25 

map is assembled from these regional maps. In fact, a satellite-based physiological model simulation 

estimated 13.9% of C4 plants coverage with no agriculture category (Still et al., 2003). In the 



12 
 

SSiB4/TRIFFID prediction without excluding agricultural land, the C4 plants cover 13.5%, close to Still 

et al’s estimation. C4 plants are primarily located in South American and African savanna areas, the 

Indian Subcontinent, Southeast Asia, the southeast U.S., and northern Australia. The model simulates 

15.9% shrubs and tundra occupation, which is close to 16.7% in the GLC2000, with shrubs primarily 

located in the semi-arid areas in both hemispheres and the pan-arctic area, while tundra is located in the 5 

pan-arctic area and Tibetan Plateau (Figure 3 and also see vegetation fractional distribution in Figure 

S2). 

3.2.2 Leaf area index  

This section discusses the spatial and temporal correlations between the simulations and observations and 

compares with other model results. Since other published studies on this subject have not excluded 10 

agricultural areas when evaluating LAI and GPP simulation, to make our results comparable with others, 

the agricultural areas are not subtracted. In fact, the difference between the results with and without the 

exclusion of agriculture area for our results are less than 0.01. 

SSiB4/TRIFFID produces a similar global LAI pattern compared to both the GIMMS and GLASS 

products, confirmed by global spatial correlation coefficients of 0.86 (GIMMS, p<0.05) and 0.87 15 

(GLASS, p<0.05), and above 0.74 (P<0.05) against both observations over the Northern Hemisphere 

(Figure 4). Previous studies reported spatial correlation coefficients between models and GIMSS-LAI 

over the globe/Northern Hemisphere in the range of 0.44-0.77/0.21-0.61 (Murray-Tortarolo et al., 2013; 

Mahowald et al., 2015). The latter study reported that in general DGVMs tended to overestimate global 

average LAI by 0.69±0.44 units calculated based on the table in Mahowald et al. (2015). The 20 

SSiB4/TRIFFID produces ~0.95 units higher global averaged LAI than the satellite-derived data. The 

absence of nitrogen limitation in the model could contribute to the overestimation. 

3.2.3 Gross primary product 

The spatial correlation coefficient between model and FLUXNET-MTE GPP is 0.93 (P<0.05) 

(Figure 5). Anav et al. (2015) reported less than 0.8 correlation against FLUXNET-MTE GPP for multi-25 

model comparison. Over the globe, SSiB4/TRIFFID simulates 151 PgC/yr, greater than the FLUXNET-



13 
 

MTE average of 122 PgC/yr. However, our simulation was still within the range of 130-169 PgC/yr 

reported by Anav et al. (2015) and 111-151 PgC/yr reported by Piao et al. (2013). In addition to our 

model’s deficiencies (such as lack of N-limitation), the lack of CO2 fertilization during the MTE model 

training may have contributed to an underestimation in the FLUXNET-MTE GPP. 

3.3 Simulated vegetation temporal variability 5 

3.3.1 Vegetation temporal variability during 1982-2007 and its comparison to observation-based 

data 

Model performance in predicting temporal variability has been less evaluated in previous studies on 

ecosystem trend detection and attribution (Ichii et al., 2013; Piao et al., 2013; Zhang et al., 2015). 

However, performance in estimating LAI and GPP trends and variability has been found to vary among 10 

models (Murray-Tortarolo et al., 2013; Piao et al., 2013; Anav et al., 2015; Zhu et al., 2017). To better 

assess model performance in this regard, we select 13 sub-regions associated with different regional 

climate and land cover conditions (Table 2). Although the MTE excludes CO2 fertilization during its 

model training, FLUXNET-MTE GPP still incorporates variability at different scales associated with 

climate variability and is widely used by the community for model evaluation. Both annual LAI and GPP 15 

correlation coefficients are calculated over the period of 1982-2007. 

Globally, the correlations for annual mean LAI between the SSiB4/TRIFFID and the satellite-

based products are 0.58 (P<0.05) for GIMMS and 0.64 (P<0.05) for GLASS. The correlation for annual 

GPP is 0.59 (P<0.05) between the SSiB4/TRIFFID and FLUXNET-MTE GPP. Regionally, LAI 

correlations over West Africa are 0.79 (P<0.05) with GIMMS and 0.77 (P<0.05) with GLASS (Figure 20 

6), and GPP correlation is 0.80 (P<0.05) with FLUXNET-MTE GPP in that region. For other semi-arid 

areas in western North America, South American savanna areas, and East Africa, the simulated LAI 

significantly matches at least one of the two reference datasets with correlation in the range of 0.46-0.58 

(P<0.05). The simulated GPP correlations with FLUXNET-MTE GPP are in the range of 0.63-0.70 

(P<0.05). The LAI over the forested areas are better correlated to GLASS LAI, while GPP are only 25 

significantly corrected to FLUXNET-MTE GPP over the boreal forests. Over the cold regions (subarctic 
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and Tibetan Plateau), the SSiB4/TRIFFID matches the reference data in a varying range of 0.46-0.74 

(P<0.05) for LAI and 0.49-0.72 (P<0.05) for GPP. 

