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Abstract. We provide a theory
::::::::
introduce

:
a
:::::::::
framework

:
of cascading tipping, i.e., a sequence of abrupt transitions occurring

because a transition in one subsystem changes the background conditions for another subsystem. A mathematical framework

of elementary deterministic cascading tipping points in autonomous dynamical systems is presented containing the double-

fold, fold-Hopf, Hopf-fold and double-Hopf as most generic cases. Statistical indicators which can be used as early warning

indicators of cascading tipping events in stochastic, non-stationary systems are suggested. The concept of cascading tipping is5

illustrated through a conceptual model of the coupled North Atlantic Ocean - El-Niño Southern Oscillation (ENSO) system,

demonstrating the possibility of such cascading events in the climate system.

1 Introduction

Earth’s climate system consists of several subsystems, e.g., the ocean, atmosphere, ice and land, which are coupled through

fluxes of momentum, mass and heat. Each of these subsystems is characterised by specific processes, on very different time10

scales, determining the evolution of its observables. For example, processes in the atmosphere occur on much smaller time

scales than in the ocean and hence in weather prediction, the upper ocean sets the background state for the evolution of the

atmosphere. Similarly, in equatorial ocean-atmosphere dynamics associated with the El Niño - Southern Oscillation (ENSO)

phenomenon, the global meridional overturning circulation can be considered a background state, as it evolves on a much

larger time scale.15

This notion that one subsystem provides a background state for the evolution of another subsystem is important when critical

transitions are considered. In the climate system, a number of tipping elements have been identified (Lenton et al., 2008)
::::::::::::::::::::
(Lenton et al. (2008) give

::
an

::::::::
overview

::
of

:::::
these), where changes in observables can occur relatively rapidly compared to the changes in their forcing near

so-called tipping points. Examples of tipping elements are the Atlantic Meridional Overturning Circulation (AMOC) (Stom-

mel, 1961), the Arctic sea ice (Bathiany et al., 2016), monsoon patterns, midlatitude atmospheric flow (Barriopedro et al.,20

2006), vegetation cover (Hirota et al., 2011) and more local systems like coral reefs and permafrost. When one subsystem

undergoes a transition, which changes the background state of another subsystem, also a transition may be induced in that

second subsystem. Such dynamical interactions leading to coupled transitions are examples of ‘tipping cascades’ or ’domino

effects’ (Kriegler et al., 2009; Lenton and Williams, 2013).
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Many tipping points have been analysed in separate subsystems, both for phenomena of the present-day climate (Lenton,

2011; Bathiany et al., 2016), as well as in past climates (such as the abrupt cooling of the Younger Dryas (Livina and Lenton,

2007) and the desertification of the Sahel region (Kutzbach et al., 1996)). However, less attention has been given to the interac-

tion between transitions in different subsystems. For example, when the AMOC collapses, precipitation patterns may change

such that the equilibrium structure of the vegetation cover in the Amazon rainforest is shifted (Aleina et al., 2013). This may5

result in another transition, concerned with forest growth or dieback. Another example is the influence of the AMOC on the

trade winds (through meridional sea surface temperature gradients), that in turn influence the amplitude of ENSO. In models,

a collapse of the AMOC has been found to intensify ENSO (Lenton and Williams, 2013; Timmermann et al., 2007; Dong and

Sutton, 2007), although there are also other effects that would weaken ENSO (Timmermann et al., 2005).

An example in past climates is the coupling between the ocean’s overturning circulation and land ice. The rapid glaciation of10

the Antarctic continent around the Eocene-Oligocene boundary (34 Ma) is often explained in terms of a CO2 threshold being

reached that allows a major ice sheet to grow (DeConto and Pollard, 2003; Gasson et al., 2014). However, a two-step signal is

found in the oxygen isotopic ratio, δ18O, which is attributed to a deep-sea temperature drop followed by the (slower) growth of

the Antarctic Ice Sheet (AIS). One suggestion to explain the two-step transition is that the deep-sea temperature drop is related

to a change in the pattern of the global MOC (Tigchelaar et al., 2011). The ice sheet formation is then argued to be driven by15

decreasing atmospheric CO2 (Pearson et al., 2009). This leads to the question whether a cascading tipping event did occur:

The switch in MOC (first tipping) has led to the changes in the atmospheric CO2 (e.g. Elsworth et al. (2017)) which caused the

growth of the AIS (second tipping).
::::
This

::::
leads

::
to

:::
the

:::::::
question

:::::::
whether

::
a
::::::::
cascading

::::::
tipping

:::::
event

::::::::
occurred.

:

In the last few years, much work has been done to formulate statistical indicators and early warning signals of tipping points.

A system close to
:
a
:
critical transition shows features of a ‘critical slowing down’ (Dakos et al., 2008; Scheffer et al., 2009;20

Kuehn, 2011). In the vicinity of the tipping point, the system slowly loses its ability to recover from small perturbations. This

results in increased variance, autocorrelation and potentially also increased skewness and flickering (Scheffer et al., 2009).

Various methods providing a specific scalar together with a threshold when approaching the transition have been suggested,

such as degenerate fingerprinting (Held and Kleinen, 2004; Thompson and Sieber, 2011) and detrended fluctuation analysis

(DFA) (Peng et al., 1994; Livina and Lenton, 2007).25

When considering cascading tipping points, the autocorrelation of two time series and their interaction needs to be analyzed

:::::::
analysed simultaneously. Podnobik and Stanley (2008) proposed an altered form of DFA to assess the cross correlation between

two non-stationary time series and called this method detrended cross-correlation analysis (DCCA). In the computation of the

fluctuation function, they used cross-covariance instead of auto-covariance and fit this to a power law. This concept is further

extended by defining a coefficient ρDCCA that accounts for the auto-covariance of the individual time series (Zhou, 2008; Yuan30

et al., 2015). However, no statistical analysis and indicators have yet been formulated for cascading tipping events.

In this paper, we provide a quantitative approach to cascading tipping events. We start with a mathematical framework to

formulate elementary cascading tipping points (section 2). Next, we introduce statistical indicators and potential early warning

indicators to analyse
::::::
discuss

::::::::
statistical

::::::
metrics

:::
to

:::::::
analyse,

::::::::
diagnose

:::
and

::::::::::
potentially

::::::
predict

:
cascading transitions, and apply

them to ensemble simulations of the elementary cascading tipping points (section 3). Finally, we apply the new concepts to an35
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example within the climate system: the potential cascading tipping mechanism between the AMOC and ENSO (section 4). We

summarise
:::::::::
summarize and discuss our findings in section 5.

2 Mathematical framework for cascading tipping

In the climate system, tipping points are usually related to rapid transitions, where an observable in the climate system may

change abruptly in a relatively short time compared to changes in the forcing of the observable. Such rapid changes often5

involve transitions from one equilibrium state to another, which can often be explained with classical bifurcation theory for au-

tonomous dynamical systems. These concepts can to
::
To

:
a certain extent,

:::::
these

:::::::
concepts

::::
can also be applied to non-autonomous

systems (so-called slow-fast systems) when the time variation of parameters can be viewed as a slow external forcing (Kuehn,

2011). They form also the basics to understand phenomena as noise-induced tipping (Thompson and Sieber, 2011) and rate-

dependent tipping (Ashwin et al., 2012).10

Here we
::
In

:::
this

::::::
section,

:::
we

::::::
present

::
a

:::::::::::
mathematical

:::::::::
framework

:::
for

:::::
simple

:::::::::
cascading

:::::::::
transitions,

:::
that

::::
acts

::
as

:
a
:::
first

::::
step

:::::::
towards

::::::::
analysing

:::
the

::::
more

:::::::
complex

:::::::::
transitions

:::::::::
happening

::
in

::::::
reality.

:::
We

:
focus on bifurcation-induced tipping points, and consider two

types of bifurcations that are thought to be relevant to mechanisms of abrupt changes in the climate system; the back-to-back

saddle-node bifurcation is often used to explain transitions between two co-existing equilibria (multi-stable systems), while

the Hopf bifurcation can explain the appearance of oscillatory behaviour (Thompson and Stewart, 2002). In this view, abrupt15

change in the system appears as a consequence of a parameter crossing a specific critical value at the bifurcation point.

A back-to-back saddle-node bifurcation
:::
(two

:::::::::::
saddle-nodes

:::::::::
connected

::
by

::
a
:::::::
common

::::::::
unstable

::::::
branch)

:
generically occurs in

physical systems (having bounded states) when one parameter is varying and the simplest dynamical system having such a

bifurcation is described by

dx

dt
= a1x

3 + a2x+φ (1)20

where the ai (i ∈ 1,2) are constants, φ is a parameter, x is the state variable and t is time. There are multiple equilibria

in the system if and only if a1 < 0, a2 > 0 and within the parameter interval |φ|< ((−4a31a
3
2)/(27a41))1/2. In this case,

:::
the

::::::::::
back-to-back

:
saddle-node bifurcations occur at φc =±((−4a31a

3
2)/(27a41))1/2.

::
In

:::
the

::::::
sequel,

:::
we

:::::
often

::::
use

:::
the

:::::
terms

:::::
‘fold

:::::::::
bifurcation’

::::
and

:::::::::::
‘saddle-node

::::::::::
bifurcation’,

::::::::
although

::
we

::
in
:::::::
practise

::::
only

:::
use

:::::::::::
back-to-back

:::::::::
saddle-node

:::::::::::
bifurcations.

:

A Hopf bifurcation also generically occurs in physical systems and the simplest dynamical system in which it occurs when25

one parameter is varied is described by

dx

dt
= a1y+ a2(φ− (x2 + y2))x

dy

dt
= b1x+ b2(φ− (x2 + y2))y

(2)

where again the ai, bi, i= 1,2 are constants, φ is the parameter, (x,y) is the state vector and t is time. The state vector satisfying

(2) reaches a stable periodic orbit if and only if a1b1 < 0 and φ > 0; the transition from steady to periodic occurs at φ= 0.

There are two other bifurcations when one parameter is varied (the transcritical and pitchfork bifurcation) but they are non-30

generic because special conditions must hold (e.g. symmetry) and so these are not considered here. Using the back-to-back
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::::::::::
saddle-node and Hopf bifurcations, cascading tipping can be viewed as a combination of two coupled subsystems, where each

subsystem undergoes one of these two types of bifurcations. The coupling
:::::::::
Combining

::::
these

::::::::::
bifurcations

:::::
leads

::
to

::::
four

:::::
types

::
of

::::::::
cascading

:::::::
tipping,

::::::::
discussed

::
in

:::
this

:::::::
section.

:::::::
Coupling

::::
two

:::::::
systems introduces a direction of the cascade and we take account of this by defining a leading system, which

during its transition changes a parameter
:::
(that

:::
is,

:::
the

:::::::
coupling

:::::
term)

:
in the following system. The changing parameter in the5

following system then can induce the
::::
bring

:::
the

::::::::
following

:::::::
system

:::::
closer

::
to

::
a

:::::::::
bifurcation

:::::
point,

:::::::::
potentially

:::::
even

:::::::
resulting

::
in

::
a

second transition. In the following, we discuss four types of cascading tippingin terms of combinations of saddle-node and

Hopf bifurcations.
:::
this

::::::
section,

:::
we

::::
only

::::
look

::
at

:::::::::::
deterministic

:::::
cases,

::::::
which

::::
does

:::
not

:::::
allow

::
for

:::::
noise

::
to

::::
play

:
a
::::
role

::
in

:::
the

:::::::
tipping.

::::::::
Therefore,

:::::::::
transitions

:::
in

:::
the

::::::
leading

:::::::
system

:::::
result

::
in

::
a
:::::::
changed

::::::::
coupling

::::
term

::::
that

:::
can

:::::
lead

::
to

:::::::::
transitions

::
in

:::
the

:::::::::
following

::::::
system.

::
In
::::::::::

bifurcation
::::::::
diagrams

::::::
versus

::
a

:::::::
forcing,

:::
the

::::::::::
bifurcation

:::::
points

::::
(for

:::::::::::
deterministic

::::::::
systems)

::::::::
therefore

::::
can

:::::::
overlap.10

::::::::
However,

:::
the

::::::::
transitions

:::
are

:::::::::::::
distinguishable

::
in

:::::::::
transients,

::::::
because

:::
the

:::::::::
following

::::::
system

::::::
always

:::
tips

::::
after

:::
the

::::::::::
completion

::
of

:::
the

:::
first

:::::::::
transition.

::::
This

::
is

::::
why

::
we

:::::
show

:::
the

:::::::::
bifurcation

::::::::
diagrams

:::
of

::::
both

:::::::
systems

:::::
versus

:::
the

::::::
forcing

:::::
(Fig.

::
1)

:::
and

:::
an

:::::::
example

::
of

::
a

:::::::
transient

::::
(Fig.

::
2)

:::
for

::::
each

:::::
type.

::::
They

::::
will

::
be

:::::::::
discussed

:::::
below.

:

2.1 Double-fold cascade

The most intuitive system that has the potential to undergo a cascading tipping event is a system where both the leading and the15

following system have saddle-node bifurcations(‘folds’). Analogous to the system of (1)
::::
Eqn.

:
1, a dynamical system containing

a double fold cascade is then:
dx

dt
= a1x

3 + a2x+φ

dy

dt
= b1y

3 + b2y+ γ(x)

(3)

where x is the state vector of the leading system, y that of the following system, ai, bi (i ∈ 1,2) are constants, and φ is

a parameter in the leading system. The key is here that the function γ, which serves as a parameter in the following system,20

depends on the leading system. The most simple coupling between the two systems is represented by γ(x) = γ1+γ2x.
:::::::
Observe

:::
that

:
a
:::::::
change

::
in

:::
the

::::::
forcing

:::::::::
parameter

:
φ
::::
can

::::::
induce

:
a
::::::::
transition

::
in

::
x,

::::::
which

::::
may

:::::
affect

:::
the

:::::::
coupling

::::::::
function

:
γ
::::
such

::::
that

::::
also

:
y
:::::::::
undergoes

:
a
:::::::::
transition.

:::
We

:::::
would

::::
like

::
to

:::::::::
emphasize

:::
that

:::
the

::::::
forcing

::
φ
::::
does

:::
not

:::::::
directly

:::::
affect

:
y
:::
but

::::
only

:::::::
through

::
a

::::::
change

::
in

:
x
::::::
(which

::
is

:::::::::
effectively

::::
only

:::::::::
significant

:::::
when

:
x
:::::
tips).

:::::::::::
Implementing

::::
this

::::::
system

::::
with

::::::
values

::::::
shown

::
in

:::::
Table

::
1
:::::
gives

::::::
insight

::
in

:::
the

::::::::
system’s

::::::::::
equilibrium

:::::::
structure

:::::
(Fig.

:::
1a)

::::
and25

:::::::
transient

::::::::
behavior

::::::::
(example

::
in

::::
Fig.

