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Abstract.

The causal dependences between the dynamics of three different coupled ocean-atmosphere basins, The North Atlantic, the

North Pacific and the Tropical Pacific region, NINO3.4, have been explored using data from three reanalyses datasets, namely

the ORA-20C, the ORAS4 and the ERA-20C. The approach is based on the Convergent Cross Mapping (CCM) developed

by Sugihara et al (2012) that allows for evaluating the dependences between variables beyond the classical teleconnection5

patterns based on correlations.

The use of CCM on these data mostly reveals that (i) the Tropical Pacific (NINO3.4 region) only influences the dynamics

of the North Atlantic region through its annual climatological cycle; (ii) the atmosphere over the North Pacific is dynamically

forcing the North Atlantic on a monthly basis; (iii) on longer time scales (interannual), the dynamics of the North Pacific and

the North Atlantic are influencing each other through the ocean dynamics, suggesting a connection through the thermohaline10

circulation.

These findings shed a new light on the coupling between these three different important regions of the globe. In particular

they call for a deep reassessment of the way teleconnections are interpreted, and for a more rigorous way to evaluate causality

and dependences between the different components of the climate system.

Copyright statement. TEXT15

1 Introduction

In environmental sciences, statistical quantities are essential tools to characterize the properties of a system, the most familiar

of which are the mean, the variance, and the correlation in space or time. Correlations are very often associated with the notion

of dependences in climate sciences, assuming that a certain variable is influencing the one to which it is correlated. Although it

is true when dealing with a Gaussian linear system, the picture becomes far more complicated when dealing with a nonlinear20
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system. In particular for nonlinear deterministic dynamical systems, the correlation between variables is neither sufficient nor

necessary for causation or dependence between these variables, e.g. (Granger , 1969, 2003; Sugihara et al , 2012).

Teleconnections in the form of correlations between distant points in space are used in climate sciences in order to evaluate

the link of a dynamical process in some part of the world with a distant target. In particular, an important question that has

attracted a lot of attention in the past decades is to know whether the Tropical Pacific system forces the dynamics of the climate5

system in the extratropics. In this context, important teleconnections are found between events like El-niño or La-niña and

the temperature and precipitation patterns allover the World, e.g. (Fraedrich and Müller , 1992; Brönnimann , 2007; Lau ,

2016). The origin of these teleconnections for the North Atlantic and North Pacific is currently explained through the concept

of atmospheric bridge that allows for the transfer of information from one basin to another, e.g. (Sardeshmukh and Hoskins

, 1988; Alexander et al , 2002; Yu and Lin , 2016; Lau , 2016). This explanation assumes that there is a causality principle10

leading to these teleconnections, mostly going from the Tropical Pacific to the remote regions. This view originating from

teleconnection patterns should however be taken with care, since co-variability does not imply causation or inter-dependences

as already mentioned above. Another possible explanation of these teleconnections is the influence of an external driver on

both variables that are correlated, even if they are dynamically independent.

How can we then measure this dependence? Answering this question is difficult as discussed by Clive Granger in his Nobel15

lecture in 2003 (Granger , 2003). One way proposed by Granger (1969) is to use the information on the predictability of the

system with or without the influence of the variable expected to be the cause. In this context two forecasting models should be

developed one with and the other without the variable investigated as predictor (Mosedale et al., 2006; Mokhov et al , 2011;

Tirabassi et al , 2015). A drawback of the approach is precisely the necessity to build such a forecasting model. Moreover as

discussed in details in the supplementary material of Sugihara et al (2012), the approach can lead to ambiguous results when20

applied to nonlinear deterministic dynamical systems.

A powerful method has been recently proposed by Sugihara et al (2012), known as Convergent Cross Mapping (CCM),

which is a method suitable for nonlinear deterministic dynamical systems as it is based on analogs of the current state. This

method has also been tested with success when nonlinear dynamical systems are affected by noise (Mønster et al , 2017), and

in coupled dynamical systems in order to identify the leading element of the coupling (BozorgMagham et al , 2015). It has also25

been recently used to disentangle the link between galactic cosmic rays and the variations of the global temperature (Tsonis

et al , 2015; Luo et al , 2915; Ye et al , 2015) or between environmental drivers and influenza (Deyle et al , 2016). This is the

method that will be used in the present study. Alternative approaches based on the transfer of information are very appealing

and a lot of progress have been made in that direction (Liang and Kleeman , 2005; Runge et al , 2012; Liang , 2014, 2015). We

however do not pursue in that direction and let the use of these techniques for a follow-up study.30

In the present work, we address the question of causality dependence between the Tropical Pacific, the North Atlantic and

the North Pacific coupled ocean-atmosphere dynamics at monthly to interannual time scales, in order to clarify the remote

role of these different climate sub-systems on the others. This will be done by first constructing low-order systems based on

projections on a few Fourier modes that are assumed to dominate the dynamics in each of the basins. This projection has

already been applied successfully in the context of the analysis of the coupling between the ocean and the atmosphere over the35
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North Atlantic (Vannitsem and Ghil , 2017). Once these projections are identified, the time series associated with each of these

modes can be analyzed using the CCM approach. The specific choice of regions and Fourier modes, although reasonable, is

however a little arbitrary. The current analysis is therefore a proof-of-concept on investigating the question of causality in the

Earth System dynamics using the CCM approach, keeping in mind that an extension of the analysis to other regions and state

(or phase) space representations should be explored.5

Section 2 will introduce the technique of Convergent Cross Mapping (CCM). In Section 3, the datasets and the projections

used are described. The datasets are coming from reanalyses performed at the European Center for Medium Range Weather

Forecasts (ECMWF). The results on the application of CCM on these data are then presented in Section 4. The main conclusions

and future works are outlined in Section 5.

2 Convergent Cross Mapping (CCM)10

In the present work as in Sugihara et al (2012), two variables recorded as a function of time, say X(t) and Y (t), are said

causally linked if they are coming from the same dynamical system. In this case a two-way dependence relation is present

between them and the information gathered from one of the variables should, in principle, provide information on the other

one. This type of dependence should not be confused with the case where a dynamical system is forced by an external driver, in

which case there is a one-way dependence from the driver to the dynamical system. Disentangling the nature of this coupling15

is crucial in science when one is interested in describing the dynamics of the system under investigation. This is particularly

true when the system is very complicated, as the Earth System is.

Several approaches have been developed in the recent past that allow for analyzing the dependences between time series.