Distinct decadal variabilities are identified in most sub-regions. For instance, trends reversal sign 

in West Africa (from negative to positive) and western North America (from positive to negative) during 

the 1980s (Figure 6). Areas with enhancement in trends slopes, such as the subarctic after the climate 5 

regime shift in the 1980s, will be discussed in detail in the next section. 

Generally, SSiB4/TRIFFID simulates reasonable predictions of terrestrial ecosystem climatology 

and variability compared to the observation-based datasets (Table 2). Compared to other DGVMs, 

SSiB4/TRIFFID shows above average performance in reproducing the spatial distribution, but with 

certain bias in absolute numbers. In particular, SSiB4/TRIFFID captures the ecosystem temporal 10 

variabilities over different regions across the world, which provides a basis for pursuing the ecosystem 

trends detection and attribution study presented in the next section. 

3.3.2 Three major types of vegetation trend change since the 1950s 

The climate regime shifted abruptly during the 1980s, giving rise to changing in ecosystem trends in many 

parts of the world. Here we compare trends of FRAC, LAI, and GPP over two periods: 1958-1982 and 15 

1982-2007. The model performance for the second period, for which satellite observations are available, 

is evaluated in Section 3.3.1. Spatial patterns of the trends are shown in Figure 7.  

At the global scale, significant vegetation trends are only found in the simulations after the 1980s. 

During this period, FRAC increases at the rate of 0.032/yr. LAI has a positive trend of 0.0029/yr, which 

matches very well to GIMMS’ results (0.0029/yr). GPP has a positive trend of 2.22 gC/m2/yr2, within the 20 

range of 1.60-4.69 gC/m2/yr2 for GPP over similar periods (Anav et al., 2015; Yue et al., 2015).  In 

contrast to LAI and GPP, there are relatively few areas with a significant simulated FRAC trend (Figure 

7). 

For the global land surface, over 40.2% has a significant LAI trend since 1958 through 2007, and 

over 48.1% has a significant GPP trend. In response to the climate regime shift during the 1980s, the 25 

terrestrial ecosystem has three major trend changes in different parts of the world after the 1980s (Table 

4). 1) There is trend sign reversal from negative to positive in the East Asian monsoon area, West Africa, 
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Central Asia, and Eastern US, over 14.2% (LAI) and 11.4% (GPP) of the land surface. In particular, West 

Africa experiences the largest vegetation deterioration in the world before the 1980s, associated with LAI 

and GPP reductions of 0.0258/yr and 18.54 gC/m2/yr2, respectively - approximately 10 times the trends 

of the global average. After the 1980s, recovery is simulated at the rate of 0.0137/yr and 8.02 gC/m2/yr2 

for LAI and GPP, respectively. 2) Trend sign reversal from positive to negative is found in western North 5 

America, South America savanna and East Africa, which accounted for 2.9% (LAI) and 2.7% (GPP) of 

the land surface. 3) There are consistent positive trends but substantially enhanced by at least 50% of 

prior period trends after the 1980s, which are found in Equatorial rainforest areas, boreal forest areas, 

South Africa, North Australia, subarctic areas, and the Tibetan Plateau, representing over 11.7% (LAI) 

and 19.3% (GPP) of the land surface. There are also areas with consistent positive trends but no substantial 10 

change during the entire period or other types of trend change over much smaller areas. The first three 

major trend changes as described above will be discussed in the following sections.  

3.4 Attribution of three environmental drivers on ecosystem trends 

3.4.1 Global overview of three simulated environmental drivers’ effects on the ecosystem trends 

Sensitivity experiments were conducted to isolate the contributions of elevated atmospheric CO2 15 

concentration, global warming, and climate variability. The differences between the control experiment 

and Fixed-CO2 shows that eCO2 stimulated vegetation growth mainly in the Equatorial areas and eastern 

North America, Western Europe, and Eastern China in the mid-latitudes. Substantially enhanced positive 

trends are found after the 1980s for both LAI and GPP over those areas (Figure 8). eCO2 promoted 

rainforest LAI increase only after the 1980s; however, its effect on GPP appeared during the entire period. 20 

GPP is directly linked to CO2 through the photosynthesis process, while LAI, in addition to the 

photosynthesis process, is also affected by respiration and carbon allocation in plants, which are 

influenced by both climate and eCO2 (O'Sullivan O et al., 2017). 