::::
2a). When φ is changed moving through the bistable regime of the leading system the

coupling moves the following system through its own bistable regime (see Table 1). Figure 1a shows
:::
and

:
b
:::::
show the equilibria

of the leading system for different values of
::::::
(versus

:
φ,

:
)
:::
and

::::::::
following

:::::::
system

::::::
(versus

:::
γ),

::::::::::
respectively,

:
showing the bistable

regime in the center
:::::
centre

:
of the figure, embedded in the back-to-back saddle-node structure. The equilibrium structure of the

following system is displayed in Fig. 1e, as a function of φ. Varying φ alters the state of the leading system, which through30

the coupling γ affects the state of the following system. This results in the existence of four stable states in the following

system in the bistable regime of the leading system; two per state of the leading system.
:
,
::
as

::::::
shown

::
in

::::
Fig.

::
1i.

:
The leading
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system’s state acts as a background condition modulating the position of the following system’s equilibria and therefore, in

case of transition, may drastically reposition the equilibria of the following system. This is intuitively visible in Fig. 2a, where

a time series example of the dynamical system in (3) shows a cascading tipping event (parameters shown in Table 1). When

the leading system (black) is forced (by changing φ) to move from a bistable to a monostable regime, it transits towards a new

equilibrium. During this transition, the following system (red) is affected such that it leaves the regime in which it had four5

possible equilibria and also transits to a different state.

2.2 Fold-Hopf cascade

The second type of cascading tipping event involves a saddle-node bifurcation in the leading system and a subsequent Hopf

bifurcation in the following system. Using analogous notation as in (3)
::::
Eqn.

:
3, the simplest system that captures this so-called

fold-Hopf cascade is10 

dx

dt
= a1x

3 + a2x+φ

dy

dt
= b1z+ b2(γ(x)− (y2 + z2))y

dz

dt
= c1y+ c2(γ(x)− (y2 + z2))z

(4)

where x is again the state vector of the leading system, and (y,z) that of the following system. By slowly varying the parameter

φ (e.g., linearly as φ(t)) the leading system moves through its bistable regime (see Tab.
::::
Table 1 for parameter values) and via

the coupling γ(x) = γ1 + γ2x forces the following system across the Hopf bifurcation point.

The bifurcation structure of the leading system of (4), using parameters stated in Table 1, is displayed in Fig. 1b. This (as15

::
As

:
in Fig. 1a) shows the back-to-back ,

::::
this

:::::::
system’s

:::::::::
bifurcation

:::::::
diagram

:::::
again

:::::
shows

::
a saddle-node structure,

:
.
::::
The

::::::::
following

::::::
system

::
in

::::
Fig.

::
1f,

:::::
now

::::::::
undergoes

:
a Hopf bifurcation and a subsequent oscillatory regime on part of the upper branch. The

actual oscillation occurs in the following system, shown in Fig. 1f. On
::::::::
subsequent

:::::::::
oscillatory

::::::::
behavior.

:::
In

:::
Fig.

:::
1j,

::
it

:::
can

:::
be

::::
seen

:::
that

:::::::::
increasing

::
φ

::
on

:
the lower branch of the leading system ,

:::::
regime

::::
will

:::
still

::::::
result

::
in

:
a
:::::::::
stationary

::::::::::
equilibrium

:::
for the

following systemdoes not oscillate, but on the upper branch, for many values of .
:::::
When

:::::::::
increasing

:
φ , the following system20

does. This
:::::
across

:::
φc,:::

the
::::::
leading

::::::
system

::::::
moves

:::::::
towards

::::::
another

::::
state

:::::
(seen

::
in

::::
Fig.

:::
1b)

:::
and

:::
the

::::::::
coupling

:
γ
::::::::
increases

::::::
(across

:::
γc

::
in

:::
Fig.

:::
1f)

::::
such

::::
that

::
an

:::::::::
oscillation

::::::
occurs

::
in

::
the

:::::::::
following

::::::
system.

::::
This

::::::::::
mechanism makes it possible for steady and oscillatory

states to coexist on the right side of the Hopf bifurcation in Fig. 1f
:
j. An example of a time series showing a fold-Hopf cascading

event is shown in Fig. 2b. A transition in the leading system (black) brings the following system (red/orange) into an unstable

equilibrium that eventually leads to an oscillatory state.25

2.3 Hopf-fold cascade

A third type of cascading event involves a Hopf bifurcation in the leading system and a subsequent saddle-node bifurcation in

the following system. Using a similar notation as in the previous subsection, the simplest system with a Hopf-fold cascade (see
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Table 1 for parameter values) is given by

dx

dt
= a1y+ a2(φ− (x2 + y2))x

dy

dt
= b1x+ b2(φ− (x2 + y2))y

dz

dt
= c1z

3 + c2z+ γ(x)

(5)

where (x,y) is the state vector of the leading system, and z that of the following system. Again, we can slowly increase φ such

that the leading system (x,y) crosses a Hopf bifurcation; via the coupling γ(x) = γ1+γ2x the following system is then moved

through its bistable regime such that a fold is reached in z.5

Fig. 1c contains the typical bifurcation structure of the leading system in (5), containing a Hopf bifurcation separating

stationary from oscillatory behavior
:
a
::::::::
stationary

:::::
from

::
an

:::::::::
oscillatory

::::::
regime. The following system’s equilibrium structure for

varying φ
:
γ
:
is given by Fig. 1g. In this particular configuration, for any negative φ there are multiple stable equilibria.

:
,
::::
seen

::
in

:::
Fig.

:::
1k.

:
This makes sense, as φ only affects the following system via its impact on the leading system, and for negative φ the

leading system remains constant. At φ= 0, the Hopf bifurcation in the leading system is reached and (x,y) start oscillating.10

The following system oscillates a little along with the leading system due to the oscillatory changing value of γ.

When φ increases more, the amplitude of the leading system’s oscillation grows, which may make
::::::::
eventually

::::::
makes γ to

cross the threshold such that the following system leaves its bistable regime (be it temporarily as γ will be reduced again due

to the oscillation). This forces the following system into its upper branch, as can be seen in Fig. 1gby the red dashed lines in

the lower branches ending at φ≈ 0.5. The upper branch’s displayed stable oscillation ends at φ≈ 0.8
:::
(in

:::
Fig.

:::
1k), because the15

amplitude becomes large enough for the system to swap between multiple equilibria. An example of such a cascading transition

event can be seen in Fig. 2c, where an oscillation starts in the leading system (black/grey), of which a particular phase makes

the following system (red) transit into the second equilibrium.

2.4 Double-Hopf cascade

A fourth type of cascading tipping event discussed here involves a Hopf bifurcation in the leading system and a subsequent20

Hopf bifurcation in the following system. Using analogous notation as above, this double Hopf cascade is captured by the

dynamical system

dx

dt
= a1y+ a2(φ− (x2 + y2))x

dy

dt
= b1x+ b2(φ− (x2 + y2))y

du

dt
= c1v+ c2(γ(x)− (u2 + v2))u

dv

dt
= d1u+ d2(γ(x)− (u2 + v2))v

(6)

where (x,y) is the state vector of the leading system, and (u,v) that of the following system. If φ forces (x,y) such that it

crosses the Hopf bifurcation point, the coupling γ(x) = γ1 + γ2x causes a crossing of the second Hopf bifurcation in (u,v).25
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Figure 1d shows the bifurcation diagram
:::
and

::
h
:::::
show

:::
the

:::::::::
bifurcation

:::::::::
diagrams of the leading system, showing a typical

system with a Hopf bifurcation
:::
and

::::::::
following

:::::::
systems,

::::
with

:::::::::::
supercritical

::::
Hopf

::::::::::
bifurcations. The following system (

:
in
:
Fig. 1hl)

is stationary
:::
for

:::::
many

:::::
values

:::
of

:
φ, up to the point that the term γ becomes high enough to start an oscillation

::::::
leading

::::::
system

::::
starts

::::::::::
oscillating,

:::::
which

:::
for

::::
high

::::::
enough

::::::
values

::
of

::
φ

::
is

::::
large

:::::::
enough

::
to

::::
make

:::
the

:::::::::
following

::::::
system

::::
cross

:::
the

:::::
Hopf

:::::::::
bifurcation.

However, γ oscillates with the leading system (for φ > 0). This means that only in a particular part of the leading system’s5

oscillation period, oscillatory behavior
::::::::
behaviour can be expected in the following system. This interaction between the two

oscillations result in torus bifurcations for particular values of φ. An example of a time series showing a Hopf-Hopf cascading

transition is displayed in Fig. 2d. After a (slow) oscillation in the leading system (black/grey) has started, a (fast) oscillation in

the following system (red/orange) arises in particular phases of the slow oscillation.

3 Early warning signals
::::::::
Statistics of cascading tipping points10

In the previous section we have formulated elementary deterministic dynamical systems that can exhibit cascading tipping.

In order to detect tipping events frome.g. ,
:::
for

::::::::
example,

:
observed time series in real systems, we need to detect whether a

system is close to a
:
critical transition. In general, a system close to critical transition

:::
such

::
a
::::::
system recovers more slowly from

perturbations, which in turn increases memory in the time series. This leads to the phenomenon of ‘critical slowing down’ prior

to bifurcation points. In this section, we present statistical indicators which may be useful to detect
:::::::
simulate

:::::::::
cascading

::::::
tipping15

:::::
events

::
to

:::
(a)

::::
study

:::
the

::::::::
statistical

::::::::
character

::
of

::::
such

::::::
events,

:::
(b)

:::::::
diagnose

::::::::::::
(post-tipping)

:::::::
whether

::::::
tipping

:::::
events

:::
are

:::::::
causally

::::::
related

:::
and

:::
(c)

:::
take

::
a
:::
first

::::
step

:::::::
towards

::::::::
statistical

::::::::
indicators

:::
for

:::
the

:::::::::
prediction

::
of cascading tipping events.

3.1 Methods for single tipping points

Several methods have been suggested for the analysis of time series to detect the approach of a single tipping point. For

saddle-node bifurcations, the key features of such a time series is a critical slowing down. This can be investigated as stan-20

dard quantities such as increasing autocorrelation (e.g., the lag-1 autocorrelation), increasing variance and increasing skewness

(Held and Kleinen, 2004; Scheffer et al., 2009; Kuehn, 2011). Although critical slowing down near critical transitions is

a more general feature of (even chaotic) dynamical systems (Tantet et al., 2018), the standard quantities may
::::::
metrics

::::
like

::::::::::::
autocorrelation

::
at

:::
lag

::
1

:::
and

::::::::
variance

::
do

:
not always provide an early warning of a critical transition.

:::::
signal

::::
(e.g.

::
in

:::::::::
Greenland

::
ice

:::::
core

::::
data

::
in

::::::::::::::::::::::
Livina and Lenton (2007)).

:
Hence, more complicated indicators have been introduced, such as (i) the de-25

generate fingerprinting (DF) and (ii) the detrended fluctuation analysis (DFA) , (Held and Kleinen, 2004; Thompson and

Sieber, 2011; Peng et al., 1994; Livina and Lenton, 2007).
::::
DFA

::
is

::::::
argued

::
to

:::
be

::
a

:::::::
solution

::
to

:::
the

::::::::
problem

::
of

::::
the

::::::
simple

::::
lag-1

:::::::::::::
autocorrelation

::::
that

:
it
:::::

does
:::
not

:::::::
capture

:::
the

::::::::
approach

::
to

::
a
::::::::
transition

::
in
::::::

highly
:::::::::::::

non-stationary
::::
data

::
in

::::
long

::::
time

::::::
series

::::::::::::::::::::::::::::::::::::
(Peng et al., 1994; Livina and Lenton, 2007).

::::
The

::::
latter

::
is

:::::::::::
characterized

:::
by

::::
high

:::::::::::::
autocorrelation

:::
due

::
to

:::
the

::::::
gradual

::::::::
increase

::
or

:::::::
decrease

::
of

:::
the

::::::
system

:::::
itself,

::::::::
distorting

:::
the

:::::
signal

:::
of

:::
the

::::::
critical

::::::
slowing

::::::
down,

:
a
:::::::
problem

::
in
::::::::
standard

::::::
metrics

:::
and

::::
DF.30

As critical slowing down implies an increasing autoregressive behavior
::::::::
behaviour

:
in the time series prior to a transition,

the memory component is increased.
:
In

:::::::
general,

::
a
::::
first

::::
step

::
in

:::
DF

::
is

:::
the

:::::::::
projection

::
of

:::
the

::::
data

:::::
fields

::::
onto

:::
the

:::::::
leading

:::::
EOF,
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:::::
which

:::::
gives

:
a
::::
time

:::::
series

:::
xn:::::::::::::::::::::

(Held and Kleinen, 2004).
:

After time-equidistant interpolation and detrending of the data, in the

DF method , one fits the following general autoregressive process to the time series xn:

xn+1 = c ·xn +σηn (7)

where ηn is Gaussian white noise and c= exp(−λ∆t) the AR(1) coefficient. Here λ can be seen as the decay rate of pertur-

bations in previous time steps. As the approaching of a bifurcation point involves an increase in memory, the value of c is5

presumed to increase towards one when approaching a saddle-node bifurcation point.

DFA copes well with non-stationarity in time series while searching for long-range correlations (Peng et al., 1994; Livina and Lenton, 2007).

In DFA, one first chooses an integer window size s and divides the (cumulative-summed) time series X(n) in Ns =N/s seg-

ments that do not overlap, where N is the length of the time series. In every window, the best polynomial fit of a chosen order

is calculated. A quadratic polynomial is used here. The squared deviation from this quadratic polynomial for every window is10

summed, resulting in a measure of the auto-covariance fluctuating around the fit:

F 2(ν,s) =
1

s

s∑
i=1

[X((ν− 1)s+ i)−xν(i)]2 (8)

with X the detrended time series and xν the best polynomial fit in segment ν. Then, an average is taken over all segments to

obtain the fluctuation function F (s):

F (s) =

√√√√ 1

N/s

N/s∑
ν=1

F 2(ν,s) (9)15

which depends solely on s. The long-range auto-correlations can now be recognized by fitting the fluctuation function to a

power-law and looking at the resulting DFA-exponent α, according to

F (s) ∝ sα (10)

For α≤ 0.5, there is no long-term correlation and the fluctuations are indistinguishable from white noise. However, when

α > 0.5, there are long-term correlations present and for α≥ 1.5 the system has reached a bifurcation point. In the simulations20

analysed here the DFA scaling exponent is fitted explicitly for every (moving) window.

3.2 Detrended cross-correlation analysis
:::::::
Methods

:::
for

:::::::::
cascading

:::::::
tipping

:::::
points

Cascading tipping involves two systems with their own bifurcation structure and their proximity towards bifurcation points.

