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Abstract. Geoengineering can control only some variables but not others, resulting in side-effects. We investigate in an

intermediate-complexity climate model the applicability of linear response theory to assessing a geoengineering method. The

application of response theory for the assessment methodology that we are proposing is two-fold. First, as a new ap-

proach, (I) we wish to assess only the best possible geoengineering scenario for any given circumstances. This requires

solving the following inverse problem. A given rise in carbon dioxide concentration [CO2] would result in a global climate5

change with respect to an appropriate ensemble average of the surface air temperature ∆〈[Ts]〉. We are looking for a suit-

able modulation of solar forcing which can cancel out the said global change – the only case that we will analyse here –

or modulate it in some other desired fashion. It is rather straightforward to predict this solar forcing, considering an infinite

time period, by linear response theory in frequency-domain as: fs(ω) = (∆〈[Ts]〉(ω)−χg(ω)fg(ω))/χs(ω), where the χ’s are

linear susceptibilities; and we will spell out an iterative procedure suitable for numerical implementation that applies to finite10

time periods too. Second, (II) to quantify side-effects using response theory, the response with respect to uncontreolled

observables, such as regional averages 〈Ts〉, must of course be approximately linear.

We find that under geoengineering in the sense of (I), i.e. the combined greenhouse and required solar forcing, the response

∆〈[Ts]〉 asymptotically is actually not zero. This turns out to be not due to nonlinearity of the response under geoengi-

neering, but that the linear susceptibilities χ are not determined correctly. The error is in fact due to a significant quadratic15

nonlinearity of the response under system identification achieved by a forced experiment. This nonlinear contribution can be

easily removed, which results in much better estimates of the linear susceptibility, and, in turn, in a five-fold reduction in

∆〈[Ts]〉 under geoengineering. This correction improves dramatically the agreement of the spatial patterns of the pre-

dicted linear and true model responses (that are actually consistent with the findings of previous studies). However, (II)

due to the nonlinearity of the response with respect to local quantities, e.g. 〈Ts〉, even under goengineering, the linear20

prediction is still erroneous. We find that in the examined model nonlinearities are stronger for precipitation compared

to surface air temperature.
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1 Introduction

Geoengineering concepts with the purpose of ameliorating climate change are receiving nowadays increasing attention (Allen

et al., 2014; National Research Council, a, b) (http://www.ce-conference.org/) because of the potential for an enormous gain,

namely, fixing one of the greatest societal challenges primarily of a diplomatic nature, but also because of the great risk that such

an unprecedented endeavour entails. However, the body of the presently available scientific analysis, albeit increasing (Lenton5

and Vaughan, 2013; Ferraro et al., 2014; Kravitz et al., 2011), is yet lacking the consideration of many more crucial aspects

of the problem. For example, the study of climate change in general would clearly benefit from response theory (Kubo,

1966; Ruelle, 2009) and the theory of nonautonomous dynamical systems (Sell, 1967a, b; Romeiras et al., 1990; Crauel and

Flandoli, 1994; Crauel et al., 1997; Arnold, 1998; Kloeden and Rasmussen, 2011; Carvalho et al., 2013). These mathematical

tools, although having been introduced to climate science for decades (Leith, 1975; Bell, 1980; Nicolis et al., 1985), are10

far from being exhausted, still finding many applications of tackling problems in climate science in general (Cionni et al.,

2004; Gritsun and Branstator, 2007; Kirk-Davidoff, 2009; Majda et al., 2010; Cooper et al., 2013; Lucarini and Sarno, 2011;

Ragone et al., 2016; Lucarini et al., 2017; Herein et al., 2015, 2017; Bódai and Tél, 2012; Drótos et al., 2015, 2016). The

pioneering work that applies response theory to the study and efficient assessment of geoengineering in particular is

due to MacMartin and Kravitz (2016). It concerns our point (II) only, and only regarding global averages. However, the15

regional temperature response to radiative forcing can be nonlinear (Winton, 2013; Good et al., 2015; Lucarini et al.,

2017), and so it is not clear if it can be nonlinear under geoengineering too. In the following we summarise briefly the

existing mathematical tools (Sec. 1.1), and then frame the geoengineering problem as an inverse problem (I) and provide the

context for the need of assessing geoengineering strategies (II) (Sec. 1.2).

1.1 Elements of response theory20

In nonautonomous dissipative dynamical systems, like the climate system, given in the form

ẋ= F (x) + εg(x,t) (1)

the response of the system to an external forcing f(t) can be unambiguously defined in terms of the so-called snapshot

attractor (Romeiras et al., 1990) of the system, and the natural probability distribution or the measure µ(x,t) supported

by it. Both the attractor and the measure are unique objects; they are defined by an ensemble of trajectories initialized25

in the infinite past. The time-dependence of the snapshot attractor, also called a pullback attractor (Crauel and Flandoli,

1994; Arnold, 1998; Chekroun et al., 2011), and its measure give what is often termed as the ‘forced response’ (https:

//www.gfdl.noaa.gov/blogheld/3-transient-vs-equilibrium-climate-responses/), and the ‘geometrical details’ of theirs at any

instant describe (statistical aspects of) the internal variability in a conceptually sound sense (Drótos et al., 2015).

For a scalar observable Ψ(x) too the (forced) response is uniquely given by a projection of the measure. Response the-30

ory (Risken, 1996; Abramov and Majda, 2008; Ruelle, 2009) asserts that the most basic ensemble-based statistics, the
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mean 〈Ψ〉(t) =
∫

dxΨ(x)µ(xt) can be decomposed into linear (j = 1) and nonlinear (j > 1) contributions:

∆〈Ψ〉(t) = 〈Ψ〉(t)−〈Ψ〉0 =

∞∑
j=1

εj〈Ψ〉(j)(t), (2)

where the first-order, i.e., linear, term can be obtained as:

〈Ψ〉(1)(t) =

∫
dxΨ(x)

∞∫
−∞

dτ(exp[(t− τ)LF (x)][Lg(x,τ)µ̄(x)])(x,t,τ), (3)

where µ̄(x) is the natural invariant measure/probability distribution of the autonomous system (g = 0), and the op-5

erators are defined as LFµ=−div(Fµ) and Lgµ̄=−div(gµ̄). In (2) 〈Ψ〉0 is the unperturbed (ε= 0) expectation; and

the series converges only if the forcing εg(x,t) is small enough. If the forcing depends on time in a multiplicative way,

g(x,t) = g(x)f(t), then we can write that

〈Ψ〉(1)(t) =G
(1)
Ψ (t) ∗ f(t) =

∞∫
−∞

dτG(1)
Ψ (τ)f(t− τ), (4)

where the Green’s function is implied by Eqs. (3,4) to be10

G
(1)
Ψ (t) =

∫
dxΨ(x)(exp[tLF (x)][Lg(x)µ̄(x)])(x,t). (5)

Note that the higher-order terms 〈Ψ〉(j) can be expressed as multiple convolution integrals involving multi-time Green’s

functions (Lucarini et al., 2017).

The convolution integral under (4) can be interpreted in a way that the forcing f(t) is decomposed into an infinite sequence of

impulses, whereby the responses of the different impulses – that can be superimposed – are all given by the Green’s function,15

whose first nonzero values occur at the time of the corresponding impulses. Although a single such finite impulse does not

produce a nonzero response, a continuous sequence apparently can. Or, a single impulse of infinite magnitude, formally a

Dirac delta, can also produce a response, which is clearly the Green’s function itself. If the continuous train of finite impulses

all have the same unit magnitude, thereby forming a step function, formally the Heaviside step function Θ(t), the response

is just the integral of the Green’s function. Conversely, the Green’s function is the derivative of the response to a unit step20

function. The latter prompts a numerical way of determining the Green’s function, while a Dirac delta forcing is not realisable

numerically.

Taking the Fourier transform (FT) of Eq. (4) we have, via the convolution theorem (Katznelson, 1976), a response formula

in frequency domain:

〈Ψ〉(1)(ω) = χ
(1)
Ψ (ω)f(ω), (6)25

where χ(1)
Ψ (ω) = FT[G

(1)
Ψ (t)] is called the linear susceptibility. This equation looks more useful for practical purposes as it

dictates a simple multiplication instead of evaluating a convolution integral. However, in Sec. 2.1 we explain why this is not

the case, which is of course to do with the transformations between time and frequency domains.
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1.2 The geoengineering problem

It has been proposed (National Research Council, b) that the effect of greenhouse forcing can be mitigated by applying an-

other external forcing to the Earth system, by some geoengineering means, that has, in a way, an ‘opposing’ effect. There are

various forcing types that can achieve this, but we will consider those – generically refereed to as “solar-radiation manage-

ment” (Ricke et al., 2010, 2012) – that can be modeled by a modulation of the solar constant. We will call this simply the5

“solar forcing”. Clearly, these are means that modulate the shortwave incoming radiation. Readily proposed geoengineering

methods include: a fleet of reflective satellites of large Sun-facing surface area put into orbit around Earth, aerosols sprayed into

the atmosphere, artificially generated clouds, etc. A modulated solar constant model represents these geoengineering scenarios

with a various degree of approximation, not necessarily a good approximation (Ferraro et al., 2014).