Granger Causality (GC) analysis is a celebrated approach based on the evaluation of the predictability of a variable in the

absence or the presence of an hypothetical driver (Granger , 1969). As indicated in Sugihara et al (2012), its application is20

restricted to separable systems for which the driver can be effectively removed. In nonlinear deterministic dynamical systems in

which all the variables are interconnected, the GC approach does not provide the desired answer on the effective link between

the variables, see the examples given in Sugihara et al (2012). These authors therefore propose to approach the problem of

causality in systems governed by deterministic dynamical systems by considering that the variables are indeed sharing the same

attractor and that these variables can therefore provide information on each other. In addition, if an external driver is forcing25

the dynamical system under interest, the knowledge on the dynamics of the system can provide information on the driver, but

not the opposite.

The original method proposed by Sugihara et al (2012) is based on the Takens’ reconstruction theorem: Given a time delay

τ , an embedding dimension E of an Euclidean space and the time series of a variable X , a reconstructed attractor, Mx, can be

built. Each variable of that state space corresponds to a given delay, and each point of the reconstructed attractor is obtained30

from the time series as follows X(t) =X(t),X(t−τ),X(t−2τ), ...,X(t−(E−1)τ). For each state space point, X(t), of the

reconstructed attractor, a set of close points are selected, called analogs, based on a distance, typically the Euclidean distance

di =
√∑

j(Xj(t)−Xj,i(t))2 where Xj(t) and Xj,i(t) are the (delay) coordinates of the reference point and the ith analog,
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respectively. Other distances could be used. Since these are close to X(t), they should share some dynamical properties that

can be exploited to make predictions starting from the current situation at time t. This set of analogs can also be used to recover

the value of another variable, say Y (t), contemporary to X(t). The idea is to use the analogs found around X(t), to predict

the expected variable Y (t), denoted Ŷ (t), as

Ŷ (t) =

E+1∑
i=1

Yi×wi (1)5

using weights defined as,

wi =
exp(− di

mindj
)∑

i exp(− di
mindj

)
(2)

where the distances di are associated with the E+ 1 analogs obtained for the variable X (Tsonis et al , 2015), and Yi are the

values of Y contemporary to the ith analog on Mx. The number of analogs, E+ 1, is chosen such that one can form a simplex

around the point X(t). The quantity mindj denotes the minimum of dj of the j = 1, ..,E+1 analogs around the reference point10

X(t). The development of this type of nonlinear forecasting traces back to several seminal papers, see for instance Casdagli

(1991); Elsner and Tsonis (1992) for a detailed discussion. In their original versions, more general weights wi were proposed

that should be fitted through a least square approach Casdagli (1991). Sugihara and May (1990) proposed to simplify the

approach by using a simpler variant based on exponential functions depending on the distance between the analogs and the

reference point. This weighting penalizes analogs that are far from the reference point, and the normalization by the minimum15

distance allows for having weights based only on the relative distance. This technique works well as discussed in Sugihara and

May (1990). Moreover it does not need any additional parameter, implying that the approach is parcimonious.

The dynamical relation between the variables X and Y can then be studied by comparing the actual value Y (t) to the

inferred value Ŷ (t) obtained using analogs of X(t) on the Mx attractor. Repeting this method starting from different times t,

the correlation coefficient between Y (t) and Ŷ (t) can be computed:20

ρ=
cov(Y, Ŷ )

σY σŶ
(3)

where cov(., .) denotes the covariance between the variables Y (t) and Ŷ (t), and σY and σŶ are their standard deviations.

The values of ρ are thus lying between −1 and 1, and is also known as the Pearson correlation coefficient. High values of ρ

indicate that the estimation of Y is good. However, this correlation does not necessarily mean that there is causality, as already

emphasized in the Introduction. For instance, there could be a confounding factor Z that influences both X and Y in the same25

manner. In that case, X and Y would behave similarly, and therefore, there will be a correlation between σY and σŶ (Sugihara

et al , 2012).

To solve that problem, the method as described above can be repeated for increasing sizes L of the samples. For each sample

of size L, an attractor is build, from which analogs can be isolated and the correlation coefficient can be computed. Note that

different ways to build these L-size libraries were proposed without substantial differences (Ye et al , 2015). We therefore30

adopt this approach proposed in Tsonis et al (2015) by randomly selecting a set of L events. If Y influences X , the effect of
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Y will be present in the reconstructed attractor Mx. By increasing the length L, more information on the time series of X are

gathered, and therefore the selection of the analogs on the attractor is better. If there is a causality relation of Y on X , ρ will

increase with L. Another important behavior of ρ(L) as a function of L is that the rate of increase is related with the strength

of coupling.

On the contrary, if there is no causality, the added information on the variable X will not give any information regarding Y ,5

and the correlation coefficient will not increase with L. For instance, if a confounding factor Z affects both X and Y (that are

otherwise dynamically independent of each other), they will contain a similar information, and the inference of Ŷ based on X

will display a correlation with Y which is independent of L (Sugihara et al , 2012). This provides a criterion on the role of a

variable Y on X . Note also that in an ideal context where the attractor can be reconstructed with precision and for L going to

infinity, the correlation should converge to 1. In practical situations, this precision and the asymptotic limit are never reached.10

The convergence is then limited to a certain level by the presence of observational error, the approximation of the dynamics

(like when a low-dimensional approximation is made of the full system) and the length of the series, L.

The CCM method requires the knowledge of the embedding dimensionE and the time delay necessary for reconstructing the

attractor Mx from the time series. Estimating the embedding dimension based for instance on the estimates of the correlation

dimension of the attractor is very challenging when the expected embedding dimension is high since the approach needs to15

select close analogs to work properly (e.g. Kantz and Schreiber , 1995). It therefore needs very long time series that are usually

not affordable (Van den Dool , 1994; Nicolis , 1998). So a way to overcome this problem is to increase progressively the

embedding dimension and see whether the results are robust or not. For the delay τ , one usually uses a time period for which

successive situations become sufficiently decorrelated, but not too much. Different methods are usually proposed to evaluate

this delay, for instance based on decorrelation times, or simply by trial and error (e.g. Casdagli , 1991; Parker and Chua ,20

1989). In the present cases these delays should be relatively short for the atmosphere, but much longer for the ocean as it

can be guessed by inspecting the time series of the right panels of Figures 1 and 2. For the latter we are therefore facing an

important problem since the decorrelation time (or delay) is not substantially smaller than the length of the time series.