The differences between the control experiment and Detrend-Temp shows that global warming 

has minor effects on the trends of LAI and GPP before the 1980s (Figure 9). After the 1980s, the rapidly 25 

enhanced warming contributes positive LAI trends at high latitudes, while the GPP change seems less 
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substantial. Meanwhile, there are negative trends due to heat stress in low latitudes, particularly in the 

semi-arid regions such as South American savanna, East Africa, and central Asia. 

The differences between the control experiment and Fixed-CO2 and Detrend-Temp show the CV 

effect, which has complex influences on the ecosystem. The CV in this study includes contribution of 

changes in surface pressure, precipitation, surface wind speed, downward longwave and shortwave 5 

radiations, surface humidity, along with temperature that excludes the global warming trend. Precipitation 

is however found to play a dominant role.  The correlation coefficients between the annual mean CV 

effect on LAI and GPP and annual mean precipitation at the grid points with significant CV effect are 

greater than 0.60 (P<0.05). Overall, the CV effect alone can explain the total FRAC trends in the control 

experiment (Figure 10). Before the 1980s, CV causes LAI decrease in East Asian monsoon areas, eastern 10 

North America, West Africa, Western Europe, Central Asia, Siberia, and eastern Australia. The GPP also 

decreases in these areas except for eastern North America, Western Europe, and Siberia. In contrast, the 

CV effect before the 1980s leads LAI and GPP increase in the Tibetan Plateau and South Asia, western 

North America, South American savanna areas, East and South Africa, and northern Australia. Due to the 

climate regime shift, CV has produced the opposite sign to the trends of LAI and GPP in East Asian 15 

monsoon areas, Central Asia, West Africa, North America, South American savanna areas, and East 

Africa. In some areas, such as South Africa and northern Australia, persistent precipitation 

increase/decrease leads to sustained positive/negative trends from the 1950s. 

Overall, after the 1980s, the effects of eCO2 and global warming have been generally enhanced; 

but the CV effect has exhibited distinctly different regional features before/after the 1980s over many 20 

regions in the world. The enhanced or opposite contribution of the primary driver and the changes in their 

relative importance on the ecosystem trends occur during the 1980s, result in different ecosystem 

responses in many regions across the world. 

3.4.2 Dominant factor in influencing trend reversal from negative to positive in West Africa and 
East Asia 25 

CV is found to be the dominant driver of the ecosystem trends in West Africa, explaining most of the LAI 

and GPP trends and trend changes (Figure 11a). Before the 1980s, CV causes C4 plants’ LAI, GPP, and 

FRAC over the region to decrease, followed by shrubs, whereas eCO2 caused C3 grasses’ LAI and GPP 
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to slightly increase. Global warming shows little effect during the entire period from 1958-2007. The 

ecosystem trends in West Africa reverses from decrease to increase when the precipitation trend changes 

to increase after the 1980s, with the major increase in C3 grasses and shrubs over the region. A previous 

study using satellite data also showed recent West Africa greening is highly correlated to the precipitation 

increase (Herrmann et al., 2005). eCO2 plays a role in increasing C3 grasses coverage since the 1950s. 5 

However, the PFT competition outcomes reduce the C4 plant coverage over the region, mainly after the 

1980s when eCO2 has a large impact. As such, the change in regional FRAC overall within West Africa 

is not significant and has been compromised by positive and negative contributions of the individual PFTs 

after the 1980s.  

Regional average trends reverse in the East Asian monsoon area because CV and eCO2 dominate 10 

LAI and GPP trends, before and after the 1980s, respectively. Their combined effects cause trend reversal 

in the East Asian monsoon areas. CV contributes decreasing trends of LAI and GPP before the 1980s, but 

with minor effects after the 1980s. While eCO2 dominates the PFT LAI and GPP trends since the 1950s, 

which caused significant increase in C3 grasses and trees but significant decrease in C4 plants (Figure 

11b). Meanwhile, enhanced global warming after the 1980s stimulates C4 plant growth, but this effect is 15 

compromised by its detrimental effect on C3 grasses after the 1980s.    Overall, CV and eCO2 relative 

contribution change during the 1980s dominate the negative to positive trends shift in this area. 

