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Abstract. There is a significant knowledge gap in the current state of the terrestrial carbon (C) budget. Recent studies have 15 
highlighted poor understanding particularly of C pool transit times, and whether productivity or biomass dominate these biases. 

The Arctic, accounting for approximately 50% of the global soil organic C stocks, has an important role in the global C cycle.  

Here, we use the CARDAMOM data-assimilation system to produce pan-Arctic terrestrial C cycle analyses for 2000-15. This 

approach avoids using traditional plant functional type or steady-state assumptions. We integrate a range of data (soil organic 

C, leaf area index, biomass, and climate) to determine the most likely state of the high latitude C cycle at a 1° x 1° resolution, 20 
and also to provide general guidance about the controlling biases in transit times. On average, CARDAMOM estimates 

regional mean rates of photosynthesis of 565 g C m-2 yr-1 (90% confidence interval between the 5th and 95th percentiles: 428, 

741), autotrophic respiration of 270 g C m-2 yr-1 (182, 397)  and heterotrophic respiration of 219 g C m-2 yr-1 (31, 1458), 

suggesting a pan-Arctic sink of -67 (-287, 1160) g C m-2 yr-1, weaker in tundra and stronger in taiga. However, our confidence 

intervals remain large (and so the region could be a source of C), reflecting uncertainty assigned to the regional data products. 25 
We show a clear spatial and temporal agreement between CARDAMOM analyses and different sources of assimilated and 

independent data at both pan-Arctic and local scales, but also identify consistent biases between CARDAMOM and validation 

data. The assimilation process requires clearer error quantification on LAI and biomass products to resolve these biases. 

Mapping of vegetation C stocks and change over time, and soil C ages linked to soil C stocks is required for better analytical 

constraint. Comparing CARDAMOM analyses to global vegetation models (GVM) for the same period, we conclude that 30 
transit times of vegetation C are inconsistently simulated in GVMs due to a combination of uncertainties from productivity 

and biomass calculations. Our findings highlight that GVMs need to focus on constraining both current vegetation C stocks 

and net primary production, to improve process-based understanding of C cycle dynamics in the Arctic.   
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1 Introduction 

Arctic ecosystems play a significant role in the global carbon (C) cycle (Hobbie et al., 2000; McGuire et al., 2009; 35 
McGuire et al., 2012). Slow organic matter decomposition rates due to cold and poorly drained soils in combination with 

cryogenic soil processes have led to an accumulation of large stocks of C stored in the soils, much of which is currently held 

in permafrost (Tarnocai et al., 2009). The permafrost region soil organic C (SOC) stock is more than twice the size of the 

atmospheric C stock; and accounts for approximately half of the global SOC stock (Hugelius et al., 2014; Jackson et al., 2017). 

High latitude ecosystems are experiencing a temperature increase that is nearly twice the global average (AMAP, 2017). The 40 
expected future increase of temperature (IPCC, 2013), precipitation (Bintanja and Andry, 2017), and growing season length 

(Aurela et al., 2004; Groendahl et al., 2007) will likely have consequences for the Arctic net C balance. As high latitudes 

warm, C cycle dynamics may lead to an increase of carbon dioxide (CO2) emissions through ecosystem respiration (Reco) 

driven by, for example, larger heterotrophic respiration (Commane et al., 2017; Schuur et al., 2015; Zona et al., 2016), drought 

stress on plant productivity (Goetz et al., 2005) and episodic disturbances (Lund et al., 2017; Mack et al., 2011). However, 45 
temperature-induced vegetation changes may counter-balance those effects by photosynthetic enhancement (Forkel et al., 

2016; Graven et al., 2013; Lucht et al., 2002; Zhou et al., 2001; Zhu et al., 2016). Two examples are the increase of gross 

primary productivity (GPP) due to extended growing seasons, nutrient availability and CO2 fertilization (Abbott et al., 2016; 

Myers-Smith et al., 2015; Myneni et al., 1997) and the shifts in vegetation dynamics such as shrub expansion (Myers-Smith 

et al., 2011). Consequently, phenology shifts may feedback on climate with unclear magnitude and sign (Anav et al., 2013; 50 
Murray-Tortarolo et al., 2013; Peñuelas et al., 2009). As a result of the significant changes that are already affecting the 

structure and function of Arctic ecosystems, it is critical to understand and quantify the C dynamics of the terrestrial tundra 

and taiga and their responses to climate change (McGuire et al., 2012). 

Although the land surface is estimated to offset ~30% of anthropogenic emissions of CO2 (Canadell et al., 2007; Le 

Quéré et al., 2018), the terrestrial C cycle is currently the least constrained component of the global C budget and large 55 
uncertainties remain (Bloom et al., 2016). Despite the importance of Arctic tundra and taiga biomes in the global land C cycle, 

our understanding of interactions between the allocation of C from net primary productivity (NPP), C stocks (Cstock), and transit 

times (TT), is deficient (Carvalhais et al., 2014; Friend et al., 2014; Hobbie et al., 2000). The TT is a concept that represents 

the time it takes for a particle of C to persist in a specific C stock and it is defined by the C stock and its outgoing flux, here 

addressed as TT = C stock / NPP at steady state. According to a recent study by Sierra et al. (2017), TT is an important diagnostic 60 
metric of the C cycle and a concept that is independent of model internal structure and theoretical assumptions for its 

calculation. Terms such as residence time (Bloom et al., 2016; Friend et al., 2014), turnover time (Carvalhais et al., 2016), and 

turnover rate (Thurner et al., 2016; TT = 1/turnover rate) are used in the literature to represent the concept of TT (Sierra et al. 

2017). Studies have focused more on the spatial variability with climate of ecosystem productivity rather than C transit times 

(Friend et al., 2014; Nishina et al., 2015; Thurner et al., 2016; Thurner et al., 2017). Friend et al. (2014) detailed that transit 65 
time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. They found a 30% larger 

variation in modelled vegetation C change than response of NPP. Nishina et al. (2015) also suggested that long term C 

dynamics within ecosystems (vegetation turnover and soil decomposition) are more critical factors than photosynthetic 

processes (i.e. GPP or NPP). The respective contribution of bias from biomass and NPP to biases in transit times remains 

unquantified. Without an appropriate understanding of current state and dynamics of the C cycle, its feedbacks to climate 70 
change remains highly uncertain (Hobbie et al., 2000; Koven et al., 2015). 

There are currently efforts to incorporate both in-situ and satellite-based datasets to assess C cycle retrievals and to 

reduce their uncertainties. At local scale, the net ecosystem exchange (NEE) of CO2 between the land surface and the 

atmosphere is usually measured using eddy covariance EC techniques (Baldocchi, 2003). International efforts have led to the 

creation of global networks such as FLUXNET (http://fluxnet.fluxdata.org/) and ICOS (https://www.icos-ri.eu/), to harmonise 75 
data and support the reduction of uncertainties around the C cycle and its driving mechanisms. However, upscaling field 
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observations to estimate regional to global C budget presents important challenges due to insufficient spatial coverage of 

measurements and heterogeneous landscape mosaics (McGuire et al., 2012). Furthermore, harsh environmental conditions in 

high latitude ecosystems and their remoteness complicates the collection of high-quality data (Grøndahl et al., 2008; Lafleur 

et al., 2012). Given the lack of continuous, spatially distributed in situ observations of NEE in the Arctic, it remains a 80 
challenging task to calculate with certainty whether or not the Arctic is a net C sink or a net C source, and how the net C 

balance will evolve in the future (Fisher et al., 2014). Over the past decade, regional to global products generated from in situ 

networks and/or satellite observations have improved our understanding of the terrestrial C dynamics. These range from 

machine-learning based upscaling of FLUXNET data (Jung et al., 2017), remotely-sensed biomass products (Carvalhais et al., 

2014; Thurner et al., 2014) and the creation of a global soil database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). However, these 85 
products tend to lack clear error estimates. Due to a reliance on interpolation and upscaling with other spatial data, it is 

challenging to evaluate these products for inherent biases.  

