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The authors substantially revised the manuscript and addressed my comments 
appropriately.  
I only disagree how uncertainties where used during the data assimilation. Specifically, 
the authors state at several places (lines 86, 184-85) that the (biomass) dataset lacks 
uncertainty or error estimates and hence they used a global uncertainty factor of 1.5 in 
the cost function.  
It is clearly a wrong statement that the biomass maps by Carvalhais et al. (2014) miss 
uncertainty estimates.  
In this dataset, uncertainty was provided based on an ensemble of biomass estimates. 
This biomass map is also based on the map of forest biomass by Thurner et al. (2014) 
which also includes a detailed estimate of uncertainties for various vegetation carbon 
pools.  
Please remove the wrong statements about missing uncertainty estimates for the 
biomass datasets and describe why you did not use these uncertainty estimates or how a 
potential use could affect your results. With these changes, I'm happy to accept the 
manuscript for publication. 
 
We apologise for the lack of clarity about uncertainty derivation for the analysis. Here we have 
adjusted the text on the Introduction section (S1) to remove the sentence 
 

“However, these products tend to lack clear error estimates.” 
 
On S2.2.2, L188-195 we have adjusted the text to: 
 

“The reported uncertainty on biomass data from Thurner et al. (2014) was +/- 37% at 
pixel scale. Because of undetermined errors related to tree cover thresholds used in the 
upscaling, and to reflect unknown model structural error, we slightly inflate the error 
estimate and use a log-transform(1.5) of ´/÷1.5 (i.e. ´/÷1.5 spans 67% of the expected 
error). We use the same proportional error for SOC. For MODIS LAI we inflate the 
proportional error further to log(2) based on well reported biases in this product for 
evergreen forests (De Kauwe et al. 2011) and the estimated measurement and 
aggregation uncertainty for boreal forest LAI of 1 m2 m-2 reported by Goulden et al. 
(2011). The uncertainty assumptions in expression 3 are chosen in lack of better 
knowledge about the combined uncertainties arising from model representation errors 
and observation errors:”  
 

In the Discussion we also now review the challenges associated with generating observation 
and model errors (see response to reviewer 2).  
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I’m going to be upfront that I’m very torn about what to recommend with respect to this 
paper. On the one hand, I acknowledge the incredible amount of work that went into this 
project and believe that there is important and interesting science coming out of this 
project. On the other hand, based on the responses to questions raised, it is now clear 
there are definitely things here that I don’t think were done correctly. What complicates 
this is that many of the things done wrong (especially with respect to model process error) 
were also done wrong in previous papers on the Bayesian calibration of terrestrial carbon 
models (both by this team and others). This helps explain such mistakes, but it doesn’t 
justify them, and I worry that continuing to allow papers to make the same mistakes just 
perpetuates the situation. The crux of the issue is really in how the authors are treating 
the error term in their likelihood. First, they are ascribing 100% of the error as coming 
from the observations, and not acknowledging (statistically) that their model is imperfect 
(though their own Results and Discussion clearly demonstrate that the model is far from 
perfect). By incorrectly ascribing 100% of the error to observations, and none to process 
error (model misspecification, stochastic events, unaccounted for heterogeneity), the 
authors are also missing that (unlike observation error) process error propagates 
forward into model predictions. This means that modeled fluxes and pools are going to 
be consistently overconfident by an unknown (but potentially nontrivial) amount. 
Second, not only do the author ascribe all the error to observations, but they treat that 
observation error as a known parameter, despite acknowledging that the data products 
used don’t have error estimates. This is a significant departure from standard statistical 
modeling, where the variance is an unknown fit parameter. For example, when you fit a 
linear regression the model has three unknown parameters (slope, intercept, sigma) and 
sigma is virtually never treated as an a prior known quantity. While treating sigma as a 
known shouldn’t have large effects on the mean values of the model parameters (though 
this is far from guaranteed when dealing with nonlinear models; Jensen’s Inequality), 
more important is that it can have a real effect on the uncertainties about the model 
parameters. By subjectively choosing the observation error, one is also subjectively 
choosing the confidence intervals on the parameters. And since in CARDAMOM the only 
uncertainties that are included in predictions are parameter uncertainties, this also 
means you are subjectively choosing the uncertainty in the predictive confidence 
intervals. Ideally, these models should be refit including an unknown, fit model process 
error, and then that process error should be propagated into predictions/hindcasts. This 
process error ideally should also be in addition to, not instead of, an observation error 
(which may not be a known, but may have an informative prior on it) 
 
We recognise the reviewer’s concerns about using the correct process for error characterisation 
in analyses such as that we present here. We agree that our model is not perfect and that 
identification of process error is critical. We also regret that we did not provide the necessary 
information on how data uncertainties were derived. We do appreciate the reviewer’s concern 



about effective error characterisation, and have adjusted the text to reflect this, and to make 
recommendations about how to address this better.  
 
We did specifically focus on identification of model process error by comparison with 
independent data (GPP, Rh). Thus, we identified biases in our estimates of LAI, GPP and 
biomass at landscape scale, and suggest that these likely reflect systematic bias in our 
photosynthesis model. A next step is to analyse the representation of photosynthesis process 
error and include this in further analyses. On the other hand, we note that independent 
evaluation of fluxes at site scale (FLUXNET2015) does not match the GPP bias at landscape 
pixel scale (FLUXCOM). New site level comparisons (see below) also suggest CARDAMOM 
produces reasonable or slightly high biased results. We conclude that further investigations 
into heterogeneity error are required, linked to process error calculation on products such as 
FLUXCOM as well as our GPP model. 
 
We have adjusted the text (S2.2.2, L188-195) to clearly state that error in the biomass product 
is reported, and have explained why we have inflated this error in our analysis. We also note 
that MODIS LAI products have large reported biases, and local observations have important 
errors, which justifies the larger error we assigned to these data. Our point here is to report an 
honest overview of uncertainty assumptions used in CARDAMOM: 
 

“The reported uncertainty on biomass data from Thurner et al. (2014) was +/- 37% at 
pixel scale. Because of undetermined errors related to tree cover thresholds used in the 
upscaling, and to reflect unknown model structural error, we slightly inflate the error 
estimate and use a log-transform(1.5) of ´/÷1.5 (i.e. ´/÷1.5 spans 67% of the expected 
error). We use the same proportional error for SOC. For MODIS LAI we inflate the 
proportional error further to log(2) based on well reported biases in this product for 
evergreen forests (De Kauwe et al. 2011) and the estimated measurement and 
aggregation uncertainty for boreal forest LAI of 1 m2 m-2 reported by Goulden et al. 
(2011). The uncertainty assumptions in expression 3 are chosen in lack of better 
knowledge about the combined uncertainties arising from model representation errors 
and observation errors:”  

 
We note the reviewer’s concerns about making forecasts without properly accounting for 
model process error. This paper involves an analysis of historical fluxes constrained by 
contemporary forcing and data. We do not make forecasts or hindcasts, so this criticism is not 
relevant for this paper.  
 