Formally, the problem involves a forced/nonautonomous system, where at least two terms contribute to the forcing. For10

simplicity, we consider the case of only two forcing terms, and that they are both additive:

ẋ= F (x) + ε(gg(x)fg(t) + gs(x)fs(t)), (7)

where the subscripts indicate already the physical means of the forcings; ‘g’ for ‘greenhouse’ and ‘s’ for ‘solar’. Also, it is up to

us to assign a value to the “small” parameter ε, and in order to obtain a result in the uncomplicated form of (10), we choose the

same ε for both forcing components. Eq. (3) implies that the first-order contribution 〈ΨΣ〉(1)(t) of the total response ∆〈ΨΣ〉15

under combined forcing, i.e., geoengineering, can be written as the superposition of first-order contributions of respective

responses to the two forcings in two separate scenarios when these forcings are acting alone:

〈ΨΣ〉(1)(t) =G
(1)
Ψ,g(t) ∗ fg(t) +G

(1)
Ψ,s(t) ∗ fs(t), (8)

whose FT is of course

〈ΨΣ〉(1)(ω) = χΨ,g(ω)fg(ω) +χΨ,s(ω)fs(ω). (9)20

Note that the nonlinear response is more complicated with multiple forcings present than a sum of multiple convolution inte-

grals (Lucarini et al., 2017) as in the single forcing scenario.

If the ‘forward’ problem is the prediction of the response under a given forcing, then the inverse problem of ‘predicting’ the

necessary forcing for a desired response seems to be well-defined in view of the above equations. To a linear approximation

the necessary or required forcing is:25

fs(ω)≈ ∆〈ΨΣ〉(ω)−χΨ,g(ω)fg(ω)

χΨ,s(ω)
. (10)

For the above ε= 1 is taken. We continue to discuss the solution of the inverse problem in Sec. 2.3, including the situation

when a finite time period is considered. That situation can be interpreted as a control problem, which is in fact a rather special

type of optimal control. This way the required forcing can be ‘predetermined’ which need not be updated during its application.

We note that this is the first time the so-called solar-radiation management (SRM) is formulated as the solution of an inverse30
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problem. In e.g. (Ricke et al., 2010, 2012) the solar forcing was constructed on the basis of some models of how much radiative

forcing a sudden change of some greenhouse gas concentration or the stratospheric optical depth would yield. In addition,

a scenario ensemble of SRMs was created, and a selection of the most effective SRMs was made. The latter assessment

strategy is clearly rather inefficient and inaccurate, which would still be the case had the ensemble been generated

using response theory.5

The inverse/control problem would have a ‘direct’ practical relevance had we got fg(t) a given, as assumed. However, this

is clearly not the case; predicting the greenhouse gas emissions is an extremely complicated and rather daunting task, as it

is determined among others by social processes, for which we do not have good models. Nevertheless, efforts are underway

(https://crescendoproject.eu/research/theme-4/). The current standard practice to ‘deal’ with this challenge, as reflected by the

IPCC reports (Allen et al., 2014), is considering half a dozen ‘methodologically constructed’ 21st century emission scenarios.10

This way, instead of climate predictions one produces so-called climate projections belonging to hypothetical future emission

scenarios. Therefore, the solution to our inverse problem has a rather indirect practical relevance; we can carry out at least

scenario analyses. The reader can find elsewhere (MacMartin et al., 2014b, c, a; Kravitz et al., 2016) the description and

analysis of a feedback control problem of direct practical relevance, when the solar forcing is being determined ‘on the fly’ with

the use of some controller, adapting to a progressing greenhouse forcing, trying to realise the desired response approximately.15

Note that under feedback control, in a scenario analysis setting, a new simulation needs to be run for each emission scenario,

making it very inefficient for an extensive assessment exercise.

We point out that in e.g. Eq. (10) we write Ψ denoting a generic observable. This means that we can choose a particular

(scalar) observable which we desire to evolve in a particular way. With a reference to the classic term of ‘global warming’,

in contrast with ‘climate change’, we will attempt to enforce the cancellation of the global average surface air temperature20

(Sec. 3.1). With the increasingly wide-ranging analyses of climate change scenarios, however, it is clear that ‘climate change’

should have a comprehensive meaning, not just a synonym for ‘global warming’ (Conway, 5 December 2008). In fact, physical

quantities other than temperature could have a larger social or ecological impact (Allen et al., 2014). Beside the physical type

of the observable quantity, we can have different choices with respect to the spatial scale of the quantity, such as local, or

regional (Sec. 3.1.3), zonal (Sec. 3.1.2), global (Sec. 3.1.1), etc. averages.25

Once an observable Ψ is chosen to evolve in a particular way, which determines fs(t) according to (10), the evolution of

any other observable Φ will be a given – the solution of a forward problem formally identical to (9):

〈ΦΣ〉(1)(t) =G
(1)
Φ,g(t) ∗ fg(t) +G

(1)
Φ,s(t) ∗ fs(t), (11)

with fs given, of course, by (10). Clearly, 〈ΦΣ〉(1)(t) 6= 〈ΨΣ〉(1)(t) whenGΦ,g(t) 6=GΨ,g(t) and/orGΦ,s(t) 6=GΨ,s(t), which

is the generic case. Regarding the desire of cancellation ∆〈ΨΣ〉= 0, we can frame geoengineering – considering for simplicity30

only quasistatically slow changes fg(t) – as a confinement to the 0 isoline of ∆〈ΨΣ〉 over the plane of fg and fs (Lucarini,

2013). In general, this isoline is different for different observables Φ 6= Ψ, that is, under linear response these straight isolones

fan out of the origin of the fg-fs plane. This is illustrated in Fig. 1, where the curvature of the isolines for larger values of

fg and fs reflect also the more general situation of nonlinear responses. It is implied then that when the system is confined
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to one isoline, it can obviously not be confined to the different isolines of other variables Φi; that is, (unwanted) changes

∆〈Φi,Σ〉 6= 0 will ensue. In other words: the proposed geoengineering method will provide just a partial solution at best. While

one aspect of the problem is solved, other aspects can be neglected, or even changed to the worse, possibly with catastrophic

consequences.1 A long list of studies have to date addressed the issue of side-effects; see e.g. (Ricke et al., 2010, 2012;

Ferraro et al., 2014; MacMartin et al., 2014a; Kravitz et al., 2013; MacMartin and Kravitz, 2016; MacMartin et al.,5

2018). This possibility is the main motivation of our present investigation too, concerning in particular the question (II) if

response theory can provide an efficient tool to map out and quantify accurately the various side-effects of a variety

of geoengineering scenarios given a variety of emission scenarios in various Earth System Models. Having enforced

(approximately, to various degrees) a cancellation of global average surface air temperature, ∆〈ΨΣ〉= ∆〈[Ts,Σ ]〉 ≈ 0, we will

diagnose unwanted changes (total response) in terms of:10

– Φ = [Ts]λ – zonal (Sec. 3.1.2) and

– Φ = Ts – regional averages on the surface, and

– Φ = Ttr – regional averages near the troposphere/tropopause (Sec. 3.1.3), and

– Φ = [Py] and Py – annual precipitation (Sec. 3.2).

Note that we denote spatial averaging by square brackets, subscripted by the spatial variable(s) with respect to which we15

average over its whole range, e.g. longitudes λ for zonal averages, and for areal/global averaging we drop the subscripting

(instead of writing e.g. [Ts]λ,µ). Some of these observables have been considered in a number of studies (Ricke et al.,

2010, 2012; Ferraro et al., 2014; Kravitz et al., 2013; MacMartin and Kravitz, 2016; MacMartin et al., 2018), and our

results are mostly consistent with the published ones; however, we will also focus on whether these responses can be

predicted by response theory.20

We point out that in the Planet Simulator intermediate-complexity GCM (Fraedrich, 2012), or PlaSim, the greenhouse

and solar forcings have been found approximately “equivalent” in terms of the stationary response of the global average

surface air temperature (Boschi et al., 2013) insomuch that its isolines are parallel straight lines (even if there is a curvature

of the surface). This was found to be the case in rather extensive ranges of the forcings, 1200-1500 Wm−2 and 90-2880 ppm,

respectively. That is, any curvature of the blue line as shown in Fig. 1 occurs outside of the said ranges. However, to do with25

geoengineering the concern is if these forcings are equivalent in the same sense in terms of other variables too, as discussed.

We will demonstrate in PlaSim that concerning regional averages Ts the correspondence of forcings is still remarkable,

but there is nevertheless a residual response with a nontrivial pattern under geoengineering. Furthermore our analysis

indicates that (II) this residual response is not so linear, and less so for precipitation, which goes beyond (MacMartin and
1Furthermore, we note that, as it is often acknowledged, ‘no-one is living under the average climate’. Although, some live closer than others. That is, while

the primary problem can be solved for some, even that will not be solved for others. Therefore, the debate on climate engineering is unlikely to have less

political overtone and motive than the climate debate itself.
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Figure 1. A cartoon of hypothetical isolines in the plane of greenhouse and solar forcings fg-fs for various observables: ∆〈[Ts]〉 = 0 –

globally averaged surface air temperature, ∆〈[Ta]〉 = 0 – globally averaged atmospheric temperature, ∆〈[Tss]〉 = 0 – averaged sea surface

temperature, ∆〈[Tnhml]〉 = 0 – surface air temperature averaged on the midlatitudes of the Northern hemisphere (reproduction of Fig. 5

of (Lucarini, 2013)).

Kravitz, 2016) where the linearity of only the global average response under geoengineering is demonstrated clearly,

but the linear prediction of spatial patterns were averaged over nine models.

This work follows (Ragone et al., 2016) and (Lucarini et al., 2017). In the latter it has been demonstrated that response

theory can predict spatial patterns, which, as outlined above, is one of the type of diagnostics that we use to assess the success

of the geoengineering method. In both of these works the demonstrations were carried out on PlaSim (Fraedrich, 2012), but5

with slightly differing setups. Here we adopt the setup of (Lucarini et al., 2017) featuring meridional ocean heat transport. The

present work also builds on (Gritsun and Lucarini, 2017) adopting a simple technique to obtain a better estimate of the linear

susceptibility. Clearly, a better susceptibility estimate would be useful in making a linear prediction only if the actual

response is linear. While under [CO2]-doubling (Ragone et al., 2016; Lucarini et al., 2017) found a nonlinear ∆〈[Ts]〉
response, and so no linear prediction would be productive in that case, under geoengineering the total response is aimed10

to be much smaller, and so in principle the response may be linear. This is found to be the case in PlaSim approximately,

and so (I) by improving the susceptibility estimates we can improve greatly on our prediction of a solar forcing fs(t)

required for cancellation ∆〈ΨΣ〉(t) = 0.
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We point out that the examined model PlaSim is lacking many realistic features, such as e.g. seasonal forcing or a deep

ocean. The former deficiency results in very large global average surface temperature responses (Ragone et al., 2016), and the

latter one does not allow for long time scales, typically of the order of hundred years. However, our technique is applicable

in principle also to models with such long time scales. What is more, it would handle such situations powerfully given that

any time horizon can be imposed on the analysis, constructing transient responses only, without the need of running very5

long experiments in which a new steady climate emerges upon external forcing. What makes this possible is that the Green’s

function is needed to be determined up to times only up to which we want to determine the response, as indicated by Eq. (4).