Global Vegetation Models (GVM) have been developed to determine global terrestrial C cycles and represent 

vegetation and ecosystem processes including the structural (i.e. growth, competition, and turnover) and biogeochemical (i.e. 

water, carbon, and nutrients cycling) responses to climate variability (Clark et al., 2011; Fisher et al., 2014; Friend and White, 90 
2000; Ito and Inatomi, 2012; Pavlick et al., 2013; Sitch et al., 2003; Smith et al., 2001; Woodward et al., 1995). The advantage 

of using process-based models to characterise C dynamics is that processes which drive ecosystem-atmosphere interactions 

can be simulated and reconstructed when data is scarce. However, C cycle modelling in GVMs typically relies on pre-arranged 

parameters retrieved from literature, prescribed plant-functional-type (PFT) and spin-up processes until the C stocks (biomass 

and SOC) reach their steady state. Further, inherent differences of model structure contribute more significantly to GVM 95 
uncertainties (Exbrayat et al., 2018; Nishina et al., 2014), than from differences in climate projections (Ahlström et al., 2012). 

Many model inter-comparison projects have demonstrated a lack of coherence in future projections of terrestrial C cycling 

(Ahlström et al., 2012; Friedlingstein et al., 2014). Recent studies have used simulations from the first phase of the Inter-

Sectoral Impact Model Intercomparison Project (ISI-MIP) (Warszawski et al., 2014) to evaluate the importance of key 

elements regulating vegetation C dynamics, but also the estimated magnitude of their associated uncertainties (Exbrayat et al., 100 
2018; Friend et al., 2014; Nishina et al., 2014; Nishina et al., 2015; Thurner et al., 2017). An important insight is that TTs in 

GVMs are a key uncertain feature of the global C cycle simulation. Further, GVMs tend not to report uncertainties in their 

estimates of stocks and fluxes, which weakens their analytical value. 

An approach to address these issues is to integrate models and data more formally. Data assimilation quantifies how 

model parameters can be adjusted to estimate C stocks and fluxes consistent with multiple observations (Fox et al., 2009; Luo 105 
et al., 2009; Williams et al., 2005). By following Bayesian methods, the uncertainty on observations weights the degree of data 

constraint, and the outcome is a set of acceptable parameterisations linked to likelihoods. Overall, this approach determines 

whether model structure, observations and forcing are (in)consistent, and thus assesses validity of model structure. By 

assimilating co-located climatic, ecological and biogeochemical data from remote sensing observations at a specific grid scale 

across landscapes and regions we can map parameter estimation and uncertainties.  110 
Here, we use the CARbon DAta MOdel framework (CARDAMOM) (Bloom et al., 2016; Bloom and Williams, 2015; 

Smallman et al., 2017) to retrieve the pan-Arctic terrestrial carbon cycle at 1º resolution for the 2000-2015 period in agreement 

with gridded observations of LAI, biomass and SOC stocks. We compare analyses of C dynamics of Arctic tundra and taiga 

against (a) global products of GPP (Jung et al., 2017) and heterotrophic respiration (Rh) (Hashimoto et al., 2015); (b) NEE, 

GPP and Reco field observations from 8 sub- and high- Arctic sites included in the FLUXNET2015 dataset, and (c) 6 extensively 115 
used GVMs from the ISI-MIP2a comparison project (Akihiko et al., 2017). Our objectives are to (1) present and evaluate the 

analyses and uncertainties of the current state of the pan-Arctic terrestrial C cycling using a model-data fusion system, (2) 

quantify the degree of agreement between the CARDAMOM product with local to global scale sources of available data, and 

(3) use CARDAMOM as a benchmarking tool for the ISI-MIP2a models to provide general guidance towards GVM 
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improvements in transit time simulation, taking the advantage that this assimilation system produces error estimates, and is 120 
constrained by observations. Finally, we suggest future work to be done in the context of advancing pan-Arctic C cycling 

modelling. 

2 Data and methods 

2.1 Pan-Arctic region 

The spatial domain we considered in this study (Figure S1) corresponds to the extent of the Northern Circumpolar 125 
Soil Carbon Database version 2 (NCSCDv2) dataset (Hugelius et al., 2013a; Hugelius et al., 2013b), bounded by latitudes 

42°N - 80°N and longitudes 180°W - 180°E, and at a spatial resolution of 1º x 1º. This area of study totals 18.0 million km2 of 

land area. We used the GlobCover vegetation map product developed by the European Space Agency (Bontemps et al., 2011) 

to separate regions dominated by non-forested (tundra) and forested (taiga) land cover types. A complete description of the 

classes included in each domain can be found in Figure S1 and caption. The differentiation between tundra and taiga grid cells 130 
is in agreement with the tree line delimitated by Brown et al. (1997) together with the tundra domain defined from the Regional 

Carbon Cycle Assessment and Processes Activity reported by McGuire et al. (2012). The extensive grasslands without 

presence of trees in some areas such as the in South Russia, Mongolia and Kazakhstan were neglected to focus on higher 

latitudes. This classification of tundra and taiga totals 8.1 and 9.9 million km2 of land area, respectively. 

2.2 The CARbon DAta MOdel framework 135 

Here we use the CARbon DAta MOdel framework (CARDAMOM; Bloom et al., 2016) (list of acronyms can be 

found in Table S1) to retrieve terrestrial C cycle dynamics, including explicit confidence intervals, in the pan-Arctic region. 

CARDAMOM consist of two key components: (1) an ecosystem model, the Data Assimilation Linked Ecosystem Carbon 

version 2 (DALEC2) (Bloom and Williams, 2015; Williams et al., 2005), constrained by observations and (2) a data-

assimilation system (Bloom et al., 2016). This framework reconciles observational datasets as part of a representation of the 140 
terrestrial C cycle in agreement with ecological theory. 

2.2.1 DALEC2 

DALEC2 ecosytem model simulates land-atmosphere C fluxes and the evolution of six C stocks (foliage, labile, 

wood, roots, soil organic matter (SOM) and surface litter) and corresponding fluxes. DALEC2 includes 17 parameters 

controlling the processes of plant phenology, photosynthesis, allocation of primary production to respiration and vegetation 145 
carbon stocks, plant and organic matter turnover rates, all established within specific prior ranges based on ecologically viable 

limits (Table S2). DALEC2 simulates canopy-level GPP via the Aggregated Canopy Model (ACM; Williams et al., 1997) and 

its allocation to the four plant stocks (foliage, labile, wood and roots) and autotrophic respiration (Ra) as time-invariant 

fractions of GPP. Plant C decays into litter and soil stocks where microbial decomposition generates heterotrophic respiration 

(Rh). Turnover of litter and soil stocks is simulated using temperature dependent first-order kinetics. For practical purposes we 150 
aggregated the different C stocks into photosynthetic (Cphoto; leaf and labile), vegetation (Cveg; leaf, labile, wood and roots), 

soil (Cdom; litter and SOM) and total (Ctot = Cphoto + Cveg + Cdom) C stocks. The Net Ecosystem Exchange (NEE) is calculated 

as the difference between GPP and the sum of the respiration fluxes (Reco = Ra + Rh), while Net Primary Productivity (NPP) is 

the difference between GPP and Ra. Only NEE follows the standard micrometeorological sign convection presenting the uptake 

of C as negative (sink), and the release of C as positive (source); both GPP and Reco are reported as positive fluxes. In this 155 
study, we addressed C turnover rates and decomposition processes as their inverse rates, this is the C transit time (TTphoto, 

TTveg and TTdom), represented as the ratio between the mean C stock and the mean C input into that stock during the simulation 

period.  
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2.2.2 Data-assimilation system 

The intermediate complexity of the DALEC2 model compared to typical GVMs facilitates computationally intense 160 
data-assimilation to optimize the initial stock conditions and the 17 process parameters that shape C dynamics. CARDAMOM 

is forced with climate data from the European Centre for Medium-Range Weather Forecast Reanalysis interim (ERA-interim) 

dataset (Dee et al., 2011) for the 2000-2015 period. A Bayesian Metropolis-Hastings Markov chain Monte Carlo (MHMCMC) 

algorithm is used to retrieve the posterior distributions of the process parameters according to observational constraints and 

Ecological and Dynamic constraints (EDCs; Bloom and Williams, 2015). EDCs ensure that DALEC2 simulations of the 165 
terrestrial carbon cycle are realistic and ecologically viable and help to reduce the uncertainty in the model parameters by 

rejecting estimations that do not satisfy different conditions applied to C allocation and turnover rates as well as trajectories of 

C stocks.  

Observational constraints include monthly time series of Leaf Area Index (LAI) from the MOD15A2 product (Myneni 

et al., 2002), estimates of vegetation biomass (Carvalhais et al., 2014) and soil organic carbon content (Hugelius et al., 2013a; 170 
Hugelius et., 2013b) (Table S3). We aggregated ~130000 1-km resolution MODIS LAI data monthly within each 1°x 1° pixel. 