We have adjusted the text in the discussion (S4.3; L487-501) to reflect the lack of robust 
knowledge on the interactions between random and systematic biases in the observations, 
model representation errors and errors in the model drivers: 
 

“Our approach has used estimated observation error, and inflated this to include 
unknown errors associated with model process representation. We currently lack any 
better knowledge of the combined uncertainties arising from model representation 
errors and observation errors. We acknowledge that all models are an imperfect 
representation of C dynamics, which generates irreconcilable model-data errors due to 
the inherent assumptions in model structure. Future analyses should investigate model 
structural error, using for example error-explicit Bayesian approaches (Xu et al., 2017), 
or comparing the likelihoods of alternate model structures, of varying complexity. 
Using multiple sources of data, we have highlighted systematic errors in the model at 



landscape scale (Figure 2 and 3) for LAI, GPP and biomass. However, these biases are 
not consistent for site-scale evaluations. Thus, a next step would be to include explicitly 
both random and systematic process errors for C fluxes in the data assimilation. These 
errors could be determined from field scale evaluation of model process representation 
(Table 2) using e.g. FLUXNET2015 data. We also need to understand better the error 
associated with landscape heterogeneity of C stocks and fluxes, to upscale from flux 
tower observations, or direct measurements of LAI, to landscape pixel. This could be 
achieved by constructing robust observation error models (Dietze, 2017) from field to 
pixel scale, for e.g. GPP, LAI and foliar N. Evaluation of the sensitivity of C cycling 
DA analyses to observation error has shown relatively low sensitivity to data gaps and 
random error on net ecosystem flux data (Hill et al., 2012), but further analyses of error 
sensitivity are required for multiple streams of stock data.” 

 
 
 
Additional points of concern: 
 
1) Neither the DALEC2 model nor the CARDAMOM system appear to be publically 
archived. This means this work can’t be reproduced or expanded upon by others. I don’t 
know if such lack of openness is within the letter of the law of this journal, but it’s 
definitely a deviation from the current norms of the community. 
 
We agree that openness is critical to scientific advances. We have submitted the code for 
DALEC2 on Edinburgh DataShare. We are working to release a community version of 
CARDAMOM. At present we invite researchers to contact us to gain access to the code. 
 
We have adjusted the text (L517-520): 
 

“Data and software availability 
 
CARDAMOM output used in this study is available from Exbrayat and Williams 
(2018) from the University of Edinburgh’s DataShare service at 
https://doi.org/10.7488/ds/2334. The DALEC2 code is also available on Edinburgh 
DataShare at https://doi.org/10.7488/ds/2504. Contact MW for access to the 
CARDAMOM software.” 

 
2) As noted in my original review, I’m not comfortable with this system being called data 
assimilation, at least not with some additional qualifier being added (e.g. “parameter data 
assimilation”) to make it clear that the outputs are deterministic model forward 
simulations not a reanalysis. To me, calling this data assimilation is like calling linear 
regression “machine learning.” Sure people do it, but it makes the term pretty 
meaningless. 
 
We disagree; we are using Bayesian parameter calibration of a dynamic model - which is 
typically referred to as data assimilation or model-data fusion; see “Ecological Forecasting” p. 
168, by M. Dietze. However, we adjust our introductory text to improve clarity (S1; L100-
104): 
 

“To address these issues we integrate model and data more formally. We apply data 
assimilation (DA), defined as a Bayesian calibration process for a model of a dynamic 



system. DA, through probabilistic parameterisation, supports robust model estimates of 
C stocks and fluxes consistent with multiple observations and their errors (Fox et al., 
2009; Luo et al., 2009; Williams et al., 2005). By following Bayesian methods, the 
uncertainty on observations weights the degree of data constraint, and the outcome is a 
set of acceptable parameterisations for a given model structure linked to likelihoods.” 

 
3) After clearly diagnosing your photosynthesis scheme (ACM) as being at the root of 
model biases and compensating errors, the decision to not include any ACM parameters 
in the calibration (and toss the issue up to a lack of acclimation rather than simple 
miscalibration) strikes me as odd and I cannot understand why the authors are digging 
in their heels on this.  
 
We do include an ACM parameter (Ceff) in the calibration (and so it is adjusted by the 
MHMCMC), according to Bloom et al. (2016). We apologise for not making this clear. We 
consequently have adjusted the Methods text (S2.2.1; L143-145) to read: 
 

“DALEC2 simulates canopy-level GPP via the Aggregated Canopy Model (ACM; 
Williams et al., 1997) and the most sensitive ACM parameter, related to canopy 
photosynthetic efficiency, is included in the CARDAMOM calibration.” 

 
4) Similar to (3), since NPP in DALEC is very tightly tied to GPP, and TT = Cstock/NPP, 
it sure seems like systematic biases in GPP will translate to systematic biases in TT. As 
noted earlier, I find some of the reported TT estimates to be implausible and don’t 
understand the authors resistance to even considering comparing their results to 
independent field estimates. 
 
We note that the mean NPP for GVMs across the region is 8% lower than in CARDAMOM, 
so the regional GVM-CARDAMOM NPP analyses are less different on average than the 
comparisons of CARDAMOM against data such as FLUXCOM (for GPP). We note that the 
high latitude TT estimates for CARDAMOM, GVMs (Figure 5) and reported in Carvalhais et 
al. (2014) are broadly similar. The critical issue we identify is that the spatial differences in 
NPP and Cveg between CARDAMOM and GVMs result in important spatial mismatches in TT 
estimated by both (compare Figure 5 and Figure 6).  
 
We are confused at the statement that we have “resistance to even considering comparing 
their results to independent field estimates”; we have presented a clear evaluation against 
multiple independent FLUXNET site data, shown in Figure 4. Nonetheless, we add some 
further field-based estimates to complement these comparisons in the Discussion (S4.1, L421-
435): 
 

“For a further independent evaluation of CARDAMOM outputs, we compare the tundra 
and boreal estimates to plot scale flux and stock information. For tundra, Street et al. 
(2012) calculate growing season GPP estimates of 263-380 g C m-2 for Empetrum 
nigrum communities, and 295-386 g C m-2 for Betula nana communities, which is 
consistent with the ranges in Figure 1 for tundra. Biomass stocks for Arctic tundra 
recorded in the Arctic LTER at Toolik Lake range from 105-1160 g C m-2 (Hobbie and 
Kling, 2014), which are consistent with the estimates from CARDAMOM, albeit at the 
lower end of the model estimates. For boreal forests, Goulden et al. (2011) report annual 
GPP estimates across a chronosequence of stands, and thus a variation across canopy 
densities, which varied from 450-720 g C m-2 yr-1. These data are consistent with the 



span of GPP in CARDAMOM (Figure 1), again best matching the lower end of the 
model estimates. For the same study, the vegetation C stock estimates varied from 100-
5000 g C m-2, consistent with CARDAMOM, and with measurements of 10 to 40-year 
old boreal stands best matching the CARDAMOM median estimate of ~1500 g C m-2. 
We conclude from comparisons against site data that CARDAMOM analyses are 
broadly consistent, with some tendency for CARDAMOM to have a high bias. This 
comparison is similar to the FLUXNET2015 evaluation of CARDAMOM. But it 
conflicts with the estimation of low bias from the comparison of CARDAMOM against 
FLUXCOM GPP and Carvalhais et al. (2014) biomass stock maps. It is possible that 
the scale differences between site level products and landscape estimates is confusing 
these comparisons, but there is clearly a need to understand better these inconsistencies 
in C cycle estimates.” 

 
 
5) The differences between DALEC and observations are greater than the differences 
between DALEC and the ISI-MIP models, so why are the authors so hard on the ISI-MIP 
models? 
 