We wish also to clarify that our analysis technique requires the estimation of the Green’s function, which is most straight-

forward to do by subjecting the system to external identification forcing (Sec. 2.2), which is clearly not possible in the case

of Earth. Our analysis technique is intended rather for efficient scenario analyses in models, where the side-effects of interest10

of geoengineering can be calculated for any given emission scenario, choice of observable to control in a chosen model, using

negligible computer resources. For practicing geoengineering one would use a feedback control (MacMartin et al., 2014c,

a) for which the Green’s function does not need to be determined while the objective should still be achieved rather

accurately (even if the response was nonlinear). This practice would clearly be a “single shot”, a carefully deliberated

and debated choice informed by a very extensive assessment. This is to say that the numerical efficiency concerns only15

the assessment not the practice of geoengineering. Of course it remains a problem that the relevant Green’s functions

of Earth are not known accurately and we have to rely on different models for the assessment.

The structure of the remainder is as follows. Next in Sec. 2 we detail our methodology: the notation and algorithm for

spectral analysis in discrete time (Sec. 2.1), the way we obtain the Green’s functions (Sec. 2.2), our novel solution method

to the inverse problem for a required solar forcing (Sec. 2.3), and a zoo of experiments used to assess nonlinearities and else20

(Sec. 2.4).2 Then in Sec. 3 we provide results: firstly, pertaining to objective (I), about the success of the primary objective of

geoengineering, the cancellation (Sec. 3.1.1), and then our diagnostics of other observables (Secs. 3.1.2, 3.1.3, 3.2). Finally,

in Sec. 4, in terms of the stationary climate only, (I) we outline an improved method of obtaining the required solar forcing

for cancellation, and also (II) analyse our improved diagnostics with respect to the linearity of the response. In Sec. 5 we

summarize our results and give our perspective of worthwhile future work.25

2 Methodology

2.1 Computing the response in time and frequency domains

To be able to carry out (approximate) calculations involving spectral transforms, we need to clarify the formulae and algorithms

applicable to discrete time and finite size data. We can approximate the time-continuous strictly monotonically evolving forcing

f(t) by a staircase-like forcing that is defined by a uniform sampling of f(t), called a sample-and-hold approximation. It can30

be represented by a discrete sequence f [n] = f(t= nT ), n= . . . ,−1,0,1, . . . , T being the uniform sampling interval, in which

2The reader who is not concerned with computational aspects can skip Secs. 2.1, 2.2, 2.3. However, Sec. 2.4 is unavoidable in order to understand how the

results presented subsequently will enable us to make conclusions regarding (II) the applicability of linear response theory.
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sequence the data points provide the levels of the “steps”. That is, for an actual staircase-like forcing signal f(t= (n+ν)T ) =

f [n] for all ν ∈ [0,1], where the noninteger ν can be viewed as a phase variable – the phase where the sample is taken within

the interval where the forcing is constant. For such staircase-like forcings sample values of the response with the sampling

Ψ[n] = Ψ(t= (n+ ν)T ) at any phase ν ∈ [0,1] obey:

〈Ψ̂〉(1)[n] =

∞∑
k=−∞

hΨ[k]f [n− k] = hΨ[n] ∗ f [n] (12)5

where the discrete-time (DT) impulse response or DT Green’s function hΨ[n] is, clearly, the response 〈Ψ̂⊥〉(1) to a Kronecker

delta function forcing: f [n] = δ[n] = 1 if n= 0 and 0 otherwise (Hespanha, 2009). Note that we make a distinction in our

notation with regard to the special forcing such that we distinguish Ψ̂ from Ψ; however, for simplicity, we did not subscript

Ψ̂ by ν despite that it depends on the phase. Note also that in general hΨ[n] 6=G
(1)
Ψ [n] =G

(1)
Ψ (t= (n+ ν)T ) with the same

ν as Ψ[n] (or Ψ̂[n]) is defined with, or with any ν and all n. Clearly, once the sampling frequency is not adequate regarding10

some ‘strongly featured’ time scales of the forcing, the calculated discrete response will be also an inadequate approximation.

We note further that – unlike the Dirac delta in the time-continuous case – the Kronecker delta can be realised for numerical

purposes. It is equivalent to applying a step forcing and taking the difference:

hΨ[n] = ∆〈Ψ̂p〉[n]−∆〈Ψ̂p〉[n− 1]. (13)

This method was used in (Lucarini et al., 2017). Such external forcings we will refer to as (system) identification forcing.15

When facing the practical situation of having finite time series, f [l] and hΨ[l], l = 0, . . . ,L− 1, Eq. (5) of the Appendix

can be used to determine the response hΨ ∗ f [l], l = 0, . . . ,L− 1 (whose usefulness is coming from efficient algorithms for

evaluating the discrete Fourier transform, DFT; we evaluate the DFT using Matlab’s fft). To this end one can pad f [l] and

hΨ[l] by L− 1 zeros in front (although mind footnote 11 of the Appendix; we will denote these padded sequences by e.g. f̃ [l],

l = 0, . . . ,2(L−1). The first useful ‘half’ (l = 0, . . . ,L−2) of the circular convolution DFT−1{DFT{h̃Ψ}DFT{f̃}} resulting20

from eq. (5) will then match the linear convolution hΨ ∗f [l], l = 0, . . . ,L−1. Unlike this calculation in frequency-domain, the

calculation in time-domain using Eq. (12) is straightforward.

2.2 Obtaining the Green’s function

First, in order to predict the response (to first order), we need to obtain e.g. the (first order) Green’s function. As Eq. (5) suggests

it is ‘coded in’ the autonomous system. A direct evaluation of this formula is, however, prone to failure (Lucarini et al., 2017).25

Second, we note that in practice we can study only a discrete time version of the system. This prompts that for a direct way of

determining the Green’s function, instead of Eq. (4) we have to use Eq. (12) (leading to Eq. (13)). It also means that we cannot

infer the response of the system just by observing its autonomous dynamics, but we need to force it externally in a suitable way.

Third, an ensemble of experiments (appropriately initialised) is needed to obtain the expected value 〈Ψ̂〉 (notation introduced

in Sec. 2.1, first appearing in Eq. (12)). This was acknowledged also by MacMartin and Kravitz (2016). Clearly, only a30

finite number of experiments is feasible to run, so we obtain an approximation of 〈Ψ̂〉, where the error is some correlated noise
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process. This correlation can be negligible with an infrequent sampling allowed by, say, a slow forcing to be applied.3 We use

the data that was used for (Lucarini et al., 2017), which consist of some ensembles of 200 members, and we have produced

new data belonging to new forcing scenarios, to be described in Sec. 2.4, that consist of ensembles of 20 members.

As already spelled out in Sec. 2.1, two identification forcing types are particularly suitable to determine the Green’s function;

one is a step forcing, and the other is the Kronecker delta. When a random statistical error is present due to the finite ensemble5

size, represented say by a Gaussian random variable ξ, it is actually better to use a Kronecker delta forcing for the following

reason. Using the step forcing one needs to take the difference of consecutive values – what is sometimes called ‘differencing’

– of the response sequence (13). This way at any time the variance of the error is that of the difference of two random variables,

ξ1 and ξ2, both distributed identically to the original random variable ξ. For Gaussian variables it is straightforward to show

that Var[ξ1− ξ2] = 2Var[ξ]. Note that we assume that ξ is the same random variable to a good approximation under the delta10

and step forcings.4 Nevertheless, we apply a step forcing also in our new experiments, so that we are able to make use of data

produced for (Lucarini et al., 2017) in a consistent manner. Examples of the response to step forcings are displayed in Fig.

2. The similarity of the responses to greenhouse and solar forcings here, and so the Green’s functions, is consistent with the

findings of (Merlis et al., 2014; Caldeira and Myhrvold, 2013; MacMynowski et al., 2011) and the design of the G2 GeoMIP

experiment (Kravitz et al., 2011).15

It is important to appreciate the following trade-off. For a better signal-to-noise ratio one can apply a more powerful iden-

tification forcing. However, in the case of the presence of nonlinearities, the more powerful the forcing signal the larger the

error in estimating the Green’s function belonging to the base state 〈Ψ〉0 (even without noise). MacMartin and Kravitz

(2016) applied a [CO2]-quadrupling (and it is a standard forcing level for geoengineering studies (Ferraro et al., 2014;

Kravitz et al., 2011)), however, they determined the solar forcing for cancellation not via Green’s functions (Sec. 2.3),20

and checked the linearity of the response only up to a forcing level lower than [CO2]-doubling. Their motivation for

applying the high forcing level seems to be only to be able to determine the Green’s function with a better SNR given

that no ensemble data is available from the GeoMIP experiments.