Although the leading system may be close to tipping, the following system might still be far away from its bifurcation point and

needs the critical transition of the leading system to even come close to this point
:
,
:::::
which

::::::
makes

::
te

::::::::
behaviour

::
of
:::

the
:::::::::
following25

::::::
system

::::
more

:::::
prone

::
to

:::::
noise,

::::
less

::::::::
dependent

:::
on

:::
the

::::::
leading

::::::
system

::::
and

:::
less

:::::::::::::
auto-correlated

::::
prior

::
to

:::
the

:::
first

:::::::
tipping. This is why

the general measures for single tipping events cannot be used, nor can regular cross (Pearson) correlation. The reason is that

the following and leading system do not have a one-to-one relationship ,
::::
(that

::
is,

::::::
weakly

:::::::
Pearson

::::::::::
correlated),

:
but are rather

coupled through specific parameters, only seen
:::::
which

::
is

::::
only

::::::
visible in long-range correlations.
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When approaching a cascading tipping point, the long-range cross-correlation between the two state vectors (of the leading

, say
::
the

:::::::
leading

::::
state

:
x , and following system, say

::
and

::::
the

::::::::
following

::::
state

:
y ) is expected to increase. The state vector x

becomes more auto-correlated and is less susceptible to noise, and therefore through the coupling influences y in a more robust

way. To find long-range cross-correlations, a method so-called detrended cross-correlation analysis (DCCA) was developed

(Zebende, 2011; Podnobik and Stanley, 2008; Zhang et al., 2001; Zhou, 2008). Instead of taking the auto-covariance (8) to5

calculate the fluctuation function, one takes the cross-covariance,

F 2
DCCA(ν,s) =

1

s

s∑
i=1

[(X((ν− 1)s+ i)−xν(i))

· (Y ((ν− 1)s+ i)− yν(i))]2

(11)

with symbols similar to(8). With this function, one can calculate the fluctuation function and subsequent power-law scaling

coefficient (Podnobik and Stanley, 2008; Zhang et al., 2001), similar to (9).

A variation on this method was proposed by Zebende (2011) and involves the ratio between F 2
DCCA and FDFA of the two10

systems. Specifically, one chooses a certain segment size s and computes:

ρDCCA =
F 2
DCCA

FDFA{x}FDFA{y}
(12)

which measures the level of the long-term cross-correlation between variable x and y; the quantity ρDCCA has values between

-1 and 1.

:::::
There

:::
are,

::
a
:::::
priori,

:::::::
several

:::::::::
limitations

::
of

:::::
using

:::
the

:::::::::
power-law

:::::::
scaling

:::::::::
coefficient

:::
and

::::::::
ρDCCA.

::::
First

::
of

::::
all,

:::
the

::::::
results

:::
are15

:::::::
sensitive

::
to

:::::::
choices

::
in

:::
the

:::::::::
maximum

:::::::
segment

::::
size

:
s
::::

and
:::
the

:::::::
window

::::
size,

:::::::
induced

:::
by

:::
the

:::::
noise

::
in

:::
our

:::::::::::
simulations.

:::::::
Making

::
the

:::::::
window

::::
size

:::
too

:::::
large

::::::::
decreases

:::
the

:::::::::
possibility

::
to

:::
see

::::
any

:::::::::::
development

::::
prior

::
to

:::
the

:::::::
tipping

::::::
points,

::
as

::::::::
windows

::::::::
including

::
the

:::::::
tipping

::::
event

:::::
itself

:::
are

::::::
biased

::
by

::::::
strong

::::::::::::
autocorrelation

::::
and

:::
the

::::::::
(tipping-)

:::::
trend

::
in

:::
the

::::
data.

::::::::
However,

:::::::
making

:::
the

:::::::
window

:::
size

:::
too

:::::
small

::::::::
increases

:::
the

:::::::::
uncertainty

::
in

:::
the

::::::::::
exponential

::
fit.

:::::::::
Similarly,

::::::
adding

::::
small

::::::::
segments

:::::::::::::
co-determining

:::
the

::::::::::
exponential

::
fit

::::::
makes

:::
the

::::::
method

::::::
prone

::
to

:::::
noise,

::::::
while

:::::
larger

::::::::
segments

:::
are

:::::::
limited

:::
by

:::
the

:::::::
window

::::
size

:::
and

:::::::::::
computation

:::::
time.

::
In

::::
our20

::::::::::
simulations,

:::::::
window

::::
sizes

:::
of

::::
120

::::
data

::::::
points,

:::
and

:::::::::
segments

::::
sizes

::::::::
between

::
10

::::
and

:::
60

::::::
within

:::::
those

:::::::
windows

:::::
were

::::
used

:::
to

:::::::
calculate

:::
the

::::::::::
fluctuations

:::
per

:::::::
segment

:::
size

::::
and

::
to

:::::::
calculate

:::::
F (s)

:::::
(Eqn.

::
9).

:::::
More

:::::::
research

::
is

::::::
needed

::
to

::::
find

::::::
optimal

::::::
values

::
of

:::
the

::::::
window

::::
and

:::::::
segment

:::::
sizes,

::
to

:::::::::
potentially

::::::
reduce

::::
this

::::::::
limitation

::
in

:::
the

:::::::
analysis

::
of

:::::::::
cascading

:::::::::
transitions.

:::::::
Another

::::::::
limitation

:::
of

::::
using

:::
the

:::::::::
power-law

::::::
scaling

:::::::::
coefficient

:::
and

:::::::
ρDCCA::

is
:::
that

:::
the

::::
way

:::
the

:::
two

:::::::
systems

:::
are

:::::::
coupled

::::
(e.g.,

::::::::
linearity,

::::
with

::
or

:::::::
without

:::::::
temporal

::::
lag)

::::::
affects

::::
how

::
an

:::::::::
evolution

::
in

:::
the

::::::
leading

:::::::
system

::::::
affects

::
its

::::::::::::::
cross-correlation

:::::
with

:::
the

::::::::
following

::::::
system

::
in
:::::

both25

::::::::
magnitude

::::
and

:::::
time.

::::::
Finally,

:::
to

::::::
observe

::::::
trends

::
in

:::::
these

:::::::
metrics,

:::
the

:::::
signal

:::
in

:::
the

::::::::::::::
cross-correlation

:::::::
between

:::
the

::::
two

:::::::
systems

:::
has

::
to

::::::::
overcome

:::
the

::::::
(partly

:::::::
mutually

:::::::::::
independent)

:::::
noise.

::::::::
However,

:::::
close

::
to

::::::
critical

:::::::::
transition,

::
the

::::::::
recovery

::::
from

:::::
noise

:::::::
actually

::::::::
decreases,

:::::::
making

:::
the

:::::
often

:::::
subtle

::::::
change

:
in
:::::::::

detrended
::::::::::::::
cross-correlation

::::::
harder

::
to

:::::::::
distinguish

:::::
from

:::::
noise.

::::::
These

:::::::::
limitations

:::
may

:::::
make

::::
the

::::::::
detrended

::::::::::::::
cross-correlation

:::::::
metrics

::::
less

:::::
useful

:::
in

:::::::::::
applications,

:::
but

:::::
trends

:::
in

:::
the

:::::::::
detrended

::::::::::::::
cross-correlation

::::::
metrics

:::::
might

::::
still

::
act

:::
as

::::
early

::::::::
warnings

:::
for

::::::::
cascading

:::::::::
transitions,

:::
as

:::::
shown

::
in

:::
the

::::
next

:::::::
section.30

3.3 Analysis of cascading tipping systems
:::::::::::
Simulations
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The previous section presented various quantities to analyse the occurrence of cascading tipping
::
In

:::
this

:::::::
section

::
we

:::::::
discuss

:::
the

:::::
earlier

::::::::
described

:::::::
metrics

::::::
applied

::
in

::::::::
ensemble

::::::::::
simulations

::
of

::::::::
cascading

::::::::
transition

:
events. This section is devoted to give insight

into the accuracy and the usefulness of the indicators, by applying them to the
:::::::
provides

::::::
insight

::
in

:::
the

::::::::
statistical

::::::::::::
characteristics

::
of

::::
these

::::::
events,

:::
the

::::::
causal

::::::
relation

:::::::
between

:::::::
tipping

::
of

::::
both

:::::::
systems,

:::
and

:::
the

::::::::
potential

:::::::::
prediction

::
of

::::
these

::::::
events.

:::
We

:::::
focus

:::
on

:::
the

double-fold and fold-hopf
:::
the

::::::::
fold-Hopf

:
cascading tipping cases .

:::
for

:::::::
multiple

:::::::
reasons.

:::::
First,

::::
these

:::::
cases

:::
are

:::::
most

:::::::::
illustrative5

::
in

:::::
terms

::
of

::::::
relation

::
to
::::::::
physical

:::::::
systems.

:::::::
Second,

::
in

::::
these

:::::
cases

:::
the

:::::::
leading

::::::
system

::::
starts

::::
with

::
a
:::
fold

::::::::::
bifurcation,

::::::
which

::::::
creates

:
a
::::
clear

::::::::
threshold

:::
for

:::
the

::::
start

::
of

:::
the

:::::
event

::::::::::
(convenient

::
for

:::::::
analysis

:::::::::
purposes).

:

3.3.1 Double-fold cascading tipping

To simulate these events and use statistical indicators, noise has to be included. The system of equations used here is:
dx

dt
= a1x

3 + a2x+φ+ ζx

dy

dt
= b1y

3 + b2y+ γ(x) + ζy

(13)10

where now in addition to (3), ζx, ζy are Gaussian white noise terms. We simulate an ensemble of 100 members with the

parameter settings and initial conditions as displayed in Table 2. The results of this ensemble are displayed in Fig. 3. Running

windows containing the transition itself are shaded white because this data is misleading when one wants to know what happens

before the bifurcation points. We make the distinction between the leading-transitional period (LTP), which is the time series

before the tipping point in the leading system, and the following-transitional period (FTP), which is the time series between15

the first tipping point and the tipping point in the following system.
:::
The

::::
FTP

:::
can

:::
be

::::
seen

::
as

::
an

::::::::::
in-between

::::
state

::::
that

::
is

:::::
stable

::
for

:::::
both

:::::::
systems,

::::::::
although

:::
the

::::::::
following

::::::
system

::
is
:::::
close

::
to

::::::::::
bifurcation,

::::::::
meaning

:
it
::
is
::::::
rather

:::::
prone

::
to

:::::
noise.

::::
The

:::::::
duration

:::
of

:::
this

::::
state

::
is

::::::::
therefore

::::::
highly

::::::::::::
unpredictable.

::::::::
However,

::
as

:::
we

::::
will

:::
see

::
in

::::
this

::::::
section,

:::
the

::::
FTP

:::::
does

::::::
provide

:::::::::::
information

::
in

:::
the

::::::::
diagnosis

::
of

:
a
::::::::
potential

::::::
second

::::::::
transition.

:

In the LTP, we can clearly see the gradual increasing leading system’s variance, AR(1) coefficient and DFA scaling co-20

efficient. These are all evidence of the leading system slowly approaching a bifurcation point, according to the change in the

parameter. There is not much evidence of long-range auto-correlations in the time series of the following system, as its variance

is low and the DFA scaling exponent remains below 0.5, pointing towards that the detrended fluctuations are statistically white

noise. The AR(1) coefficient of the following system does increase just prior to the first tipping, but also stays small (compared

to unity).25

The detrended cross correlation scaling exponent (abbreviated here as DXA) does give> 0.5 values, but the range throughout

the ensemble members is most of the time too large to see any structural development when approaching the bifurcation point.

During the leading system’s transition, a strong increase is visible, pointing towards the rather strong cross-correlated behavior

::::::::
behaviour during this period (as the following system also shifts its equilibrium a little).

The quantity ρDCCA seems to attain a small positive value (around 0.3) and stays relatively constant throughout the whole30

time interval. One important aspect of the calculation of ρDCCA, as we found by experimentation, is that the values is very

sensitive to the segment size s and the moving window size. The moving window determines the amount of data that is
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available to find long-range correlations, and the segment size has a strong impact on the accuracy of the fits and therefore

on the segmented fluctuations. As in this type of problem, we need a temporal evolution of the statistical indicators, we need

moving windows and thus encounter this problem. As these indicators (DXA and ρDCCA) have been applied successfully in

simpler systems (Zebende, 2011; Podnobik and Stanley, 2008; Zhang et al., 2001; Zhou, 2008), more research on the sensitivity

of the indicators with respect to the segment size and moving window size may lead to more robust results.5

During the FTP, the variance, AR(1) and DFA of the leading system are strongly reduced. However, the gradual increasing

of the following system’s variance, AR(1) coefficient and DFA scaling coefficient are definitely visible, pointing towards

the approaching of a bifurcation in the following system. Also notable is the contrast in the DFA of the following system

between before and after the tipping of x. The DFA of y went from a white-noise regime (around 0.5) before the tipping of

x towards a regime where the detrended fluctuations point towards long-range auto-correlations after the tipping of x (1-1.5).10

This illustrates the relation between the leading system’s state and the following system’s DFA scaling exponent. The DXA

remains relatively high, but overall no structural development can be seen in this graph. The quantity ρDCCA exhibits the same

behavior
::::::::
behaviour

:
as in the LTP, probably for the reasons already mentioned.

To assess the effects of the cascading effect on the mentioned statistics, we compare the results with a case where the system

(13) does not undergo a tipping in the following system (so only one transition remains). The resulting ensemble results are15

shown in Fig. 4. The most important differences between the regular cascading event and a single tipping event can be found

when comparing the variance, AR(1) and DFA scaling coefficient changes between LTP and FTP (or period after the first

transition). During the LTP, the leading system is close to transition and therefore has strong autoregressive behavior
::::::::
behaviour,

which is the opposite for the following system, being far from its bifurcation point. During the FTP, the following system

generally gains memory because it is brought closer to its transition point, and the leading system loses this because it had just20

arrived at a new state. So we expect that from the LTP towards the FTP, the variance, AR(1) and DFA decrease in the leading

system, and increase in the following system.

To quantify this effect, Table 3 shows the ratios of the different quantities, indicated by Q, during the FTP and LTP phases

(Q̄FTP /Q̄LTP ), for the cases with a second tipping (corresponding to runs shown in Fig. 3) and without second tipping (Fig.