Our key point is that DALEC outputs match the spatial variation in independent (FLUXCOM) 
and assimilated data (LAI, biomass) well. There may be biases in these comparisons, indicative 
of model process error and/or upscaling error in the biomass and FLUXCOM products, but 
CARDAMOM can match the pattern in LAI, biomass, and SOC very well (Figure 2). The poor 
agreement with ISI-MIP models is with the spatial pattern (Table 3), not with regional median 
values (Figure 5). From these analyses we note that a reasonable regional estimate is not very 
useful if patterns are wrong, as this challenges the reliability of ISIMIP models when used for 
projections. Some models actually match CARDAMOM well, and we noted this clearly. We 
have edited the text to emphasise these points: 
 
In Results (S3.4, L318-330): 
 

“We used our highest confidence retrievals of NPP, Cveg and TTveg (i.e. retrievals 
including assimilated LAI, biomass and SOC) to benchmark the performance of the 
GVMs from the ISI-MIP2a project. In this assessment we compared not only their 
spatial variability across the pan-Arctic, tundra and taiga region (Figure 5), but also the 
degree of agreement between their mean model ensemble within the 90% confidence 
interval of our assimilation framework (Figure 6, Table 3). NPP estimates (RMSE = 
0.1 kg C m-2 yr-1; R2= 0.44) are in better agreement than Cveg (RMSE = 1.8 kg C m-2; 
R2= 0.22) and TTveg (RMSE = 4.1 years; R2= 0.12). The assessed GVMs estimated on 
average 8% lower NPP, 16% higher Cveg and 22% longer TTveg than CARDAMOM 
across the entire pan-Arctic domain (Figure 5 and 6) on average. Thus, at regional 
aggregation CARDAMOM analyses agreed more closely with ISI-MIP2a models than 
with FLUXCOM (51% difference) and with the Carvalhais et al. (2014) biomass data 
(28% bias).  
 
The poor spatial agreement regarding TTveg between CARDAMOM and ISI-MIP2a 
(Table 3) is indicative of uncertainties in the internal C dynamics of these models. For 
instance, the slopes in Table 3 are steep and the R2 are poor – so there is a substantial 
disagreement in the spatial pattern, not just a large bias. For ISI-MIP2a comparison R2 
values ranged from 0.03-0.52 for NPP; 0.00-0.31 for Cveg; and 0.00-0.24 for TTveg.” 

 



In Discussion (S4.3, L449-451): 
 

“Using CARDAMOM as a benchmarking tool for six GVMs we found disagreements 
that varied among models for spatial estimates of NPP, Cveg and TTveg across the Pan-
Arctic (Figure 6) in comparison against CARDAMOM confidence intervals.” 

 
Detailed comments: 
 
L60: The authors responses suggested that a more complex calculation of TT was actually 
performed that relaxed the assumption of steady state. I would include that here (along 
with the steady state calculation) as I suspect a number of readers (myself included) 
would prefer to know that you’re not relying on a steady state assumption to assess a 
system that’s clearly not in steady state. 
 
The residence time is calculated as per Bloom et al. (2016) equation S8 (SI text, S3 Global 
State and Process Variables), which specifically accounts for changes in stocks over time. We 
now adjust the text accordingly in the Introduction (S1) by removing “at steady state” and the 
Methods (S2.2.2; L202-203): 
 

“We calculate the transit time for C pools using the approach for non-steady state pools 
described in Bloom et al. (2016), supplementary information S3.” 

 
L160: This line refers to DALEC2 as an ‘intermediate complexity’ model, but later 
arguments actually hinge on it being a simple model, and most of us would consider 
DALEC to really be on the simple end of the process-model spectrum 
 
We have had internal discussions about where on the spectrum of complexity DALEC lies. We 
have decided that simple models would have only a handful of parameters and few state 
variables. DALEC has 17 parameters and 6 state variables, so it just qualifies as intermediate. 
We agree that this is partially a subjective categorisation (now in S2.2.2; L157). We also 
changed wording in L110, L447, L474, and L478 to keep consistency across the full text. 
 
L171: MODIS LAI reports an uncertainty estimate. How did you aggregate those 
uncertainties when aggregated the observations? This is nontrivial as neither the MODIS 
products or MODIS LAI validation papers report anything about the spatial or temporal 
autocorrelation in the product’s errors. 
 
We have adjusted our text to report on MODIS uncertainties (S2.2.2, L191-193): 
 

“For MODIS LAI we inflate the proportional error further to log(2) based on well 
reported biases in this product for evergreen forests (De Kauwe et al. 2011) and the 
estimated measurement and aggregation uncertainty for boreal forest LAI of 1 m2 m-2 
reported by Goulden et al. (2011).” 

 
We have also adjusted the discussion to note the challenge for scaling these errors (S4.3, L496-
499): 
 

“We also need to understand better the error associated with landscape heterogeneity 
of C stocks and fluxes, to upscale from flux tower observations, or direct measurements 



of LAI, to landscape pixel. This could be achieved by constructing robust observation 
error models (Dietze, 2017) from field to pixel scale, for e.g. GPP, LAI and foliar N.” 

 
L188: Table S2 looks like it just contains a bunch of uniform priors for all other 
parameters. I think that should be stated here so that readers don’t need to find the 
supplement to learn that. It’s perfectly fair, however, to make readers go to the 
supplement to see the exact numerical values of the priors. 
 
We now include a note (S2.2.1, L143):  
 

“(Table S2; most priors are uniform with broad ranges)” 
 

Moreover, we corrected a mistake with C pools units in Table S2. We replaced g C m-2 yr with 
g C m-2. 
 
L194: This sentence states that MODIS doesn’t report an uncertainty estimate, but that’s 
not accurate. 
 
The cited statement was removed and we have adjusted (see above) our text to report on 
MODIS uncertainties (S2.2.2, L191-193): 
 

“For MODIS LAI we inflate the proportional error further to log(2) based on well 
reported biases in this product for evergreen forests (De Kauwe et al. 2011) and the 
estimated measurement and aggregation uncertainty for boreal forest LAI of 1 m2 m-2 
reported by Goulden et al. (2011).” 

 
L206: I’m concerned about the way the statistics are being reported here. For example, 
the RMSE of a model is traditionally based on the model error (difference between the 
model and the observations). Here, the authors are defining the model’s RMSE as the 
RMSE after applying both a multiplicative and additive bias correction (i.e. the 
predicted/observed regression). Similarly, the R2 isn’t the variance explained by the 
model, but the variance jointly explained by the model and a linear bias correction to that 
model. This results in a very optimistic view of the model’s actual performance. 
 
We have calculated RMSE following the traditional approach, and we have adjusted the text 
to clarify this (S2.3, L207-209): 
 

“To assess the degree of statistical agreement we calculated linear goodness-of-fit 
(slope, intercept, R2) between CARDAMOM and the two independent datasets and 
determined RMSE and bias from direct comparison on model-data residuals.” 

 
Following the same logic, we have also clarified this in S2.3, L221-223: 
 

“We performed a point-to-grid cell comparison to assess the degree of agreement 
between each flux magnitude and seasonality calculating the statistics of linear fit 
(slope, intercept, R2) per flux and site between CARDAMOM and FLUXNET2015 
datasets and determined RMSE and bias from model-data residuals comparison.” 
 

L251: Just want to continue to express my skepticism about some of these pool and flux 
estimates. For example, in my own experiences in Alaska, the boreal forest has WAY 



more than 160% more structural tissue than the tundra. There needs to be some 
independent plot-scale validation of this. 
 
Independent data from Toolik Lake (tundra) and Boreas (boreal) sites shows the general 
validity of the CARDAMOM outputs at these intensively studied ecological field sites.  
 