We make here two more comments on the issue with noise. First, instead of instantaneous samples of the observable Ψ and

the corresponding Green’s function, we will consider, like in (Lucarini et al., 2017), annual averages, Ψ̄[n] =
∫ 1

0
dνΨ((n+25

ν)T ). This is sensible given the slow rate of change that the applied forcing represents; and it also greatly reduces the noise

level. In this regard we point out that annual averages too obey Eq. (12) exactly if the forcing is constant over a year, because

the order of summations can be interchanged, whereby a well-defined DT Green’s function belonging to the annual average

emerges. We will use only annually constant staircase-like forcings in our experiments (Sec. 2.4, ), so that it be clear that

3As noted in Sec. 2.1, the approximation 〈Ψ〉(1)[n]≈ 〈Ψ̂〉(1)[n] – even with infinite ensemble size – is the better the better the forcing f is approximated

by a staircase function with a certain sampling time T . Therefore, the larger T , the worse the approximation, and the more white as a noise the error with

a finite ensemble size. However, it is not the whiteness of this noise is what matters but its magnitude, so there is not really an “accuracy vs whiteness”

trade-off situation regarding the choice of T . However, shortly we discuss how a trade-off situation does arise regarding the choice of T concerning indeed the

magnitude of the noise.
4Clearly, when the noise-like fluctuation is a genuine part of the response, the variance of these fluctuations are not the same under the two said types of

the forcing.
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Figure 2. Simulated response to step forcings. The chosen observable is the global average surface air temperature [Ts]. The identification

forcing scenarios are those of CS2, CS1, SS2, SS1 from Table 1. (a) After a subtraction of the limit value and displaying the response on

lin-log scales (b), it is revealed that the high-dimensional system behaves very much like a noise-driven linear 2-box model, also called a

vector autoregressive (VAR) model, in view of the considered global scale variable, as also recognised by MacMynowski et al. (2011);

Caldeira and Myhrvold (2013). The two time scales of the VAR models fitted to the CS2 and SS2 data are about 5 and 40 years. The

second time scale is in a disagreement with (MacMynowski et al., 2011) and it is not clear whether a more complex model is more

reliable in this respect. Note: the angle brackets denoting ensemble average are dropped from diagram annotations throughout the paper.

a linear prediction of the response has an error not because Eq. (12) does not apply exactly, but because of the missing

higher order perturbative terms appearing in (2). Second, the said enhancement of noise by differencing in (13) cannot be

overcome by working in frequency-domain. The Green’s function, via frequency-domain applying Eq. (1), is expressed as

hΨ = DTFT−1{DTFT{∆〈Ψ̂p〉}/DTFT{fp}}, where 1/DTFT{fp}= 1− e−iω . The latter is the very factor arising in the

DTFT of a differenced sequence. The only way that we are aware of to avoid the differencing and thereby reducing the noise5

is that by using a Kronecker delta identification forcing as argued above5.

2.3 The inverse problem

When different forcings act in the same time, their first-order contributions to the response – as discussed in Sec. 1.1 – can

be superimposed. Hence, when we desire a certain total response ∆〈ΨΣ〉(t) to a combined forcing when all forcings are

given but one, there is a unique form of that one required to fulfill our desire. In terms of the geoengineering problem of our10

interest (Sec. 1.2), the required solar forcing fs in order to achieve a total response ∆〈ΨΣ〉 given a greenhouse forcing fg
5There exist filtering techniques, but they introduce some assumptions either on the functional form of the Green’s function (parametric techniques),

or on the goodness of fit (nonparametric techniques) of their estimate to, say, one of the described straightforward (noisy) estimates (such as a minimal

root-mean-square-error). One can use e.g. Matlab’s impulseest.
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can be expressed, to a first-order approximation, in frequency-domain as stated under (10). With the most obvious choice of

cancellation, ∆〈ΨΣ〉= 0, Eq. (10) simplifies to:

fs(ω)≈−χΨ,g(ω)

χΨ,s(ω)
fg(ω). (14)

Note that the forcings are defined by (1) to have zero reference values belonging to 〈ΨΣ〉0, and so there is no need to write ∆ in

their notation. However, in practice when finite time series are available, the simplification is not so trivial. As described in the5

end of Sec. 2.1, in place of the FT’s we have to calculate in Eq. (10) with DFT{f̃g}, DFT{h̃Ψ,s} and DFT{h̃Ψ,g}. Furthermore,

the DFT in place of ∆〈ΨΣ〉(ω) is that of a sequence ∆〈Ψ̌Σ〉[l], only the first useful ‘half’ (l = 0, . . . ,L− 2) of which is zero,

as dictated by our requirements, but its second half (l = L− 1, . . . ,2(L− 1)) has nonzero values in general. These nonzero

values characterize the total response to combined step forcings (to do with the ‘gap’ mentioned in the caption of Fig. 3), but

also depend to a certain extent on the particular finite fg[l] presented. The reason for this is that the Green’s function is given10

only up to a finite time, which becomes clear upon inspection of the workings of the convolution of finite time series. The said

nonzero values are given of course by

∆〈Ψ̌Σ〉= DFT−1{DFT{h̃Ψ,g}DFT{f̃g}+ DFT{h̃Ψ,s}DFT{f̃s}}, (15)

where, however, f̃s is not known being the sought-for object. The idea is that we can look for f̃s by an iterative procedure,

which is initialised, say, by f̃s = f̃g . Note that if hΨ,g and hΨ,s are not dissimilar, nor are fg and fs; that is, the initial value is15

not far from the solution, which gives hope that it is within the basin of attraction to the solution. In each iterate we

1. evaluate Eq. (15) using a current estimate of f̃s, but replacing beforehand any nonzeros in the first half of that f̃s by

zeros;

2. in the resulting ∆〈Ψ̌Σ〉[l] we replace any nonzeros in the first half by zeros in order to have it in the right form; and then

3. we get a new estimate for f̃s using a formula analogous with Eq. (10).20

Ideally, the first half of the f̃s estimates in stage 3. converge to zero, and the second half to some nontrivial form that is the

solution. In our experience (results not shown) this is the case for systems with fairly simple and smoothly varying Green’s

functions. However, when the same Green’s functions are corrupted by noise, our experience is that the procedure does not

necessarily converge, but iterates of f̃s can develop increasingly large and in fact regular harmonic-looking oscillatory features.

It is possible to achieve convergence for some smaller but nonzero noise level. However, even then the limit function retains25

small oscillatory features over the full length of f̃s.

We emphasize that the iterative procedure was needed because we could not predict the second nonuseful half of ∆〈Ψ̌Σ〉[l]
since we do not have the Green’s functions in full but with a cutoff in time. This means that by running longer and longer ensem-

ble simulations, by which we can determine the Green’s functions further and further in time, the solution can be approximated

by a noniterative procedure better and better. This is clearly a numerically more expensive solution.30

Working in time domain, alternatively, the inverse problem leads to performing a deconvolution:

fs = (∆〈Ψ̌Σ〉−hΨ,g ∗ fg) ∗−1 hΨ,s. (16)
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Note that we wrote ∆〈Ψ̌Σ〉[l] in the above which should exactly correspond to the appropriately defined circular convolution in

(15) as l = 0, . . . ,2(L−1). Clearly, in time domain too fs[l], l = 0, . . . ,L−1, is obtained iteratively, in three stages similarly as

outlined above in frequency domain. One can use Matlab’s deconv to perform the deconvolution. We find in simple examples

studied (results not shown) that without noise the procedure in time domain leads to the very same solution as the procedure

in frequency domain. This is not the case with additive noise, which means that the deconvolution/inverse problem is ill-posed5

in this case. However, the weaker the noise, the closer the outcome to the true solution, either in time or frequency domain,

as long as the procedure converges. We find that in time domain the procedure always converges to some solution, however,

with increasing noise strength this solution features oscillations of increasing amplitudes as time advances. Nevertheless, for

a certain noise strength when the frequency domain procedure also converges, we find that the solution in time domain is

smoother and so closer to the true solution earlier in time. This is also what we find considering the PlaSim data, as shown10

in Fig. 3. We conclude, therefore, that it is preferable to work in time domain using Eq. (16) to produce numerical results.6

Nevertheless, we will carry out our calculations in frequency domain, using e.g. the forcing signals shown in Fig. 3 (a), in order

to make the point that even a rough forcing signal convolved with a rough Green’s function produces a not so rough response,

as we will see in Sec. 3.1.1.

2.4 Forcing scenarios15

The form of the forcing signal fg due to changes in the [CO2] concentration for which we want to solve the geoengineer-

ing inverse problem is a ramp that was used in (Lucarini et al., 2017). This is a standard forcing type, also used for the

CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima) protocols (Good et al., 2016). More precisely, it is not

a time-continuous ramp for the reason detailed in Sec. 2.2, but the [CO2], and so fg , is kept constant for one year after each

incremental increase. The [CO2][n+1]− [CO2][n] increment is a (small) fraction of the current value [CO2][n], and therefore20

increasing in a superlinear fashion with time [n], but, due to the logarithmic dependence of the radiative forcing on the [CO2]

concentration (Huang and Bani Shahabadi, 2014), it realises a linear radiative forcing signal7 fg[n], i.e., a constant-in-time (n)

radiative forcing increment fg[n+ 1]− fg[n]. Hence the naming ‘ramp’. Such a form of the (radiative) forcing signal is useful

in diagnosing or interpreting results. For example, if the response characteristic to solar forcing fs is similar to that of fg , then

the required solar forcing to cancel global change would also be approximately ramp-like.25

6 An anonymous referee has suggested that in time domain a simpler alternative way of obtaining the solution by a time marching procedure should

exist (not relying on deconvolution). Indeed, one can break down the convolution sum (12) as 〈Ψ̂〉(1)[n] =
∑n
k=2hΨ,s[k]fs[n−k]+hΨ,s[1]fs[n−1],

which can be expressed for fs[n−1] and consider that 〈Ψ̂〉(1)[n] =
∑n
k=1hΨ,g [k]fg [n−k] is given for all n. Suppose fg [0] = 0; then the procedure

for finding fs[n− 1 > 0] can be initialised by fs[0] = 0 for n = 1. We have checked that it gives the same result as our procedure, reproducing the

time series pattern due to a particular noise realisation in a simple example system.
7 This is meant to be in a loose sense, because strictly speaking the realised radiative greenhouse forcing (which we do not even try to define here) must

not be considered as an external forcing. The external forcing is the [CO2] concentration indeed. A logarithmic scaling of this signal, however, makes no

difference insomuch as a causal Green’s functions exist between this scaled variable and well-behaved observables. The scaling is intuitive and standard

practice, and we will allow ourselves to refer to ln([CO2]/[CO2]0) as the radiative greenhouse forcing.
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Figure 3. Imposed [CO2] or greenhouse forcing and required solar forcing that cancels out global average surface air temperature change.