We aggregated biomass data at 0.5° resolution from Carvalhais et al. (2014) to 1° resolution. These are based on remotely-

sensed forest biomass and upscaled GPP based on data driven estimates (Jung et al., 2011) covering the pan-Arctic domain. 

We used the NCSCD spatial explicit product (Hugelius et al., 2013a; Hugelius et al., 2013b) which was generated from 1778 
soil sample locations interpolated to a 1º grid. There is significant uncertainty for these data, due to the models involved in 175 
generating LAI and biomass, and the interpolation process for soils. Hence we apply broad confidence intervals commensurate 

with this uncertainty (Equation 3).   

We apply the setup described above to 3304 1º x 1º pixels (1686 in tundra; 1618 in taiga) using a monthly time step. 

Each pixel is treated independently without assuming a prior land cover or plant functional type and we assume no spatial 

correlation between uncertainties in all pixels. In each 1º x 1º pixel, we applied the MHMCMC algorithm to determine the 180 
probability distribution of the optimal parameter set and initial conditions (𝑥";	Table S2) given observational constraints (𝑂"; 

LAI, SOC and biomass, Table S3) using the same Bayesian inference approach described in Bloom et al. (2016): 

 

𝑝(𝑥" |𝑂") ∝ 𝑝(𝑥") 𝑝(𝑂" |𝑥")          (1) 

First, in the expression 1, 𝑝 (𝑥") represents the prior probability distribution of each DALEC2 parameter (𝑥") and is 185 
expressed as: 

𝑝(𝑥") = 𝑝()*(𝑥")  𝑒
./.12345(6789:);345(<.=)345	(>.?) @

?

	𝑒
./.1A

3452BC66@;345(>D.=)
345	(>.?) E

?

     (2) 

where	𝑝()*(𝑥") is the prior parameter probability according to the EDCs included in Table S2 and described in Bloom and 

Williams (2015). In addition, prior values for two parameters and their uncertainties (canopy efficiency[Ceff] and fraction of 

GPP respired [fauto]) are imposed with a log-normal distribution following Bloom et al. (2016) to be consistent with the global 190 
GPP range estimated in Beer et al. (2010) and fauto ranges specified by DeLucia et al. (2007) respectively.  

Second,  𝑝(O|𝑥") from expression 1 represents the likelihood of	𝑥" with respect to 𝑂", and it is calculated based on the 

ability of DALEC2 to reproduce (1) biomass (Carvalhais et al., 2014), (2) SOC (Hugelius et al., 2013a, Hugelius et al., 2013b), 

and (3) MODIS LAI (Myneni et al., 2002). Because MODIS LAI, SOC and biomass data lack specific uncertainty estimates, 

we used the same broad uncertainty factors as per Bloom et al. 2016: log-transformed (1.5) for SOC and biomass (i.e. ´/÷ 1.5 195 
spans 67% of the expected error), both assumed to be representative of initial conditions, and log(2) for LAI: 
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./.1A
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 (3) 

For each 1º x 1º pixel we run three MHMCMC chains with 107 accepted simulations each until convergence of at 

least two chains. We use 500 parameter sets sampled from the second half of each chain to describe the posterior distribution 

of parameter sets. We produce confidence intervals of terrestrial C fluxes and stocks from the selected parameter sets. In the 200 
following we report highest confidence results (median; P50) and the uncertainty represented by the 90% confidence interval 

(5th percentile to 95th percentile, FUV1U/1L).  

2.3 Model evaluation against independent in situ and pan-Arctic datasets 

At the pan-Arctic scale, we compared CARDAMOM GPP with FLUXCOM dataset from Jung et al. (2017). We also 

compared our CARDAMOM Rh with the global spatiotemporal distribution of soil respiration from Hashimoto et al. (2015) 205 
calculated by a climate-driven empirical model. To assess the degree of statistical agreement we calculated linear goodness-

of-fit (slope, intercept, R2, RMSE, and bias) between CARDAMOM and the two independent datasets. The mapping includes 

stipples representing locations where the independent datasets are within CARDAMOM’s 90% confidence interval. 

At a local scale, we compare CARDAMOM NEE and its partitioned components GPP and Reco estimates against 

monthly aggregated values from the FLUXNET2015 sites.We selected 8 sites (Belelli Marchesini et al., 2007; Bond-Lamberty 210 
et al., 2004; Goulden et al., 1996; Ikawa et al., 2015; Kutzbach et al., 2007; López-Blanco et al., 2017; Lund et al., 2012; Sari 

et al., 2017) located across sub- and high-Arctic latitudes, covering locations with different climatic conditions and dominating 

ecotypes (Table S4). For this evaluation, we compared the same years for both observations and CARDAMOM, and we 

selected data using day-time method (Lasslop et al., 2010) due to the absence of true night-time period during Arctic summers 

in some locations. Additionally, we selected a variable u* threshold to identify insufficient turbulence wind conditions from 215 
year to year similar to López-Blanco et al. (2017). In this data-model comparison we included the median (P50) ± the 90% 

confidence interval (percentile 5th to 95th; FUV1U/1L) including both random and u* filtering uncertainty following the method 

described in Papale et al. (2006). Some of the sites lack wintertime measurements and we filtered out data for months with 

less than 10% observations. We performed a point-to-grid cell comparison to assess the degree of agreement between each 

flux magnitude and seasonality calculating the statistics of linear fit (slope, intercept, R2, RMSE, and bias) per flux and site 220 
between CARDAMOM and FLUXNET2015 datasets.  

2.4 Benchmark of Global Vegetation Models from ISI-MIP2a 

We compared CARDAMOM analyses of pan-Arctic net primary production (NPP), vegetation biomass carbon stocks 

(Cveg) and vegetation transit times (TTveg) against six participating GVMs in the ISI-MIP2a comparison project (Akihiko et 

al., 2017). In this study we have considered DLEM (Tian et al., 2015), LPJmL (Schaphoff et al., 2013; Sitch et al., 2003), LPJ-225 
GUESS (Smith et al., 2014), ORCHIDEE (Guimberteau et al., 2018), VEGAS (Zeng et al., 2005), and VISIT (Ito and Inatomi, 

2012). The specific properties and degree of complexity of each ISI-MIP2a model are summarized in Table S5. The 

comparisons have been performed under the same spatial resolution as the CARDAMOM spatial resolution (1° x 1°) for the 

2000-2010 period. Also, the chosen GVMs from the ISI-MIP2a phase have their forcing based on ERA-Interim climate data, 

similar to the forcing used in CARDAMOM. We estimated the degree of agreement using the statistics of linear fit (slope, 230 
intercept, R2, RMSE, and bias) per variable and model between CARDAMOM and GVMs, but also their spatial variability 

including stipples where the GVM datasets are within the CARDAMOM’s 90% confidence interval. 
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3 Results  

3.1 Pan-Arctic retrievals of C cycle  

Overall, we found that the pan-Arctic region (Figure 1 and Table 1) acted as a small sink of C (area-weighted P50) 235 
over the 2000-2015 period with an average of -67.4	FWW1V.V.XYZ.[L g C m-2 yr-1, P50	FUV1U/1L, although the 90% confidence intervals 

remain large (and so the region could be a source of C). Tundra regions NEE was estimated at -14.9	FWWWZ.W.WZ\.]L g C m-2 yr-1,  a 

weaker sink compared to taiga regions, -110.4	FWWV1.Y.\Y[.[L g C m-2 yr-1. The photosynthetic inputs exceeded the respiratory outputs 

(GPP > Reco; Table 1), although the much larger uncertainties stemming from Reco, and more specifically from Rh, compared 

with GPP, complicate the net C sink/source estimate beyond the median’s average ensembles. In the pan-Arctic region 240 
approximately half of GPP is autotrophically respired resulting in an NPP of 290.3	F]W/.[WVZ.]L g C m-2 yr-1. Carbon use efficiency 

(NPP/GPP) averages 0.51F/.11/.]ZL, and marginally varied across tundra 0.51F/.1]/.]ZL and taiga 0.52F/.1Z/.]ZL. Despite these apparent 

small variations, tundra photosynthesized and respired (respectively 327.2F]Z\.\X\Z.YL and 310.0FW1\Z.YWX].\ L g C m-2 yr-1) approximately 

half as much as the Taiga region (759.8FVZ[.V1Y].WL and 635.3FXWW]./XY1.\ L g C m-2 yr-1). 