3.4.3 Dominant factor in influencing trend reversal from positive to negative in western North 
America  

The eCO2 effect persistently causes LAI, GPP, and FRAC increase since the 1950s, while global warming 20 

reduced both LAI and GPP only after the 1980s. However, CV dominated the LAI and GPP trends and 

trends reversal in western North America by causing the dominant PFTs (C3 grasses and shrubs) to 

increase/decrease before/after the 1980s (Figure 11c and Table 5). The CV effect on FRAC change is 

more complex due to its different effects on LAI and GPP and FRAC expansion in C3 and shrub PFTs 

after the 1980s: both C3 and shrubs expand with LAI and GPP decrease. This discrepancy suggests that 25 

expansion might be coupled with carbon fixation less than with growth in the model. We conjecture that 

CV may promote vegetation expansion into some areas that are largely un-vegetated, but this requires 

further investigation. 
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3.4.4 Dominant factor in influencing the enhanced positive trend in rainforest, boreal forest, 
subarctic, and Tibetan Plateau  

eCO2 and CV have persistent positive impacts on tropical rainforest growth in terms of LAI and GPP 

since the 1950s (Figure 11d). eCO2 dominates the LAI and GPP trends in both periods except for the 

LAI positive trend before the 1980s, which is dominated by CV. LAI trend enhancement after the 1980s 5 

is associated with increased CO2 fertilization, while GPP trend enhancement is attributed to increase in 

both eCO2 and CV effects. The importance of CO2 and CV impacts on the rainforests is confirmed by 

previous analyses on the trends of LAI and NDVI (Hilker et al., 2014; Zhu et al., 2016).  

eCO2 and global warming increase LAI and GPP in North American boreal forest areas since the 

1950s and cause significant positive trends over the Eurasian boreal forest area after the 1980s (Figure 10 

11e). However, due to CV-induced negative effects on tree LAI, no significant trend is found in regional 

average LAI in boreal areas before the 1980s. The LAI and GPP trend enhancement in the boreal forest 

areas can be attributed to the enhanced eCO2 and global warming effects, accompanied by reduced CV 

negative effects after the 1980s. 

North American subarctic areas have enhanced LAI and GPP positive trends after the 1980s, 15 

which were caused by the increase in eCO2 and CV positive effects, while all three environmental drivers 

have effects on LAI and GPP positive trends in the Eurasian subarctic (Figure 11f). Meanwhile, 

remarkable FRAC changes are found since the 1950s. Our simulation suggests that global warming 

continually favorited shrub invasion into tundra biomes, except in the Eurasian subarctic before the 1980s. 

After the 1980s, this shrubification is enhanced due to increase in the warming effect. In contrast, eCO2 20 

has promoted tundra expansion and shrub decline over subarctic areas since the 1950s, which mitigates 

the shrubification. Meanwhile, CV plays a role to help tree and C3 grass expansion into subarctic areas, 

and also alters the shrub and tundra competition.  

Over the Tibetan Plateau (Figure 11g), CV dominates the positive LAI and GPP trends since the 

1950s, excepted in the case of the GPP increase before the 1980s which is dominated by eCO2. The 25 

positive trend enhancements for LAI and GPP after the 1980s are caused by the impact of both eCO2 and 

CV. Furthermore, our simulation also suggests that CV favours C3 grasses but harms tundra biome 

expansion. However, eCO2 has the opposite effects on those PFTs, in contrast to the CV’s. 
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4. Discussion 

The spatial distribution of the dominant PFT is closely related to large-scale climate (MacDonald, 

2002) and DGVMs are designed to reproduce the observed ecosystem/climate relationship. There are 

diverse performances in reproducing the spatial distribution and temporal variability of the ecosystems 

(Murray-Tortarolo et al., 2013; Piao et al., 2013; Anav et al., 2015; Zhu et al., 2017), which resulted in 5 

large discrepancies between models in identifying attributed dominant drivers of changes (Beer et al., 

2010; Huntzinger et al., 2017).  It is therefore important to validate the model performance in reproducing 

the observed ecosystem variability and spatial distribution first before using DGVMs for attribution 

studies. As a matter of fact, it is challenge for DGVMs to reproduce PFT coexistence, particularly for the 

smaller PFTs in semi-humid and semi-arid areas as they are fragile and sensitive to climate and vulnerable 10 

to competition (Fu et al., 2006).  Because of that difficulty, Zeng et al. (2008) had to introduce a specific 

sub-model to grow temperate shrubs in the spaces unoccupied by trees and grasses. The SSiB4/TRIFFID 

allows smaller fractions of PFTs to co-exist with full competition with other PFTs (Cox, 2001). After 

modifying the competition coefficients in the Lotka-Volterra equation (Zhang et al., 2015) and updating 

large-scale disturbance parameters, it produces reasonable global distribution of temperate shrubs and 15 

high-latitudes tundra (Figure 3). During the validation process, some parameters in the SSiB4/TRIFFID 

have also been calibrated (Zhang et al., 2015). 

With all these efforts, the SSiB4/TRIFFID produced LAI and GPP show higher temporal 

correlation with observation compared to the start-of-art offline models in the TRENDY intercomparison 

project (Piao et al., 2013; Sitch et al., 2015; Zhu et al., 2016). The improvement may mainly be due to 20 

better capturing of the interannual variability by the SSiB4/TRIFFID in semi-arid areas, which has been 

considered as dominating global interannual variability (Poulter et al., 2014; Ahlstrom et al., 2015). 