They are normalised for the displaying to have a unit plateau level. The required solar forcing is determined in both frequency (a) and

time domains (b). We indicate in the legend which data set from Table 1 the forcings belong to. We note that in either case we neglected

the iteration, skipping stages 1. and 2. and setting ∆〈Ψ̌Σ〉[l] = ∆〈 ˇ[Ts]Σ〉[l] = 0 for all l straightaway in stage 3., the validity of which is

prompted by the very similar Green’s functions h[Ts],g and h[Ts],s as indicated by Fig. 2. Correspondingly, the required fs is very similar to

the given fg . A small gap between the red and blue ramps that can be resolved only with a smooth estimate, i.e., in panel (b) but not in (a),

which gap develops quickly from the beginning of the ramps, informs us that the system responds slightly faster to the greenhouse forcing,

which is already prompted by Fig. 2 (b) and the exact results (not given) of the parameter estimation by fitting. Results presented in Sec. 4

prompt that it is likely to do with nonlinearity, which makes the response towards negative and positive anomalies “asymmetric”, resulting

also in different spatial patterns, while the time scales associated with different locales are quite varied (not shown).

Note, however, that a linearity of the response characteristic to any forcing is checked by a comparison of the linear prediction

with the truth in terms of a model simulation subject to the same forcing. Beside the nonlinearity, another factor that gives rise

to a discrepancy is a statistical error due to the finite ensemble size. However, the latter has a very distinct feature that can

be visually told apart easily from the contribution of nonlinearity. We reiterate that by applying a staircase-like forcing we

guarantee that the said discrepancy has no contribution due to performing calculations in discrete-time.5

We point out that at asymptotic times there is no discrepancy because of the way we estimate the Green’s function (Sec.

2.2); the discrepancy emerges transiently only. The all-time maximum of it is a useful intuitive measure of nonlinearity in

the examined regime. However, clearly, the larger the response the larger the nonlinear contribution to it, and so – in the

context of system identification – the more inaccurate our estimate of the susceptibilities (Sec. 2.2) become. Therefore, beside

our base scenario of (overall) doubling [CO2], we will also check if we can obtain a more accurate (and so useful for the10

geoengineering problem) estimate of the Green’s function using a weaker identification forcing, in particular one that results in

half of the (overall) radiative forcing change of that by doubling [CO2] (realised by [CO2]∞/[CO2]0 =
√

2, according to the
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Table 1. Sets of simulation data specified by the forcing. Each data set is codenamed by a three character code; the first character coding

the quantity in which the forcing is presented (C for [CO2], S for ‘solar irradiance’); the second character coding the ‘form’ of the forcing

signal (S for ‘step’, R for ‘ramp’; Q for ‘slow ramp’); and the third character coding the plateau level of the (corresponding – see main

text) greenhouse forcing (2 for [CO2]∞/[CO2]0 = 2, and 1 for [CO2]∞/[CO2]0 =
√

2). The CS2 and CR2 data sets are preexisting to the

present study (Lucarini et al., 2017) containing 200 ensemble members. All new data sets listed here contain 20 ensemble members each,

except for CQ2 which contains 10.

Forcing

Step Ramp Slow ramp Form

2
√

2 2
√

2 2 Plateau

[CO2] CS2 CS1 CR2 CR1 CQ2

Solar SS2 SS1 SR2 SR1

Combined BR2 BR1

Quantity

above mentioned logarithmic law (Huang and Bani Shahabadi, 2014)). Note that in the case of this weaker forcing, irrespective

of the different plateau level, the increments of the [CO2] changes realise the same 1%/yr relative change.

We refer the reader to Table 1 for an overview of the various identification and test forcing scenarios that we used in the

present study. Among them we have CQ2 defined by 0.1%/yr relative changes, which makes it a much slower change than the

base scenario. The response to such a slow ramp forcing should be ramp-like as long as the linear term in (2) dominates over5

the nonlinear ones. This forcing scenario will therefore provide us another reference in interpreting other results with respect

to linearity.

In the said table we did not indicate the plateau level of the solar forcing fs used in conjunction with fg . We chose this level

such that the response asymptotically in terms of the global average surface air temperature is the same but of opposite sign

as that due to the corresponding fg . This level can be easily determined to a good approximation by an iterative procedure.10

Beside those in Table 1, we will introduce a few more forcing scenarios in Sec. 4 that will aid the interpretation of our results

and others that give improved results.

3 Results

3.1 Surface air temperature

3.1.1 Global average15

This is the variable with respect to which we prescribe the cancellation. We do not consider any other variable in this role

throughout the present study. Having predicted the solar forcings (SR1, SR2) required to produce no total response used in
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Figure 4. Predicted and true surface air temperature responses to ramp-like forcings. Forcing scenarios are: (a) CR1, CR2, SR1, SR2, (b)

BR1, BR2. Note that in panel (a) the two yellow curves perfectly cover the corresponding blue ones, because fs is calculated to cancel global

warming at all times.

combination with prescribed [CO2] forcings (CR1, CR2) adopting the methodology described in Sec. 2.3 (see also the note in

the figure caption of Fig. 3), we plot the predicted linear responses in Fig. 4 (a). Clearly, these predictions can be viewed either

as components of the predicted total response (BR1, BR2), or the predicted response in separate scenarios (CR1, CR2, SR1,

SR2). Alongside these predictions we plot the true response in the scenarios when the forcings are applied separately, i.e., the

responses evaluated by direct numerical simulations (CR1, CR2, SR1, SR2). Regarding our objective (I), the comparison of5

prediction and truth reveals that (i) the response to stronger forcing is more nonlinear in the case of greenhouse forcing (CR2)

in comparison with solar forcing (SR2); and that (ii) with a weaker identification (CS1, SS1) and test forcing (CR1, SR1) the

linear prediction for CR1 is much better than for CR2, while SR1 is seemingly as good as SR2. For the scenarios of combined

forcing (BR1, BR2) only the true response is nontrivial if nonlinear, which is displayed in Fig. 4 (b). Indeed, because of the

nonlinearity, the total asymptotic response is nonzero. (Note that the fluctuations at asymptotic time are due to the finite10

ensemble size.) It is visibly nonzero even with the weaker forcings. However, it is just about 10% of that with greenhouse

forcing solely even in the case of the stronger forcings.

The pronounced nonlinearity (i) shows up also in other experiments. With a very slow forcing CQ2 we registered the response

as shown in Fig. 5. Despite that the rate of forcing is unchanged throughout the almost 700 years, the response switches to a

slower rate between 400 to 500 years, or, between 3 to 4 [K] changes in the temperature8. The placement of this change of15

the rate, compared to the asymptotic temperature change of almost 3 K upon the weaker CR1 forcing seen in panel (a), is in

good agreement with the observation of a much more closely linear response to that weaker forcing as compared to CR2. A

8Clearly, a slower rate of change of the response to a slow forcing translates to a smaller static susceptibility (at ω = 0), i.e., sensitivity.
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Figure 5. True response of the global mean surface temperature under a very slow ramp forcing, CQ2.

crude indicator of non/linearity can be extracted from the CQ2 experiment, but also from comparing the asymptotic/stationary

responses (denoted by a subscript∞) in the XX1 and XX2 experiments, as the following ratio:

ρ=

∆〈[Ts]∞,2〉
∆〈[Ts]∞,1〉

f∞,2

f∞,1

=

∆〈[Ts]∞,2〉
f∞,2

∆〈[Ts]∞,1〉
f∞,1

. (17)

(Note that we write an ‘X’ in place of one of the possible characters in the scenario identification code when it does not matter

which of the possible characters is written there.) This value is ρ= 0.99 with solar forcing and 0.85 with greenhouse forcing,5

in agreement with what the comparison of predicted and true responses seen in Fig. 4 (a) allowed us to conclude above.

3.1.2 Zonal average

We begin with the zonally-averaged fields of the surface air temperature for our diagnosis of any residual total response in

terms of other observables than the one for which a desired evolution has been (attempted to be) enforced. First, we show

results with the
√

2-fold [CO2] increase (CR1, BR1). Treating zonal means, following (Lucarini et al., 2017) (where only the10

case of [CO2]-doubling was treated), in a similar fashion to global means informs us that the response to either greenhouse or

solar forcing is the strongest at high-latitude/polar regions; see Figs. 6 (a) and (c). This is where the response is most nonlinear,

as indicated by Figs. 6 (b) and (d), showing the difference between truth and prediction. This nonlinearity should be due to

albedo saturation and/or nonlinear characteristics of radiation physics, as discussed in (Winton, 2013; Good et al., 2015;

Lucarini et al., 2017). In Figs. 6 (b) and (d) we see colors for nonzero values also in the whole stretch of stationary forcing,15

however, for the different latitudes separately, after a fast approach of the stationary climate, the time-average should be zero

by means of the used methodology (except for a small finite data statistical error). As a consequence of the said nonlinearities,
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Figure 6. Response of the zonally-averaged surface air temperature to ramp forcings. The first column shows the true responses and the

second one the errors of the linear predictions. The first and second rows belong to the CR1 and SR1 forcing scenarios, respectively. Similar

diagrams as in the first row but for CR2 are shown in Fig. 6 of (Lucarini et al., 2017).

in the high-latitude regions linear response theory ‘badly fails’ to predict the total response to combined forcing, also in the

regime of stationary climate; compare Figs. 7 (a) and (b) showing the prediction and truth, respectively.

