

## Appendix B Discrete interaction example of finite ice melting and ice mass losses

This appendix brings forward an illustrative example calculation in 10 steps of the FMLI model (21-33) according the FCEI concept (11-20) in dimensionless form ( $M_U=1$ ,  $i=1$ ) presented in M-L space, (Table B-1 and Fig. B-1).

5 **Table B-1. Discrete numerical interaction model of ice melting in 10 steps**

| $M$ | $L'(M)$<br>(21)* | $M_U-M$<br>(22) | $M/(M_U-M)$<br>(26) | $I_F(L,M)$<br>(27) | $L(M)$<br>(28) | $W_F(M)$<br>(29) | $M$       | $L(M)$ | $I_F/M$  | $W_F/W$  |
|-----|------------------|-----------------|---------------------|--------------------|----------------|------------------|-----------|--------|----------|----------|
| 0.0 | 0.0              | 1.0             | 0.00                | 0.00               | 0.00           | 0.000            | -----     |        | 0        | 0        |
| 0.1 | 0.1              | 0.9             | 0.11                | 0.05               | 0.15           | 0.000            | I-----    | I      | 0.54     | 0.04     |
| 0.2 | 0.2              | 0.8             | 0.25                | 0.12               | 0.32           | 0.001            | II-----   | III    | 0.58     | 0.07     |
| 0.3 | 0.3              | 0.7             | 0.43                | 0.19               | 0.49           | 0.005            | III-----  | III    | 0.63     | 0.12     |
| 0.4 | 0.4              | 0.6             | 0.67                | 0.28               | 0.68           | 0.014            | III ----- |        | 0.69     | 0.17     |
| 0.5 | 0.5              | 0.5             | 1.00                | 0.39               | 0.89           | 0.028            | -----     |        | 0.77     | 0.23     |
| 0.6 | 0.6              | 0.4             | 1.50                | 0.53               | 1.13           | 0.053            | ----      | I      | 0.88     | 0.30     |
| 0.7 | 0.7              | 0.3             | 2.33                | 0.72               | 1.42           | 0.094            | ---       | III    | 1.03     | 0.38     |
| 0.8 | 0.8              | 0.2             | 4.00                | 1.01               | 1.81           | 0.158            | ---       | III    | 1.26     | 0.49     |
| 0.9 | 0.9              | 0.1             | 9.00                | 1.56               | 2.46           | 0.265            | ---       | III    | 1.73     | 0.65     |
| 1.0 | 1.0              | 0.0             | $\infty$            | $\infty$           | $\infty$       | $\infty$         | ---       | III    | $\infty$ | $\infty$ |

\*Note: numbers in parenthesis () denotes the numbers of appropriate equations in the body text

The dimensionless term (26)  $M/(M_U-M)$  (Table B-1) expresses the physical rate  $H(M)/Q(M_U-M)$  of increasing environmental

heat energy  $H(M)$  (25) of overall climate system changes and the simultaneous losses of the thermal capacity  $Q(M_U-M)$  (24)

10 of ice sheets due to melting of mass  $M$  of ice. The positive heat flow accelerates the accumulation of ice mass losses  $I_F(L,M)$  (27, integral of 26) due to interactions of ice melting  $M$  and ice mass losses  $L$  out of finite ultimate mass  $M_U$ . This acceleration is quantified by the interaction intensity parameter  $i$  calculated from the observed data. The possible melting out point  $M_M$  is presented in M-L space (Fig. B-1).

The overall ice mass losses  $L(M)=L'(M)+I_F(L,M)$  (28) consist of primary losses (21) and losses due to interactions (27). The

15 relation  $I_F/M$  expresses how much of ice mass  $I_F(L,M)$  is lost due to interaction with respect to primary losses  $L'(M)=M$ . The interaction potential  $W_F(L,M)$  (29, integral of 27) represents the amount of work done by all environmental feedbacks and interactions of climate system and ice sheets. The relation  $W_F/W$  expresses how much work  $W_F$  is done due to interactions with respect to work done on melting of primary losses, (Table B-1, Fig. B-1).

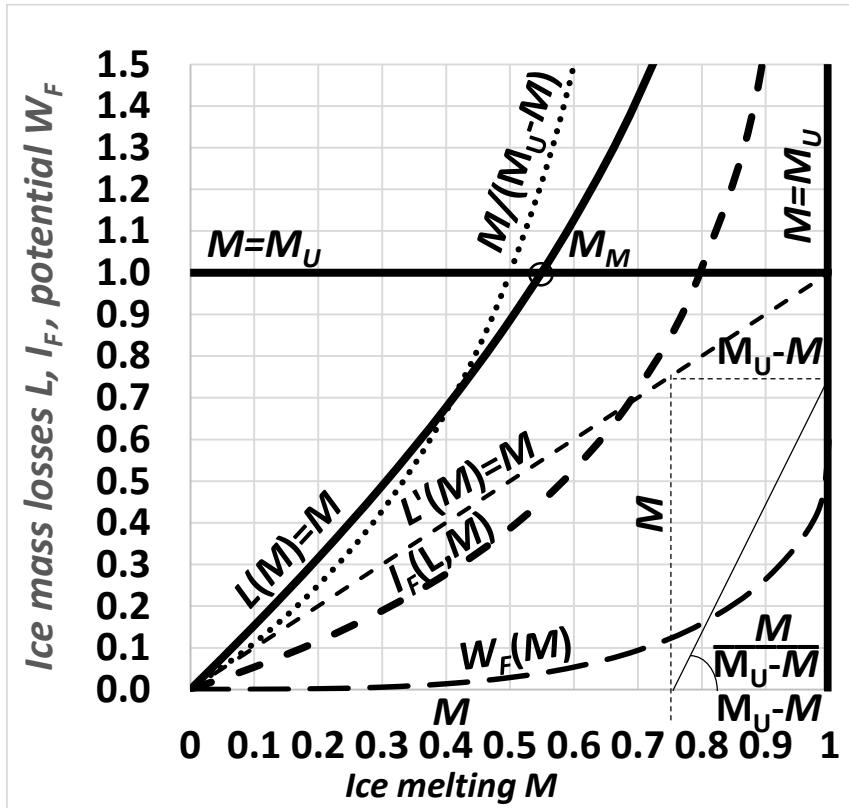



Figure B-1. Model of discrete ice melting in 10 steps