4). All ensemble members are included in these numbers, accounting for a mean and standard deviation of these ratios. As25

expected, the leading system’s autoregressive metrics decrease in both cases, visible in the mean values of the ratios of the

leading system’s autoregressive variables being lower than 1. Also as expected, the following system’s autoregressive behavior

::::::::
behaviour increases (ratios > 1) in both cases, but striking is that in the case of a cascading tipping event (with second tipping),

the following system’s ratios are much higher than those in the case of a single tipping event (without second tipping). To

investigate whether the difference in ratios between single or double tipping is indeed significant, a Student’s t-test is done.30

The results are shown in Tab.
:::::
Table 4. The high p-values for the leading system’s ratios indicate no significant difference

between single or double tipping, but the low p-values for the following system’s ratios indicate a significant difference. This

shows the potential of using the ratio of autoregressive variables before and after a transition to assess whether a cascading

transition may follow. Further research is needed to quantify this expectation and to assess the sensitivity of these ratios to the

system’s parameters.35
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3.3.2 Fold-Hopf cascading tipping

Many statistical indicators have been applied on fold bifurcations specifically, because these transitions show a clear sign of

critical slowing down and increased autocorrelation due to the irreversibility and process of going from one equilibrium to-

wards another. A supercritical Hopf bifurcation has a different nature with respect to the slowing down, as it is no critical

transition
:::
state

:::::::::::
approaching

::
a

:::::
Hopf

:::::::::
bifurcation

::::::
reacts

:::::::::
differently

::
to
::::::::::::

perturbations,
:::::

than
:
a
:::::

state
::::::::::
approaching

::
a
:::::::::::

saddle-node5

:::::::::
bifurcation. We will now

:::::::
therefore

:
consider the fold-Hopf cascade in the light of the statistical indicators described before.

For this, we use the following stochastic dynamical system:

dx

dt
= a1x

3 + a2x+φ+ ζx

dy

dt
= b1z+ b2(κ(x)− (y2 + z2))y+ ζy

dz

dt
= c1y+ c2(κ(x)− (y2 + z2))z+ ζz

(14)

similar to (4) but now white noise is added through the terms ζx, ζy and ζz . We used an ensemble of 100 simulations with

the parameter settings and initial conditions as displayed in Table 2. The results of the ensemble are shown in Fig. 5. Here,10

we do not make the distinction between the LTP and the FTP, because in contrast to the double-fold cascade, the following

system undergoes a transition that is easily reversed and the system either is stationary or oscillating. Noise directly starts the

oscillation and completely removes the FTP
:::
We

:::::::
subtract

:
a
:::::::

running
:::::::

average
:::::
from

:::
the

:::::
states

::::
and

:::::::
calculate

::::
the

:::::::
statistics

:::::
from

::::
those

::::::
series,

::
to

::::::
prevent

:::
the

:::::::::
oscillation

::::
from

::::::::::
dominating

:::
the

:::::
signal

::
in

:::
the

:::::::::::::
autocorrelation. The following system

:::
(red)

:
is quickly

drawn towards the equilibrium state (x,y) = (0,0)
:::::::::::
(y,z) = (0,0), and the leading system

:::::
(black)

:
is in a steady state. During the15

time towards the bifurcation point, the variance, AR(1) coefficient and DFA of the leading system z
:
x gradually increase, as

is expected as we force this system towards its bifurcation point.
:
It
::::
also

::::::
seems

:::
that

:::
the

::::::
AR(1)

::
of

:::
the

::::::::
following

::::::
system

:::::::
slightly

:::::::
increases

::::::
during

:::
this

:::::::
period.

The DFA
::::
After

:::
the

::::::::
transition

::
of

:::
the

:::::::
leading

::::::
system,

:::
the

:::::::::
oscillation

::
of

:::
the

:::::::::
following

::::::
system

::::::::::
immediately

:::::
starts

:::
due

::
to
::::::

noise.

:::
The

:::::::
variance

:
and AR(1) of the following system after the bifurcation are in strong contrast with

:::::::
strongly

::::::::
increased

::::
with

::::::
respect20

::
to before the bifurcation, probably due to the autoregressive nature of the oscillation. The relation between the leading system’s

state and the following system’s
::::::
despite

:::
the

:::::::
removal

::
of

:::
the

:::::::
running

:::::::
average

::
to

::::
lose

:::
the

::::::::::
oscillation’s

:::::
signal

:::::
itself.

::::
On

:::::::
average,

::
the

:
DFA scaling exponent is also confirmed in this case

:::
also

::::::::
increases

::
of

:::
the

:::::::::
following

::::::
system,

::::::
which

:::::
relates

::
it
::
to

:::
the

:::::::
leading

:::::::
system’s

::::
state. The DXA sharply increased just prior to the critical transition but throughout the whole time series, retains

relatively high values. The reason behind this might be found in the low level of noise that is taken, or other simulation-25

specific parameters. It could also be that it is because the following system on average has a high, weakly varying DFA scaling

exponenton itself, which in turn might affect the height and variability in the cross-correlation. The ρDCCA coefficient remains

positive and small, just like in the double-fold case. Again, this may have to do with the choice of window and segment sizes.
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4 The
::::::::::
Application:

::::
the coupled AMOC-ENSO system

In this section, the theory
::
we

::::
find

::
an

:::::::::
application

:::
of

::
the

:::::::
concept

:
of cascading tipping will be applied to investigate the coupling

between
:::
(the

:::::::::
fold-Hopf

:::::
case).

::::
This

::::::::::
application

::::::
reflects

:::
that

:::::::::
cascading

:::::::::
transitions

:::
are

:::
not

::::
only

:
a
::::::

purely
:::::::::::
mathematical

::::::::
concept,

:::
but

::
do

:::::
occur

::
in

::::::::
idealized

:::::::
physical

::::::
models.

:::::
Here,

:::
we

:::::::
consider

:::::::::
cascading

::::::
tipping

::
in

:
a
::::::
model

:::
that

:::::::
couples the Atlantic Meridional

Overturning Circulation (AMOC) and the El-Niño -Southern Oscillation (ENSO).5

4.1 Coupling between AMOC and ENSO
:::::::::::
Background

First, to demonstrate
::
To

::::::::::
demonstrate

::::
and

:::::::
quantify the coupling between AMOC and ENSO, we use output from global climate

model simulations. In the ESSENCE project (Ensemble SimulationS of Extreme weather events under Nonlinear Climate

changE) several simulations were performed with the ECHAM5/MPI-OM coupled climate model, including so-called hosing

experiments (Sterl et al., 2008), where fresh water is added around Greenland to mimic ice sheet melting.10

Of these climate model simulations we have used two ensembles; the first is the ’standard’ experiment, where greenhouse

gases evolve according to observations and from the year 2000 onwards following the SRES-A1b scenario (experiment name

SRES-A1b). The second ensemble is the same as the standard one but has additional freshwater input (1 Sv = 106 m3/s) around

Greenland from the end of year 2000 onwards (experiment name HOSING-1). The HOSING-1 ensemble contains a hosing

experiment in the classical way, following the procedure of Jungclaus et al. (2006). Five runs of each ensemble are taken,15

specifically runs 041-045 of the HOSING-1 and runs 021-025 of the SRES-A1b ensemble. The temporal resolution used is

monthly data between 1950 and 2100. The spatial fields are on a curvilinear grid, with 40 vertical levels in the ocean. We use

deseasonalised data because we are interested in interannual variability, not in seasonal variability, as El-Niño is associated

with these timescales. As an AMOC index, we use the maximum of the Atlantic meridional overturning stream function at

35◦N and as ENSO index, we use the NINO3.4 index, which is the average SST over the region 170◦W-120
::
W

:
-
:::
120◦W ×

::
by20

5◦S - 5◦N.

The results for the evolution of the AMOC and ENSO are shown in Fig. 6. It is clearly visible that the AMOC decreases

strongly in the hosing experiments, by approximately 85%. Table 5 compares statistical properties for the time interval before

and after 2001 (which is the year at which the hosing starts). We use the non-anomaly statistics, as this gives us information

about the differences in the mean. We do note that we only use five runs per ensemble, which makes the uncertainty not25

statistically robust. We only state it in Table 5 to give an idea of the range of the variables among the different runs.

It is visible in Table 5 that the variability of NINO3.4 increases (bold numbers) if we compare the periods of 1950-2000

and 2001-2100. This increased variability is visible in both the standard and the HOSING-1 runs. However, the variability is

increased much stronger in the HOSING-1 experiment, indicating that the decrease of the AMOC indeed has an amplifying

effect on ENSO. The large difference between the standard and hosing runs suggests that the NINO3.4 index changed in30

the hosing experiment,
:::::::::
potentially as a consequence of the decrease of the AMOC.

::
As

:::
the

::::
first

::::::
tipping

::
is

:::::::::
artificially

:::::::
induced

:::::::
(without

:::
any

::::::::::
measurable

::::::
critical

::::::
slowing

::::::
down),

::::
and

:::
the

:::
fact

:::
that

:::
the

:::::::
models

::::
used

::::
here

::
are

:::::
much

:::::
more

:::::::
complex

::::
than

:::
the

::::::
simple
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::::::::
dynamical

:::::::
systems

:::
we

::::::::
discussed

::
in

:::::::
previous

::::::::
sections,

:::
the

:::::::
question

::
of

:::::::
whether

:::::::::
cascading

::::::
tipping

:
is
:::::::
actually

:::::::::
happening

::
in

:::::
these

:::
runs

::
is
:::::::
beyond

:::
the

:::::
scope

::
of

:::
this

::::::
paper.

:::
We

:::
use

:::
this

::::
data

::::
only

::
to

::::::
justify

:::
the

:::::::
coupling

::
of

:::::::
AMOC

:::
and

::::::
ENSO.

:

Several mechanisms have been suggested in the literature on the coupling between the AMOC and ENSO. The first mecha-

nism is concerned with oceanic waves. A colder North Atlantic creates density anomalies that induces oceanic Kelvin waves

to propagate southward (along the American coast) across the equator. In West Africa, this energy radiates as Rossby waves5

towards the north and south, which induces Kelvin waves to move along the tip of south Africa into the Indian ocean, that

eventually reach the Pacific. Consequently, the eastern equatorial Pacific thermocline deepens on a timescale of decades. This

deepening has a weakening effect on the amplitude of ENSO (Timmermann et al., 2005).

The
:
A
:

second mechanism is concerned with the trade winds. Cooling in the northern tropical Atlantic (due to AMOC

weakening) induces anti-cyclonic atmospheric circulation (Xie et al., 2007) that intensifies the northerly trade winds over the10

northeastern tropical Pacific. This leads to a southward displacement of the Pacific ITCZ (Zhang and Delworth, 2005) and this

generates a meridional SST anomaly due to anomalous heat transport and the wind-evaporation SST feedback in the Pacific.

Also, Dong and Sutton (2007) found an atmospheric coupling through Rossby waves sent into the northeast tropical Pacific.

::::
This

:
is
::
in

::::
line

::::
with

::::::::::::::::::::::
Dijkstra and Neelin (1995),

::::
who

:::::
argue

:::
that

::::
part

::
of

:::
the

::::::::::
contribution

::
to

:::
the

::::
zonal

:::::
wind

:::::
stress,

::::
τext,:::::

arises
:::::
from

::::::::
processes

::::::
outside

:::
the

::::::
tropical

:::::::
Pacific. The result of the wind stress as coupling between the two systems is an intensification of15

ENSO and this mechanism is argued to be stronger than the coupling through oceanic waves (Timmermann et al., 2005).

4.2 A coupled AMOC - ENSO model
::::::
Models

::::
and

::::::::
coupling

To study the possible cascading transition through the wind-stress coupling, we use a conceptual model. For the AMOC, the

classical Stommel box model (Stommel, 1961) is used. It consists of a polar (subscript p) and an equatorial box (subscript e),

both with a temperature T and salinity S and coupled by a density-driven flow rate. The state variables are then defined as20

∆T = Te−Tp and ∆S = Se−Sp. The time evolution of these variables is as follows (Cessi, 1994):
d∆T

dt
= − 1

tr
(∆T − θ0)−Q(∆ρ)∆T

d∆S

dt
=

Fs
H
S0−Q(∆ρ)∆S

(15)

where the first term in the temperature equation refers to relaxation towards a background temperature, and the second term

refers to density-driven meridional transport. Specifically, tr is the surface temperature restoring time scale and θ0 is the

equator-to-pole atmospheric temperature difference. Q(∆ρ) is the transport function, which is calculated from a diffusion time25

scale and the meridional density gradient ∆ρ. In the salinity equation, S0 is a reference salinity, and H is the ocean depth. The

parameter Fs is the freshwater flux, which can be used as a bifurcation parameter. The streamfunction

Ψ = γ0∆ρ/ρ0 = γ0(αT∆T −αs∆S)

represents the strength of the AMOC, with γ0 > 0 a flow constant, ρ0 a reference density and αT ,αS the thermal and haline

expansion/contraction coefficients.30
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For the El-Niño Southern Oscillation, we use the conceptual model as proposed in Timmermann et al. (2003). This model

has a state vector consisting of the temperature of the western Pacific T1, the temperature of the eastern Pacific T2 and the

thermocline depth of the western Pacific h1. The model finds its basis in the Zebiak and Cane (1987) ENSO model, with a

two-strip and two-box approximation, and a shallow-water model for the upper ocean with a fixed mixed layer depth:
dT1
dt

= −α(T1−Tr)−
u(T2−T1)

L/2

dT2
dt

= −α(T2−Tr)−
w(T2−Tsub)

Hm

(16)5

with 1/α a typical thermal damping timescale, Tsub the temperature below the mixed layer, Hm and L the depths of the mixed

layer and basin width, respectively, w upwelling velocity and u atmospheric zonal surface wind being linear to wind stress:

u/(L/2) = εβτ and w/Hm =−ζβτ . The parameters ε and ζ refer to the strength of zonal and vertical advection (bifurcation

parameters).

The subsurface temperature Tsub is parametrized as10

Tsub = Tr −
Tr −Tr0

2

[
1− tanh(H +h2− z0)

h∗

]
(17)

with h2 the east equatorial Pacific thermocline depth (calculated as deviation from a reference depthH), z0 the depth for which

w becomes its characteristic value and h∗ the sharpness of the thermocline. The thermocline depths are calculated as follows:
h2 = h1 + bLτ

dh1
dt

= r(−h1−
bLτ

2
)

(18)

where b the efficiency of wind stress τ to drive the thermocline tilt. For further detailsand parameter values, we refer to15

Timmermann et al. (2003).
::
In

:::
the

::::::::
Stommel

:::
and

::::::::::::
Timmermann

::::::
models,

:::
we

:::
use

:::
the

::::::::
standard

::::::::
parameter

:::::::
settings,

:::
as

:::::
given

::
in

:::
the

:::::::::
references,

:::::
unless

:::::
stated

:::::::::
otherwise.

:

The coupling of
::
We

::::::
couple

:
the AMOC and ENSO systems is mainly through influence on the wind stress. In the original

::::::
models

:::::::
through

:::
the

:::::::
relation

:::::::
between

::::
the

:::::::
Atlantic

:::::::::
meridional

:::::::::::
temperature

:::::::
gradient

:::
(in

:::
the

::::::::
Stommel

:::::::
model)

::
on

::::
the

::::::
Pacific

::::
zonal

:::::
wind

:::::
stress

:::
(in

:::
the

:::::::::::
Timmermann

:::::::
model),

:::
the

::::::
second

::::::
(more

:::::::::
important)

:::::::::
mechanism

::::::
found

::
in

::::::::
literature,

:::::::::
described

::
in

:::
the20

:::::::
previous

::::::
section.