A practical alternative is to build an attractor from a set of contemporary variables that are relevant to the dynamics from an

expert evaluation. In such a case a set of E =N variables at the same time t are used as entries of X to represent the attractor25

(in fact a projection of the full attractor in a subspace of N variables), and the analogs around a specific state space point

X(t) can then be found in the same way as above. These analogs can be used to define the weights (2) that are in turn used

to predict Y (t). The influence of Y on X can then be inferred by computing Eq (1). In order to see what is the impact of the

modification of the approach it has been applied in the context of a well known system, a coupled ocean atmosphere model

of 36 ordinary differential equations developed in Vannitsem (2015), for which some results have been reported in Appendix30

B. One important result is the ability of the method to isolate dominant links between the projected attractor (the target of

the analysis) and specific variables. The nature of a link can sometimes be directly related to terms present in the dynamical

equations but not always due to the multivariate construction of the analogs on the projected attractor. Likewise the absence of

relationship inferred from the CCM in the present framework does not imply that there could not be some dependences when
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other projections of the full state space are used. The conclusions reached are therefore dependent on the specific configuration

used and other experimental designs are necessary to corroborate the conclusions. This is planned for a future investigation.

Overall this analysis demonstrates that the approach should be able to isolate important dependences between variables.

It provides some confidence in the CCM algorithm, but we should keep in mind that the system explored in Appendix B is

relatively simple and the application of CCM on more sophisticated climate models is worth performing. This is left for a future5

study whose results will be compared with the ones of the present analysis. Note also that when the series are much shorter

than discussed in Appendix B, correlation can also be negative indicating that the total length of the series has an important

impact.

The CCM method with this modification will be applied on the data presented in the next Section. Note that in order to

evaluate the impact of the random sampling of L events in the datasets, we can repeat the sampling a certain number of times10

and infer a mean (or a median when strong assymetries are present) and a standard deviation (here using the Fisher Z test).

In the experiments that will be described below, this approach is adopted and each correlation value is estimated over a large

number of samples. The algorithm is sketched in Appendix A.

3 Time series based on reanalysis datasets

The dynamics of the coupled ocean-atmosphere system has been recently investigated by adopting a novel approach which15

finds its roots in the low-order modelling of such dynamical systems (Vannitsem , 2015; Vannitsem et al , 2015). It consists

at projecting key fields of the large-scale dynamics of the system on a few sets of modes that are dominating its dynamics.

In Vannitsem and Ghil (2017), the coupling between the ocean and the atmosphere over the Atlantic has been investigated

by projection the geopotential at 500 hPa on the mode F1 =
√

2cos(πy/Ly), and the ocean potential temperature field at a

certain depth (close to the surface) and the sea surface height on the mode φ2 = 2sin(πx/Lx)sin(2πy/Ly). Note the sea20

surface height is a proxy for the upper-layer ocean streamfunction field. F1 is one of the largest-scale Fourier modes of the

atmospheric field that is confined in an x-periodic β-channel with free-slip boundary conditions in the y-direction, while

Φ2 is one of the dominant Fourier modes compatible with free-slip boundary conditions in a rectangular, Lx×Ly closed

basin. The latter mode corresponds to the typical structure of a double gyre in such a closed ocean basin. We thus expect the

projection of the geopotential on F1(x,y) to provide information on the intensity of the large-scale eastward zonal transport25

in the atmosphere, while the projection of the temperature and streamfunction field in the ocean on φ2(x,y) will allow us to

evaluate the strength of the dominant component of the meridional gradient of temperature and the intensity of the double-gyre

dynamics in the ocean, respectively. The domain chosen in terms of the spherical coordinates is 55◦W ≤ λ≤ 15◦W, 25◦N

≤ φ≤ 60◦N, with (x= λ−λ0,y = φ−φ0); here (λ0 = 305◦,φ0 = 25◦) and (Lx = 40◦,Ly = 35◦). Note that the domain

used here is the same as in Vannitsem and Ghil (2017) but a typographical error on the domain of projection is reported in30

the supplementary material of Vannitsem and Ghil (2017). The time series obtained for the North Atlantic will be denoted

NAΨa,1
,NAθo,2 ,NAηo,2 for the projection the geopotential at 500 hPa on the mode F1, the ocean potential temperature field at

5 meter deep and the sea surface height on the mode φ2, respectively.
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A similar approach can be performed for the North Pacific, except that the domain is now larger in the zonal direction. In

this case the spherical-rectangle domain is (165◦E–225◦E, 25◦N–60◦N). The series obtained for this domain will be denoted

NPΨa,1 ,NPθo,2 ,NPηo,2 as for the North Atlantic. Note that for both basins the projected time series contains the dominant

part of the variability. It however does not preclude that other important processes are missing in the description here. Further

analysis with more modes are certainly worth doing in the future.5

For the Tropical Pacific one can wonder what kind of variables should be considered. First a dominant variable in the Tropical

Pacific is the mean temperature of the upper ocean layer, known to be associated with the dynamics of El-Niño. It is also known

that the Walker circulation is considerably affected by the upper layer ocean temperature, and vice versa (Philander , 1990). Let

us therefore consider for now the mean ocean potential temperature in the NINO3.4 region, known to have strong correlation

with the variability in the North Atlantic region (Brönnimann , 2007). For the characterization of the Walker circulation, the10

zonal wind at 500 hPa and 200 hPa over the same domain are chosen. They provide some information on the position and the

strenght of the Walker circulation over the NINO3.4 region. The series obtained will be denoted as NIU200,NIU500,NIθo,av
.

This approach of reducing the dynamics of the ocean and the atmosphere to a few spectral large-scale components may

at first sight look arbitrary. However for the two midlatitudes basins these modes possess the largest amplitudes (Vannitsem

and Ghil , 2017), and for the Tropical Pacific, it is known that these large scale flows are strongly affected by the interaction15

between the ocean and the atmosphere. Moreover we are interested in the basin scale interaction between midlatitudes and the

tropics. If such an interaction exists, we expect that these should be visible through the analysis of these large-scale fields. It is

clear that these specific variables do not represent the full dynamics, and additional analyses with more modes is worthwile, in

particular to see what is the role of the main currents present in the ocean like the Gulf Stream or the Kuroshio current.