Meanwhile, both simulated LAI and GPP are also well correlated with reference data over the Northern 

Hemisphere boreal forests.  Our evaluation is based on satellite-based products, which are the only sources 

providing global distribution at long term.  Although these products showed a general consistency among 25 

them, large relative uncertainties were identified over some regions (Jiang et al., 2017), which contribute 

to large discrepancy of interannual correlations when the simulated LAI compared to GIMMS and 

GLASS LAIs (Figure 6).  It should be pointed out that the GPP simulation over the rainforests exhibit 
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inconsistency with the FLUXNET-MTE GPP.  We consider that the missing CO2 fertilization in 

FLUXNET-MTE GPP could be a predominant limitation to its GPP there.  By and large, the 

SSiB4/TRIFID’s performance suggest this model is proper to be applied for the attribution study. 

The SSiB4/TRIFFID simulates increased LAI and GPP after the 1980s (Figure 8), which is 

confirmed by observation and the TRENDY models’ simulation (Anav et al., 2013 for GPP; Piao et al., 5 

2013 and Zhu et al., 2016 for LAI).  These increases are considered to responding to elevated atmospheric 

CO2 concentrations and warming surface temperature in high-latitudes (Zhu et al., 2016). Some areas 

with decrease LAI and GPP are due to decrease in precipitation and/or increase in stress due to warming 

temperature in low-latitudes (Anav et al., 2013; Zhu et al., 2016). Our study, however, further estimate 

large-scale trends in all three aspects, i.e.  carbon fixation (GPP), vegetation growth (LAI), as well as 10 

expansion, rather than focus only on one aspect, such as LAI trend in Zhu et al. (2016).   Our results also 

reveal different LAI and GPP response to the environmental changes (Figure 8-10), indicating LAI and 

GPP are involved in different process as discussed in O'Sullivan O et al. (2017).   The results suggest that 

GPP is more directly linked to atmospheric CO2 (Figure 8).   

In SSiB4/TRIFFID, net CO2 assimilation is proportional to the gradient of atmosphere and leaf 15 

CO2 concentration (Zhan et al., 2013, also see supplement). Hence the elevated atmospheric CO2 

concentration leads to increase in GPP. While LAI in TRIFFID is related to carbon allocation and 

competition between PFTs.  As such, LAI is not only affected by the atmospheric carbon concentration, 

but also other processes, such as phenological processes and the percentage collocated carbon for growth.  

Therefore, GPP is more sensitive to the change in atmospheric carbon concentration compared to LAI.   20 

Integrated analysis and observation with multiple variables, such as LAI and GPP, are required to improve 

the understanding of vegetation biochemical process and climate effect on ecosystem changes.   

The competition between PFTs within a grid box contributes to the ecosystem trend discussed 

above.  Our analysis with grid point has shown intensive interactions between PFTs. For instance, shrubs 

are found to expand into tundra ecosystems (Figure 11f), which is linked to climate change (Myers-Smith 25 

et al., 2015), particularly to global warming (Tape et al., 2006; Elmendorf et al., 2012) and precipitation 

(Martin et al., 2017). The response to eCO2 of a particular PFT not only depends on its own physiological 

and morphological characteristics, but is also determined by the interactions that arise with other PFTs, 
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competing for the same resources (Figure 11a). Field experiments reported that the differential growth 

and competitiveness responses of C3 and C4 plants to eCO2 is complex and under debate (Leakey et al., 

2009; Lee 2011; Miri et al., 2012).  In this paper, we have discussed the competition between C3 and C4, 

and its contribution to the trend change.  It seems under the elevated atmospheric CO2 concentration 

scenario C3 grasses show enhanced competitive ability over C4 plant at regional scale (Figure 11b). 5 

Different responses of the co-exist PFTs to the climate regime shift either enhance or mitigate the 

environmental drivers’ contribution at grid averaged scale. 

Furthermore, our results show that the boundary between Sahara and Sahel has experienced 

significant variation since the 1950s. Based on the observed precipitation data and the precipitation/NDVI 

correlation, Thomas and Nigam (2018) suggested a Sahara Desert expansion since the 1950s. Our results 10 

are in an agreement at large with the Thomas and Nigam’s study (2018) but also with substantial 

differences in the rate at two different climate regimes.  A comprehensive discussion on this issue is out 

of scope of this paper and will be addressed in a separate paper. 

5. Conclusion 

This work employs a biophysical-dynamic vegetation model (SSiB4/TRIFFID) to explore the responses 15 

of the terrestrial ecosystem to climate variability, global warming, and elevated atmospheric CO2 

concentration during 1948-2007. The SSiB4/TRIFFID is evaluated by available satellite data in 

simulating the land surface carbon fixation, and plant growth and competition. We have shown that the 

SSiB4/TRIFFID model can simulate the vegetation and temporal variability for the period of 1982-2007. 