The total size of the pan-Arctic soil C stock (Cdom) averaged 24.4F][.1W/.\L kg C m-2, 16-fold greater than the vegetation 245 

C stock (Cveg), 1.5F1.Y/.1L kg C m-2. The soil C stock (fresh litter and SOM) is dominated by Csom, accounting for the 99%, which 

also dominates the total terrestrial C stock in the pan-Arctic. Among the living C stocks, 93% of the C (88% in tundra and 

90% in taiga) is allocated to the structural stocks (wood and roots; 1.4F1.Z/.]L kg C m-2) compared to 7% (12% in tundra and 10% 

in taiga) to the photosynthetic stock (leaves and labile; 0.1F/.X/.WL kg C m-2). On average, the total ecosystem C stock is 26.3F1W./WW.YL 

kg C m-2 in the pan-Arctic region, with slightly lower stocks in tundra (24.6F1/.ZW/.YL kg C m-2) than taiga (27.7F1W.XWX.[L kg C m-2). 250 
In general, the taiga region holds on average ~100 % more photosynthetic tissues, ~160 % more structural tissue and ~9	% 

more soil C stocks, than tundra. In other words, taiga holds ~12 % more total C than tundra. The greater living stock of C in 

taiga (2.1F1.W/.YL kg C m-2) than tundra (0.8FZ.Y/.\L kg C m-2) means that the relative size of Ra and Rh in the two regions differs. 

Thus in tundra Ra accounts for 51% of total ecosystem respiration, while in taiga this fraction is 57%. Ra is 4% larger than Rh 

in tundra, but 24% greater in taiga, reflecting the greater rates of C cycling in taiga. Uncertainties in estimates of soil C stock 255 
are notably higher than for living C stocks, highlighting the lack of observational and mechanistic constraint on heterotrophic 

respiration.  

The global mean C transit time is 1.3FX.W/.YL years in leaves and labile plant tissue (TTphoto), 4.5 FW1.[W.[ L	years in stems 

and roots (TTveg), and 120.5FYXX.ZV.Y L	years in litter and SOM (TTdom). The total C transit time (TTtot) (133.1FW/W\.ZWW.1 L	years) is 

clearly dominated by the soil C stock, highlighting the very long periods of times that C persists in Arctic soils. CARDAMOM 260 
calculated 62% longer TTdom in tundra compared to taiga, likely linked to lower temperatures, but uncertainties are large due 

to the limitations of data constraints.  

3.2 Data assimilation and uncertainty reduction  

The CARDAMOM framework generated an analysis broadly consistent with the combination of SOC, biomass and 

LAI in each grid cell (Figure 2), and the errors assigned to these data products. The agreement for the SOC dataset by Hugelius 265 
et al. (2013a) is a 1:1 relationship (R2 = 1.0; RMSE = 0.95 kg C m-2), reflecting a straightforward model parameterisation. The 

biomass product from Carvalhais et al. (2014), was well correlated (R2 = 0.97; RMSE = 0.46 kg C m-2), but CARDAMOM 

was consistently biased ~28% low. MODIS LAI data were also well correlated (R2 = 0.79; RMSE = 0.42 kg C m-2), but ~28% 

higher than CARDAMOM analyses. These biases (Figure 2) likely arise due to a low estimate in the photosynthesis model 

(ACM) used in CARDAMOM which propagates through the C cycle. CARDAMOM balances uncertainty in data products 270 
and the models (ACM photosynthesis model and DALEC2), to generate a weighted analysis, typical of Bayesian approaches. 



8 
 

The CARDAMOM analysis 90% confidence interval (CI) includes the 1:1 line for biomass and LAI (Figure 2), indicating that 

the likelihoods on C cycle analyses include the expected value of the observations.  

The degree to which posterior distributions were constrained from the prior distributions in each of the 17 model 

parameters and 6 initial stock sizes (Table S2) varied considerably depending on the parameters in question and their related 275 
processes (Table 2 and Figure S2). The 90% CI posterior range of foliar, wood, labile and SOM C stocks (Cfoliar, Cwood, Clabile 

and Csom) as well as parameters such as allocation to foliage (ffol) and lifespan (L) were considerably reduced (>80% uncertainty 

reduction compared to priors) most likely controlled by the information on LAI, biomass and SOC constraints. Contrarily, 

parameters that have not been regulated in any way in the MHMCMC algorithm, i.e. turnover processes such as litter 

mineralization (MRlitter), roots turnover (TORroots), wood turnover (TORwood), decomposition rates (Drate) and initial C stock 280 
such as litter (Clitter) were found poorly constrained (<20% uncertainty reduction). Overall, the uncertainty reduction classified 

by processes and ranked from most to least constrained estimated a 71% reduction for C stocks, 67% reduction for C allocation, 

59% for plant phenology and 31% for C turnover related parameters. Although there are not substantial differences between 

tundra and taiga, Croots was better constrained in tundra regions (42%), while leaf onset day (Bday), leaf fall day (Fday), and leaf 

fall duration (Lf) were better constrained in taiga regions (>18% or more). 285 

3.3 Independent evaluation: from global to local scale  

We compared our estimates of GPP and Rh with independent datasets to evaluate the model performance (Figure 3). 

We found GPP to be well correlated (R2 = 0.81; RMSE = 0.43 kg C m-2), but biased lower (~53%) compared to Jung et al. 

(2017)’s GPP estimates. There are in general very few pixels where FLUXCOM product falls within CARDAMOM’s 90% 

confidence interval. Additionally, the Rh product from Hashimoto et al. (2015) is less consistent with our estimates (R2 = 0.40; 290 
RMSE = 0.09 kg C m-2), presenting a tendency towards lower values in tundra pixels and higher values in taiga pixels. The 

spatial variability of Rh is considerably smaller in Hashimoto et al. (2015) compared to our CARDAMOM estimates. Rh falls 

within the 90% confidence interval of CARDAMOM in most of the pan-Arctic region due to the fact that the Rh uncertainties 

are significant (Figure 3). This finding confirms the uncetartanties previously noted in modelled respiratory processes (Table 

1) where the upper P95 in Rh dominated NEE’s uncertainties, but also the soil C stocks and transit times.  295 
For comparison with direct ground observations from the FLUXNET2015 dataset, we report here monthly aggregated 

P50 ± P05-95 estimates of NEE, GPP and Reco to show timing and magnitudes, but also to diagnose whether CARDAMOM 

is in general agremment with flux tower data. Overall, CARDAMOM performed well in simulating observed NEE (R2 = 0.66; 

RMSE = 0.51 g C m-2 month-1; Bias = 0.16 g C m-2 month-1), GPP (R2 = 0.85; RMSE = 0.89 g C m-2 month-1; Bias = 0.5 g C 

m-2 month-1) and Reco (R2 = 0.82; RMSE = 0.63 g C m-2 month-1; Bias = 0.35 g C m-2 month-1) across 8 sub-Arctic and high-300 
Arctic sites from the FLUXNET2015 dataset (Figure 4; Table S6). CARDAMOM NEE is ~25% lower than FLUXNET2015, 

while GPP and Reco are ~30% and ~10% higher, respectively. This mismatch is important in the context of the FLUXCOM 

GPP upscaling, 50% higher than CARDAMOM GPP. At some sites such as Hakasia, Samoylov, Poker Flat and Manitoba 

(NEE R2 = 0.73; GPP R2 = 0.92 and Reco R2 = 0.88) CARDAMOM better matches the seasonality and the magnitude of the C 

fluxes than the rest, i.e. Tiksi, Kobbefjord, Zackenberg and UCI-1998 (NEE R2 = 0.58; GPP R2 = 0.67 and Reco R2=0.67). In 305 
general, CARDAMOM captured the beginning and the end of the growing season well (Figure 4), although the assimilation 

system has some bias due to (1) difference in timing (e.g. earlier shifts of peak of the growing season in Manitoba GPP and 

Reco and  earlier end of the growing season in Poker Flat NEE) and (2) differences in flux magnitudes (such as in Hakasia GPP 

and Reco and Kobbefjord NEE).  