Three different reanalyses datasets from the European Center for Medium-Range Weather Forecasting (ECMWF) are used.20

The ERA-20C dataset provides a continuous reanalysis for the atmosphere of the 20th century which assimilates observations

from surface pressure and surface marine winds only. It is produced using the IFS model cycle Cy38r1 and detailed information

can be found on the website of the ECMWF at https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-20c, see

also the report on the quality of this reanalysis dataset (Poli et al , 2015). It covers the period 1900-2010.

The second dataset is the Ocean reanalysis ORAS4 obtained using the NEMO model. The ocean model is forced by the25

heat, momentum and fresh water fluxes at the upper surface, and ocean observations. For the upper surface fluxes, the ERA40

reanalysis dataset is used from September 1957 to December 1988, then the ERA-Interim from January 1989 to December

2009. In 2010, these fluxes are provided by the ECMWF operational analyses. For the SST and ice products, ERA40 (until

December 1981) and Reynolds dataset are used. Finally observational data within the ocean are the temperature and salinity

profiles from September 1957 to December 2010, and the sea level anomalies from November 1992 onward. More information30

on the datasets used and the model configuration can be found at tps://www.ecmwf.int/en/research/climate-reanalysis/ocean-

reanalysis, and more information on the quality of this product can be found in Balmaseda et al. (2013). The period covered

by the dataset used in the present study is fixed from January 1958 to December 2010.

Finally, the third reanalysis dataset used is the ORA-20C which is a 10-member ensemble of ocean reanalysis covering

the 20th century using atmospheric forcing from ERA-20C. This dataset is more homogeneous than the ORAS4 since the35
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atmospheric forcing is consistent during the whole 20th century. As pointed out in de Boisséson and Balmaseda (2016),

the uncertainty is large during the first part of the century before the assimilation process constrains all the members of the

ensemble to a state more consistent with other reanalysis products. One can suspect this dataset to be better than the ORAS4

for the dynamics of the ocean during the second part of the century since the state of the ocean has gotten some time to adjust

toward a representative climatology during the first half. We will therefore use data from January 1958 consistently with the5

ORAS4 dataset to December 2009, the final date of data availability at the time when the present work has been conducted.

So the atmospheric data from the ERA-20C that will be used in the present work will cover the same periods as the ones

fixed for the ORAS4 and the ORA-20C, respectively. All data used are monthly values.

The different monthly-averaged time series obtained by projecting the fields on the 2 Fourier modes are grouped by zones,

3 for the North Atlantic (containing one series for the atmosphere and two series for the ocean), three for the North Pacific (as10

for the North Atlantic), and three for the Tropical Pacific (two series for the atmosphere and one series for the ocean). The nine

time series based on the reanalyses ERA-20C and ORA-20C are displayed in Fig. 1 for the three regions. The three series in

each zone will constitute a 3-dimensional projection of the local coupled ocean-atmosphere dynamics. The same projections

but using the ERA-20C and the ORAS4 are displayed in Fig. 2.

Let us first briefly investigate the covariance structure of these time series. Table 1 displays the covariances between the15

different time series of Figs. 1 and 2, with on the left side of each column the covariances for the series of Fig. 1, while on

the right side, the ones corresponding to series of Fig. 2. There are a few remarkable correlations. First the ones between the

atmospheric fields NAΨa,1
, NIU200, NIU500 and NPΨa,1

, suggesting that some key variables of the global dynamics have

been selected. The ocean temperature modes,NAθo,2 ,NPθo,2 andNIθo,av are also highly correlated. Interestingly theNPΨo,2

is anti-correlated withNIθo,av. Another remarkable result is that the transport in the North Pacific,NPΨo,2
, is highly correlated20

with the transport in the North Atlantic,NAΨo,2
, although different amplitudes are found for the two ocean reanalysis datasets.

Some other correlations are much less robust when one looks at the two different ocean datasets, in particular associated with

the transport and the ocean temperature over the North Atlantic (second and third column in Table 1). These differences should

be associated with the different approaches to force the ocean model, and reflect important uncertainties in reconstructing the

past evolution of the Earth System.25

Table 1. Correlation coefficients between the different variables for the two reanalysis datasets. On the left: ORAS4, ERA-20C; and on the

right: ORA-20C, ERA-20.

NAΨa,1 NAθo,2 NAηo,2 NIU200 NIU500 NIθo,av NPΨa,1 NPθo,2 NPηo,2
NAΨa,1 1 0.22 | 0.12 0.12 | 0.05 0.45 | 0.45 0.45 | 0.46 −0.10 | −0.15 0.41 | 0.41 −0.18 | −0.14 0.02 | −0.03

NAθo,2 0.22 | 0.12 1 0.52 | 0.41 −0.06 | −0.20 −0.03 | −0.17 −0.13 | −0.10 0.07 | −0.05 0.39 | 0.42 0.28 | 0.29

NAηo,2 0.12 | 0.05 0.52 | 0.41 1 −0.17 | −0.06 −0.19 | −0.13 0.07 | 0.06 −0.09 | −0.01 0.07 | 0.10 0.25 | 0.55

NIU200 0.45 | 0.45 −0.06 | −0.20 −0.17 | −0.06 1 0.82 | 0.83 −0.48 | −0.58 0.49 | 0.50 −0.04 | −0.04 0.07 | 0.07

NIU500 0.45 | 0.46 −0.03 | −0.17 −0.19 | −0.12 0.82 | 0.83 1 −0.40 | −0.47 0.50 | 0.51 −0.08 | −0.07 −0.08 | −0.04

NIθo,av −0.10 | −0.15 −0.13 | −0.10 0.07 | 0.06 −0.48 | −0.58 −0.40 | −0.47 1 −0.05 | −0.12 −0.38 | −0.40 −0.22 | −0.21

NPΨa,1 0.41 | 0.41 0.07 | −0.5 −0.09 | −0.01 0.49 | 0.50 0.50 | 0.51 −0.05 | −0.12 1 −0.01 | −0.01 0.25 | 0.18

NPθo,2 −0.18 | −0.14 0.39 | 0.43 0.07 | 0.10 −0.04 | −0.04 −0.08 | −0.07 −0.38 | −0.40 −0.01 | −0.01 1 0.57 | 0.58

NPηo,2 0.02 | −0.03 0.28 | 0.29 0.25 | 0.55 0.07 | 0.07 −0.08 | −0.04 −0.22 | −0.21 0.25 | 0.18 0.57 | 0.58 1
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Figure 1. Monthly-averaged time series of the projections of the Atlantic, Pacific and Tropical fields on the dominant modes of the dynamics,

as obtained from the ocean reanalysis ORA-20C and the ERA-20C atmosphere reanalysis. Top row from left to right, the geopotential at 500

hPa projected on F1, the ocean temperature at 5 meters deep projected on φ2, and the sea surface height projected on φ2 for the Atlantic.