:::::
Even

::
in

:
a
:::::::::
simplified

:::::
model,

:::
the

:::::::
relation

:::::::
between

::::
wind

:::::
stress

:::
and

:::::::::
meridional

::::::::::
temperature

:::::::
gradient

::
is

:::::::::
physically

:::::::
justified:

:::::::
thermal

::::
wind

::::::
balance

::::::::
indicates

:
a
:::::
direct

:::::::::
connection

::::::::
between

::
the

::::::::::
adjustment

::
of

::::
wind

:::::
stress

::
to

:::::::
changes

::
in

:::
the

:::::::::
meridional

::::::::::
temperature

:::::::
gradient.

::
In

:::
the

::::::::::::
Timmermann model, the zonal wind stress τ is expressed as:

τ =
µ(T2−T1)

β
(19)

with µ/β parameters that control the influence of the zonal temperature gradient on the wind stress, set to be 0.02 Pa·K−1.25

However, in Dijkstra and Neelin (1995) it was argued that part of the contribution to the zonal wind stress ,
::
We

:::
add

:::
an

:::::::
external

::::
wind

:::::
stress

::::
term

:
τext , arises from processes outside the tropical Pacific. Here, we model τext to be

:::
that

::
is
:
dependent on the

meridional temperature gradient in the Atlantic ∆T , i.e.,

τ = τext(∆T ) +
µ

β
(T2−Tr) (20)
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with a negative relation between τext and Atlantic meridional SST gradient ∆T as we know from literature described above

(stronger positive ∆T results in stronger easterlies, thus negative τext). Note that both the total Pacific wind stress τ and

specifically
:
its

:::::::
external

::::
part τext should always be negative. The total wind stress is negative because this area (at low altitude)

is strictly dominated by easterly winds, and τext is negative because through the meridional temperature gradient, it reflects the

influence of the zonal mean Hadley cell on the equatorial Pacific. Physically, the Hadley cell only induces negative zonal wind5

stress in this region.

In the coupling (20), we fix β and vary µ as the coupling parameter. For τext we take a linear relation:

τext = ατ∆T + γτ − τ0 (21)

where all coefficients are constant over time. The parameters ατ and γτ can be estimated from the ESSENCE data as discussed

in section 4.1, and the parameter τ0 is there to remove a
::::::
reflects

:::
the constant part in the zonal mean wind stress,

::::::
which

:::
we10

::::::
subtract

:
because we are interested in the contribution of changes in the meridional overturning. Using five ESSENCE runs per

ensemble for both the standard forcing and hosing-experiment, respectively, ∆T is computed as the absolute difference between

the SST in the North Atlantic area (50−60◦N × 50−20◦W) and the Equatorial Atlantic region (0−20◦N × 45−20◦W). For

the wind stress τext, the zonally integrated wind stress averaged over the region 0− 10◦N is taken. In Fig. 7, 5-year running

means of annual averages are plotted for the hosing simulations (in red) and the standard simulations (in black). Clearly, τext15

decreases with increasing ∆T , such that when the AMOC collapses (larger ∆T ) the wind stress τext becomes more negative

and the external part of the trade winds increases. However, we also note that the spread in the simulation data is large, which

in part can be attributed to internal variability present in the simulations. The coefficients ατ and γτ were found to be (from a

linear fit) -0.000376 Pa·◦C−1 and -0.0119 Pa. By looking at the ∆T regime in Fig. 7, τ0 is chosen to be the wind stress at 19
◦C: τ0 = ατ · 19 + γτ ≈−0.0190 Pa. This results in a final quantized expression for the coupling:20

τext ≈−0.000376 ·∆T + 0.00715 (22)

4.3 Results

The AMOC model’s bifurcation diagrams are shown in Figs. 8a and b, clearly showing a back-to-back saddle-node structure.

For an interval of values of the freshwater flux Fs, the system has multiple equilibria, and for other values, only one equilibrium

remains. This means that when we are in the high-Ψ branch and Fs is large enough, the system can make a transition to the25

low-Ψ branch. This is depicted by the blue arrow in Fig. 8b.

The bifurcation diagram of the ENSO model with τext as parameter is shown in Fig. 8c. First of all, the bifurcation diagrams

become much simpler than in the original Timmermann et al. (2003) model, the reason for this being extensively discussed in

Dijkstra and Neelin (1995). Fig. 8d shows the influence of µ for the position of the oscillatory regime: on each branch, two

Hopf bifurcations can be found and the µ value of the first Hopf bifurcation decreases with more negative τext. This indicates30

that the a
:::::

Hopf
:::::::::
bifurcation

::::
can

::
be

:::::::
crossed

::
if

:::
τext::

is
:::::::::
decreased,

:::::
while

::
µ

::
is

::::
kept

::::::::
constant.

::
In

::::
other

::::::
words,

:::
for

:::
the

:::::
right

::::
value

:::
of

::
µ,

:::
the

::::::
eastern

::::::
Pacific

::::
SST

::::
starts

:::::::::
oscillating

:
(El-Niño intensifies

::::::::::
‘intensifies’)

:
when the easterly external wind is increased.

:::
For

::
the

:::::::
coupled

::::::
model,

:::
we

:::
use

:::::::::::
µ= 0.00146.

:

16



Using τext to couple the AMOC and ENSO models, we performed simulations with ∆t= 0.1
:::
days

:
and the Runge-Kutta

fourth order integration method. To initiate the collapse of the overturning, a freshwater forcing Fs is applied in the form of a

step function:

Fs =

0.006 if t≤ 500 y

0.01 if t > 500 y
(23)

Using the coupling of Eqn. 22, we attain the results shown in Fig. 9.The exact quantification of this
::
the

::::::::
coupling

:
partly5

modulates which effect the collapse of the AMOC has on ENSO. For the chosen coupling, the collapse of the overturning leads

to the crossing of the first Hopf bifurcation point in the following system, and an oscillation starts growing. Hence,
::
As

::
is

::::::
visible

::
in

:::
Fig.

::
6,

:::
the

::::::
relation

:::::::
between

::::
∆T

:::
and

::
τ

:::
has

::::
quite

:::::
some

::::::
spread,

:::::
which

::::::
implies

::
a
::::
large

::::::::::
uncertainty

:
in
:::
the

::::::
values

::
of

::
ατ::::

and
:::
γτ .

:::
We

:::::
would

:::
like

::
to
::::::
stretch

::::
that

:::
the

::::::
regime

::
in

:::::
which

:::
the

:::::
Hopf

:::::::::
bifurcation

::
is

::::::
crossed

::
is

:::::::::
dependent

::
on

:::::::
multiple

::::::::
variables,

::::::
among

::::::
which

::
are

:::::
these

::::::::
coupling

:::::::::
parameters.

::::::::
Running

:::
the

:::::::
forward

:::::::::
integration

::
of

:::
the

:::::::
coupled

:::::
model

:::
for

::::::
values

:::::::
between

:::::::::::::
ατ =−0.00041

::::
and10

:::::::::::::
ατ =−0.00033,

::::::
learns

:::
that

:
(
:::::
ceteris

:::::::
paribus

:
),

:::
for

:::::
higher

::::::
(lower)

::::::
values

::
of

:::
ατ ,

:::
the

:::::::::
oscillation

:::::
indeed

::::::::
becomes

::::::
weaker

:::::::::
(stronger),

::::
down

::
to
::
a
::::::::::::
disappearance

::
of

:::
the

:::::::::
oscillation

::
at

::::::::::::::
ατ ≈−0.000335

::
at

:
a
::::
time

::::
step

::
of

::::
0.25

:::::
days.

::::::
Despite

:::
the

::::::::
parameter

:::::::::
sensitivity,

:
this is a typical illustration of the fold-Hopf cascading behavior discussed above.

::::::::
behaviour

::::::::
discussed

::
in

:::::
earlier

::::::::
sections.

::::
This

::::::::
motivates

:::
the

:::::::::
possibility

:::
that

:::::::::
cascading

:::::::::
transitions

::
are

::::::::
possible

::
in

:::
real

:::::::
physical

::::::::
systems.

5 Summary, Discussion and Conclusions15

In this paper, we introduced the concept of cascading tipping, which can occur when a transition in a leading system alters

background conditions for a following system such that it also undergoes a transition. We presented a mathematical framework

around this concept, where we used generic bifurcations (back-to-back saddle-node and Hopf) in both leading and following

systems. Four types of deterministic dynamical systems with the possibility for cascading events were formulated, including

the double-fold cascade, the fold-Hopf cascade, the Hopf-fold cascade and the double-Hopf cascade. In all cases we assumed a20

linear coupling between the following and leading system. The fold-fold coupled system has been considered before in another

context (Brummitt et al., 2015), where it also has been noted that in systems with more than two coupled fold cascades not

all subsystems undergo tipping (’hopping’). Moreover, stochastically coupled multi-stable systems have been considered in

networks, where different types of domino effects can occur depending on the synchrony of the transition in the different

network nodes (Ashwin et al., 2017; Creaser et al., 2018). Here we consider only two coupled systems, but allow different25

types of bifurcations, and the systems are physically coupled in a directional way.

We have discussed statistical indicators and analysis tools for cascading tipping points. Indicators for cascading tipping

points are found in detrended cross correlation analysis (DCCA) and a special case of extrapolation using the DFA of the fol-

lowing system. These tools were applied in simulations involving both the double-fold and fold-Hopf cascades. The increased

variance, AR(1) and DFA scaling exponent are clearly found in each case of single tipping. The cross-correlation indicators30

(DCCA and ρDCCA) did not evolve much throughout the time series, which indicates their insensitivity with respect to prox-
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imity to single tipping points. Several limitations on the use of these variables have been mentioned. However, it seems that

these metrics are highly sensitive to window and segment sizes, which leaves their potential as early warnings of cascading

transition events inconclusive. The ratios of autoregressive metrics before and after the first transition seem to be a stronger

warning of cascading transitions. More research is needed to exactly quantify these metrics.

The concept of cascading tipping was applied to study the behavior
::::::::
behaviour

:
of a model describing a link between the5

Atlantic Meridional Overturning Circulation (MOC) and ENSO. We modelled this using a coupling between the Stommel

(1961) model and the Timmermann et al. (2003) ENSO-model by a meridional temperature gradient-dependent term in the

external wind stress of the ENSO model. Through analysis of the bifurcation diagrams and simulations, a cascading tipping

event is indeed possible in this case and our results are presented in the light
:::::
within

::::
this

:::::
model

::
in

:::
the

:::::
form of the fold-Hopf

cascade.
:::::::::
Obviously,

::::
both

:::::::
models

:::
are

::::::
highly

::::::::
idealized

:::
and

:::::
more

:::::::
detailed

:::::::
models

::
of

:::::
both

::::::
AMOC

::::
and

::::::
ENSO

:::
are

::::::
needed

:::
to10

::::::::::
demonstrate

:::
the

:::::::::
occurrence

::
of

::::
such

::
a
::::::::
cascading

::::::::
transition

::
in

:::
the

:::::::
climate

::::::
system.

:

A potential example of a double-fold cascade, that was not further treated here, could be the impact of a bistable MOC

on the (bistable) land ice formation on the Antarctic continent. In this case the coupling exists through the atmospheric CO2

concentration, which depends on mixing and circulation in the ocean while strongly determining the existence of an ice sheet

(DeConto and Pollard, 2003). During the Eocene-Oligocene transition, where a large ice sheet grew on Antarctica, a two-step15

two-step signal is observed in the deep-sea δ18O ratio, suggesting two abrupt transitions. Using a box model by Gildor and

Tziperman (2000), Tigchelaar et al. (2011) showed that a two-step signal can be produced by first a MOC transition which

changes the CO2 concentration such that a transition occurs in the land-ice model.
::::::::
Although

::::
from

::
a
:::::::
physical

:::::::::::
perspective,

:::
this

::
is

:
a
::::::::
potential

:::::::
example

::
of

::
a
::::::::
cascading

:::::::::
transition,

:::
we

:::::
make

::
no

:::::
claim

:::::
about

:::::::
whether

::::
such

::
a
::::::::
transition

:::::
likely

::::::::
occurred

::
at

:::
the

:::::::::::::::
Eocene-Oligocene

::::::::
transition.

:::::
Here,

::::
also

:::::
more

:::::::
detailed

::::::
models

:::
are

::::::
needed

::::
and

::::::::
transition

:::
are

:::::::
expected

::
to

:::
be

::::
more

:::::::::::
complicated20

::::::::::::::::
(Tantet et al., 2018).

:

These two applications indicate that there
:::::
reflect

:::
the

::::::::
relevance

::
of

::::
this

::::::
paper.

:::::
There

:
are likely many cases in which these

cascading events occur in climate and therefore highlight the importance of the topic. Future research will point out whether

these events are likely to happen in the future climate and whether these effects also occur in other fields than climate science.

Of course, the theory
:::
this

:::::
paper

:
covers the very basics of deterministic cascading events. One can imagine a wide range of25

phenomena if more complicated transitions between attractors are considered and when noise is included. For example, when

a leading chaotic system is coupled to a deterministic following system with a back-to-back saddle-node bifurcation structure,

a slight change in the chaotic attractor may change the background conditions for the following system such that it undergoes a

transition. An application here may be the effect of a midlatitude atmospheric jet on the Atlantic MOC. We hope that this paper

will stimulate more research on the various types of cascading tipping and also on the development of well-suited indicators30

and early warnings of such events.
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Figure 1. Bifurcation diagrams of coupled dynamical systems that show various cascading tipping types. Forcing parameter φ of the leading

system is used on the horizontal axis, the leading system’s
::::
Stable

:
(top) or following system’s (bottom) equilibria are shown on the vertical

axis. Lines indicate stable equilibria (black solid), unstable equilibria (black dashed
:::::
dotted) and oscillatory equilibria (

:::::::
amplitude

:
red dashed

lines indicate non-zero amplitudes in pairs
::::
dotted)

::::::
regimes

::
of

::::::
various

:::::::
cascading

::::::
tipping

::::
types

:::
(as

::::::
depicted

:::
on

::
top

::
of
:::
the

:::::
figure). Dots

:::::
Black,

:::::
orange

:::
and

::::
black

::::
dots indicate important bifurcation points

:::
fold,

::::
Hopf

::::
and

::::
torus

:::::::::
bifurcations,

::::::::::
respectively.

:::
Top: limit points (red/orange for

the leading /
:::::
system

:::::
versus

::::::
forcing

::
φ.

::::::
Middle:

:
following system

:::::
versus

::::::
coupling

:::
γ.