In addition to such a visual comparison it is customary to quantify the discrepancy by measuring the error of prediction

relative to the true value. However, the true value can be zero at certain latitudes which makes this naive relative error measure

lacking an obvious meaning. In these situations it is customary (Tornqvist et al., 1985) to analyse the following relative error:5

e1 =
|∆〈Ψ〉BRX−〈Ψ〉(1)

BRX|
|∆〈Ψ〉BRX|+ |〈Ψ〉(1)

BRX|
. (18)
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Figure 7. Predicted (a) and true (b) total responses of the zonally-averaged surface air temperature to combined ramp forcings (BR1).

It takes on values from [0,1] for all values of ∆〈Ψ〉BRX and 〈Ψ〉(1)
BRX; and, clearly, a larger value should be considered worse.

Clearly, e1(µ) as a function of latitudes would facilitate the comparison of the predictive skill of linear response theory

at different latitudes. We note that in Eq. (18) 〈Ψ〉(1)
BRX is meant to be an estimator of the actual quantity, which estimator is

biased, but for keeping it simple, we do not introduce a separate symbol for the estimator. Another possibility in our situation

is measuring the error of prediction of the response to combined forcing relative to the response to one of the forcings:5

e2 =
|∆〈Ψ〉BRX−〈Ψ〉(1)

BRX|
∆〈Ψ〉CRX

. (19)

We evaluate e1 and e2 only with respect to the stationary climate, in which case the estimation is very accurate as we can take

an average also with respect to time. Fig. 8 (a) shows the result in the case of the weaker forcing (CR1, BR1). Both e1 and e2

indicate with good agreement that the prediction is the poorest at some high-latitude regions.

With [CO2]-doubling (CR2, BR2), results shown in Fig. 8 (b), the performance has a different characteristic as compared10

with weak forcing. Both e1 and e2 are the highest at both equatorial and some high-latitude regions, and somewhat less at polar

and some Southern Hemisphere midlatide regions.

3.1.3 Spatial pattern

A more comprehensive view of the spatial variation of the response is given by the distribution over the 2D surface, predicting

or ‘measuring’ (computing) the response in each gridpoint separately, as done in (Lucarini et al., 2017). Similarly to zonal15

averages, the response patterns to greenhouse and solar forcings are very similar in the stationary climate regimes; see Fig.

9 (a) and (b) for the strong forcings CR2 and SR2, respectively. (See (Hansen et al., 2005) for such a comparison in a

complex model.) The patterns in Fig. 9 (a) and (b) are misaligned slightly, which results in nonzero predicted total responses
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Figure 8. Relative errors e1 and e2 defined respectively by Eqs. (18) and (19) for the predicted total responses of the zonally-averaged surface

air temperature to combined ramp forcings. (a) is a companion diagram to those in Figs. 6 and 7 belonging to the weak forcing scenarios

(CR1, BR1), whereas (b) shows the same for the stronger forcing scenarios (CR2, BR2). Discrete data points are connected by lines to aid

reading the diagram.

of opposite sign in neighbouring regions, BR2. It is shown in panel (c) of the same Figure. The picture for the weaker forcings,

CR1, SR1 (not shown), BR1 (Fig.9 (e)), is similar.

Unsurprisingly, large predicted residual total responses occur where the response is large to either greenhouse or solar

forcing alone. However, the predicted total response turns out to be grossly erroneous (II); the truth regarding the surface

air temperature, shown in panel (d) for BR2 and (f) for BR1, is much ‘better behaved’ for both forcing strengths: significant5

cancellation is achieved even locally. (We note that the overwhelmingly red (blue) color in panel (d) ((f)) is consistent with the

signs of the true residual total global change shown in Fig. 4 (b).) However, looking at the temperatures at the highest model

level, nearest the tropopause, the response under combined forcing (BX2) relative to the response under, say, solar forcing

alone (SX2) is much larger at the tropopause – evidenced in Fig. 10 (a) and (b) – in comparison with the surface, the latter

given by comparison of Fig. 9 (b) and (f).10

3.2 Annual precipitation

Here we present results for another diagnostic observable the annual precipitation Py with a reversed order with respect to the

spatial characteristics as compared to Sec 3.1; and we do not distribute the material into subsections. In terms of the spatial

patterns of response, very similar conclusions can be drawn for the precipitation as for the surface air temperature, which is

supported by the set of diagrams in Fig. 11. However, the largest responses are observed at equatorial regions, and it is not15

clear what mechanism causes it. Most importantly: significant cancellation is actually achieved as opposed to the ‘damning’
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Figure 9. Spatial variation of the stationary climate in terms of the surface air temperature belonging to different forcing levels specified by

plateaus of forcings collected in Table 1. (a) CX2 (b) SX2 (c) BX2 (d) BX2 (e) BX1 (f) BX1. All diagrams picture the truth, except for (c)

and (e) which show the linear predictions. Mind the different ranges of the temperature for the colourbars.
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Figure 10. True spatial variation of the stationary climate in terms of the air temperature in the topmost model layer, nearest to the tropopause.

(a) BX2 (b) SX2.

Table 2. Global average stationary climatology of the annual precipitation belonging to different forcing levels.

Forcing CX1 CX2 SX1 SX2

∆〈[Py]〉∞ [mm] 74 124 -71 -121

linear prediction. This is so even if the solar forcing used is the same as before, i.e., that was determined with the aim to cancel

global warming (not wettening; in the same spirit as Fig. 4 of (MacMartin and Kravitz, 2016)). This clearly suggests that the

response characteristic of Py to greenhouse and solar forcing, say in terms of the respective Green’s functions, are very similar,

similarly to the corresponding Green’s functions of Ts. Nevertheless, a difference of the response characteristics of [Py] and

[Ts] is manifested in the nonzero linear prediction for the total response in the stationary climate seen in Fig. 12. In comparison5

with the true total responses plotted in the same diagram, the linear prediction is quite ‘unreliable’, as can be expected from the

mismatch of the true and predicted spatial patterns. Otherwise, both the predicted and the true total global mean responses

to combined forcing look rather negligible to the responses to the greenhouse or solar forcings acting separately, listed in Table

2. Interestingly, the transient responses (not shown) have similar qualities to those of the temperature: nonlinearity is most

obvious for CR2 as opposed to CR1, SR1, SR2.10

We note that Equatorial drying under a similar geoengineering scenario has also been reported in (Ferraro et al., 2014;

MacMartin and Kravitz, 2016). However, in these studies a quadrupling of [CO2] was considered. We point out that it does

seem to matter what levels of change we consider: under [CO2]-doubling we find actually less drying than in the case of the
√

2-fold [CO2] increase. This finding can, however, have different reasons. One candidate is that the response under combined

forcing is nonlinear; and the other one is that (assuming that the response under combined forcing is approximately linear) the15

required solar forcing was determined inaccurately (which resulted already in a residual response as seen in Fig. 4 (b)). Note

that in (Ferraro et al., 2014; MacMartin and Kravitz, 2016) an exact cancellation of global mean surface temperature

was achieved in the stationary climate, like e.g. in the G1 GeoMIP experiment. Given this, Fig. 4 of (MacMartin and
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Figure 11. Same as Fig. 9 but for the annual precipitation.
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Figure 12. Same as Fig. 4 (b) but for the annual precipitation, and showing separately the cases of (a) BR2 and (b) BR1..

Kravitz, 2016) indicates that the response of the global mean is approximately linear in most CMIP5 models considered,

at least up to a certain forcing level that was actually lower than [CO2]-doubling. In the following we show that both of

these effects play a role, i.e., nonlinearity is also present in our case, however, it should not be the dominant component.

Drying while global average surface temperature would be maintained in a model was reported also in (Ricke et al., 2010,

2012).5

4 Improved methodology and results

4.1 Achieving cancellation (I)

The very close resemblance of the patterns seen in Fig. 9 (a) and (b) hints that the effect of a changing [CO2] on the radiative

forcing shaping the surface air temperature is very similar to that by a changing solar strength. However, by this data we are

not properly informed about just how similar, because e.g. the CR2 and SR2 forcings act in opposite directions, and because10

of nonlinearities they do not have to have the same effect even if the effect due to forcings acting in the same direction were

indistinguishable. Therefore, we produced just that missing simulation: complimenting SS2, for which the applied solar forcing

is a step of equal magnitude but opposite sign. For this forcing the stationary climate is shown in Fig. 15 (a), to be referred to as

SS2I. It is virtually indistinguishable from the pattern resulting for CS2, seen in Fig. 9 (a), including a lack of such misalignment

like the comparison of panels (a) and (b) of Fig. 9 revealed. This goes beyond the report on the (approximate) “equivalence”15

of greenhouse and solar forcings with respect to (asymptotic in time) global average surface temperature (Boschi et al., 2013);

this is extended now to regional averages, i.e., spatial patterns, of that variable with a remarkable degree of approximation.

(Just how close this equivalence is is to be indicated by Fig. 14 (a).)
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Figure 13. Spatial variation of the stationary climate in terms of the air temperature. (a) True response under SS2I, (b) predicted response

under combined forcings used for SS2 and SS2I amounting to no forcing.

The superposition of the stationary climates for SS2 and SS2I, displayed in Fig. 15 (b), is in turn almost indistinguishable

from the asymptotic total response to combined BR2 forcing, seen in Fig. 9 (c). By inspection of Eq. (2), this pattern turns out

to be created by even-order nonlinear perturbative terms of the response. The selection of the even order terms takes exactly

the superposition of the responses from two experiments where the forcing is equal and has opposite sign: ε1 =−ε2.