Middle row, as for the top row but for the Pacific. Bottom row from left to right, zonal velocity at 200 hPa and 500 hPa, and the ocean

temperature at 5 meters deep averaged over the NINO3.4 region. All time series are standardized (with a mean equal to 0 and a variance

equal to 1).
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Figure 2. Monthly time series of the projections of the Atlantic, Pacific and Tropical fields on the dominant modes of the dynamics, as

obtained from the ocean reanalysis ORAS4 and the ERA-20C atmosphere reanalysis. Top row from left to right, the geopotential at 500 hPa

projected on F1, the ocean temperature at 5 meters deep projected on φ2, and the sea surface height projected on φ2 for the Atlantic. Middle

row, as for the top row but for the Pacific. Bottom row from left to right, zonal velocity at 200 hPa and 500 hPa, and the ocean temperature

at 5 meters deep averaged over the NINO3.4 region. All time series are standardized.

Important correlations appear in the datasets explored, suggesting that common information are present in the different

coupled ocean-atmosphere basins discussed here. These correlations are presumably highly dependent on the seasonal cycle

affecting the Earth system. Further analysis by removing the seasonal signal could be done to clarify the correlations between

the anomalies found in each basins. We will not, however, go in that direction in the present work since there are several ways

to do it and since the seasonal signal is part of the dynamics itself. It suffices here to recognize that links exist between these5

basins, whose nature will be clarified by using the CCM algorithm discussed in Section 2. It will be shown that the annual cycle

is also affecting the CCM results and two different ways to disentangling its role on the causality analysis will be proposed.
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4 Results of the application of Convergent Cross Mapping

4.1 Reanalyses: ERA-20C/ORA-20C

Let us start the analysis by investigating the CCM for the series displayed in Fig. 1. In Panel (a) of Fig. 3, the correlation

ρ(L) of the inferred variable Ŷ with the actual solution Y is shown for the three variables of the Tropical Pacific. These

inferred variables are obtained by building analogs in the North Atlantic as described in Section 2. Note that a 95% confidence5

interval is provided based on the Fisher Z-transform test based on resampling a certain number of times the samples of length

L, indicating that the influence of the two atmospheric Tropical series is significant. This confidence interval for large L is

larger than for smaller values due to the fact that we are reaching the limit of the number of data points. Note also that for this

analysis, the analogs have been selected to be at least separated by a period of 12 months. Longer exclusion periods have been

used without substantial differences.10

An increase of the correlation is found as a function of L, suggesting that the North Atlantic depends on the two large-scale

atmospheric variables selected for the Tropical Pacific. The correlation for the ocean temperature of the Tropical region is

however negative. As already mentioned previously this feature may occur when the time series is too short and when there is

no significant coupling between the variables. This suggests that the prediction of the Tropical temperature based on analogs

over the Atlantic are very poor, and therefore indicates the absence of influence of the Tropical ocean temperature. So the15

dominant influence is from the zonal flows in the atmosphere, associated with the dynamics of the Walker circulation.

The influence of the three variables of the North Pacific on the North Atlantic is very important as shown in Panel (b) with

the three CCM increasing and significantly positive. The North Pacific ocean dynamics has a larger influence than the North

Pacific ocean temperature on the Atlantic, as reflected by the larger amplitude of the CCM values. Note that the reduction of

the state space coordinates associated with X from three to two also provides interesting results with a dominating influence20

from the atmospheric Tropical Pacific variables on the two-dimensional projection (NAΨa,1 ,NAθo,2). However the increase

before saturation of ρ(L) is much more limited than when using the three variables to build the North Atlantic projection of

the attractor (not shown). The latter analysis suggests that the dependences between these regions is better elucidated based on

the three dimensional space.

The impacts of the North Atlantic and of the North Pacific regions on the Tropical Pacific are displayed in Panels (c) and25

(d). All CCM values of Panel (c) are almost flat as a function of L suggesting that even when it is positive (very significant

for the geopotential at 500 hPa), there is no dependence of the Tropical Pacific on the dynamics over the Atlantic. A slightly

different picture emerges for the influence of the North Pacific on the Tropical Pacific, with a slightly increasing CCM for the

Geopotential at 500 hPa over the North Pacific suggesting an influence of the upper-air dynamics over the North Pacific on the

Tropical Pacific. Note that sometimes it is difficult to have a clearcut answer on the increase or not of a correlation as a function30

of L. There is a degree of arbitrariness that should be alleviated using other approaches as the ones that will be discussed later

based on the temporal averaging or based on surrogates.

In Panels (e) and (f), the CCM values characterizing the influence of the North Atlantic (e) and Tropical Pacific (f) on the

North Pacific, are displayed. A clear increase of CCM associated with the influence of the North Atlantic ocean dynamics
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Figure 3. CCM as a function of the length L of the samples, as obtained from the monthly time series displayed in Fig. 1 for the reanalyses

ERA-20C and ORA-20C. Each line with symbols corresponds to the influence of one variable on a specific coupled ocean-atmosphere basin.

The specific variables are denoted in the caption corresponding to each line in each Panel.
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on the North Pacific is found (Panel (e)). The CCM values for the two other variables are also slightly increasing with L,

suggesting a dependence of these two variables on the North Pacific. Interestingly the influence of the Geopotential of the

North Pacific on the North Atlantic (Panel (b)) is more important than the one from the North Atlantic to the North Pacific

since the correlation is higher. This asymetry looks reasonable since the dominant flow is eastward in the Northern extratropics.

Finally Panel (f) suggests that the atmospheric zonal flow over the Tropical Pacific influences the North Pacific dynamics, but5

not the ocean temperature.

To summarize, the analysis reveals that: (i) The upper-air Tropical Pacific dynamics and the North Pacific ocean and at-

mosphere dynamics influence the dynamics over the North Atlantic; (ii) the upper-air North Pacific dynamics influences the

Tropical Pacific; and (iii) the North Atlantic ocean dynamics and the upper-air Tropical Pacific dynamics influence the dynam-

ics over the North Pacific. These results seems to support the view of several authors, e.g. Sardeshmukh and Hoskins (1988);10

Alexander et al (2002); Lau (2016), that there is an atmospheric bridge dependence from the Tropical Pacific to the North

Atlantic, via the North Pacific. Furthermore, a dependence between the North Pacific and the North Atlantic emerges, which is

mostly oriented from the North Pacific to the North Atlantic since the correlations are larger in Panel (b) than in Panel (e) for

the atmospheric variable, in line with the findings of Drouard et al (2015). But another very interesting dynamical signature

emerges suggesting that the North Pacific and the North Atlantic ocean dynamics are dependent to each other. A possible15

candidate for this coupling is the thermohaline planetary circulation that affects both regions of the globe.