::::::
Bottom:

:::::::
(coupled) , Hopf bifurcation points

:::::::
following

:::::
system

:::::
versus

::::::
forcing

::
φ.

::::::
Critical

:::::
values

::
of

:
(blue/green for the

:::::
coming

::::
from

:::::
lower

::::::
branch)

:
leading /

:::::
tipping

:::::
(top), following system

:::::
tipping

::::::
(middle) and torus bifurcation points (black/grey for the leading/following system

:::::::
combined

:::::::
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Figure 2. Example simulations for each cascading event type: the double-fold cascade (a), the fold-Hopf cascade (b), the Hopf-fold cascade

(c) and the double Hopf cascade (d). Black and grey lines indicate the leading systems, red and orange lines indicate the following systems.

Dotted lines indicate time before the critical threshold in the forcing φ(t) (black/grey) or coupling κ(x) (red/orange) is reached, solid lines

indicate the time after this. Parameter values for the modelled systems are given in Table 1.
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Figure 3. Ensemble (100-member) simulations of a dynamical system undergoing a double-fold cascade (Eqn. 13) where both systems

undergo a transition, parameter values as in Table 2; (a) states of x (black) and y (red), (b) variance of x (black) and y (red), (c) autoregressive

coefficient at lag 1 of x (black) and y (red), (d) detrended fluctuation analysis scaling exponent of x (black) and y (red), (e) detrended

cross-correlation analysis scaling exponent and (f) detrended cross-correlation coefficient by Zebende (2011). White-shaded areas indicate

windows containing the actual transitions. The increased variance, AR(1) and DFA scaling exponent prior to transition in the leading system

and following system, respectively confirms the predicted increased memory through critical slowing down.
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Figure 4. As in Fig. 3, but without any transition in the following system. In this case, only the leading system has a transition. Parameter

values are given in Tab.
::::
Table 2.
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Figure 5. As in Fig. 3, but for the fold-Hopf cascade (Eqn. 14). Parameter values are given in Table 2.
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Figure 6. Top panel: Evolution of the five standard SRES-A1b runs (blue) and five HOSING-1 runs (red) in terms of the overturning
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streamfunction. Bottom panel: NINO3.4 of the standard SRES-A1b ensemble (blue) and the HOSING-1 ensemble (red). Shaded thin lines

indicate monthly means, thick lines indicate the deseasonalised values.

−0.022 −0.021 −0.020 −0.019 −0.018 −0.017 −0.016
Zonal equatorial wind  tre   (Pa)

17

18

19

20

21

22

23

Te
m
pe

ra
tu
re
 g
ra
di
en

t (
K) Linear fit

Regular run 
Ho ing run 

Figure 7. Zonal equatorial wind stress versus Atlantic temperature gradient. Data from the ESSENCE (Ensemble SimulationS of Extreme

weather events under Nonlinear Climate changE) project is used, where the black dots refer to five members of the standard ensemble with

SRES-A1b forcing (period 1950-2100), and the red dots refer to five members of the HOSING-1 ensemble where in 2000 a freshwater

perturbation is applied (i.e., period 2000-2100). Five year running mean is applied, yearly averages are shown. The zonal equatorial wind

stress here is defined as the average zonal wind stress over the latitudonal band 0-10◦N. The Atlantic temperature gradient is defined as the

difference between the SST in a northern box (50-60◦N, 50-20◦W) and a southern box (0-20◦N, 45-20◦W). The blue line indicates a linear

fit.
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indicates the collapse of the overturning circulation, which amplifies (negatively) the external zonal wind stress in the Pacific τext, such

that (orange arrow), the system enters an oscillatory state. Orange arrow indicates subsequent tipping in the following (ENSO) system. Top

panels: (a) Meridional temperature gradient equilibria versus freshwater flux, (b) non-dimensional stream function versus freshwater flux.

These figures show the multiple states of the overturning. Bottom panels: (c) eastern equatorial Pacific SST versus τext (for µ= 0.00145),

showing a regime where the system is stationary and a regime where the system is oscillatory, (d) eastern equatorial Pacific SST versus µ for

different values of τext. Orange dots indicate Hopf bifurcation points, orange dotted lines indicate oscillatory regimes. Black and grey solid

lines indicate stable equilibria, black dashed liens indicate unstable equilibria.
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Figure 9. Simulation run of the coupled Stommel-Timmermann model for different model configurations, where the collapse of the over-

turning flow function (black) leads to the crossing of a Hopf bifurcation in the eastern equatorial-Pacific SST (orange).
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Parameter
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values

::
as

:
in
::::::::::::::::::::
Timmermann et al. (2003),

::::
with

::::::::::
µ= 0.00146.
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Table 1. Parameter values and coupling for the four types of cascading tipping as shown in Figures 1 and 2.

Double fold (Eqn. 3) Fold-Hopf (Eqn. 4) Hopf-fold (Eqn. 5) Double Hopf (Eqn. 6)

Leading system

φc =±0.19 (Fold) φc =±0.38 (Fold) φc = 0 (Hopf) φc = 0 (Hopf)

Bistable for Bistable for Oscillatory for Oscillatory for

|φ|<
√

−4a3
1a

3
2

27a4
1

|φ|<
√

−4a3
1a

3
2

27a4
1

φ > 0 φ > 0

(if a1 < 0,a2 > 0) (if a1 < 0,a2 > 0) (if a1b1 < 0) (if a1b1 < 0)

Coupling

γ = 0.48x γ =−0.1 + 0.12x γ = 0.05 + 0.5x γ =−0.05 + 2x

Following system

γc =±0.54 (Fold) γc = 0 (Hopf) γc =±0.38 (Fold) γc = 0 (Hopf)

Bistable for Oscillatory for Bistable for Oscillatory for

|γ|<
√

−4b31b
3
2

27b41
γ > 0 |γ|<

√
−4c31c

3
2

27c41
γ > 0

(if b1 < 0, b2 > 0) (if b1c1 < 0) (if c1 < 0, c2 > 0) (if c1d1 < 0)

Parameters

a1 =−0.5 a1 =−1 a1 = 0.05; a2 = 1 a1 = 0.04; a2 = 2

a2 = 0.5 a2 = 1 b1 =−0.05; b2 = 1 b1 =−0.04; b2 = 2

b1 =−0.5 b1 = b2 = 1 c1 =−1 c1 = 0.4; c2 = 1

b2 = 1.0 c1 =−1; c2 = 1 c2 = 1 d1 =−0.4; d2 = 1
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Table 2. Parameter values, coupling and initial conditions for the ensemble simulations of the Double Fold and Fold-Hopf systems as shown

in Figures 3, 4 and 5.

Double fold (Eqn. 13) Double fold (Eqn. 13) Fold-Hopf (Eqn. 14)

(following system tips) (following system does not tip)

Forcing and coupling

φ(t) = 0.0012t φ(t) = 0.0012t φ(t) = 0.002t

γ(x) = 0.05 + 0.37x γ(x) = 0.05 + 0.37x γ(x) =−0.2 + 0.3x

Parameters

a1 =−0.5 a1 =−0.5 a1 =−1

a2 = 0.5 a2 = 0.5 a2 = 1

b1 =−0.5 b1 =−0.25 b1 = 0.1;b2 = 1

b2 = 1.0 b2 = 1 c1 =−0.5; c2 = 1

Integration time

tmax = 500 tmax = 500 tmax = 500

∆T = 0.5 ∆T = 0.5 ∆T = 0.5

Noise

Noise mean = 0 Noise mean = 0 Noise mean = 0

Noise variance = 0.1 Noise variance = 0.1 Noise variance = 0.1

Initial conditions

(x0,y0) = (−0.8,−1) (x0,y0) = (−0.8,−1) (x0,y0,z0) = (−0.5,1,−1)
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Table 3. Comparison of the ratios of autoregressive variables prior to and after the first transition, using the ensembles shown in Fig. 3 and

Fig. 4.

Ratios Mean Standard deviation

With second tipping

Leading variance 0.24 0.44

Leading AR(1) 0.62 0.09

Leading DFA 0.79 0.27

Following variance 3.95 1.53

Following AR(1) 1.92 0.39

Following DFA 1.70 0.49

Without second tipping

Leading variance 0.15 0.06

Leading AR(1) 0.60 0.08

Leading DFA 0.74 0.23

Following variance 1.63 0.42

Following AR(1) 1.34 0.31

Following DFA 1.40 0.41

Table 4. Results of Student’s t-test on the differences between the ratios (in Tab.
::::
Table 3) of the cases with and without second tipping.

*p-values calculated using the scipy.stats Python package.

t-test variable T-statistic dF p-value*

Leading variance 1.62 101.67 0.11027

Leading AR 1.32 197.07 0.18904

Leading DFA 1.23 190.60 0.22264

Following variance 13.73 112.38 0.0

Following AR 9.93 184.12 0.0

Following DFA 4.13 190.17 0.00006
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Table 5. NINO3.4 statistics (of deseasonalised data) for the different ensembles. The uncertainty stated is the standard deviation among the

five runs within the ensemble. It is visible that in the case of a collapsed overturning, El-Niño intensifies more than without a collapsed

overturning.

Time period Ensemble Variable Value

1950-2000 Standard SRES-A1b Mean 25.86 ± 0.046

Standard SRES-A1b Variance 1.705 ± 0.447

2001-2100 Standard SRES-A1b Mean 27.51 ± 0.032

Standard SRES-A1b Variance 2.581 ± 0.112

2001-2100 HOSING-1 Mean 27.27 ± 0.053

HOSING-1 Variance 3.21 ± 0.42
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Response to referee #1 (Alexis Tantet)
We thank the referee for the careful reading and the useful comments and will
adapt the manuscript accordingly. Below is a point by point reply with the refer-
ees comments in bold font, our reply in italic font and the changes in manuscript
in normal font.

1. Comment of the referee:
Section 2: The authors first describe possible scenarios of cascading
tipping by combining the normal forms most relevant for applica-
tions and involving only one or a pair of stability exponents crossing
the imaginary axis. As such, the framework is suited for coupled
systems for which both the leading and the following systems are
close to a saddle and/or a Hopf bifurcation, a situation relevant for
the applications considered here. However, the climate system is a
high-dimensional system with a large number of positive Lyapunov
exponents, whereas the bifurcations considered here involve only one
or two-dimensional attractors rather that chaotic sets. As such, while
the mathematical framework considered here appears to be an impor-
tant direction to explore for climate applications, I would consider it
only as a first important step towards understanding more complex
abrupt climate changes, such as the one studied in section 4. This
point could be discussed more by the authors.

Authors reply:
We agree that abrupt climate changes in reality are connected to more complex
chaotic sets and impossible to attribute to a single bifurcation or two bifurca-
tions. As the referee also points to, the aim of this paper is to give a framework
of cascading transitions with mathematical examples, analyses and applications
to conceptual models. The step towards the real climate system should be taken
with care. Especially in the beginning of the paper this can indeed be made more
clear. In the discussion section, this was already mentioned (e.g. page 16, line
5-7).

Changes in text:
We will address the connection between the idealized cases of cascading tipping
here and transitions in the real system in the revised introduction en discussion.

In the beginning of section 2 we will add: In this section, we present a math-
ematical framework for simple cascading transitions, that acts as a first step
towards analysing the more complex transitions happening in reality.

2. Comment of the referee:
In bifurcations involving meta-stable states, such as the double sad-
dle node bifurcation, or bifurcations involving strange attractors (e.g.
(Tantet, Lucarini, Lunkeit, & Dijkstra, 2018)), a critical transition
occurs through a saddle point, or a strange saddle. In this case, al-
though the saddle set is globally unstable, its stable manifold may be
responsible for a slowing down at the vicinity of the saddle, resulting
in what also looks like a two step transition. Could you discuss why
the cascading bifurcations may or may not be a better candidate to
explain the two-steps transitions such as observed during the Eocene-
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Oligocene transition?

Authors reply:
In DeConto and Pollard (2003), it is suggested that the atmospheric CO2 con-
centration influences the existence of an ice sheet on Antarctica, via its effect
on the ice-albedo and height-mass balance feedbacks. As the box model by Gildor
and Tziperman (2000) contains these feedbacks, and a boxed ocean in which
Tigchelaar et al. (2011) found multiple steady states for the meridional over-
turning circulation, a cascading event (of two bistable systems) could be simu-
lated here (as written on p. 15 line 29 to p. 16 line 2). Of course, the comparison
with the Eocene-Oligocene transition as found in proxy records should be made
with care, because of the simplicity of the model used in Tigchelaar et al. (2011).
In the present manuscript we have added this mainly as an example, but clearly
further work is necessary to substantiate the hypothesis of cascading tipping be-
ing relevant for the Eocene-Oligocene transition. In particular, the coupling of
the two bistable systems via the carbon cycle (determining the atmospheric CO2)
requires more attention. This goes beyond the scope of the present manuscript
and will be elaborated on in a follow-up study.

Changes in text:
We will cite and shortly discuss the Tantet et al. (2018) paper. In the revised
discussion, we will add: Although from a physical perspective, this is a poten-
tial example of a cascading transition, we make no claim about whether such a
transition likely occurred at the Eocene-Oligocene transition.

3. Comment of the referee:
Section 4: In Fig. 7, there is indeed a strong correlation between the
temperature gradient and the wind stress. However, as the author
remark, there is also a strong spread, which should result in a strong
variance in the estimate of the coefficients in Eq. 21. Could you use
an ensemble method such as bootstrapping or a Bayesian model to
test the probability that such a cascading tipping indeed occurs when
sampling the different values of the coefficients of Eq. 21? This would
allow to discuss the robustness of the results to the dependence of
the wind stress on the temperature gradient.

Authors reply:
This is a good suggestion. Note that the results shown in Fig. 8 and 9 are
dependent on multiple parameters and choices made (not only the ones that are
derived from Fig. 7). To be precise, these are the definition of the North Atlantic
and the Equatorial Atlantic regions, the zonal wind stress region, the reference
wind stress parameter (τ0), and it also turns out that the temporal resolution
and running mean may dramatically change the values of ατ and γτ in Eqn.
(21).

Changes in text:
We will add such results (using bootstrapping with different values of ατ and
γτ in Eqn. (21)) to the revised paper.

4. Comment of the referee:
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You explain well how the parameters of the wind stress equation are
estimated from the model runs. However, it is not clear to me how
the parameters of the Stommel and of the Timmermann are chosen.
Are the parameter values used the same as in the references? Are
they chosen so as to be as close as possible to historical data? So
has to reproduce the mean state and variability found in observa-
tions? Or so as to favor the occurrence of the cascading tipping?
In any case, I understand that estimating the parameter values of
minimal models from observations or complex models is a difficult
and not always relevant task. However, the sensitivity of the oc-
currence of the cascading tipping on the parameters of the coupled
Stommel-Timmermann model should be discussed to better assess
the likelihood of such tipping to occur.