3.4 Benchmarking ISI-MIP2a models with CARDAMOM 310 

We used our highest confidence retrievals of NPP, Cveg and TTveg (i.e. retrievals including assimilated LAI, biomass 

and SOC) to benchmark the performance of the GVMs from the ISI-MIP2a project. In this assessment we compared not only 
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their spatial variability across the pan-Arctic, tundra and taiga region (Figure 5), but also the degree of agreement between 

their mean model ensemble within the 90% confidence interval of our assimilation framework (Figure 6, Table 3). Overall, 

ISI-MIP2a models are in poor agreement with CARDAMOM across the pan-Arctic. NPP estimates (RMSE = 0.1 kg C m-2 yr-315 
1; R2= 0.44) are in better agreement than Cveg (RMSE = 1.8 kg C m-2; R2= 0.22) and TTveg (RMSE = 4.1 years; R2= 0.12). 

Moreover, the assessed GVMs estimated on average 8% lower NPP, 16% higher Cveg and 22% longer TTveg than 

CARDAMOM across the entire pan-Arctic domain (Figure 5 and 6) on average, with very varied spatial patterns.  

The poor agreement regarding TTveg between CARDAMOM and ISI-MIP2a (Table 3) is indicative of uncertainties 

in the internal C dynamics of these models. For instance, the slopes in Table 3 are steep and the R2 are poor – so there is a 320 
substantial disagreement in the spatial pattern, not just a large bias. Spatially, the stippling in Figure 6 indicates areas where 

the GVMs are within the 90% CI of CARDAMOM; agreement is best over the taiga domain rather than in tundra for TTveg. 

The benchmark area of consistency (stippling) is more extensive for Cveg and TTveg than for NPP. Thus, while there is a stronger 

spatial correlation for NPP between CARDAMOM and GVMs (Table 3), this is a clearer bias for NPP. Some models (LPJ-

GUESS and ORCHIDEE) systematically calculate lower values in all the assessed variables while others (LPJmL and VISIT) 325 
calculate higher estimates. The models in closer agreement with CARDAMOM were DLEM (5% difference) and LPJ-GUESS 

(17%) while VEGAS (44%) and ORCHIDEE (56%) were the models with larger discrepancies (Table 3; Figure 5 and 6). 

The attribution analysis to identify the origin of bias from ISI-MIP2a models indicated a joint split between NPP and 

Cveg for TTveg error simulated in GVMs (Figure 7). We used CARDAMOM to calculate two hypothetical TTveg (i.e. 

EXPERIMENT A TTveg = ISI-MIP2a Cveg / CARDAMOM NPP and EXPERIMENT B TTveg = CARDAMOM Cveg / ISI-MIP2a 330 
NPP) and then assessed the largest difference with CARDAMOM’s CONTROL TTveg. We estimated the hypothetical TTveg 

for each pixel in each model, and derived a pixel-wise measure of the contribution of biases in NPP and Cveg to biases in TTveg 

by overlapping their distribution functions (Figure 7). The distribution of the differences relative to CARDAMOM revealed 

that the higher error (i.e. the lower overlapped area, and by extension the largest contributor to TTveg biases) comes from ISI-

MIP2a NPP with a 69% agreement in the distribution, while Cveg agrees 72%. In fact, the TTveg R2 for each model (Table 3) is 335 
very close to the product of the NPP R2 and Cveg R2 for that model, i.e. the uncertainty on the TTveg is a direct interaction of 

NPP and Cveg uncertainty (R2 of the correlation = 0.71). This finding supports Figure 6, which shows TTveg error derives equally 

from both NPP and Cveg.  

4 Discussion  

4.1. Pan-Arctic retrievals of C cycle  340 

The CARDAMOM framework has been used to evaluate the terrestrial pan-Arctic C cycle in tundra and taiga at 

coarse spatio-temporal scale (at monthly and annual time steps for the 2000-2015 period and at 1° x 1° grid cells). Overall, we 

found that the pan-Arctic region (1) was most likely a consistent sink of C (weaker in tundra and stronger in taiga), although 

the large uncertainties derived from respiratory processes (Table 1) strongly increase the 90% confidence interval uncertainty; 

(2) experienced 62% longer transit times in litter and SOM C stocks in tundra compared to taiga; and (3) the contribution of 345 
Ra and Rh to total ecosystem respiration was similar in tundra (51%, 49%) but dominated by Ra in taiga (57%, 43%).  

CARDAMOM retrievals are consistent with outcomes from relevant papers such as the (I) C flux observations and 

model estimates reported in McGuire et al. (2012); (II) C stocks and transit times described by Carvalhais et al. (2014), and 

(III) NPP, C stocks and turnover rates stated in Thurner et al. (2017): 

 350 
I. The CARDAMOM NEE estimates reported in this study for the tundra domain are inside the variability comparison 

of values compiled by McGuire et al. (2012) considering field observation, regional process-based models, global-

process based models and inversion models. The authors reported that Arctic tundra was a sink of CO2 of -150 Tg C 



10 
 

yr-1 (SD=45.9) across the 2000-2006 period over an area of 9.16 x 106 km2. Here, CARDAMOM NEE estimated -

129 Tg C yr-1 over an area of 8.1 x 106 km2 for the same period. This exhaustive assessment of the C balance in Arctic 355 
tundra included approximately 250 estimates using the chamber and eddy covariance method from 120 published 

papers (McGuire et al., 2012; Supplement 1) with an area-weighted mean of means of -202 Tg C yr-1. The regional 

models, including runs from LPJ-Guess WHyMe (Wania et al., 2009a, b), Orchidee (Koven et al., 2011), TEM6 

(McGuire et al., 2010), and TCF model (Kimball et al., 2009), reported a NEE of -187 Tg C yr-1 and GPP, NPP, Ra 

and Rh of  350, 199, 151 and 182 g C m-2y-1, respectively. GVMs applications such as CLM4C (Lawrence et al., 2011), 360 
CLM4CN (Thornton et al., 2009), Hyland (Levy et al., 2004), LPJ (Sitch et al., 2003), LPJ- Guess (Smith et al., 2001), 

O-CN (Zaehle and Friend, 2010), SDGVM (Woodward et al., 1995), and TRIFFID (Cox, 2001) estimated a NEE of 

-93 Tg C yr-1 and GPP, NPP, Ra and Rh of 272, 162, 83 and 144 g C m-2yr-1. For the same period, CARDAMOM has 

estimated 330, 167, 160 and 154 g C m-2 yr-1 respectively for the same gross C fluxes.  

II. Carvalhais et al. (2014) estimated a total ecosystem carbon (Ctot) of 20.5F1X.1Y./ L kg C m-2 for tundra and 24.8F1Y./W1.XL kg 365 

C m-2 for taiga, while values from CARDAMOM were 24.6F1/.ZW/.YL kg C m-2 for tundra, and 27.7F1W.XWX.[L	kg C m-2 in taiga 

(Figure 5; Table 1) for the same area.Thus, Carvalhais et al. (2014)’s Ctot product stored 20% and 12% less carbon in 

tundra and taiga respectively than CARDAMOM. Overall, CARDAMOM calculated 20% and 6% longer transit times 

for tundra and taiga respectively, with average values of 80.8FWV1.XXW.Y L years in tundra and 51.2FW/V.\XX.W L years in taiga 

(Table 1) compared to the 64.4FX1V.YX1.[ L years in tundra and 48.2FWWW.ZX].V L years in taiga in Carvalhais et al. (2014). These 370 
numbers have been retrieved from the same biome classification and they include the 90% confidence interval of the 

assessed spatial variability. Also, we applied a correction factor of TTgpp = TTnpp*(1-fraction of GPP respired) to be 

comparable with Carvalhais et al. (2014) TT. Both datasets agree on the fact that high (cold) latitudes, first tundra, 

and second taiga have the longest transit times in the entire globe (Bloom et al., 2016; Carvalhais et al., 2014). 

III. A recent study from Thurner et al. (2017) assessed temperate and taiga-related TTs presenting a 5-year average NPP 375 
dataset applying both MODIS (Running et al., 2004; Zhao et al., 2005) and BETHY/DLR (Tum et al., 2016) products 

and an inovative biomass product (Thurner et al., 2014) accounting for both forest and non-forest vegetation. Our 

estimate of TTveg for the exact same period is 5.3FWY.XW.V L years, compared to Thurner et al. (2017)’s TT, 8.2FWW.11.1 L years 

using MODIS and 6.5FY.[].XL years using BETHY/DLR. A note of caution here, the number reported by the authors are 

turnover rates, which are inferred to transit times by just applying the inverse of turnover rates (TTveg=1/turnover 380 
rates). Additionally, their NPP estimates, 0.35 and 0.45 kg C m-2 yr-1 from both MODIS and BETHY/DLR, is only 

5% more productive as average than CARDAMOM NPP estimate, 0.4F/.Z/.\L kg C m-2 yr-1; and the biomass derived 

from Thurner et al. (2014), 3.0 ±1.1 kg C m-2, is ~30% lower than CARDAMOM Cveg, 2.2F1./W.WLkg C m-2, calculated 

for the same period and for the same taiga domain.  