As we presented earlier on, we included the following text in S4.1, L421-430: 
 

“For a further independent evaluation of CARDAMOM outputs, we compare the tundra 
and boreal estimates to plot scale flux and stock information. For tundra, Street et al. 
(2012) calculate growing season GPP estimates of 263-380 g C m-2 for Empetrum 
nigrum communities, and 295-386 g C m-2 for Betula nana communities, which is 
consistent with the ranges in Figure 1 for tundra. Biomass stocks for Arctic tundra 
recorded in the Arctic LTER at Toolik Lake range from 105-1160 g C m-2 (Hobbie and 
Kling, 2014), which are consistent with the estimates from CARDAMOM, albeit at the 
lower end of the model estimates. For boreal forests, Goulden et al. (2011) report annual 
GPP estimates across a chronosequence of stands, and thus a variation across canopy 
densities, which varied from 450-720 g C m-2 yr-1. These data are consistent with the 
span of GPP in CARDAMOM (Figure 1), again best matching the lower end of the 
model estimates. For the same study, the vegetation C stock estimates varied from 100-
5000 g C m-2, consistent with CARDAMOM, and with measurements of 10 to 40-year 
old boreal stands best matching the CARDAMOM median estimate of ~1500 g C m-2”. 

 
L258: Likewise, this stem turnover time seems much too fast and needs independent 
validation. I understand that grid cell to plot- or plant-scale validation isn’t perfect, but 
it’s better to report the performance explicitly, and then cushion it based on possible scale 
mismatch, rather than to ignore whether these estimates are consistent with prior 
research. 
 
Based on comparison to Carvalhais et al. (2014) TT estimates and to the GPP and Cveg estimates 
reported above, our TT estimates are consistent with independent calculations and their 
component parts. We understand that TT seem short compared to concepts of stand age. 
However, litterfall (plant mortality) occurs throughout succession, from all live pools, which 
means that C turns over faster than age suggests.  
 
L294: typo on “uncertainties” 
 
Corrected. 
 
L313: It would be good to have some sort of quantification of spatial coherence beyond 
RMSE & R2 (which are nonspatial). Look to the GIS and remote sensing literature for 
examples of what sort of statistics are available to do this. 
 
There are a number of potential statistics to use. We suggest that our choice of statistics is 
familiar to biogeochemists and earth system scientists.  Coupled with direct mapping of ratios 
and confidence intervals for visual assessment, we suggest our analysis provides readers with 
the relevant information on spatial coherence. Adding further statistics is likely to provide only 
marginal gains, but also increase the intricacy of an already complex paper. 
 



L328: Don’t introduce new Methods in the Results. Please document what this analysis is 
and why you are doing it earlier in the paper. 
 
We agree the reviewer 2 is correct and we have adjusted the text as requested, moving material 
into the last part of the Methods (S2.4, L235-239): 
 

“To understand the sources of errors in TTveg calculations, we used CARDAMOM to 
calculate two hypothetical TTveg (i.e. EXPERIMENT A TTveg = ISI-MIP2a Cveg / 
CARDAMOM NPP and EXPERIMENT B TTveg = CARDAMOM Cveg / ISI-MIP2a 
NPP) and then assessed the largest difference with CARDAMOM’s CONTROL TTveg. 
We estimated the hypothetical TTveg for each pixel in each model, and derived a pixel-
wise measure of the contribution of biases in NPP and Cveg to biases in TTveg by 
overlapping their distribution functions.” 

 
L378: Consistent with my previous concerns, DALEC appears to be running to fast. That 
said, this is still a comparison to other models, not to data. 
 
We agree that biases may exist in the CARDAMOM TT estimate, but see above about 
difference between stand age and TT (L258 comment). Also, note that we are exploring where 
ISI-MIP2a models lie outside the analysis confidence intervals of CARDAMOM for TT. 
 
L391: Here you say you had a ‘strong prior on photosynthesis’ but as far as I can tell the 
photosynthetic parameters were fixed at defaults, not assigned priors. According to Eqn 
2, the only 2 parameters assigned non-uniform priors were canopy efficiency (which in 
Tables 2 and S2 is labeled as a phenology parameter) and autotrophic respiration 
 
As noted before, the canopy efficiency is the calibrated parameter in CARDAMOM for the 
photosynthesis model ACM; we apologise for confusion in not making this clear before. Now 
this point is clarified in text (S2.2.2, L143-145): 
 

“DALEC2 simulates canopy-level GPP via the Aggregated Canopy Model (ACM; 
Williams et al., 1997) and the most sensitive ACM parameter, related to canopy 
photosynthetic efficiency, is included in the CARDAMOM calibration.” 

 
L397: If you’ve demonstrated a bias in your photosynthetic model, I’m not sure I agree 
that this could be resolved with more precise data if you’re not updating the parameters 
in the photosynthetic submodel 
 
Again, we have now clarified that a parameter in the photosynthesis model (canopy efficiency 
in ACM) is being updated by CARDAMOM. 
 
L427: I fundamentally disagree that models should be benchmarked against highly-
derived, model-based data products. But this isn’t the central point of the paper and thus 
I won’t hold up this paper over that disagreement. 
 
Every data product used here is in some way model-derived – LAI from MODIS requires a 
model, biomass from radar and landcover maps also, SOC data from interpolation and machine 
learning approaches, even in-situ data such as GPP and Reco are separated from NEE using a 
wide range of partitioning algorithms.   
 



L459: While it’s true that brute-force MCMC is not feasible for complex models, but 
there are other options available that do work with larger models, such emulators (Fer et 
al 2018 Biogeoscience) and ensemble or particle filters. 
 
We agree that there are a range of alternative approaches beyond MCMC and decided to 
include a sentence in Discussion including reviewer 2’s suggestion (S4.3; L476-477): 

 
“Other viable options include using emulators (Fer et al., 2018) and particle filters 
(Arulampalam et al., 2002), but MCMC methods provide the most detailed description 
of error distributions.” 
 

We also re-arranged the following sentences and merged paragraphs to improve clarity (S4.3; 
L477-486):   
 

 “There remains a strong argument to utilize intermediate complexity models like 
DALEC2 to evaluate the minimum level of detail required to represent ecosystem 
processes consistent with local observations, and to allow testing of alternate model 
structures. And, assimilating further data products, for instance patterns in soil 
hydrology and snow states across the pan-Arctic from earth observation, could 
provide useful information on spatio-temporal controls on soil activity and microbial 
metabolism to constrain below ground processes. This information would need to be 
tied to process level information on SOM turnover generated from experimental 
studies, and included in updated versions of DALEC. Thus, more field observations 
are crucial across the pan-Arctic, specifically on decomposition and TT of SOC (He 
et al., 2016) and respiratory processes such as partitioning of Reco into Ra and Rh 
(Hobbie et al., 2000; McGuire et al., 2000), across the growing season and also during 
wintertime (Commane et al., 2017; Zona et al., 2016).” 

 
L477: For the record, if you didn’t fit every grid cell independently then you wouldn’t 
need to upscale/interpolate field observations. 
 
Our point is that critical ecological processes remain poorly understood, and so further field 
observations are required to constrain these processes. Also, if each pixel had not been treated 
independently, we would have then relied on PFTs with all their problems (clearly pointed at 
Introduction and Discussion sections), and which is basically the opposite to what 
CARDAMOM framework is about.   
 
L495: Where are the DALEC2 and CARDAMOM code repositories? 
 
Following up on reviewer 2 initial concern, we have submitted the code for DALEC2 on 
Edinburgh DataShare. We are working to release a community version of CARDAMOM.  
 
We have adjusted the text (L517-520): 
 

“Data and software availability 
 
CARDAMOM output used in this study is available from Exbrayat and Williams 
(2018) from the University of Edinburgh’s DataShare service at 
https://doi.org/10.7488/ds/2334. The DALEC2 code is also available on Edinburgh 



DataShare at https://doi.org/10.7488/ds/2504. Contact MW for access to the 
CARDAMOM software.” 