Instead of eliminating the even-order terms by superposition, of course we can retain only the odd-order terms by subtraction.5

We proceed in this direction assuming that the third and higher-odd-order terms have a negligible contribution. This way we

attempt to improve on the results for the linear susceptibility – and so ultimately on our prediction of the required solar forcing

needed for canceling global warming. This is done clearly to the end of making an advance regarding our objective (I). We can

then apply this forcing in a new experiment coded as BR2C (‘C’ for ‘cancel’). For this experiment we can utilise (although

we will not examine the transient9) our finding that the response characteristics to greenhouse and solar, i.e., short-wave and10

long-wave radiative, forcings are very similar, which would allow for applying a solar forcing that is a simple straight ramp,

just like log([CO2]/[CO2]0)(t), having the same length before the plateau. (This should be the rationale behind the G2

experiments of GeoMIP.) That is, what we improve on here is only the level of the plateau. It is rather straightforward to

obtain the following equations for this level f∞,BR2C,s:

χ[Ts],∞,s =
|∆〈[Ts]〉∞,SS2|+ |∆〈[Ts]〉∞,SS2I |

2|f∞,SS2|
, (20)15

χ[Ts],∞,g =
|∆〈[Ts]〉∞,CS2|+ |∆〈[Ts]〉∞,CS2I |

2|f∞,CS2|
, (21)

|∆〈[Ts]〉∞,BR2C |= χ[Ts],∞,s|f∞,BR2C,s| −χ[Ts],∞,g|f∞,BR2C,g|, (22)

|∆〈[Ts]〉∞,BR2C |= 0. (23)

9The precise treatment of the transient proceeds by solving the same inverse problem as outlined in Sec. 2.3, centred around eq. (15), only that the impulse

responses in that equation, e.g. h̃Ψ,g , need to be produced as an average from two simulations each, as also done in (Gritsun and Lucarini, 2017).
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The subscripts of∞ refer to the asymptotic/stationary climate regime, other subscripts refer to the experiment/forcing scenario.

Observe that data from a new experiment is needed, CS2I, where the ‘I’ indicates an experiment related with CS2 analogously

to the relation of SS2I with SS2. Since we are interested in the stationary climate regime only, due to ergodicity we can

produce just a single long trajectory instead of an ensemble. The result of this is ∆〈[Ts]〉∞,CS2I =−5.11 [K] (while we

already have ∆〈[Ts]〉∞,SS2I = 4.36 [K], and from Fig. 2 that ∆〈[Ts]〉∞,SS2 =−∆〈[Ts]〉∞,CS2 =−4.90 [K]). Having that5

|f∞,BR2C,g|= |f∞,CS2|, we can express the sought-for forcing in relative terms based on the temperature data only, such as:

|f∞,BR2C,s|
|f∞,SS2|

=
|∆〈[Ts]〉∞,CS2|+ |∆〈[Ts]〉∞,CS2I |
|∆〈[Ts]〉∞,SS2|+ |∆〈[Ts]〉∞,SS2I |

= 1.08. (24)

In fact, we carried out the BR2C experiment independently: iteratively determining a solar forcing that cancels to a very good

approximation the total response (similarly how the level for e.g. SS2 was determined observing the result of CS2). This forcing

in the above relative terms was found to be 1.11, agreeing well with our prediction of 1.08.10

Given that our prediction is smaller than the actually needed forcing for cancellation, we can predict an upper bound on the

actual total response to our predicted forcing by substituting into Eq. (22) the actually needed value |f∞,BR2C,s|/|f∞,SS2|=
1.11 (assuming that the response under combined forcing is linear). This gives ∆〈[Ts]〉∞,BR2C < 0.134 [K]. Considering

that the total residual response with the original methodology (Sec. 2) was 0.6 [K], this means that with the improved method-

ology we managed to reduce the total response almost to the one fifth or even less of the said first result. (Of course, the exact15

reduction can be easily obtained by an extra simulation, which we have not run.) In fact, some residual total response even

with the improved method could be expected, as the simple measure of nonlinearity (17) indicated that linearity is much more

‘violated’ by increasing radiative forcing as opposed to a reducing one. This prompts that the third-order odd perturbative term

is not ‘minuscule’ relative to the second order one – contrary to the assumption of our improved methodology. Another source

of error could be a nonlinear component of the response under combined forcing.20

4.2 Uncontrolled response and its (non)linearity (II)

Even if we managed to achieve a perfect cancellation in terms of the global averages, amounting to a success in terms of

our objective (I), it is still important to examine the total response in terms of any other observables regarding which the

cancellation is not enforced, whether there is any unwanted residual. To this end we look at the BR2C data. In particular,

in Fig. 14 we show the spatial variations of the stationary climate in terms of (a) the surface air temperature and (b) annual25

precipitation. The former one looks like a ‘crossover’ of Fig. 9 (d) and (f), and the latter like that of Fig. 11 (d) and (f). More

precisely, the new diagrams look to lie in between the respective said old diagrams in the sense of an interpolation. This implies

that the (true/simulated) variances with respect to space for BR2C (‘perfect job’), both for temperature and precipitation, are

about the same as those for BR2 (‘less than perfect job’), and are much larger than the residual total responses in terms of the

respective global averages for BR2. The reason for this is clearly that the response characteristics10 to greenhouse and solar30

forcing coinciding with respect to the individual spatial locales are somewhat different. However, it is not really the constancy

10This characteristics is certainly meant to be within the regimes of the actually realised total response. As this regime is finite, possibly significant nonlinear

elements of the characteristics are included in our meaning. This is why we did not write at this point ‘sensitivity’ in place of ‘characteristics’.
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Figure 14. Spatial variation of the stationary climate in terms of (a) the surface air temperature and (b) annual precipitation in the BR2C

experiment, when a change in the global average surface air temperature is canceled. (c)/(d) The improved linear prediction corresponding

to (a)/(b).

of the spatial variance with (slightly) varying levels of the applied solar forcing that is important from a practical point of view,

but rather the sensitivity of the response in any locale. Comparing the BR2 and BR2C scenarios, we see that the difference in

terms of the climatic surface air temperature could be as much as 2 [K], which is about 10% of the maximal response under

the corresponding greenhouse forcing alone.

The improved methodology to estimate susceptibilities applies of course to regional averages too. What remains5

to be seen now is if linear response theory can predict the residual total responses seen in Fig. 14 (a) and (b) (II).

The corresponding linear predictions are shown in panels (c) and (d), respectively. These predictions show a dramatic

improvement on the first results shown in Fig. 9 (d) and Fig. 11 (d), respectively. Quantitatively, however, the prediction

is not perfect. We can quantify this by e.g. the Pearson correlation coefficient C between the truth ∆〈Ψ〉 and the

linear prediction 〈Ψ〉(1), the results of which is shown in Table 3. (Note that no weighting of the data points with the10

area represented by grid points is done.) This shows that the prediction skill is better for the temperature than the

precipitation.

Whether the imperfection of the linear prediction is due to nonlinearity – as a small error E = ∆〈Ψ〉− 〈Ψ〉(1) should

normally suggest – is not clear, because it is possible that the response ∆〈Ψ〉 is linear but errors in the susceptibility
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Table 3. Measures of overall nonlinearity of the response in terms of the local temperature and precipitation. C is the Pearson

correlation coefficient between the truth ∆〈Ψ〉 and the linear prediction 〈Ψ〉(1), and ρ is defined by Eq. (26). Note that to calculate

std(ρ), values of ρ larger in modulus than 5 are discarded. The last column is devoted to the global averages.

Pearson corr. coeff. std(ρ) ρ

Ts 0.78 0.26 0.73

Py 0.53 1.01 0.70

estimates determining 〈Ψ〉(1) (or rather its estimator) remain. We should thus find a way to check linearity without

relying on the linear prediction. This can be done in a naive way similarly to (17). However, this time we do not have

a single forcing present but two. Because of this, it turns out that a check of linearity requires not two but three data

points at least. In fact we are readily endowed by three data set candidates resulting from the BR1, BR2 and BR2C

experiments. In each scenario, if the response is linear the asymptotic climate would be given by an equation like5

∆〈Ψi〉= χΨ,gfi,g +χΨ,sfi,s, i= 1,2,3, (25)

where i= 1,2,3 stand for, say, BR1, BR2, BR2C, in that order. One can express χΨ,s from the eq. of i= 3, substitute

into the eqs. of i= 1,2, and from these latter express χΨ,g . Under linearity the ratio of these expressions,

ρ=

∆〈Ψ2〉−∆〈Ψ3〉
f2,s
f3,s

f2,g−f3,g
f2,s
f3,s

∆〈Ψ1〉−∆〈Ψ3〉
f1,s
f3,s

f1,g−f3,g
f1,s
f3,s

, (26)

would be of course unity, meaning that Eqs. (25) are in fact satisfied. We have evaluated ρ for all grid points and10

display the results in Fig. 15. This suggests that we do have nonlinearity both for the temperature and precipitation.

However, this conclusion can be called into question by noticing that the three data points could be too close to one

another so that the ratio is not estimated accurately, prompting nonlinearity falsely. One idea to indicate that deviation

from unity of both the correlation coefficient C and ρ are due to nonlinearity would be to demonstrate a correlation

between the error E of the linear prediction and ρ. We have checked the scatter plots of these quantities for both15

the temperature and precipitation and found no sign of correlations. This, however, does not mean that the response is

linear; some unidentified effect can destroy the correlation. Our final idea is that if two situations feature different levels

of nonlinearity, even if the two grid-point-wise quantifiers of nonlinearity, E and ρ, have random errors, “on average”

they should indicate in a coordinated way a stronger deviation from linearity in the case when nonlinearity is actually

stronger. We propose to capture this “average” or statistical indicator by the correlation coefficient C, on the one hand,20

and the standard deviation std(ρ) over the grid points, on the other hand. Clearly, even if linearity is typical, a smaller

std(ρ) would indicate that it is more typical. We have already given the correlation coefficient in Table 3, where we also

display std(ρ). We do indeed see that by both quantities the response of precipitation is prompted to be more nonlinear.
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Figure 15. Non/linearity of the response in terms of (a) temperature and (b) precipitation, measured by ρ given by the expression

(26). Any values of ρ lying outside of the range of the colourbar are represented by the limiting red and blue colours.