 385 
In general, we found a reasonable agreement between CARDAMOM and assimilated and independent data at pan-

Arctic scale. CARDAMOM retrievals of assimilated data are in good agreement with the SOC (Figure 2).	The simulation of 

TTdom is weakly constrained (Table 1) - our analysis adjusts TT to match mapped stocks, hence the strong match of modelled 

to mapped SOC. So, independent data on TTdom data (e.g. 14C) is required across the pan-Arctic region to provide stronger 

constraint on process parameters and reduce the very broad confidence intervals of CARDAMOM analyses. The low bias in 390 
mean estimates of LAI and biomass (Figure 2) likely relates to the strong prior on photosynthesis estimates from the ACM 

model, which lacks a temperature acclimation for high latitudes in this implementation. However, the uncertainty in the 

biomass and LAI analyses spans the magnitude of the bias. So, CARDAMOM generates some parameters sets that are 

consistent with observations. CARDAMOM produces analyses that reproduce the pattern of LAI, GPP, biomass and SOC 

(Figure 2 and 3) – this demonstrates that the DALEC model structure can be calibrated to simulate the links between these 395 
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variables as a function of mass balance constraints, and realistic process interactions and climate sensitivities. Biases could be 

reduced by assimilation of data with better resolved errors. Greater confidence in LAI and biomass data would increase the 

weight on their assimilation, and result in analyses closer to these data, overriding model priors by adjusting photosynthesis 

upwards. Further experiments can evaluate this possibility. Certainly the need for robust characterisation of error for data 

products is of critical importance for improved analyses. 400 
There are clear biases in CARDAMOM analyses compared to independent global GPP (Jung et al., 2017) and Rh 

products (Hashimoto et al., 2015) (Figure 3). However, CARDAMOM resolves the spatial pattern in GPP effectively, while 

the spatial mismatch in Rh estimates is clear (Figure 3), echoing the large uncertainty found in NEE (Figure 1, Table 1). One 

difference with Hashimoto et al. (2015)’s Rh model is the lack of moisture limitation on respiration in CARDAMOM. 

Conversely, GPP is relatively well-constrained in space through the assimilation of LAI and a prior for productivity (Bloom 405 
et al., 2016), although an important mismatch has been found: CARDAMOM GPP is 50% lower than FLUXCOM, but 30% 

higher than FLUXNET2015 EC data.  

The agreement between CARDAMOM analyses and EC data is good given the scale difference. A direct point-to-

grid cell comparison with local observations derived from the FLUXNET2015 dataset (Figure 4, Table S6) is challenging and 

always difficult. CARDAMOM outputs covers 1° x 1° grid cells, whereas local eddy covariance flux measurements are in the 410 
order of 1-10 hectares. Thus, for observational sites located in areas with complex terrain, such as Kobbefjord in coastal 

Greenland, the agreement can be expected to be low. For inland forest sites, such as Poker Flat in Alaska, there may be less 

differences in vegetation characteristics and local climatology between the local scale measurement footprint and the 

corresponding CARDAMOM grid cell. This scaling issue is likely to have a larger impact on flux magnitudes compared with 

seasonal dynamics. In general, CARDAMOM captured the seasonal dynamics in NEE, GPP and Reco well (Figure 4, Table 415 
S6). There was, however, a consistent timing-mismatch in early season flux increase, where CARDAMOM predicts earlier 

growing season onset compared with observations. This is likely due to the impact of snow cover, which is not explicitly 

included in the CARDAMOM framework.  

4.2. CARDAMOM as a model benchmarking tool 

An ideal benchmarking tool for GVMs would compare model state variables and fluxes against multiple, independent, 420 
unbiased, error-characterised measurements collected repeatedly at the same temporal and spatial resolution. Of course direct 

measurements of key C cycle variables like these are not available. Even at FLUXNET sites GPP and Reco must be inferred, 

and NEE data often gap-filled. Satellite data can provide continuous fields, but do not directly measure ecological variables 

like biomass or LAI, so calibrated models are required to generate ecological products. Atmospheric conditions can introduce 

biases and data gaps into optical data that are poorly quantified. Upscaling of FLUXNET data requires other spatial data, e.g. 425 
MODIS LAI, which challenges the characterisation of error and generates complex hybrid products. We suggest that 

CARDAMOM provides some of the requirements of the ideal benchmark system – an error-characterised, complete analysis 

of the C cycle that is based on a range of observational products. CARDAMOM includes its own C cycle model; this has the 

advantage of evaluating the observational data for consistency (e.g. with mass balance), propagating error across the C cycle, 

and generating internal model variables such as TT. Further the model is of low complexity and independent of the 430 
benchmarked models. 

Using CARDAMOM as a benchmarking tool for six GVMs we found major disagreements for mapping of NPP, Cveg 

and TTveg across the Pan-Arctic for all models (Figure 6) against CARDAMOM confidence intervals. GVM NPP estimates 

had a higher correlation than TTveg and Cveg with CARDAMOM analyses (Table 3), but because CARDAMOM confidence 

intervals on NPP were relatively narrow (Figure 1) the benchmarking scores from GVM NPP were relatively poor (Figure 6). 435 
Consequently, we used CARDAMOM to calculate the relative contribution of productivity and biomass to the transit times 

bias by applying a simple attribution analysis (Figure 7). We concluded that the largest bias to transit times originated not by 
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a deficient understanding of one single component, but by an equal combination of both productivity and  biomass errors 

together. Therefore, this study partially agrees with previous studies (Friend et al., 2014; Nishina et al., 2014; Thurner et al., 

2017) highlighting the deficient representation of transit times/turnover dynamics, but we further suggest that GVM and ESM 440 
modellers need to focus on the productivity and vegetation C stocks dynamics to improve inner C dynamics. A major challenge 

for GVMs is the spin-up problem (Exbrayat et al., 2014). GVMs need to find a way to ensure that the spin-up process produces 

biomass estimates consistent with the growing availability of biomass maps from earth observations. CARDAMOM solves 

this problem by avoiding spin-up.  Its fast run time allows the biomass maps to act as a constraint on the probability distribution 

of model parameters. There may be opportunities to use CARDAMOM style approaches to assist the GVM community address 445 
this problem. 

4.3 Outlook 

Although CARDAMOM estimates for pan-Arctic C cycling are in moderately good agreement with observations and 

data constraints, we have not included important components controlling ecosystem processes that could potentially improve 

our understanding on C feedbacks, and with emphasis for high latitude ecosystems. For example, thaw and release of 450 
permafrost C is not represented in CARDAMOM, but the influence on vegetation dynamics, permafrost degradation and soil 

respiration is critical in high latitudes (Koven et al., 2015; Parazoo et al., 2018). Also, Koven et al. (2017) shown that soil 

thermal regimes are key to resolving the long-term vulnerability of soil C. Moreover, we have not characterized snow dynamics 

and the insulating effect of snow affecting respiratory losses across wintertime periods either (Essery, 2015; López-Blanco et 

al., 2018). Further, methane emissions, another important contributor to total C budget (Mastepanov et al., 2008; Mastepanov 455 
et al., 2012; Zona et al., 2016), was neglected from this modelling exercise since it is not easy to model due to its three complex 

transport mechanisms (Kaiser et al., 2017; Walter et al., 2001).  

However, our approach to use a low complexity model has the strong advantage of allowing very large (107) model 

ensembles per pixel, and thus a thorough exploration of model-parameter interactions, that is not feasible with complex models. 