 
Table 2: I find it interesting that, given the papers focus on turnover times, turnover 
parameters are the least constrained part of the model. 
 
Yes, this is the case, and reinforces the focus on TT in this analysis – we will only improve 
forecasts of high latitude C dynamics from better understanding TT. 
 
---------------------------------------------------------------------------------------------------------------- 
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Abstract. There is a significant knowledge gap in the current state of the terrestrial carbon (C) budget. Recent studies have 15 
highlighted poor understanding particularly of C pool transit times, and whether productivity or biomass dominate these biases. 

The Arctic, accounting for approximately 50% of the global soil organic C stocks, has an important role in the global C cycle.  

Here, we use the CARDAMOM data-assimilation system to produce pan-Arctic terrestrial C cycle analyses for 2000-15. This 

approach avoids using traditional plant functional type or steady-state assumptions. We integrate a range of data (soil organic 

C, leaf area index, biomass, and climate) to determine the most likely state of the high latitude C cycle at a 1° x 1° resolution, 20 
and also to provide general guidance about the controlling biases in transit times. On average, CARDAMOM estimates 

regional mean rates of photosynthesis of 565 g C m-2 yr-1 (90% confidence interval between the 5th and 95th percentiles: 428, 

741), autotrophic respiration of 270 g C m-2 yr-1 (182, 397)  and heterotrophic respiration of 219 g C m-2 yr-1 (31, 1458), 

suggesting a pan-Arctic sink of -67 (-287, 1160) g C m-2 yr-1, weaker in tundra and stronger in taiga. However, our confidence 

intervals remain large (and so the region could be a source of C), reflecting uncertainty assigned to the regional data products. 25 
We show a clear spatial and temporal agreement between CARDAMOM analyses and different sources of assimilated and 

independent data at both pan-Arctic and local scales, but also identify consistent biases between CARDAMOM and validation 

data. The assimilation process requires clearer error quantification on LAI and biomass products to resolve these biases. 

Mapping of vegetation C stocks and change over time, and soil C ages linked to soil C stocks is required for better analytical 

constraint. Comparing CARDAMOM analyses to global vegetation models (GVM) for the same period, we conclude that 30 
transit times of vegetation C are inconsistently simulated in GVMs due to a combination of uncertainties from productivity 

and biomass calculations. Our findings highlight that GVMs need to focus on constraining both current vegetation C stocks 

and net primary production, to improve process-based understanding of C cycle dynamics in the Arctic.   
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1 Introduction 

Arctic ecosystems play a significant role in the global carbon (C) cycle (Hobbie et al., 2000; McGuire et al., 2012). 35 
Slow organic matter decomposition rates due to cold and poorly drained soils in combination with cryogenic soil processes 

have led to an accumulation of large stocks of C stored in the soils, much of which is currently held in permafrost (Tarnocai 

et al., 2009). The permafrost region soil organic C (SOC) stock is more than twice the size of the atmospheric C stock; and 

accounts for approximately half of the global SOC stock (Hugelius et al., 2014; Jackson et al., 2017). High latitude ecosystems 

are experiencing a temperature increase that is nearly twice the global average (AMAP, 2017). The expected future increase 40 
of temperature (IPCC, 2013), and precipitation (Bintanja and Andry, 2017)(Bintanja and Andry, 2017), and growing season 

length (Aurela et al., 2004; Groendahl et al., 2007) will likely have consequences for the Arctic net C balance. As high latitudes 

warm, C cycle dynamics may lead to an increase of carbon dioxide (CO2) emissions through ecosystem respiration (Reco) 

driven by, for example, larger heterotrophic respiration (Commane et al., 2017; Schuur et al., 2015; Zona et al., 2016), drought 

stress on plant productivity (Goetz et al., 2005) and episodic disturbances (Lund et al., 2017; Mack et al., 2011). 45 
HoweverAlternatively, temperature-induced vegetation changes (Forkel et al., 2016; Graven et al., 2013; Lucht et al., 2002) 

may counter-balance those effects by photosynthetic enhancementthe increase of gross primary productivity (GPP) (Forkel et 

al., 2016; Graven et al., 2013; Lucht et al., 2002). Two examples are the increase of gross primary productivity (GPP)  due to 

extended growing seasons (Zeng et al., 2011), nutrient availability and CO2 fertilization (Zhuang et al., 2006)  and the shifts 

in vegetation dynamics cover such as greening (Myneni et al., 1997; Zhu et al., 2016) and shrub expansion (Myers-Smith et 50 
al., 2011). Consequently, phenology shiftsecosystem responses may feedback on climate with unclear magnitude and sign 

(Anav et al., 2013; Murray-Tortarolo et al., 2013; Peñuelas et al., 2009). As a result of the significant changes that are already 

affecting the structure and function of Arctic ecosystems, it is critical to understand and quantify the historical C dynamics of 

the terrestrial tundra and taiga, and their responses sensitivity to climate change (McGuire et al., 2012). 

Although the land surface is estimated to offset ~30% of anthropogenic emissions of CO2 (Canadell et al., 2007; Le 55 
Quéré et al., 2018), the terrestrial C cycle is currently the least constrained component of the global C budget and large 

uncertainties remain (Bloom et al., 2016). Despite the importance of Arctic tundra and taiga biomes in the global land C cycle, 

our understanding of interactions between the allocation of C from net primary productivity (NPP), C stocks (Cstock), and transit 

times (TT), is deficient (Carvalhais et al., 2014; Friend et al., 2014; Hobbie et al., 2000). The TT is a concept that represents 

the time it takes for a particle of C to persist in a specific C stock and it is defined by the C stock and its outgoing flux, here 60 
addressed as TT = C stock / NPP at steady state. According to a recent study by Sierra et al. (2017), TT is an important diagnostic 

metric of the C cycle and a concept that is independent of model internal structure and theoretical assumptions for its 

calculation. Terms such as residence time (Bloom et al., 2016; Friend et al., 2014), turnover time (Carvalhais et al., 2016), and 

turnover rate (Thurner et al., 2016; TT = 1/turnover rate) are used in the literature to represent the concept of TT (Sierra et al., 

2017). Studies have focused more on the spatial variability with climate of ecosystem productivity rather than C transit times 65 
(Friend et al., 2014; Nishina et al., 2015; Thurner et al., 2016; Thurner et al., 2017). Friend et al. (2014) detailed that transit 

time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. They found a 30% larger 

variation in modelled vegetation C change than response of NPP. Nishina et al. (2015) also suggested that long term C 

dynamics within ecosystems (vegetation turnover and soil decomposition) are more critical factors than photosynthetic 

processes (i.e. GPP or NPP). The respective contribution of bias from biomass and NPP to biases in transit times remains 70 
unquantified. Without an appropriate understanding of current state and dynamics of the C cycle, its feedbacks to climate 

change remains highly uncertain (Hobbie et al., 2000; Koven et al., 2015). 