A series of sensitivity experiments are then conducted to detect the ecosystem trends and attribute the 20 

trends to elevated atmospheric CO2 concentration (eCO2), global warming, and climate variability (CV). 

The effects of the external drivers on the ecosystem trends manifest distinct spatial and temporal 

characteristics. For the global land surface, over 40.2% has a significant LAI trend and over 48.1% had a 

significant GPP trend since the 1958 through 2007. In responding to the climate regime shift during the 

1980s, the terrestrial ecosystem has three major changes in different parts of the world after the 1980s. 25 

Over 14.2% (LAI) and 11.4% (GPP) of the land surface, primarily located in East Asian monsoon area, 

West Africa, Central Asia, and Eastern US, had trend sign reversal from negative to positive. In contrast, 
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trend reversal from positive to negative is found in western North America, South America savanna and 

East Africa, which accounted for 2.9% (LAI) and 2.7% (GPP) of the land surface. Meanwhile, there are 

consistent positive trends substantially enhanced in Equatorial rainforest areas, boreal forest areas, South 

Africa, North Australia, subarctic areas, and the Tibetan Plateau, representing over 11.7% (LAI) and 

19.3% (GPP) of the land surface, respectively.  5 

In general, the major types of trend change are attributed to the changes in relative contributions 

of environmental drivers, and, consequently, the changes in the dominate driver; or changes in the 

dominant driver’s “direction” in its effect (enhancing or suppression) on ecosystem. The eCO2 stimulates 

vegetation growth through fertilization effects mainly in the Equatorial areas, as well as eastern North 

America, Western Europe, and Eastern China in the mid-latitudes. The rapidly enhanced global warming 10 

after the 1980s contributes positive LAI trends at high latitude, while the GPP change seems less 

substantial.  Meanwhile, there are negative trends in LAI and GPP due to the heat stress in low latitudes.  

CV dominates the variability of FRAC, LAI and GPP in the semi-humid and semi-arid areas. The overall 

effects on the ecosystem are the integrated contribution of all environmental drivers.  

Data availability 15 

SSiB4/TRIFFID simulated vegetation fraction, LAI and GPP are available at 

https://ucla.box.com/v/ssib4-offline 
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Figure 1. Fractional coverage of each plant functional type in typical climate zones in the equilibrium experiment 
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Figure 2. Tree dominated areas of a) unchanged large-scale disturbance experiment, b) parameter updated experiment and c) 
GLC2000  
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Figure 3. Dominant vegetation type comparison between a) GLC2000 and b) SSiB4/TRIFFID, and c) Region definitions.  
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Figure 4. 1982-2007 average leaf area index comparison for a) GIMMS LAI, c) GLASS LAI, and difference between SSiB4/TRIFFID 
and b) GIMMS and d) GLASS.  SCC indicates the spatial correlation coefficient between model simulation and satellite-derived 
datasets. 5 
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Figure 5. 1982-2007 average gross primary product comparison for a) FLUXNET-MTE GPP, and b) different between 
SSiB4/TRIFFID and FLUXNET-MTE GPP. SCC indicates the spatial correlation coefficient. 
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Figure 6. Comparison of standardized LAI anomalies between simulation and observations for 9 sub-regions. Corr indicates the 
interannual correlation coefficient simulated (in black) LAI against the GIMMS (in blue) and the GLASS (in green). Only significant 
values (P<0.1) are shown, whereas non-significant values are masked by xxx  
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Figure 7. Trends (shaded) of a) and b) Fractional coverage (units: %/yr), c) and d) LAI (units: 10-3/yr), e) and f) GPP (units: 
gC/m2/yr2). The left three panels are for 1958-1982 and the right three panels are for 1982-2007. The dots indicate the areas with 
significance level at P< 0.05 (Mann-Kendall test).  
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Figure 8. CO2 effect on the trends (shaded) of a) and b) LAI (units: 10-3/yr), and c) and d) GPP (units: gC/m2/yr2). The left two panels 
are for 1958-1982 and the right two panels are for 1982-2007.   
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Figure 9. Same as Figure 8, but for warming effect. 
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Figure 10. Same as Figure 8, but for climate viability effect and also including the effects on fractional coverage (units: %/yr) 
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Figure 11. Contribution of each factor on FRAC (denoted as “F”), LAI (denoted as “L”), and GPP (denoted as “G”) trend over sub-
regions. The upper panel in each figure is for trends during 1951-1982 and the lower panel is for trends during 1982-2007. The 
effects of eCO2, global warming and CV are shown in green, red, and blue bars, separately. Each column shows the effects on all 
PFTs (All), trees, C3 grass (C3), C4 plant (C4), shrub, and tundra, separately. The numbers for FRAC, LAI, and GPP are normalized 5 
by dividing the standard deviation of global average in the control experiment. 
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Table 1. Experimental design 