To disentangle the importance of the thermohaline circulation which displays a variability on very long time scales, one can

investigate the dependence properties when longer time scales are considered. An average of the data set has been performed

using a sliding window of 12 months. This approach allows for removing most of the impact of the annual signal, while keeping

a number of data points large enough to perform the CCM analysis. Larger windows could be used but it will introduce very20

long time correlations that could penalize the selection of analogs since one needs analogs that are sufficiently uncorrelated in

time. The results are displayed in Fig. 4. A first remarkable result is the fact that for a one-year average, the mutual dependence

of the dynamics over the North Atlantic and Pacific is dominated by the ocean dynamics (see Panels (b) and (e)). The CCM

values of the other variables in these two Panels are flat, and close or below 0. At the same time new dependences emerge

between the North Pacific and the Tropical Pacific (Panel (d)), in particular for the ocean transport. This further supports25

the conjecture that the three regions are coupled via the large scale global ocean dynamics. This is presumably linked with the

thermohaline circulation, but further analyses using additional variables and Tropical regions are needed in order to disentangle

this point. This will be the subject of a future work.

Another very important finding in Fig. 4 is the fact that CCM values are now close to 0 (and do not display any dependence

in L) for the influence of the Tropical Pacific on the North Atlantic, and vice versa (Panels (a) and (c)). It suggests that the30

dependence between these two regions is confined to time scales smaller than a year. One can therefore wonder whether this

dependence is associated purely to the annual cycle or to some specific Tropical events like El-Niño or La-Niña, or in other

words if it is mostly associated with the climatology of the Tropical Pacific or not.

To clarify this point, surrogate 3-dimensional attractors have been built by using the monthly means (averaged over the

different years) on which random anomalies with the appropriate variance are superimposed. These random anomalies were35
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Figure 4. CCM as a function of the length L of the samples, as obtained from the series of Fig. 1 after averaging over a sliding window of

12 months for the reanalyses ERA-20C and ORA-20C. Each line with symbols corresponds to the influence of one variable on a specific

coupled ocean-atmosphere basin. The specific variables are denoted in the caption corresponding to each line at each Panel.
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simulated assuming a gaussian distribution around each monthly mean. The variance of the distribution is estimated using the

anomalies of the corresponding month for all years in the datasets.

These new attractors are then used to predict the true variable of interest Y . Figure 5 displays the corresponding Panels that

should be compared to Fig. 3. Two different random surrogates have been built, implying that two curves are displayed in each

Panel for each variable, Y . The first remarkable result is that the CCM values of the ocean dynamics variables of Panels (b)5

and (e) are now flat and close to 0, suggesting that the CCM values for the transport in the two North ocean basins found in

Fig. 3 are indeed indicating a dynamical coupling between the two basins beyond the annual climatological variations. Also in

Panel (b), the CCM values for the influence of the North Pacific series (ocean temperature and Geopotential at 500 hPa) on the

surrogate attractor of the Atlantic considerably decrease, suggesting the importance of the influence of the North Pacific on the

North Atlantic beyond the annual climatological influence.10

However when looking at the results in Panel (a), the CCM values based on the use of the surrogate attractors are very

close to the one obtained with the actual attractors. This surprising feature suggests that there is no influence between the

Tropical Pacific and the North Atlantic beyond the annual climatological variations. Or in other words that the Tropical Pacific

variability does not influence the anomalies over the North Pacific. This has a very strong implication in the sense that there is

no dynamical link between an event like El Niño or La Niña and the anomalies over the North Atlantic. A similar picture is15

found for the influence of the Tropical Pacific on the North Pacific as illustrated in Panel (f).

Finally to further test the robustness of these results a complementary way to clarify whether monthly anomalies between

different basins are indeed related to each other is to apply direcly CCM on these anomalies. The results are displayed in the

Appendix C, Fig. C1 The same conclusions are reached with the absence of dependences between the variables over the North

Atlantic basin and the Tropical Pacific (panels (a) and (c)), and a strong mutual dependence between the ocean dynamics over20

the North Atlantic and the North Pacific (panels (b) and (e)).

In summary, in the limit of the data at our disposal, the analysis suggests that the anomalies associated with the dynamics

over the North Atlantic and North Pacific cannot be inferred based on the variability of the variables we have used so far in

the Tropical Pacific. Note that the previous analysis is made for all seasons and without distinctions between certain types of

events, say strong El-Niño events, as it is usually done when analyzing the effect of ENSO over other regions of the globe, e.g.25

Brönnimann (2007). Such a split between seasons and/or events are worth performing, but the time series are already short

and the selection of certain events will reduce considerably the statistics. The absence of link between the Tropical Pacific

and the North Atlantic coupled dynamics could also reflect the non-stationary properties of the teleconnections between the

North Atlantic and the Tropical Pacific as documented in López-Parages et al (2016); Johnson and Kosaka (2016); Goss and

Feldstein (2017) and references therein. The analysis of long climate runs of state-of-the-art models with the approach used30

here would be very useful in that respect.

4.2 ERA-20C/ORAS4

Let us now consider the second ocean reanalysis, ORAS4, while keeping the same atmospheric reanalysis. This second inves-

tigation should allow us to clarify the robustness of our findings. Figure 6 shows the results of the computation of CCM that

15
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Figure 5. CCM as a function of the length L of the samples, as obtained from surrogate 3-dimensional attractors built by superimposing

random anomalies to the annual climatological cycle, based on the data from Reanalysis ERA-20C and ORA-20C. Two different surrogates

have been used. Each line with symbols corresponds to the influence of one actual variable (not a surrogate series) on a specific coupled

ocean-atmosphere surrogate attractor. The specific variables are denoted in the caption corresponding to each line in each Panel.
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should be compared with the results presented in Fig. 3. One remarkable feature is the absence of dependences between the

North Atlantic and the North Pacific for the ocean dynamics, see black full circles in Panels (b) and (e). This result considerably

differs from the one obtained with the ORA-20C. Another important difference is a larger amplitude of the influence of the