There are currently efforts to incorporate both in-situ and satellite-based datasets to assess C cycle retrievals and to 

reduce their uncertainties. At local scale, the net ecosystem exchange (NEE) of CO2 between the land surface and the 

atmosphere is usually measured using eddy covariance (EC) techniques (Baldocchi, 2003). International efforts have led to 75 
the creation of global networks such as FLUXNET (http://fluxnet.fluxdata.org/) and ICOS (https://www.icos-ri.eu/), to 
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harmonise data and support the reduction of uncertainties around the C cycle and its driving mechanisms. However, upscaling 

field observations to estimate regional to global C budget presents important challenges due to insufficient spatial coverage of 

measurements and heterogeneous landscape mosaics (McGuire et al., 2012). Furthermore, harsh environmental conditions in 

high latitude ecosystems and their remoteness complicates the collection of high-quality data (Lafleur et al., 2012). Given the 80 
lack of continuous, spatially distributed in situ observations of NEE in the Arctic, it remains a challenging task to calculate 

with certainty whether or not the Arctic is a net C sink or a net C source, and how the net C balance will evolve in the future 

(Fisher et al., 2014). Over the past decade, regional to global products generated from in situ networks and/or satellite 

observations have improved our understanding of the terrestrial C dynamics. These range from machine-learning based 

upscaling of FLUXNET data (Jung et al., 2017), remotely-sensed biomass products (Carvalhais et al., 2014; Thurner et al., 85 
2014) and the creation of a global soil database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). However, these products tend to 

lack clear error estimates. Due to a reliance on interpolation and upscaling with other spatial data, it is challenging to evaluate 

these products for inherent biases.  

Global Vegetation Models (GVM) have been developed to determine global terrestrial C cycling,es and through 

representing vegetation and ecosystem soil processes, including  the structuralvegetation dynamics (i.e. growth, competition, 90 
and turnover) and biogeochemical (i.e. water, carbon, and nutrients cycling) responses to climate variability (Koven et al., 

2011; Sitch et al., 2003; Woodward et al., 1995). The advantage of using process-based models to characterise C dynamics is 

that processes which drive ecosystem-atmosphere interactions can be simulated and reconstructed when data is scarce. 

However, C cycle modelling in GVMs typically relies on pre-arranged parameters retrieved from literature, prescribed plant-

functional-type (PFT) and a spin-up processes until ensuringthe C stocks (biomass and SOC) reach their steady state. Further, 95 
inherent differences of model structure contribute more significantly to GVM uncertainties (Exbrayat et al., 2018; Nishina et 

al., 2014), than from do differences in climate projections (Ahlström et al., 2012). Many model inter-comparison projects have 

demonstrated a lack of coherence in future projections of terrestrial C cycling (Ahlström et al., 2012; Friedlingstein et al., 

2014). Recent studies have used simulations from the first phase of the Inter-Sectoral Impact Model Inter-comparison Project 

(ISI-MIP) (Warszawski et al., 2014) to evaluate the importance of key elements regulating vegetation C dynamics, but also 100 
the estimated magnitude of their associated uncertainties (Exbrayat et al., 2018; Friend et al., 2014; Nishina et al., 2014; 

Nishina et al., 2015; Thurner et al., 2017). An important insight is that TTs in GVMs are a key uncertain feature of the global 

C cycle simulation. Further, GVMs tend not to report uncertainties in their estimates of stocks and fluxes, which weakens their 

analytical value. 

An approach tTo address these issues is towe integrate models and data more formally. We. We usapplye data 105 
assimilation (DA), defined as a Bayesian calibration process for a model of a dynamic system.  DA, through probabilistic 

parameterisation, supports robust model estimates of C stocks and fluxes consistent with multiple observations and their errors 

(Fox et al., 2009; Luo et al., 2009; Williams et al., 2005). By following Bayesian methods, the uncertainty on observations 

weights the degree of data constraint, and the outcome is a set of acceptable parameterisations for a given model structure 

linked to likelihoods. Data assimilation quantifies how model parameters can be calibrated probabilistically using Bayesian 110 
methods to estimate C stocks and fluxes consistent with multiple observations and their errors (Fox et al., 2009; Luo et al., 

2009; Williams et al., 2005). By following Bayesian methods, the uncertainty on observations weights the degree of data 

constraint, and the outcome is a set of acceptable parameterisations linked to likelihoods. Overall, this approach determines 

whether model structure, observations and forcing are (in)consistent, and thus assesses validity of model structure. By 

assimilating co-located climatic, ecological and biogeochemical data from remote sensing observations at a specific grid scale 115 
across landscapes and regions we DA can map parameter estimation and uncertainties.  

Here, we use the CARbon DAta MOdel framework (CARDAMOM) (Bloom et al., 2016; Bloom and Williams, 2015; 

Smallman et al., 2017) to retrieve analyse the pan-Arctic terrestrial carbon cycle at 1º resolution for the 2000-2015 period in 

agreement, We assimilate with gridded observations of LAI, biomass and SOC stocks at these spatio-temporal scales into an 
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intermediate complexity C model (DALEC2, which is less complex than GVMs). We compare analyses of C dynamics of 120 
Arctic tundra and taiga against (a) global products of GPP (Jung et al., 2017) and heterotrophic respiration (Rh) (Hashimoto et 

al., 2015); (b) NEE, GPP and Reco field observations from 8 sub- and high- Arctichigh latitude sites included in the 

FLUXNET2015 dataset, and (c) 6 extensively used GVMs from the ISI-MIP2a comparison project (Akihiko et al., 2017). Our 

objectives are to (1) present and evaluate the analyses and uncertainties of the current state of the pan-Arctic terrestrial C 

cycling using a model-data fusion DA system, (2) quantify the degree of agreement between the CARDAMOM product with 125 
local to global scale sources of available data to assess analytical bias;, and (3) use CARDAMOM as a benchmarking tool for 

the ISI-MIP2a models, to provide general guidance towards GVM improvements in transit time simulation, taking the 

advantage that this assimilation system produces error estimates, and is constrained by observations. Finally, we suggest future 

work to be done in the context of advancing pan-Arctic C cycleing modelling. 

2 Data and methods 130 

2.1 Pan-Arctic region 

The spatial domain we considered in this study (Figure S1) corresponds to the extent of the Northern Circumpolar 

Soil Carbon Database version 2 (NCSCDv2) dataset (Hugelius et al., 2013a; Hugelius et al., 2013b), bounded by latitudes 

42°N - 80°N and longitudes 180°W - 180°E, and at a spatial resolution of 1º x 1º. This area of study totals 18.0 million km2 of 

land area. We used the GlobCover vegetation map product developed by the European Space Agency (Bontemps et al., 2011) 135 
to separate regions dominated by non-forested (tundra) and forested (taiga) land cover types. A complete description of the 

classes included in each domain can be found in Figure S1 and caption. The differentiation between tundra and taiga grid cells 

is in agreement with the tree line delimitated by Brown et al. (1997) together with the tundra domain defined from the Regional 

Carbon Cycle Assessment and Processes Activity reported by McGuire et al. (2012). The extensive grasslands without 

presence of trees in some areas such as the in South Russia, Mongolia and Kazakhstan were neglected to focus on higher 140 
latitudes. This classification of tundra and taiga totals 8.1 and 9.9 million km2 of land area, respectively. 

2.2 The CARbon DAta MOdel framework 

Here we use the CARbon DAta MOdel framework (CARDAMOM; Bloom et al., 2016) (list of acronyms can be 

found in Table S1) to retrieve terrestrial C cycle dynamics, including explicit confidence intervals, in the pan-Arctic region. 

CARDAMOM consist of two key components: (1) an ecosystem model, the Data Assimilation Linked Ecosystem Carbon 145 
version 2 (DALEC2) (Bloom and Williams, 2015; Williams et al., 2005), constrained by observations and (2) a data-

assimilation system (Bloom et al., 2016). This framework reconciles observational datasets as part of a representation of the 

terrestrial C cycle in agreement with ecological theory. 