Authors reply:
For the Stommel and Timmermann models, we have used the standard values
as in the original references, except when stated otherwise (for example in the
case of the freshwater forcing in Eqn. 23). The parameter mu (that partly de-
termines the closeness of the ENSO system w.r.t. the Hopf bifurcation) has been
chosen to be near critical for the Timmermann model.

Changes in text: We will explicitly mention how the value of mu (in cap-
tion of Fig. 9) was determined. On page 14 we will add: In the Stommel and
Timmermann models, we use the standard parameter settings, as given in the
references, unless stated otherwise.

5. Comment of the referee:
Discussion: Salinity biases, such as found in the GCM used in this
study, have shown to have a strong impact on the bi-stability of the
AMOC (Mecking, Drijfhout, Jackson, & Andrews, 2017). Consider-
ing that the strengthening of ENSO also occurs in the control run,
could you discuss whether this is/is not an important factor to take
into account when asking whether or not such a cascading tipping of
the AMOC+ENSO system could occur in the future.

Authors reply:
Whether a cascading tipping event is what actually occurred in the HOSING-1
runs, is not known. Probably there is a more complicated reason behind the
increased SST variance in HOSING-1 with respect to the standard runs, and
likely a mix of different effects. The effect of salinity biases on the bimodality
and hence on the AMOC-ENSO coupling is interesting but outside the scope of
this paper. In the coupled Stommel-Timmermann model, we know in which pa-
rameter regime of the freshwater flux there is bimodality in the AMOC because
that follows directly from the Stommel models design.

Changes in text:
In the revised discussion, we will shortly mention the effect of salinity biases on
the bimodal behavior of the AMOC in GCMs, and its potential effect on the
cascading behavior (and cite the relevant papers).
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Response to referee #2
We thank the referee for the careful reading and the useful comments and will
adapt the manuscript accordingly. Below is a point by point reply with the ref-
erees comments in bold font, our reply in italic font and the changes in the
manuscript in normal font. We have taken the liberty to divide the comments
into smaller pieces and discuss them separately.

1. Comment of the referee:
It is not very clear to me what the authors see as the main aim of
the paper. In the abstract it is stated that they aim at providing a
new theory / a mathematical framework. I am not convinced that
these specific claims are supported by the contents of the paper. For
example, isnt a theory something that provides an explanation for a
certain number of facts? What is the new explanation here, and of
what?

Authors reply:
The aim of the paper is introducing the concept of cascading transitions. The
contents of the paper support this by giving mathematical examples of these
events, describing their statistics, and giving an example from climate physics.
We agree that it is only a framework, not a complete theory (which was never
the aim). In that respect, the first sentence of the abstract and the first sentence
of Section 4 need to be rephrased, as they indeed imply that we provide a new
theory.

Changes in text:
Abstract, we will rewrite the first sentence to We introduce a framework of Sec-
tion 4, in the first sentence we will change theory to concept.

2. Comment of the referee:
I like how Sect. 2 systematically explores conceptual models of two
combinations of generic bifurcations. In this section, I have the im-
pression that one tipping point immediately triggers the next (instead
of the tipping point in the leading system only bringing the following
system closer to its own tipping point, which is then again triggered
by the changing control parameter)?

Authors reply:
We understand the confusion and will try to make it more clear in the text.
First of all note that the bifurcation diagrams only show equilibrium states of
purely deterministic systems. This means that if the bifurcation diagram does
not show that the following system tips after the leading system is forced with
phi, then the following system will never tip (there is no noise). So actually, one
would expect that the bifurcations of the leading and following system overlap
(when only looking in phi space), but not in time. The issue why the forward
runs in Fig. 2 do show a gap between the two tipping points can be understood
as follows. This is purely the transient as it takes a little time for the dynami-
cal system to adapt to the new parameter setting (how long this takes may also
depend on the specific form of the coupling). Fig. 2 nicely shows that the two
tipping points are different events. The dashed lines show when the system is
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still stable in their old equilibrium, and the solid lines show whenever they are
drawn to the second equilibrium. For example, in Fig. 2a one can see that the
following system (red) only reaches its critical threshold to be drawn to the next
equilibrium exactly when the leading system tips (so not before due to the in-
creased forcing, but it is caused by the first tipping).

Changes in text:
We will provide more explanation on the results of Fig. 2 in the text.

3. Comment of the referee:
If this is the case, how can early warning signals even be used to pre-
dict the second transition? I will elaborate on this point below. In
general, the early-warnings analysis in Sect. 3 is less clear to me than
Sect. 2. I have the impression that the authors present two analyses
of a single tipping, and not one analysis of an induced tipping, which
somewhat questions the novelty of the approach. At first, I thought
that the authors aim to predict the second tipping before the first,
or infer what kind of bifurcation to expect. However, after the first
examples of cascading tipping it seemed like the approach was to use
early warning signals to first predict the first transition and after that
predict the second transition, but to do that the concept of cascad-
ing tipping is not necessary, since they basically predict two tipping
points independent from each other.

Authors reply:
We agree with the referee that what is discussed in section 3 is broader than
only the prediction of cascading transitions. The goal of section 3 is to give
an overview of some important metrics during a cascading transition event, to
see whether we can find early warnings of the complete (cascading) event, or to
see whether we can find signals that a first (already happened) transition brings
another system closer to second transition. So the question was indeed not nar-
rowed to (only) predicting the second tipping before the first. Basically we tried
to answer three questions: Can we predict the complete event (second tipping
before the first)? For this we looked at DCCA and ρDCCA. Can we diagnosti-
cally see whether the second tipping is caused by the first? For this we looked
at the ratios of AR1, variance and DFA before and after the first tipping. How
do standard statistical metrics act during the event? For this we looked at AR1,
variance and DFA.

Changes in text:
We will add additional text to the beginning of section 3 to explain better what
the goal of the section is. We will also rephrase page 2, line 32. We will discuss
the limits of the DCCA and ρDCCA usage.

4. Comment of the referee:
In this context, I was also wondering why the external shock that the
second system receives must result from a bifurcation in the leading
system. Could it not also result from other kinds of tipping points,
or a sudden step or peak in forcing like a volcanic eruption or a pulse
release of greenhouse gases? Why is the leading system needed at
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all when the main aim is to detect if the first shock will trigger a
transition in the following system?

Authors reply:
Of course, relating two transitions to each other is not trivial. It might indeed
be that a second transition is completely unrelated to the first. If we would like
to check the relation between a second transition to a first, we propose to look
at the ratio in the autocorrelation, variance and DFA, because apparently (see
Tab. 3-4) these are significantly different from events where there is no second
transition or when they are unrelated.

Changes in text:
We will clarify this together with the changes according to the comment 3 above.

5. Comment of the referee:
The model example in the end (ENSO-AMOC model) is interesting,
but its purpose is not clear enough to me. Maybe the authors can
clarify what it is that they want to demonstrate exactly and state
this clearly in the introduction and draw conclusions using the re-
sults they show.

Authors reply:
Section 4 is an example of a cascading transition in a physical model. We do not
claim that this experiment reproduces reality, but it does reflect that cascading
transitions are not a pure mathematical construct, but that they present inside
idealized climate models.

Changes in text:
We will elaborate on the goal of section 4 at the beginning of the section and
discuss its implications.

6. Comment of the referee:
The conclusion section should be extended by a discussion about what
questions are answered and what the implications of the results are.
What can we do or understand with the approach in this paper that
we were not able to do or understand before? What should be done
next?

Authors reply:
Agreed, the implications can be more explicit. The main new notion is that tip-
ping in one system can lead to tipping in another system through modification of
the stability of the state of the latter system, even if both systems are only weakly
coupled. An important implication of this is that several climate subsystems may
actually be highly vulnerable through their coupling with other subsystems.

Changes in text:
We will add a paragraph in the revised discussion section to reflect on the main
implications of the results in the paper.

7. Comment of the referee:
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The reasons for the choice of methods should be explained better.
This is often linked to the problem mentioned above, i.e. the lack of
clarity about the aim of the study. Once this aim becomes clearer,
it should also be easier to explain why certain methods are applied.
Specifically, the choice of statistical indicators needs better justifica-
tion. I currently do not see what the early warnings approach can
add to previous studies. For example, why is DFA used as a warning
signal instead of just the autocorrelation? Since autocorrelation is
simpler to calculate and more intuitive, I would like to see an argu-
ment for the added value of DFA.

Authors reply:
The referee makes a fair point that DFA does not add much in the simple sys-
tems we look at right now. As we can see in Fig. 3-5 and Tab. 3-4, AR1 and
variance mark the slowing down pretty well, even better than DFA in terms of
robustness and statistical significance. DFA is argued to be needed when one
needs to filter long-range correlations/non-stationarity in data that has a rel-
atively short size with respect to short-range noise, e.g. in Greenland ice core
data in Livina & Lenton (2007). For completeness, we added DFA because when
one applies these ideas to actual data, DFA might be necessary.

Changes in text:
We will motivate better why we use DFA, in line with the changes from com-
ment 3.

8. Comment of the referee:
The statement that standard quantities not always provide an early
warning signal (page 6, line 26/27) should be backed up with an ar-
gument and references, and then it should be explained why DFA can
cope with this.

Authors reply:
Agreed. Standard quantities is ill-defined in this sentence. As discussed in com-
ment 3 and 7, the DFA argumentation is also elaborated on more.

Changes in text:
The statement will be changed into standard metrics like autocorrelation at lag
1 and variance do not always provide an early warning signal (e.g. in Greenland
ice core data in Livina & Lenton 2007).

9. Comment of the referee:
I would actually expect DFA to fail whenever autocorrelation fails,
which happens when the system is more complicated than the typical
Langevin equation / AR1-process with one fixed time scale. One ar-
gument the authors give is that DFA copes well with non-stationarity.
First: What is the explanation for this statement? What is the trade-
off when using DFA (more data needed?). Second: Couldnt one just
remove non-stationarity with a high-pass filter (which is what the
authors seem to do already) and then use traditional early warn-
ing signals? The authors use relatively simple models here, where
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the parameter can be varied as slowly as necessary to remove non-
stationarity (or they could even make long stationary time series for
different fixed parameter values). Another argument the authors pro-
vide is that DFA captures long-range correlations. But why should
one expect such long-range correlations in the simple models the au-
thors use? Can they even exist? So, in a nutshell, why is DFA needed
in this paper?

Authors reply:
The argumentation for the usage of DFA is found in (among others) in Livina
& Lenton 2007 and Peng 1994. Livina & Lenton (2007) argue that DFA filters
long-range correlations or non-stationarity better. They apply it on a dataset of
Greenland ice cores and argue why degenerate fingerprinting is less applicable
(due to the short length of the dataset with respect to the time scale of the non-
stationarity).

Changes in text:
We already refer to these articles in the paper, but in line with comments 3, 7
and 8, we will explain this better.

10. Comment of the referee:
Then the authors generalise DFA to capture the involvement of sev-
eral state variables (using DCCA). This could make sense if they were
trying to detect something about the coupled system, for instance,
which variable is leading, what will happen after tipping 1 and 2.
However, the main results seem to consist in predicting tipping 1,
and then detecting that the following system has moved closer to a
tipping point (by the way, how do we know that there is a second
tipping point? The fluctuations could just have changed for another
reason.). As far as I can see, DCCA is not needed to do so, an AR1-
analysis of each single variable may have sufficed.

Authors reply:
As stated in comment 3, we look at multiple statistical aspects of cascading tran-
sitions. DCCA is used to see whether the detrended cross-correlation gives any
signal of the complete system prior to a cascading transition, which lets it act
as an early warning signal. We agree that this can be made more clear, and that
DCCA is not adding much in terms of results. However, we think that it does
add to the completeness of the statistical description and invites the scientific
community to do further research on this.

Changes in text:
We will add some text in 3.2 to explain why DCCA is included.

11. Comment of the referee:
The explanation on page 7, lines 26-30 is unclear to me. In what way
and to what purpose and why can Pearsons correlation not be used?
And what is meant with a one-to-one-relationship (line 30)?

Authors reply:
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Not much is predictable about the behaviour of the following system prior to the
first transition, as it might be still far away from its bifurcation point. The pure
(Pearsons) cross-correlation might therefore be very noisy or even decreasing
prior to the first tipping. A one-to-one relationship refers to that the systems
correlate well, but this is clearly not necessarily the case. However, we suggest
that by looking at long-range correlations (e.g. using DCCA), one might filter
out an increase in the long-range cross-correlation prior to the first transition,
acting like an early warning signal for cascading transitions. The results are too
noisy to interpret, but we invite other researchers to look at this more in-depth.

Changes in text:
The first part of 3.2 will be adapted as in the reply to comment 10.

12. Comment of the referee:
Sect. 3.3.1: The authors state several times that DXA and DCCA
are sensitive to the segment size and moving window size, but have
different values been tried? It would be nice to show how sensitive
they are, and what this means for the results. It could help already
to just show more runs with different parameter settings.

Authors reply:
Indeed, we have tried different values. The results are indeed quite sensitive to
segment size (for detrending in DFA/DCCA) and moving window (for running
averages).

Changes in text:
We will a short discussion on the effect of segment size on the results.

13. Comment of the referee:
In section 3.1 The essential part of degenerate fingerprinting is the
projection on the leading EOF in a multivariate system. However, the
manuscript skips this part of the method, and therefore, right now,
just explains the lag-1 autocorrelation and not degenerate fingerprint-
ing. Could one learn something about a system with cascading tipping
points by using degenerate fingerprinting on the multivariate signal?

Authors reply:
We agree with the referee. We only focus on the proposed c-propagator as in
Livina & Lenton 2007, without explaining the background of degenerate finger-
printing. The c-propagator is reflected by the AR1 coefficient and therefore is
an estimator of the degenerate fingerprinting technique.

Changes in text:
In section 3.1, we will add a few lines on the decay rate of κ and the projection
on the leading mode.

14. Comment of the referee:
Sect. 3.3: Why are only the double-fold and fold-Hopf systems tested
for the early-warning approach, and not the two systems with a Hopf
bifurcation in the leading system? This choice should be explained
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or the other two examples should be included as well.

Authors reply:
We agree that this seems arbitrary. We focus on those two systems because
adding more would be repetitive and not adding much, and the choice of these
two is because they both start with a clear first transition, making them more
illustrative.

Changes in text:
At the beginning of 3.3, we will add additional text to explain why we focus on
the double-fold and fold-Hopf cases.

15. Comment of the referee:
Sect. 3.3.2, page 10, last paragraph: The oscillation seems to affect
the measurement of autocorrelation. I think that one should here
measure the auto-correlation of the residuals around a mean oscilla-
tion, either by subtracting this mean cycle somehow, or by defining
a period and working with Poincare sections (snapshots after each
period). Otherwise the result would probably be meaningless.