There remains a strong argument to utilize low complexity models to evaluate the minimum level of detail required to represent 460 
ecosystem processes consistent with local observations. And, assimilating further data products, for instance patterns in soil 

hydrology and snow states across the pan-Arctic from earth observation, could provide useful information on spatio-temporal 

controls on soil activity and microbial metabolism to constrain below ground processes. This information would need to be 

tied to process level information on SOM turnover generated from experimental studies, and included in updated versions of 

DALEC. 465 
Thus, in order to reduce uncertainties on the balance between photosynthetic inputs and respiratory outputs, we must 

devise low complexity model representations of SOC decomposition by microbial activity (Xenakis and Williams, 2014), 

nutrient interactions with carbon (Thomas and Williams, 2014), mechanisims driving carbon use efficiency (Bradford and 

Crowther, 2013; Street et al., 2013), and drivers of gross flux coupling (López-Blanco et al., 2017). There are opportunities to 

constrain such modelling using data on plant trait relationships across pan-Arctic regions (Reichstein et al., 2014; Sloan et al., 470 
2013). We also need to assimilate data describing annual biomass maps, and landscape disturbances such as fires and moth 

outbreaks (Heliasz et al., 2011; López-Blanco et al., 2017; Lund et al., 2017) at the pan-Arctic scale. From a modelling 

perspective, we consider that more field observations are crucial across the pan-Arctic, specifically on plant and soil 

decomposition (C stocks turnover rates)(He et al., 2016) and respiratory processes (partitioning of Reco into Ra and Rh) (Hobbie 

et al., 2000; McGuire et al., 2000), not only across the growing season, but also during wintertime (Commane et al., 2017; 475 
Zona et al., 2016). These data could be upscaled using machine learning, following the approaches used for creating SOM 

maps, with uncertainty attribution, as further assimilation data sets for frameworks like CARDAMOM. An improved data-

model integration will move us towards enhanced analytical robustness and a decrease of model uncertainties.  
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5 Conclusions 

The Arctic is experiencing rapid environmental changes, which will influence the global C cycle. Using a data-480 
assimilation framework we have evaluated the current state of key C flux, stocks and transit times for the pan-Arctic region, 

2000-15. We found that the pan-Arctic was a likely sink of C, weaker in tundra and stronger in taiga, but uncertainties around 

the respiration losses are still large, and so the region could be a source of C. Comparisons with global and local scale datasets 

demonstrate the capabilities of CARDAMOM for analysing the C cycle in the Arctic domain. CARDAMOM is a data-

constrained and data-integrated analysis, evaluated for internal consistency, and is therefore a good candidate to benchmark 485 
performance of global vegetation/ecosystem models. We conclude that a GVM bias found in transit time of vegetation C is 

the result of a joint combination of uncertainties from productivity processes and biomass in GVMs, and thus these are a major 

component of error in their forecasts. While spatial patterns in GVM predictions of NPP are reasonable, particularly in taiga, 

they have significant biases against the CARDAMOM benchmark. Improved mapping of vegetation and soil C stocks and 

change over time is required for better analytical constraint. Moreover, future work is required on assimilating data on soil 490 
hydrology, permafrost and snow dynamics to improve accuracy and decrease uncertainties on belowground processes. This 

work establishes the baseline for further process-based ecological analyses using the CARDAMOM data-assimilation system 

as a technique to constrain the pan-Arctic C cycle. 

Data availability 

CARDAMOM output used in this study is available from Exbrayat and Williams (2018) from the University of 495 
Edinburgh’s DataShare service at http://dx.doi.org/10.7488/ds/2334.  
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 1 
Figure 1. Schematic diagram of the terrestrial C processes modelled in CARDAMOM for the pan-Arctic (black values), tundra 2 
(yellow values) and taiga (green values) domains. The values characterize the median for the 2000-2015 period and the parentheses 3 
delimit the 90% confidence interval. C processes represented include flows for C fluxes in white [NEE, Net Ecosystem Exchange; 4 
GPP, Gross Primary Production; NPP, Net Primary Production; Reco, ecosystem Respiration; Ra, autotrophic Respiration; Rh, 5 
heterotrophic Respiration], C allocation in blue [to labile, leaf, stem and root], and C turnover in cyan [from leaf, wood, roots and 6 
litter]. C stocks are represented in dark blue boxes [labile, leaf, stem, root, litter and SOM, Soil Organic Matter] and aggregated 7 
into photosynthetic (Cphoto = leaf + labile), vegetation (Cveg = leaf + labile + wood + roots), soil (Cdom = litter + SOM) and total (Ctot = 8 
Cphoto + Cveg + Cdom) C stocks in red boxes. Analogy, transit times (TT) are also aggregated into photosynthetic (TTphoto = leaf + 9 
labile), vegetation (TTveg = leaf + labile + wood + roots), soil (TTdom = litter + SOM) and total (TTtot = TTphoto + TTveg + TTdom) C 10 
transit times. 11 
 12 



 

 13 
Figure 2. Original soil organic carbon [SOC; Hugelius et al. 2013], biomass [Carvalhais et al. 2014] and leaf area index [LAI; Myneni 14 
et al. 2002] datasets used in the data assimilation process within the CARDAMOM framework (left hand side), assimilated SOC, 15 
biomas and LAI integrated in CARDAMOM (center), and their respective goodness-of-fit statistics between original and assimilated 16 
datasets (right hand side). The error bars represent the 90% confidence interval of the assimilated variable in CARDAMOM. 17 
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 18 
Figure 3. Original gross primary productitvity [GPP; Jung et al., 2017] and heterotropic respiration [Rh; Hashimoto et al., 2015] 19 
datasets used in the data validation process (left hand side), estimated GPP and Rh by CARDAMOM (center), and their respective 20 
goodness-of-fit statistics between original and assimilated datasets (right hand side). Stippling indicates locations where the 21 
independent datasets are within the CARDAMOM’s 5th and 95th percentiles. 22 



 

Figure 4. Monthly-aggregated seasonal variability of observed [FLUXNET2015] and modelled [CARDAMOM] C fluxes [NEE, Net Ecosystem Exchange; GPP, Gross Primary Production; Reco, 23 
ecosystem Respiration] across eight low- and high-Arctic sites [Hakasia, Kobefjord, Manitoba, Poker Flat, Samoylov, Tiksi, UCI-1998 and Zackenberg]. Each of these sites, located in different 24 
countries [RU-Russia, GL-Greenland, CA-Canada, US-Unite States,] feature different meteorological conditions and vegetation types (Table S4). Uncertainties represent the 25th and 50th 25 
percentiles (darker shade) and the 5th and 95th percentiles (lighter shade) of both field observations and the CARDAMOM framework. 26 
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 27 
 28 
Figure 5. Central tendency and variability of NPP [Net Primary Production], Cveg [Vegetation C stock], TTveg [Vegetation transit 29 
time] estimated by CARDAMOM (orange) and ISI-MIP2a models (grey) in the Pan-Arctic, tundra and taiga regions. The box 30 
whisker plots comprise the estimations between the 5th and 95th percentiles, and the box encompasses the 25th to 75th percentiles. 31 
The line in each box mark the median of studied variables in each region. 32 



 

 33 
 34 
Figure 6. NPP [Net Primary Production], Cveg [Vegetation C stock] and TTveg [Vegetation transit time] ratios between ISI-MIP2a 35 
model ensembles [DLEM, LPJmL, LPJ-GUESS, ORCHIDEE, VEGAS and VISIT] and CARDAMOM. Stippling indicates locations 36 
where the ISI-MIP2a model mean is within the CARDAMOM’s 5th and 95th percentiles.  37 



 

 38 
Figure 7. Distribution functions derived from the attribution analysis used to estimate the origin of vegetation transit time (TTveg) 39 
bias from ISI-MIP2a models. The CONTROL TT (grey) includes both biomass (Cveg) and net primary production (NPP) estimated 40 
by CARDAMOM. EXPERIMENT A TT (dark red) incorporates Cveg from ISI-MIP2a and NPP from CARDAMOM while 41 
EXPERIMENT B TT (dark green) includes NPP from ISI-MIP2a and Cveg from CARDAMOM. The lower the overlapped area is 42 
between control and experimental TT, the larger the contribution for TT biases is. For readability purposes, the scale in X-axis is 43 
delimited to 20 years. 44 
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Table 1. Multi-year (2000-2015) annual average of main ecosystem C fluxes [NEE, GPP, NPP, Reco, Ra, Rh; g C m-2 yr-1], C stocks [Cphoto,  Cveg,  Cdom, Ctot; kg C m-2] and transit 

times [TTphoto, TTveg, TTdom, TTtot; years] for the pan-Arctic, tundra (non-forested) and taiga (forested), region. The averages contain the the median in bold (50th percentile) 

and the uncertainty estimations across the 90% confidence range between the 5th and 95th percentiles assuming no spatial correlation between uncertainties in all pixels. We 

assume spatial correlation between pixels: P50, P05 and P95 represents the area-weighted aggregate of all pixels’ media, P05 and P95. 