2.2.1 DALEC2 

The DALEC2 ecosytemecosystem model simulates monthly land-atmosphere C fluxes and the evolution of six C 150 
stocks (foliage, labile, wood, roots, soil organic matter (SOM) and surface litter) and corresponding fluxes. DALEC2 includes 

17 parameters controlling the processes of plant phenology, photosynthesis (GPP), allocation of primary production to 

respiration and vegetation carbon stocks, plant and organic matter turnover rates, all established within specific prior ranges 

based on ecologically viable limits (Table S2; most priors are uniform with broad ranges). DALEC2 simulates canopy-level 

GPP via the Aggregated Canopy Model (ACM; Williams et al., 1997)) and the most sensitive ACM parameter, related to 155 
canopy photosynthetic efficiency, is included in the CARDAMOM calibration. DALEC2 simulates canopy-level GPP via the 

Aggregated Canopy Model (ACM; Williams et al., 1997) and its allocation to the four plant stocks (foliage, labile, wood and 

roots) and autotrophic respiration (Ra) as time-invariant fractions of GPP. DALEC  allocates net primary production to the 
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four plant stocks (foliage, labile, wood and roots) and autotrophic respiration (Ra) as time-invariant fractions of GPP. Plant C 

decays into litter and soil stocks where microbial decomposition generates heterotrophic respiration (Rh). Turnover of litter 160 
and soil stocks is simulated using temperature dependent first-order kinetics. For practical purposes we aggregated the different 

C stocks into photosynthetic (Cphoto; leaf and labile), vegetation (Cveg; leaf, labile, wood and roots), soil (Cdom; litter and SOM) 

and total (Ctot = Cphoto + Cveg + Cdom) C stocks. The Net Ecosystem Exchange (NEE) is calculated as the difference between 

GPP and the sum of the respiration fluxes (Reco = Ra + Rh), while Net Primary Productivity (NPP) is the difference between 

GPP and Ra. Only NEE follows the standard micrometeorological sign convection presenting the uptake of C as negative 165 
(sink), and the release of C as positive (source); both GPP and Reco are reported as positive fluxes. In this study, we addressed 

C turnover rates and decomposition processes as their inverse rates, this is the C transit time (TTphoto, TTveg and TTdom), 

represented as the ratio between the mean C stock and the mean C input into that stock during the simulation period.  

2.2.2 Data-assimilation system 

The intermediate complexity of the DALEC2 model compared to typical GVMs facilitates computationally intense 170 
Monte-Carlo (MC) data-assimilation to optimize the initial stock conditions and the 17 process parameters that shape C 

dynamics. CARDAMOM is forced with climate data from the European Centre for Medium-Range Weather Forecast 

Reanalysis interim (ERA-interim) dataset (Dee et al., 2011) monthly for the 2000-2015 period. A Bayesian Metropolis-

Hastings Markov chain Monte CarloMC (MHMCMC) algorithm is used to retrieve the posterior distributions of the process 

parameters according to observational constraints and Ecological and Dynamic constraints (EDCs; Bloom and Williams, 175 
2015). EDCs ensure that DALEC2 simulations of the terrestrial carbon cycle are realistic and ecologically viable and help to 

reduce the uncertainty in the model parameters by rejecting estimations that do not satisfy different conditions applied to C 

allocation and turnover rates as well as trajectories of C stocks.  

Observational constraints include monthly time series of Leaf Area Index (LAI) from the MOD15A2 product (Myneni 

et al., 2002), estimates of vegetation biomass (Carvalhais et al., 2014) and soil organic carbon content (Hugelius et al., 2013a; 180 
Hugelius et., 2013b) (Table S3). We aggregated ~130000 1-km resolution MODIS LAI data monthly within each 1°x 1° pixel. 

We aggregated biomass data at 0.5° resolution from Carvalhais et al. (2014) to 1° resolution. These areBiomass based was on 

remotely-sensed forest biomass (Thurner et al., 2014) and upscaled GPP based on data driven estimates (Jung et al., 2011) 

covering the pan-Arctic domain, was  aggregated to 1° resolution (Carvalhais et al., 2014). We used the NCSCD spatial explicit 

product (Hugelius et al., 2013a; Hugelius et al., 2013b) which was generated from 1778 soil sample locations interpolated to 185 
a 1º grid. There is significant uncertainty for these data, due to the models involved in generating LAI and biomass, and the 

interpolation process for soils. Hence we apply broad confidence intervals commensurate with this uncertainty (Equation 3).   

We apply the setup described above to 3304 1º x 1º pixels (1686 in tundra; 1618 in taiga) using a monthly time step. 

Each pixel is treated independently without assuming a prior land cover or plant functional type and we assume no spatial 

correlation between uncertainties in all pixels. In each 1º x 1º pixel, we applied the MHMCMC algorithm to determine the 190 
probability distribution of the optimal parameter set and initial conditions (𝑥";	Table S2) given observational constraints (𝑂"; 

LAI, SOC and biomass, Table S3) using the same Bayesian inference approach described in Bloom et al. (2016): 

 

𝑝(𝑥" |𝑂") ∝ 𝑝(𝑥") 𝑝(𝑂" |𝑥")          (1) 

First, in the expression 1, 𝑝 (𝑥") represents the prior probability distribution of each DALEC2 parameter (𝑥") and is 195 
expressed as: 

𝑝(𝑥") = 𝑝()*(𝑥")  𝑒
./.12345(6789:);345(<.=)345	(>.?) @

?

	𝑒
./.1A

3452BC66@;345(>D.=)
345	(>.?) E

?

     (2) 
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where	𝑝()*(𝑥") is the prior parameter probability according to the EDCs included in Table S2 and described in Bloom and 

Williams (2015). In addition, prior values for two parameters and their uncertainties (canopy efficiency [Ceff] and fraction of 

GPP respired [fauto]) are imposed with a log-normal distribution following Bloom et al. (2016) to be consistent with the global 200 
GPP range estimated in Beer et al. (2010) and fauto ranges specified by DeLucia et al. (2007) respectively.  

Second,  𝑝(O|𝑥") from expression 1 represents the likelihood of	𝑥" with respect to 𝑂", and it is calculated based on the 

ability of DALEC2 to reproduce (1) biomass (Carvalhais et al., 2014), (2) SOC (Hugelius et al., 2013a, Hugelius et al., 2013b), 

and (3) MODIS LAI (Myneni et al., 2002). “The reported uncertainty on biomass data from Thurner et al. (2014) was +/- 37% 

at pixel scale. Because of undetermined errors related to tree cover thresholds used in the upscaling, , and to reflect unknown 205 
model structural error, we slightly inflate the error estimate and use a log-transform(1.5) of ´/÷1.5   (i.e. ´/÷1.5 spans 67% of 

the expected error). We use the same proportional error for SOC. For MODIS LAI we inflate the proportional error further to 

log(2) based on well reported biases in this product for evergreen forests (De Kauwe et al., 2011) (de Kauwe et al. 2011) and 

the estimated measurement and aggregation uncertainty for boreal forest LAI of 1 m2 m-2 reported by Goulden et al. (2011). 

The uncertainty assumptions in expression 3 are chosen in lack of better knowledge about the combined uncertainties arising 210 
from model representation errors and observation errors:.Because MODIS LAI, SOC and biomass data lack specific 

uncertainty estimates, we used the same broad uncertainty factors as per Bloom et al. 2016: log-transformed (1.5) for SOC and 

biomass (i.e. ´/÷ 1.5 spans 67% of the expected error), both assumed to be representative of initial conditions, and log(2) for 

LAI: 

 215 

𝑝(𝑂" |𝑥") = 𝑒
./.1A

345FGHI:J7KKL;3452MHI:J7KK,<@
345	(>.=) E

?