Authors reply:
This is a good suggestion. We will subtract the mean oscillation.

Changes in text:
We will change Fig. 4 and its discussion by removing the mean oscillation.

16. Comment of the referee:
In both figure 1 and figure 2, the choice for the coupling of the two
subsystems seems to be arbitrary. These choices could be explained
better to make it more understandable for the reader. For example,
one can shift the two systems versus each other (by varying parame-
ter gamma1), such that the two tippings are well separated, or that
they are really intertwined (one tipping inducing the other immedi-
ately). How would the stability landscape then look like, and what
would we see in early-warning signals? I was also wondering why the
values of gamma1 have been chosen in a way that gamma1 is 0 for
the double-fold, ¡0 for the Fold-Hopf, and double-Hopf, and ¿0 for the
Hopf-fold. Conceptually it would make a difference if the second tip-
ping is triggered by the changing parameter or a direct consequence
of the first tipping. It seems that the latter is always the case here for
all parameter choices? This should be made clear from the beginning
(as I mentioned above).

Authors reply:
For the discussion on the separation of the transitions, we refer to our answer
to comment 2. The parameter settings are chosen such that a cascading event
is produced. As specified in Tab. 1-2, there are boundaries within which one
can vary the parameters (for some values, there will not be a second tipping).
Within these boundaries, one could vary γ1 to make the transient of the following
system progress slower or faster towards the new equilibrium, but the stability
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landscape would remain the same as in Fig. 1 (note that this landscape has phi
on the horizontal axis). And again; the second tipping is triggered by the first
tipping, and therefore indirectly by the forcing parameter φ.

Changes in text:
None.

17. Comment of the referee:
Probably related to this point: In figure 2 it seems to be the case
that the leading system tips before the following system, whereas the
bifurcation plots seem to indicate that this happens at the same time.
Where does this time delay come from?

Authors reply:
See our reply on comment 2 and 16.

Changes in text:
None additional.

18. Comment of the referee:
Similarly, a time delay can be seen in the Fold-Hopf system (Fig. 2b),
while Fig. 1b would make me expect a discontinuous jump from a
stationary solution to a cycle with some non-zero amplitude.

Authors reply:
It takes some time before the cycle arises. Strictly speaking, the following sys-
tem in 2b would actually remain near the unstable equilibrium for a long time
(if there would be no numerical imperfections), as the system is deterministic.
The latter can, however, be stated more clearly. In any case, there would be
no jump to a non-zero amplitude cycle in the transient. This would always be
gradual.

Changes in text:
We will add a sentence to say that in a pure deterministic case, the following
system in the Fold-Hopf case would remain near the unstable equilibrium for a
long time.

19. Comment of the referee:
Also, according to Table 2, the control parameter Phi increases lin-
early with time, but I do not see any change in state (or the amplitude
of its oscillations) in Fig. 2, and on page 5, last paragraph, it is men-
tioned that at some point the amplitude would jump to a large value
when both equilibria are accessed, but this is not seen in the Figure.

Authors reply:
Assuming the referee is talking about the Hopf-Fold, a change in state in the
leading system is visible in 2c in the fact that the black/grey lines start oscillat-
ing as soon as φ is large enough (i.e., when the lines go from dashed to solid,
reaching the critical value). In the following system, the change in state is also
visible in 2c, by observing the sharp increase in the red curve around t = 130.
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Changes in text:
None.

20. Comment of the referee:
In this context, Fig. 1 and 2 appear contradictory to me. This point
is actually a crucial one because the period between the two tippings
is used to detect early warning signals for the second tipping. How
can it even be that there is enough time to detect them, when the
system is already in the process of tipping? Here it looks like the
second tipping is actually not caused directly by the first, but by the
changing control parameter (in contrast to the impression I got in
the previous section).

Authors reply:
The second tipping is caused by the first, and the first is caused by the changing
control parameter. You can directly see this in the equations, where the leading
systems state variables act directly as bifurcation parameters for the following
system. An example is the double fold case (Eqn. 13), where gamma modulates
the (bi-)stability of the following system, and is dependent on X, not (directly)
on φ. However, the equilibrium of X is determined by φ, which is why for a
varying φ, X might transition towards a completely other state, which affects
γ(X) so dramatically that it might affect the stability of Y . To summarise: φ
indirectly affects the transition in the following system, but always through the
transition in the leading system. Concerning the detection time: Fig. 1 and
2 are for deterministic systems and therefore not really about detection, as for
detection, a lot of information is gained from its behaviour around its equilib-
rium (in terms of noise and recovery from perturbations). Also note that in
deterministic systems, cascading transition per definition does not have a state
between the two tipping events, where the following system is stable (as in that
case, the following system would remain stable; there is no noise to change that).
Early warnings are analysed in section 3 (Fig. 3-5), where we look at stochastic
systems. In contrast with the systems in Fig. 1-2, in section 3, there is time
between the first and second tipping (called the following transition period in
this paper) where the following system is stable, but close to its bifurcation point
(e.g., resulting in high AR1).

Changes in text:
We will add additional text to the beginning of section 2 to emphasise the fact
that the systems presented there are deterministic and explain what we replied
to this comment.

21. Comment of the referee:
If it is a real cascade (tipping 2 directly induced by tipping 1), wouldnt
the systems state suddenly be very far from equilibrium after tipping
1. Can early warnings even be expected in this situation (mind they
sample the equilibrium when the state fluctuates around it)?

Authors reply:
The idea here is that there are two different systems; a leading system and a
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following system. The first tipping alters background conditions such that the
following system comes closer to its bifurcation point. It might be that the referee
means that the cascade might not be a consequence of crossing bifurcation points,
but rather a cascade as a consequence of a strong perturbation, which is unre-
lated to changing equilibria or stability in the leading system. That would indeed
bring the leading systems state far away from its equilibrium, and depending
on its recovery rate, might bring it back to the pre-existing stable equilibrium.
During this phase, it might also affect the following system, if that system is
coupled in the right way to the leading system. Perturbations are (without any
pre-knowledge on the source of the perturbations) unpredictable, but the time be-
tween the first and second tipping might give warning indicators about a second
tipping.

Changes in text:
None.

22. Comment of the referee:
Moreover, I imagine that the relative time scale between the systems
matters (controlled by the different coefficients in the equations). For
example, in case of the Hopf-fold system, it would matter how fast
and how large the oscillation in the leading system is compared to
the following systems response time.

Authors reply:
The relative time scale between the systems indeed is a factor to take into ac-
count. For now, we used relatively equal time scales. Of course, if the following
system has a very short time scale, and the leading system a rather long time
scale, the following system might still transit to a new state as a consequence of
the leadings transition, but is hard to find any time in between the transitions,
and in real data it might be hard to distinguish the sequence.

Changes in text:
None.

23. Comment of the referee:
So why has this particular coupling been chosen for the paper, and
how representative is that for the climate system?

Authors reply:
The linear coupling is based on the thermal wind balance, where the wind stress
adjusts to the changes in meridional temperature gradient. So the coupling for-
mulation has a physical basis.

Changes in text:
We will motivate the coupling better in the revised section 4.

24. Comment of the referee:
The climate model (coupled ENSO and AMOC) seems very interest-
ing. However, it is not completely clear to me what point exactly the
authors want to make by showing it. Sect. 4.3 is very short and I
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dont really understand its purpose. In the conclusion section and in
the abstract it seems to be argued that it illustrates that cascading
tipping can occur in climate models, but as this is already known
according to the introduction, and given that the model has been
designed like this on purpose, what new information does this model
provide?

Authors reply:
Agreed; this is indeed less clear from the text.

Changes in text:
We will add a short motivation in the beginning of section 4 why this model is
chosen.

25. Comment of the referee:
Also, it should be more clearly explained how the two existing models
have been coupled. I found it difficult at first to identify the common
variables in the models that were linked. More precise wording might
help (e.g. through influence of the wind stress - influence on what?,
in the original model - which model?). It seems that the authors
introduce an equation for the wind stress τ which links τ from the
ENSO model to the temperatures from Stommels model? Then one
could say so from the start, followed by the details.

Authors reply:
The sentence containing through influence of the wind stress is indeed unclear.
Section 4.2 gives a technical overview of the complete coupled model. The cou-
pling itself is part of that and the introduction and explanation of the coupling
appears sufficient.

Changes in text:
We will correct the mentioned sentence.

26. Comment of the referee:
The model seems to be a representation of the Fold-Hopf case above?
This should be explicitly stated from the beginning.

Authors reply:
We agree.

Changes in text:
At the beginning of section 4, we will add that this is an example of the Fold-
Hopf case.

27. Comment of the referee:
- Why have the authors not done an early-warning analysis with this
AMOC-ENSO model? This would be a natural step to do after the
generic models above.

Authors reply:
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This is indeed something we have thought about. The largest problem is that the
model is deterministic. Some stochasticity would be needed to be build into the
model, which would require a thorough sensitivity analysis and needs to be done
with care as the pre-existing models were not designed for that. This is beyond
the scope of this paper, if even possible. Moreover, it should be noted that this is
not the aim of section 4, which is illustrating an application of cascading tran-
sitions in physics, implying the possibility of these events in physical systems.

Changes in text:
None.

28. Comment of the referee:
The authors use data from a complex model to tune their conceptual
model. What can we learn from that data directly about predicting
each tipping, or the coupling (or whatever the authors aim to do)?
Could one apply a statistical analysis and infer something about that
model from the data?

Authors reply:
We only use the complex model data to back up the ideas we have for (a) the
coupling (relation between τext and meridional temperature) and (b) what hap-
pens to El-Niño when the AMOC collapses. Trying to infer predictions/early
warning elements in this data has a number of problems. A first problem is
that the first transition is caused by a large perturbation, and no critical slow-
ing down has happened prior to that. So the period before the first transition
is useless in the scope of cascading tipping prediction. The second problem is
that we are unsure (and we also do not claim otherwise in the paper), whether
a (stochastic) Hopf bifurcation can be found or is crossed in Pacific Equatorial
SSTs in the hosing runs, like in our simplified model. More research is needed
for that.

Changes in text:
We will add a few lines on the limitations of the data from the complex model
in the revised section 4.

29. Comment of the referee:
Minor comments What I find most interesting is the analysis of the
coupled deterministic systems, e.g. in Fig. 1. A very interesting
aspect is the occurrence of intermediate (in terms of the state vari-
able) stable states which are inaccessible when varying the control
parameter. It seems that only noise can bring the system on these
branches. This aspect is however not discussed in the paper. It is
of course up to the authors if they want to go into this, but I would
recommend them to at least comment on these hidden states, which
I personally find more novel and exciting than the early-warning part
of the paper. Could there be such hidden stable states in the climate
system and how can they be found?

Authors reply:
Thank you for mentioning this. The occurrence of these in-between states (called
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following transition period, FTP in section 3) in stochastic systems is indeed in-
teresting.

Changes in text:
We will add a few sentences about the FTP, explaining it more elaborately, in
section 3.3.1.

30. Comment of the referee:
Section 2.1 + Figure 1: It took me quite some time to understand
what is going on. It could be helpful to create an X-Y bifurcation
plot in addition to the phi-X plots and phi-Y plots that are shown
already (to see how each system behaves in isolation). More emphasis
can be put on explaining this figure, because this in itself is already
an interesting result. The authors might even think of making an
animation as extra material, to show how the subplots relate to each
other. Also, it could be nice to show how figure 2 relates to figure 1.

Authors reply:
This is indeed confusing, see also the reply on comment 2.

Changes in text:
We will add a sentence in the beginning of section 2, explaining Fig. 1 in more
detail. We will also add extra panels in Fig. 1 to see the bifurcation diagram of
the following system with respect to the coupling and to emphasize the separa-
tion between the systems .

31. Comment of the referee:
- Several different names are sometimes used for the same thing,
at least for the fold bifurcation (fold / back-to-back / back-to-back
saddle-node). I had never come across the term back-to-back before.
Is one term a subset of another? The authors should clarify this and
unify the language.

Authors reply:
We indeed used all those terms interchangeably. The back-to-back saddle-node
consists of two saddle-nodes at ends of two stable equilibrium branches, con-
nected by a common unstable equilibrium branch.

Changes in text:
We will explain the prefix back-to-back in section 2 and use only the terms
saddle-node bifurcation and fold in the revised paper.

32. Comment of the referee:
- Some of the references are a bit outdated (e.g. Kutzbach 1996 on
page 2; a lot has happened since then), or could be a bit more spe-
cific. Page 2: Scheffer 2009 is a review of some of the earlier papers
like Held 2004, some of which are cited later; Peng 1994 is not about
predicting tipping points. Also, note that there are papers from the
80ies dealing with statistical precursors already, e.g. by Wiesenfeld,
1984.
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Authors reply:
Although perhaps outdated, Kutzbach 1996 is illustrative for what is said in our
paper about the desertification of the Sahel region. We agree that Scheffer 2009
is a review paper, but it combines various simple metrics together. Held 2004
is cited multiple times when we specifically mention degenerate fingerprinting,
about which Scheffer 2009 does not go into detail. Peng 1994 lays the founda-
tion of DFA to detect long-range signals, and therefore should (only) be cited
when we talk about DFA, which we do. Wiesenfeld 1984 is specifically about
period-doublings.

Changes in text:
None.

33. Comment of the referee:
page 1 (lines 17ff): Lenton et al. 2008 do not show evidence that
there are tipping points in the climate system (though the paper is
often cited in that way), so this paragraph should be formulated more
cautiously.

Authors reply:
We agree.

Changes in text:
Part of the sentence will be changed to Lenton et al. (2008) give an overview
of these.

34. Comment of the referee:
Also, the vegetation states found by Hirota et al. are purely ecologi-
cal phenomena, and do not imply any tipping points in the climate.

Authors reply:
Hirota et al. 2011 show various equilibrium states of tree cover as modulated
by precipitation, and also discusses transitions between these states, and related
hysteresis effects and bifurcations. Although the paper focuses on the interac-
tion between vegetation and precipitation, the results are illustrative of tipping
elements in (a subsystem of) the climate system.

Changes in text:
None.

35. Comment of the referee:
- page 6, line 18: close to critical transition (2x), should be close to a
critical transition.

Authors reply:
Agreed.

Changes in text:
This will be changed accordingly.
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36. Comment of the referee:
- page 10, line 17/18: as it is no critical transition: why not? And
what is a critical transition?

Authors reply:
Agreed that this needs to be rephrased.

Changes in text:
The sentence will be rewritten.

37. Comment of the referee:
- In Fig. 8, I found it confusing that the labels are not next to the
vertical axes but inside the figure. I do understand that this is con-
sistent with the previous figures, so I dont have strong feelings about
this.

Authors reply:
Understandable, and a matter of choice. As we have had no other comments
about this, we will leave it as it is.

Changes in text:
None.
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