Equilibrium 
simulation 

Description Real-forcing 
simulation 

Description 

Control experiment Fixed CO2 
concentration at 1948 
level and driven by 
climatological forcing 
for 100 years 

Control experiment Transient CO2 
concentration and 
meteorological forcing 
for the period of 1948-
2007 

Parameter updated 
experiment 

Adjusting large scale 
disturbance for trees 

Fixed-CO2 The same as Control 
experiment except for 
fixed CO2 
concentration at 1948 
level 

Detrend-Temp The same as Control 
experiment except for 
no global warming 
trend 
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Table 2. Location for study areas 

Regions Sub-regions Location 

Arid and Semi-Arid 

Areas 

West Africa 8°N~16°N, 18°W~22°E 

Western North America 25°N~50°N, 120°W~100°W 

South American savanna 12°S~5°S, 50°W~35°W 

East Africa 15°S~5°N, 32°E~42°E 

Monsoon Area East Asian monsoon area 20°N~40°N, 110°E~125°E 

Northern Hemisphere 

boreal areas 

North America boreal 50°N~60°N, 125°W~60°W 

Eurasian boreal 54°N~65°N, 10°E~120°E 

Equator areas Amazon basin 8°S~6°N, 73°W~52°W 

Southeast Asia 10°S~10°N, 95°E~150°E 

Equator Africa 3°S~5°N, 10°E~30°E 

Subarctic areas North American subarctic 60°N~75°N, 170°W~60°W 

Eurasian subarctic 65°N~75N, 60°E~180°E 

Tibetan Plateau Tibetan Plateau 28°N~38°N, 80°E~105°E 

  

  



44 
 

Table 3. Statistics for the comparison between SSiB4/TRIFFID simulated and observation-based LAI and GPP 

Regions Sub-regions 

LAI Mean 
(m2/m2) 

LAI TCC GPP Mean 
(gC/m2/yr) 

GPP 
TCC 

GIMM
S 

GLAS
S 

SSiB4/ 
TRIFFI
D 

GLAS
S 

GLAS
S 

MTE SSiB4/ 
TRIFFI
D 

MTE 

Arid and 
Semi-
Arid 
Areas 

West Africa 0.92 0.86 1.75 0.80** 0.79** 759.97 970.82 0.80** 
Western North 
America 

0.57 0.46 1.27 0.58**  404.65 520.91 0.70** 

South American 
savanna 

1.85 1.82 3.27 0.57** 0.54** 1615.2
8 

1823.22 0.65** 

East Africa 1.49 1.38 2.95 0.46**  1188.6
7 

1487.25 0.63** 

Monsoon 
Area 

East Asian 
monsoon area 

1.59 1.31 3.58 0.61** 0.48** 1402.4
4 

1503.18 0.51** 

Northern 
Hemisphe
re boreal 
areas 

North America 
boreal 

0.80 0.91 1.94  0.34* 544.45 867.94 0.83** 

Eurasian boreal 1.15 1.26 2.46 0.52**  857.16 1036.47 0.70** 

Equator 
areas 

Amazon basin 4.18 4.28 6.15 0.38* 0.50** 2992.2
9 

2820.73  

Southeast Asia 4.00 3.16 4.82  0.38* 2792.9
5 

2628.02  

Equator Africa 3.86 3.48 6.09 0.36* 0.70** 2535.6 2833.9  
Subarctic 
areas 

North American 
subarctic 

0.37 0.38 0.78 0.46** 0.35* 256.46 438.18 0.72** 

Eurasian 
subarctic 

0.35 0.44 0.92 0.71**  345.82 539.41 0.64** 

Tibetan 
Plateau 

Tibetan Plateau 0.52 0.43 1.29 0.58** 0.74** 323.12 546.2 0.49** 

Note: * indicates the p<0.1 and ** indicates the p<0.05 
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Table 4. Linear trend of vegetation FRAC, LAI and GPP changes during P1 (1958-1982) and P2 (1982-2007) in sub-regions (1) 

Regions Var. Total Trees C3 grass C4 plant Shrub Tundra 
P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 

West Africa FRAC -4.14       0.96 0.99 -4.33 -1.71 -0.96 1.1     
LAI -2.58 1.37   0.28 0.43 -1.9  -0.79 0.8   
GPP -18.54 8.02 -0.84 0.86 0.92 1.9 -14.09   -4.53 4.49     

East Asian 
Monsoon 
area 

FRAC     0.51 0.56 1.19 1.72 -2.49 -2.6 0.63       
LAI -0.34 0.43  0.44 0.34 0.76 -0.9 -0.83     
GPP -1.61 2.39 0.84 2.17 1.06 3.51 -4.35 -3.73 0.84 0.44     