In the last column of Table 3 we show ρ for the global averages [Ts], [Py] (not the average of the grid-point-wise

ρ’s, but having e.g. Ψ = [Ts] in Eq. (26)). The steady state values are estimated by taking the temporal mean of the

ensemble means in the last 80 years. These values could be somewhat inaccurate because of the drift seen in Figs. 4

(b) and 12 (b) for the BR1 simulation. But considering the possible maximum values of ρ for both Ψ = [Ts] and [Py], a

degree of nonlinearity still seems very likely. The figures indicate that the response of the global average precipitation,5

unlike the local values/regional averages, is not significantly more nonlinear than the response of temperature under

geoengineering. These results caution us about the reliability of linear predictions of side effects as part of an assessment

exercise;

– predictions of regional responses are less reliable than the global response, and

– some quantities can respond more nonlinearly than others.10

5 Summary and Outlook

We defined and solved an inverse problem to find a solar forcing that can cancel global warming that would otherwise result

from a change in the greenhouse forcing. In fact, we can allow for other choices of the scalar observable to keep under control,

either with respect to the physical quantity, or considering e.g. local variables. One can also prescribe an arbitrary time

evolution of the chosen observable. The inverse problem constitutes thereby a generic framework for analysing/assessing15

geoengineering scenarios. The inverse problem itself was derived in the framework of linear response theory. Because of the

true nonlinear characteristics of the response the degree of approximation of the solution specifically for the cancellation of

global average surface air temperature depended on the method and its success of determining the linear susceptibilities or

Green’s functions belonging to the different forcings (I). The issue stems from the fact that for the estimation of the Green’s

functions we used finite magnitude external system identification forcings, in which case the nonlinearity of the response is20

already felt, while for the cancellation, i.e., zero total response, we would need the linear susceptibilities exactly – assuming
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the response is linear under combined forcing. An inaccurately predicted required solar forcing leads to a nonzero residual

true total response.

By a simple method, also used in (Gritsun and Lucarini, 2017), here, for determining the susceptibilities, we eliminate even-

order nonlinearities from the response in the system identification experiments. The price of this is having to run double as many

simulations for system identification. In the scenario of doubling CO2 concentration, by this method we could cut five-fold the5

unwanted actual total response arising instead of cancellation. Furthermore, the linear prediction of spatial patterns using the

improved local susceptibilities improved dramatically. Nevertheless, the prediction is not perfect, and we indicated that

the response under combined forcing should be somewhat nonlinear, and the degree of nonlinearity could be typically

stronger for some quantities. In particular, we found that in PlaSim the response of precipitation is more nonlinear

than that of the surface temperature. This casts a shadow over the use of response theory for an efficient assessment.10

Perhaps there would be still value in this method as larger scale quantities are expected to be better predictable. It may

also be that the nonlinearity is more modest in complex models. Otherwise it would be desirable in the future to work

out a method of predicting the nonlinear response in geoengineering scenarios.

Ours is the first such analysis of the linearity of regional response under geoengineering. It is a question whether

our findings in PlaSim carry over to state-of-the-art Earth System Models because they do respond more weakly in the15

presence of the seasonal cycle. The question certainly seems valid, however, as also CMIP5 models do feature nonlinear

regional response under [CO2] forcing only (Good et al., 2015; Winton, 2013). The response of global average surface air

temperature and precipitation has been found by MacMartin and Kravitz (2016) approximately linear in some CIMP5

models, seemingly more so than in PlaSim, but weaker forcing than [CO2]-doubling was considered, and the linearity

of regional responses were not analysed in detail.20

We pointed out also that instead of step-wise system identification forcing, it is better to use a Kronecker delta forcing in

order to achieve a better signal-to-noise ratio. As another gain from using a Kornecker delta forcing, the response would be

much more modest in magnitude, and hence it would stay further off regimes with more significant contributions of nonlinear

terms, and so the linear susceptibilites could be estimated more accurately even by the naive method.

We note that the presented method of predicting a required solar forcing is based on Green’s functions that are determined25

by externally forcing the system of interest. This is clearly not a method that could be put in practice in the case of the Earth

system. Therefore, this is another reason, beside the unpredictability of the 21st century greenhouse forcing, why the method

is suitable only for scenario analyses. However, the Green’s functions might be possible to estimate without externally forcing

the system, just from an observation of unforced fluctuations. The crucial question in this regard is whether the fluctuation-

dissipation theorem (Kubo, 1966; Leith, 1975) is applicable.30
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Appendix: The circular convolution theorem and its application

Taking the discrete-time Fourier transform (DTFT) of Eq. (12) we have, via the convolution theorem for discrete sequences (Katznel-

son, 1976), a formally analogous version of Eq. (6) with the individual Fourier transforms approximated by Fourier series:

〈Ψ̂〉(1)
2π (ω) = χ̂Ψ,2π(ω)f2π(ω), (1)

where e.g. f2π(ω) = DTFT{Tf [n]}=
∑∞
n=−∞Tf [n]e−iωn and f [n] = DTFT−1{T−1f2π(ω)}= 1

2πT

∫ π
−π dωf2π(ω)eiωn5

with a normalised nondimensional angular frequency ω. Featuring instead the dimensional frequency f measured in Hertz

= [sec−1], the forward and inverse transformation pairs are symmetrical: f1/T (f) = f2π(2πfT ) =
∑∞
n=−∞Tf [n]e−i2πfTn

and f [n] = T
∫

1/T
dff1/T (f)ei2πfTn. The DTFT, a continuous function of the frequency f , is often sampled at f = k/(NT ),

k = 0, . . . ,N − 1:

f1/T (k/(NT )) = T

∞∑
n=−∞

f [n]e−i2πkn/N = T

n0+N∑
n=n0

fN [n]e−i2πkn/N = T ×DFT{fN [n= n0, . . . ,n0 +N ]}, (2)10

with any n0, which yields the discrete Fourier transform (DFT) of the finite sequence fN [n], n= n0, . . . ,n0 +N , where the

full infinite sequence fN [n], n ∈ R, turns out to be N -periodic, since for the equivalence of the two sums under (2) it has to be

in the so-called periodic summation form:

fN [n] =

∞∑
m=−∞

f [n−mN ]. (3)

Therefore, when f [n] is actually N -periodic, its DTFT is nonzero only at f = k/(NT ), k ∈ R, and also periodic, such that the15

DFT of a single cycle of f [n] is able to represent its DTFT. For such periodic sequences, to be denoted distinctively using a

subscript as fN [n], it can be proven (Katznelson, 1976) that:

y ∗ fN = DTFT−1{DTFT{y}DTFT{fN}}= DFT−1{DFT{yN}DFT{fN}}, (4)

with any nonperiodic sequence y[n]. Note that y∗fN is referred to as the circular convolution of sequences y[n] and f [n]. When

the y[n] and f [n] sequences have a finite length, n= 0, . . . ,N−1 with anyN ≥ 1, so that e.g. fN [n] = f [mod(n,N)], their cir-20

cular convolution can be shown (Katznelson, 1976) (https://uk.mathworks.com/help/signal/ug/linear-and-circular-convolution.

html) to be:

(y ∗ fN )[n= 0, . . . ,N − 1] =

N−1∑
k=0

y[k]fN [n− k] = DFT−1{DFT{y}DFT{f}}, (5)

which equality is called the circular convolution theorem. It follows that when y[n] = 0 and f [n] = 0 for n= 0, . . . ,Nf − 1

and Ny−1, respectively, then (y ∗ fN )[mod(n−1,N)] = (y ∗ f)[n] for n=N,. . . ,N + min(Nf +Ny,N −1). Furthermore,25

(y ∗ f)[n], n= 1 +Nf +Ny, . . . ,N + 1 +Ny is the segment that represents the part of the linear convolution that can be

considered useful in the sense that it coincides with the occurrence of the finite values of f in a finite time interval of length
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N −Nf . Therefore, the circular convolution (y ∗ fN )[n] captures the useful part of the linear convolution over n= max(1 +

Nf +Ny,N), . . . ,N + min(1 +Ny,Nf +Ny,N − 1).

Therefore, when facing the practical situation of having finite time series, f [l] and hΨ[l], l = 0, . . . ,L−1, Eq. (5) can be used

to determine the response hΨ ∗ f [l], l = 0, . . . ,L− 1 (whose usefulness is coming from efficient algorithms for evaluating the

DFT, called fast Fourier transform algorithm, FFT). In particular, if the two sequences are to be padded in front by a number5

Nf =Nh =N0 of zeros equally (so that the circular convolution (5) be well-defined), then the reconstructed length of the

linear convolution hΨ ∗f (the response of a causal system coinciding with the forcing) is 1+N0−max(N0−L+1,0). This is

a linear function ofN0 saturating atN0 = L−1 reaching the full length L. Therefore, for simplicity one can pad byN0 = L−1

zeros11, and we will denote these padded sequences by e.g. f̃ [l], l = 0, . . . ,2(L− 1). Note that padding with fewer or no zeros

results in a circular convolution that better approximates either the useful or the not useful part of the linear convolution, which10

approximation is the better the more zeros are used. In the extreme case of no padding, very little of the useful part could be

well-approximated. The key to the applicability of Eq. (4) is that it does not matter how the forcing f [n] – and with it the

response 〈Ψ̂〉[n] – continue after our experiment, and so they can be thought of as periodic.
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