Tropical Pacific ocean temperature on the North Pacific, and of the North Pacific variables on the North Atlantic. The other

dependences are more robust.5

These results suggest that the dynamics within the ocean differs considerably between ORAS4 and ORA-20C as already

suggected by the covariances displayed in Table 1. These differences are probably due to (i) the fact that these reanalyses are

obtained with different atmospheric forcing, specifically ORA-20C with ERA-20C and ORAS4 with different atmospheric

reanalysis products and (ii) to the fact that for ORA-20C the ocean model started beginning of 1900 while for ORAS4 it started

end of 1957. We may conjecture that the ORA-20C reanalysis data set is more reliable since a more consistent atmospheric10

forcing has been applied and the ocean model has got more time to equilibrate around its climate. But care should be taken

here in drawing definitive conclusions on that. A better approach to disentangle which of these reanalyses provide the correct

answer is to investigate a full coupled ocean-atmosphere reanalysis obtained for the whole 20th Century.

The investigation of the dependences for sliding averages over 12 months displayed at Fig. 7, also suggests a suppression of

the dependences for most of the variables, at the exception of the one associated with the influence of the North Pacific ocean15

temperature on the Tropical Pacific (Panel (d)). It is also remarkable that a dependence emerges of the North Atlantic ocean

dynamics on the North Pacific, but much weaker than for the other ocean reanalysis dataset.

Finally for the sake of completeness, the application of the CCM to the monthly anomalies is displayed in Fig. C2. Here

as for the ERA-20C/ORA-20C dataset, no link between the anomalies of the Tropical Pacific and the North Atlantic is found

(panels (a) and (c)). An important difference is however visible on the influence of the North Pacific ocean temperature on the20

North Atlantic and on the Tropical Pacific (panels (b) and (d)). Again, this contrasts with the results obtained with the other

reanalysis dataset.

5 Conclusions

The causality between the dynamics of three different coupled ocean-atmosphere basins, The North Atlantic, the North Pacific

and the Tropical Pacific region, NINO3.4, has been explored using data from three different reanalyses datasets, the ORA-20C,25

the ORAS4 and the ERA-20C. The approach used is the Convergent Cross Mapping developed by Sugihara et al (2012)

which allows to go beyond the classical teleconnection patterns and which provides a clear signature of the inter-dependences

between series or regions. The analysis reveals a few very important facts that should help in improving our understanding of

the remote influence of large-scale dynamical processes, and in particular the impact of the Tropical Pacific coupled dynamics

on the extratropics:30

– The Tropical Pacific coupled ocean-atmosphere dynamics does not seem to have an impact on the extratropics beyond the

annual climatological cycle. This very surprising result suggests that there is little hope to improve predictability in the

extratropics based on information on the variability in the Tropical Pacific. This result needs however more attention and
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Figure 6. CCM as a function of the length L of the samples, as obtained from the monthly time series displayed in Fig. 2 for the reanalyses

ERA-20C and ORAS4. Each line with symbols corresponds to the influence of one variable on a specific coupled ocean-atmosphere basin.

The specific variables are denoted in the caption corresponding to each line in each Panel.
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Figure 7. CCM as a function of the length L of the samples, as obtained from the series of Fig. 2 after averaging over a sliding window of 12

months for the reanalyses ERA-20C and ORAS4. Each line with symbols corresponds to the influence of one variable on a specific coupled

ocean-atmosphere basin. The specific variables are denoted in the caption corresponding to each line in each Panel.
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a thorough inspection of other datasets and long climate model runs in order to be confirmed. It is possible in particular

that a more detailed analysis based on the selection of specific events, like strong El-niño or La-niña, will provide new

information on the interactions between the Tropical Pacific and the rest of the world, beyond the climatological annual

signal. But such an investigation needs considerably more data than the ones used in the present work and therefore calls

for the development of even longer coupled reanalyses, or the use of long climate model runs.5

– The atmosphere over the North Pacific considerably influences the North Atlantic (beyond the climatological annual

signal), in agreement with the results found for instance in Drouard et al (2015).

– The results presented here for the two ocean reanalysis datasets disagree on the nature of the dependence between the

North Pacific basin and the other ones. The ORA-20C indicates a dynamical influence (transport), while the ORAS4

suggests more an influence dominated by the ocean temperature. This difference is probably related to the specific data10

assimilation setup used in each case. To clarify what is really at work here new reanalysis datasets are needed. We can

conjecture that the most reliable one should be built by using a coupled ocean-atmosphere data assimilation system

running continuously on the longest period possible.

– The inter-dependences between the North Atlantic and the North Pacific on longer time scales than a year seems to be

important, and is probably related to the coupled ocean-atmosphere dynamics on long time scales. One could conjecture15

that the thermohaline circulation should play a role on this link. Additional analyses with longer data sets, with climate

model runs, but also with the analysis of additional basins like the Tropical Atlantic or the Indian Monsoon region are

necessary to clarify this role.

The present work has demonstrated the urgent necessity to go beyond the teleconnection patterns for the investigation of the

interaction between the different components of the climate system, using tools recently developed in the context of nonlinear20

sciences. Teleconnection patterns do provide information on a co-variability (which is an interesting information per se), but not

of the influence of a region on another through a dynamical coupling. A common forcing can for instance induce a correlation

between two variables even if these are perfectly independent in a dynamical sense.

New analyses will be performed along the lines drawn above, in particular in climate model runs. Several long control

climate runs of CMIP5 models are available and can be analyzed in the same perspective as in the present work, in order in25

particular to evalute the impact of ENSO on the dynamics of the North Pacific and the North Atlantic.

Finally it should be stressed that the specific design of the CCM approach adopted here based on a low-dimensional projec-

tion of the full atmosphere-ocean attractor does not allow to have a one-to-one correspondence of the influence of one variable

on another. Moreover other subspaces could be used that can provide different results. More variables should then be consid-

ered such as projections on additional Fourier modes, or by using projections on a few Empirical Orthogonal Functions. These30

analyses will allow to evaluate the robustness of the present results.
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Build datafile based on the reanalysis:
project each variable on a Fourier mode and

normalise the data

Scan through values of L (up to the
length of the datafile)

Generate a sample of length L by
selecting randomly L points from the

datafile

Scan through all points Pi in the
sample

Find points Pj in the sample which minimise the
distance between Pi and Pj and such that Pi and Pj

are sufficiently distant in time 

Estimate the value of Yi by using the
values of the points Yj (value of the
variable Y contemporary to the points
Pj forming the simplex) . Let denote

this estimate as Yi,est 

Measure the correlation coefficient
between Yi and its estimate  Yi,est 

for all simplexes found for the length L.
The standard deviation is computed using

the Fisher Z test 

Check if some of these points Pj can form a
simplex which encloses Pi

Repeat this operation on a large
number of samples of length L and
store the value of  Yi,est for all i in

the samples

If such simplexes exist, choose the
simplex of minimum volume, if it has
not been found in a previous sample

Figure A1. Algorithm used to compute the CCM presented in Section 2, based on the series discussed in Section 3.