Western 
North 
America 

FRAC 1.34 1.38     2.18 0.83 -0.48 -0.38   0.96     
LAI 0.96 -0.58   0.65 -0.23   0.34    
GPP 5.66 -2.73 1.02 -0.74 2.76 -1.12   -0.42 1.95       

Amazon 
basin 

FRAC       0.37                 
LAI 0.57 0.66 0.61 0.74         
GPP 3.49 8.7 4.08 8.93     -0.67 -0.39         

North 
American 
boreal 

FRAC   0.36     0.4           -0.34   
LAI  0.25           
GPP 1.77 2.2 1.17 1.41 0.64             0.33 

Eurasian 
boreal 

FRAC   0.29     0.37 0.37             
LAI  0.33  0.23         
GPP 1.58 2.17 1.42 1.61 0.35 0.58             

North 
American 
subarctic 

FRAC 0.35 0.69 0.16 0.18 0.51       0.46 0.88 -0.76 -0.29  
LAI  0.23           
GPP 1.33 1.47 0.43 0.35 0.34       0.32 0.59   0.5 

Eurasian 
subarctic 

FRAC   0.59 0.29 0.39 0.58 0.20      -1.02       
LAI  0.35           
GPP 1.42 2.97 0.52 0.85 0.36         0.56 0.69 1.31 

Tibetan 
Plateau 

FRAC 0.83 0.32     4.51       -0.44   -3.26   
LAI 0.2 0.39   0.48        
GPP 0.68 2.61   0.78 1.9 0.98         -1.14 0.93 

(1) Only significant values (P<0.1 in Mann-Kendall test) are shown, positive trends are in bold. Numbers 

are scaled by multiplying 10 for FRAC and 1000 for LAI. 
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Table 5. Climate drivers and eCO2 effect on the trends of FRAC, LAI and GPP during P1 (1958-1982) and P2 (1982-2007) in sub-
regions regarding to their regional average (1)(2) 

Regions Var. Total Elevated CO2 
concentration 

Global 
warming 

Climate 
variability 

P1 P2 P1 P2 P1 P2 P1 P2 
West Africa FRAC -0.51      -0.51 0.14 

LAI -1.47 0.78 0.10 0.12 -0.05 -0.13 -1.52 0.80 
GPP -1.91 0.83 0.07 0.12 -0.05 -0.13 -1.94 0.83 

East Asian 
Monsoon area 

FRAC                 
LAI -0.10 0.12 0.05 0.10   -0.16  
GPP -0.11 0.16 0.10 0.16   -0.06 -0.21 0.06 

Western 
North 
America 

FRAC 0.18 0.18 0.07 0.10     0.09 0.12 
LAI 0.75 -0.45 0.11 0.14  -0.14 0.64 -0.46 
GPP 1.09 -0.52 0.22 0.23   -0.19 0.88 -0.56 

Amazon basin FRAC                 
LAI 0.09 0.11 0.03 0.07   0.06 0.06 
GPP 0.12 0.31 0.13 0.19       0.14 

North 
American 
boreal 

FRAC   0.04             
LAI  0.13 0.05 0.10 0.06 0.10 -0.14 -0.07 
GPP 0.20 0.25 0.14 0.20 0.08 0.14   -0.08 

Eurasian 
boreal 

FRAC   0.03             
LAI  0.13  0.10  0.10 -0.11 -0.06 
GPP 0.15 0.21 0.13 0.18  0.11   -0.09 

North 
American 
subarctic 

FRAC 0.05 0.09       -0.06   0.13 
LAI  0.30 0.07 0.10   0.09 0.25 
GPP 0.30 0.34 0.17 0.24   -0.12 0.12 0.22 

Eurasian 
subarctic 

FRAC   0.06           0.05 
LAI  0.39 0.07 0.10  0.11  0.18 
GPP 0.26 0.55 0.17 0.25 0.06 0.13   0.18 

Tibetan 
Plateau 

FRAC 0.12 0.04          0.10   
LAI 0.16 0.31     0.17 0.28 
GPP 0.13 0.48 0.12 0.21       0.26 

(1)  percentage trend for FRAC: 𝑇𝑟𝑒𝑛𝑑'()*/(𝑔𝑟𝑖𝑑	𝑡𝑜𝑡𝑎𝑙	𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑒𝑑	𝐹𝑅𝐴𝐶) ∗ 100% 
     percentage trend for LAI and GPP: 𝑇𝑟𝑒𝑛𝑑>?@/(𝑔𝑟𝑖𝑑	𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑) ∗ 100%, where var stands for LAI 
or GPP. Units for all three variables are %/yr 5 
(2) Only significant values (P<0.05 in Mann-Kendall test) are shown, positive trends are in bold 