 

 
 

  

P05 P25 P50 P75 P95 P05 P25 P50 P75 P95 P05 P25 P50 P75 P95
NEE -286.7 -170.5 -67.4 149.9 1159.9 -163.4 -84.5 -14.9 176.2 1116.1 -387.7 -241.0 -110.4 128.2 1195.8
GPP 427.8 504.1 565.0 633.5 740.7 236.8 285.0 327.2 379.4 463.3 584.1 683.5 759.8 841.6 967.9
NPP 196.4 248.3 290.3 337.1 410.7 109.1 139.3 165.9 198.3 250.7 268.0 337.6 392.1 450.8 541.8
Reco 212.8 345.8 488.8 764.0 1854.1 124.3 211.9 310.0 540.3 1536.8 285.3 455.5 635.3 947.3 2114.0
Ra 181.8 229.2 269.8 317.4 396.5 102.8 132.0 158.5 191.5 247.4 246.6 308.8 361.0 420.6 518.6
Rh 31.0 116.6 219.0 446.6 1457.6 21.6 79.9 151.5 348.8 1289.4 38.7 146.7 274.3 526.7 1595.4

Cphoto 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.2 0.3
Cveg 0.5 1.0 1.5 2.6 5.8 0.3 0.5 0.8 2.0 6.8 0.8 1.4 2.1 3.1 5.1
Cdom 10.3 18.3 24.4 32.2 47.5 10.0 17.4 23.3 31.0 46.1 10.5 19.0 25.3 33.2 48.6
Ctot 11.8 20.0 26.3 34.5 51.0 10.8 18.4 24.6 33.0 50.6 12.7 21.3 27.7 35.7 51.2

TTphoto 0.8 1.0 1.3 1.6 2.1 1.0 1.2 1.6 2.0 2.7 0.7 0.9 1.1 1.2 1.6
TTveg 1.7 2.8 4.5 7.5 15.7 1.4 2.2 3.4 5.9 12.7 1.9 3.2 5.3 8.8 18.2
TTdom 9.8 51.5 120.5 245.9 822.6 11.0 61.6 152.8 318.7 1055.9 8.7 43.3 94.1 186.3 631.4
TTtot 11.5 56.9 133.1 276.0 1013.6 12.5 67.0 167.7 357.6 1306.8 10.7 48.5 104.7 209.4 774.3

Transit times

Pan-Arctic Tundra Taiga

C fluxes 

C pools 



 

 

Table 2. Parameter uncertainty reduction in percentage ranked from least (red) to most (blue) constrained in the pan-Arctic, tundra and taiga domains. The reduction 

percentage is calculated based on the difference between the 90% CI prior range and the 90% CI posterior range.  

 

Parameter Name Process Pan-Arctic Tundra Taiga
MRlitter Litter mineralization Turnover 3.3 3.6 2.9
TORroots Root turnover Turnover 4.8 7.2 2.2
TORwood Wood turnover Turnover 9.0 8.5 9.7
Clitter Litter C stock Stocks 13.9 13.7 14.1
Drate Decomposition rate Turnover 18.2 18.6 17.8
frau Fraction of GPP respired (Autotropic respiration) Allocation 30.9 31.7 30.2
Lf Leaf fall duration Phenology 37.3 25.0 51.1
LMA Leaf mass per  area Phenology 42.8 46.3 38.9
Croots Fine root C stock Stocks 52.4 72.1 30.3
Rl Labile C release duration Phenology 53.1 52.0 54.4
fwood Fraction of NPP to wood C pool Allocation 65.8 68.1 63.3
Fday Leaf fall day Phenology 67.0 51.1 84.8
MRsom Soil organic matter mineralization Turnover 69.1 69.6 68.6
flabile Fraction of NPP to labile C pool Allocation 74.2 75.5 72.8
Ceff Canopy efficency Phenology 74.7 75.5 73.7
froots Fraction of NPP to roots C pool Allocation 75.7 74.7 76.8
Bday Leaf onset day Phenology 76.2 67.4 86.1
CSOM Soil organic matter C stock Stocks 80.7 81.4 80.0
L Lifespan Turnover 83.4 76.4 91.4
ffoliar Fraction of NPP to foliage C pool Allocation 88.0 88.6 87.4
Clabile Labile C stock Stocks 92.2 95.3 88.8
Cwood Woody C stock Stocks 92.6 90.1 95.5
Cfoliar Foliar C stock Stocks 95.2 96.0 94.3



 

 

Table 3. Statistics of linear fit between the CARDAMOM framework (independent) and the ISI-MIP2a models (dependent) per individual model and per NPP [Net Primary 

Production; kg C m-2 yr-1], Cveg [Vegetation C stock; kg C m-2] and TTveg [Vegetation transit time; years]. The units for RMSE and bias are kg C m-2 yr-1 in NPP, kg C m-2 yr-

1 in Cveg and years in TTveg. 

 

 
 

 

Intercept Slope R2 RMSE Bias Intercept Slope R2 RMSE Bias Intercept Slope R2 RMSE Bias
DLEM 0.04 0.61 0.58 0.09 -0.07 0.04 0.48 0.23 0.08 -0.05 0.12 0.47 0.44 0.08 -0.09
LPJmL 0.19 0.51 0.43 0.10 0.06 0.12 0.88 0.38 0.10 0.10 0.31 0.23 0.21 0.07 0.02

LPJ-GUESS 0.01 0.93 0.61 0.12 -0.01 -0.03 1.00 0.38 0.12 -0.03 0.13 0.67 0.45 0.12 0.00
 (kg C m-2 y-1) ORCHIDEE 0.14 0.27 0.17 0.10 -0.06 0.07 0.64 0.31 0.09 0.01 0.20 0.12 0.03 0.10 -0.14

VEGAS 0.07 0.46 0.60 0.06 -0.07 0.05 0.55 0.36 0.07 -0.02 0.12 0.36 0.52 0.05 -0.13
VISIT 0.18 0.47 0.26 0.13 0.04 0.10 0.95 0.30 0.13 0.09 0.30 0.18 0.06 0.12 -0.01
DLEM 0.44 0.61 0.40 1.00 -0.13 0.38 0.10 0.03 0.65 -0.37 0.92 0.61 0.43 0.91 0.11
LPJmL 1.70 0.88 0.15 2.80 1.48 1.40 0.16 0.01 2.30 0.65 2.80 0.79 0.12 2.80 2.42

LPJ-GUESS 0.30 0.69 0.30 1.40 -0.15 0.37 0.13 0.02 0.95 -0.41 0.51 0.81 0.33 1.50 0.13
(kg C m-2) ORCHIDEE 0.40 0.23 0.12 0.82 -0.71 0.33 0.04 0.01 0.46 -0.50 0.71 0.20 0.06 1.00 -0.94

VEGAS 1.10 0.64 0.27 1.40 0.58 1.20 0.10 0.01 1.30 0.37 1.30 0.76 0.38 1.30 0.80
VISIT 1.60 0.23 0.06 1.30 0.49 1.40 0.03 0.00 1.10 0.53 2.30 0.11 0.01 1.30 0.44
DLEM 1.90 0.69 0.29 2.30 0.56 2.30 0.18 0.05 1.80 -0.42 3.40 0.63 0.29 1.70 1.56
LPJmL 4.00 0.75 0.07 6.10 2.91 4.10 0.08 0.00 5.10 0.82 7.30 0.60 0.03 5.80 5.27

LPJ-GUESS 1.30 0.54 0.14 2.90 -0.68 1.70 0.28 0.04 2.90 -0.81 0.95 0.71 0.16 2.80 -0.53
(yr) ORCHIDEE 1.40 0.34 0.10 2.20 -1.42 1.60 0.04 0.00 1.70 -1.78 2.30 0.35 0.07 2.10 -1.03

VEGAS 5.90 0.62 0.11 3.90 4.23 6.60 0.10 0.00 3.80 3.42 5.50 0.93 0.17 3.40 5.12
VISIT 5.40 0.12 0.01 2.30 1.65 5.20 0.06 0.00 2.30 1.92 6.70 -0.04 0.00 2.10 1.36

Cveg 

TTveg 

TaigaPanarctic Tundra

NPP 