Code and data availability. The code for CCM and the time series are available upon request to the authors. The data are made available on

zenodo.org.

Appendix A: The CCM algorithm

The different steps of the CCM algorithm used to compute the correlation coefficient is detailed in Fig. A1.
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Appendix B: CCM applied to an idealized model

To test the CCM technique described in Section 2, we use a dynamical system recently developed in Vannitsem (2015). It

consists of a set of 36 ordinary differential equations representing the large scale dynamics of a coupled ocean-atmosphere

system at midlatitudes. The equations are described in Vannitsem (2015) and in its supplementary material. The atmospheric

model is based on the vorticity equations of a two-layer, quasi-geostrophic flow defined on a β-plane. The ocean dynamics is5

based on the reduced-gravity, quasi-geostrophic shallow-water model on a β-plane. For the ocean, it is assumed that temper-

ature is a passive scalar transported by the ocean currents, but the oceanic temperature field displays strong interactions with

the atmospheric temperature through radiative and heat exchanges.

All fields are developed in Fourier series on a β-plane as,

δTo =

8∑
i=2(and6=5)

Θo,iφi, Ψo =

8∑
i=1

Ψo,iφi, (B1)10

ψa =

10∑
i=1

Ψa,iFi, δTa =

10∑
i=1

Θa,iFi (B2)

(B3)

where Θa,i = (ψ1
a,i−ψ3

a,i)/2 and Ψa,i = (ψ1
a,i +ψ3

a,i)/2, with ψ1 and ψ3 the streamfunctions in the upper and lower layer

of the atmosphere. Ψo is the streamfunction field in the ocean. δTo and δTa are temperature anomaly field with respect to

spatially averaged reference temperatures. The modes φi used for the ocean are compatible with free-slip boundary conditions15

in a closed basin, while Fi are modes used for the atmospheric fields compatible with free-slip boundaries in the meridional

direction and periodic boundaries in the zonal direction, see also the paper Vannitsem et al (2015).

The CCM analysis is performed on the solutions generated by the model with the same parameters as in Fig. 3 of Vannitsem

(2015) with a surface friction coefficient C = 0.006 kg m−2 s−1. The model is forced with seasonal variations of the solar

input as discussed in Vannitsem (2015), and the solutions are averaged over one month (1/12 of the 365 days of the model20

year). The three variables used for building the attractor and the analogs are (Ψa,1,Θo,2,Ψo,2) as for the North Atlantic and

North Pacific datasets discussed in Section 3. Then several other variables are used to see if they have causality relations with

the three variables used to build the attractor. The length of the time series is L= 6000 months.

The results are shown in Fig. B1 for different variables and also for a sliding window of 12 months at Panels (e) and (f). As it

can be seen in Panels (a) and (b) the only atmospheric variable (explored so far) influencing the dynamics of (Ψa,1,Θo,2,Ψo,2)25

is Θa,1, since the correlation is high and increases as a function of L. This variable is strongly linked to the dynamics of Ψa,1

in the equations of the model, since it is the only one influencing (linearly) the evolution of Ψa,1. The others do not seem to

have a strong influence. In Panels (c) and (d), the impact of some ocean variables is illustrated with no apparent influence of

Ψo,5 and Θo,3. But all other variables have different levels of influence with a clear increase of the correlation as a function of

L.30
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Figure B1. CCM as a function of the length L of the samples, as obtained from monthly time series of the low-order coupled ocean-

atmosphere model integration. Panels (a) to (d) displays the values for the influence of a set of model variables on (Ψa,1,Θo,2,Ψo,2)

at monthly time scale. Panels (a) to (d) displays the values for the influence of a set of model variables on (Ψa,1,Θo,2,Ψo,2) after the

application of a sliding average over 12 months. Each line with symbols corresponds to the influence of one variable on (Ψa,1,Θo,2,Ψo,2).

The specific variables are denoted in the caption corresponding to each line in each Panel.
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Finally, in Panels (e) to (h) the impact of using a sliding average is illustrated. First the CCM plotted in Panel (f) indicates

that the influence of Θa,1 is not removed, indicating its essential role on the dynamics at different time scales of motion. Second

the influence of the ocean modes which were found to play a role at monthly time scales is further enhanced.

This brief analysis of a low-order system based on the CCM algorithm described in Section 2 indicates that it is a powerful

tool to isolate the influence of certain variables on others in the system. Note that the angle of approach adopted in Section 2 by5

considering a low-order projection of the full state space as target does not allow to have a detailed information on the nature

of the coupling between the variables since what is inferred is a global influence of a variable on a subset of other variables.

The analysis also opens new questions on the role of the different variables in this low-order model and the dependences on

the specific subspace selected as the target. This problem is out of the scope of the present work but is worth pursuing in the

future. We can now proceed with this approach in the context of the datasets presented in Section 3.10

Appendix C: Application of CCM to anomalies

The CCM is applied on the anomalies of the different time series displayed in Figs. 1 and 2. The anomalies are defined as

X(t,τ)−µ(τ) where µ(τ) is the average value over all years for month τ , and the argument t is the year for which the

anomalies are computed. The analysis of these results is done in the core of the text.
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Figure C1. CCM as a function of the size L of the samples, as obtained from the anomaly of the monthly time series displayed in Fig.

1 for the reanalyses ERA-20C and ORA-20C. Each line with symbols corresponds to the influence of one variable on a specific coupled

ocean-atmosphere basin. The specific variables are denoted in the caption corresponding to each line in each Panel.
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Figure C2. CCM as a function of the size L of the samples, as obtained from the anomaly of the monthly time series displayed in Fig.

2 for the reanalyses ERA-20C and ORAS4. Each line with symbols corresponds to the influence of one variable on a specific coupled

ocean-atmosphere basin. The specific variables are denoted in the caption corresponding to each line in each Panel.
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