	𝑒
./.1O

345FGPGBL;345FMPGB,<L
345	(>.=) Q

?

	𝑒
./.1O

345FGRST,9L;345FMRST,9L
345	(?) Q

?

 (3) 

 

For each 1º x 1º pixel we run three MHMCMC chains with 107 accepted simulations each until convergence of at 

least two chains. We use 500 parameter sets sampled from the second half of each chain to describe the posterior distribution 

of parameter sets. We produce confidence intervals of terrestrial C fluxes and stocks from the selected parameter sets. In the 220 
following we report highest confidence results (median; P50) and the uncertainty represented by the 90% confidence interval 

(5th percentile to 95th percentile, FUV1U/1L). We calculate the transit time for C pools using the approach for non-steady state pools 

described in Bloom et al. (2016), supplementary information S3). 

2.3 Model evaluation against independent in situ and pan-Arctic datasets 

At the pan-Arctic scale, we compared CARDAMOM GPP with FLUXCOM dataset from Jung et al. (2017). We also 225 
compared our CARDAMOM Rh with the global spatiotemporal distribution of soil respiration from Hashimoto et al. (2015) 

calculated by a climate-driven empirical model. To assess the degree of statistical agreement we calculated linear goodness-

of-fit (slope, intercept, R2) between CARDAMOM and the two independent datasets and determined RMSE and bias from 

direct comparison on model-data residuals. To assess the degree of statistical agreement we calculated linear goodness-of-fit 

(slope, intercept, R2, RMSE, and bias) between CARDAMOM and the two independent datasets. The mapping includes 230 
stipples representing locations where the independent datasets are within CARDAMOM’s 90% confidence interval. 

At a local scale, we compare CARDAMOM NEE and its partitioned components GPP and Reco estimates against 

monthly aggregated values from the FLUXNET2015 sites. We selected 8 sites (Belelli Marchesini et al., 2007; Bond-Lamberty 

et al., 2004; Goulden et al., 1996; Ikawa et al., 2015; Kutzbach et al., 2007; López-Blanco et al., 2017; Lund et al., 2012; Sari 

et al., 2017) located across sub- and high-Arctic latitudes, covering locations with different climatic conditions and dominating 235 
ecotypes (Table S4). For this evaluation, we compared the same years for both observations and CARDAMOM, and we 

selected data using day-time method (Lasslop et al., 2010) due to the absence of true night-time period during Arctic summers 

in some locations. Additionally, we selected a variable u* threshold to identify insufficient turbulence wind conditions from 
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year to year similar to López-Blanco et al. (2017). In this data-model comparison we included the median (P50) ± the 90% 

confidence interval (percentile 5th to 95th; FUV1U/1L) including both random and u* filtering uncertainty following the method 240 
described in Papale et al. (2006). Some of the sites lack wintertime measurements and we filtered out data for months with 

less than 10% observations. We performed a point-to-grid cell comparison to assess the degree of agreement between each 

flux magnitude and seasonality calculating the statistics of linear fit (slope, intercept, R2, RMSE, and bias) per flux and site 

between CARDAMOM and FLUXNET2015 datasets and determined RMSE and bias from model-data residuals comparison..  

2.4 Benchmark of Global Vegetation Models from ISI-MIP2a 245 

We compared CARDAMOM analyses of pan-Arctic net primary production (NPP), vegetation biomass carbon stocks 

(Cveg) and vegetation transit times (TTveg) against six participating GVMs in the ISI-MIP2a comparison project (Akihiko et 

al., 2017). In this study we have considered DLEM (Tian et al., 2015), LPJmL (Schaphoff et al., 2013; Sitch et al., 2003), LPJ-

GUESS (Smith et al., 2014), ORCHIDEE (Guimberteau et al., 2018), VEGAS (Zeng et al., 2005), and VISIT (Ito and Inatomi, 

2012). The specific properties and degree of complexity of each ISI-MIP2a model are summarized in Table S5. The 250 
comparisons have been performed under the same spatial resolution as the CARDAMOM spatial resolution (1° x 1°) for the 

2000-2010 period. Also, the chosen GVMs from the ISI-MIP2a phase have their forcing based on ERA-Interim climate data, 

similar to the forcing used in CARDAMOM. We estimated the degree of agreement using the statistics of linear fit (slope, 

intercept, R2, RMSE, and bias) per variable and model between CARDAMOM and GVMs, but also their spatial variability 

including stipples where the GVM datasets are within the CARDAMOM’s 90% confidence interval. 255 
To understand the sources of errors in TTveg calculations, wWe used CARDAMOM to calculate two hypothetical 

TTveg (i.e. EXPERIMENT A TTveg = ISI-MIP2a Cveg / CARDAMOM NPP and EXPERIMENT B TTveg = CARDAMOM Cveg 

/ ISI-MIP2a NPP) and then assessed the largest difference with CARDAMOM’s CONTROL TTveg. We estimated the 

hypothetical TTveg for each pixel in each model, and derived a pixel-wise measure of the contribution of biases in NPP and 

Cveg to biases in TTveg by overlapping their distribution functions. 260 

3 Results  

3.1 Pan-Arctic retrievals of C cycle  

Overall, we found that the pan-Arctic region (Figure 1 and Table 1) acted as a small sink of C (area-weighted P50) 

over the 2000-2015 period with an average of -67.4	FWW1V.V.XYZ.[L g C m-2 yr-1, P50	FUV1U/1L, although the 90% confidence intervals 

remain large (and so the region could be a source of C). Tundra regions NEE was estimated at -14.9	FWWWZ.W.WZ\.]L g C m-2 yr-1,  a 265 

weaker sink compared to taiga regions, -110.4	FWWV1.Y.\Y[.[L g C m-2 yr-1. The photosynthetic inputs exceeded the respiratory outputs 

(GPP > Reco; Table 1), although the much larger uncertainties stemming from Reco, and more specifically from Rh, compared 

with GPP, complicate the net C sink/source estimate beyond the median’s average ensembles. In the pan-Arctic region 

approximately half of GPP is autotrophically respired resulting in an NPP of 290.3	F]W/.[WVZ.]L g C m-2 yr-1. Carbon use efficiency 

(NPP/GPP) averages 0.51F/.11/.]ZL, and marginally varied across tundra 0.51F/.1]/.]ZL and taiga 0.52F/.1Z/.]ZL. Despite these apparent 270 

small variations, tundra photosynthesized and respired (respectively 327.2F]Z\.\X\Z.YL and 310.0FW1\Z.YWX].\ L g C m-2 yr-1) approximately 

half as much as the Taiga region (759.8FVZ[.V1Y].WL and 635.3FXWW]./XY1.\ L g C m-2 yr-1). 

The total size of the pan-Arctic soil C stock (Cdom) averaged 24.4F][.1W/.\L kg C m-2, 16-fold greater than the vegetation 

C stock (Cveg), 1.5F1.Y/.1L kg C m-2. The soil C stock (fresh litter and SOM) is dominated by Csom, accounting for the 99%, which 

also dominates the total terrestrial C stock in the pan-Arctic. Among the living C stocks, 93% of the C (88% in tundra and 275 
90% in taiga) is allocated to the structural stocks (wood and roots; 1.4F1.Z/.]L kg C m-2) compared to 7% (12% in tundra and 10% 
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in taiga) to the photosynthetic stock (leaves and labile; 0.1F/.X/.WL kg C m-2). On average, the total ecosystem C stock is 26.3F1W./WW.YL 

kg C m-2 in the pan-Arctic region, with slightly lower stocks in tundra (24.6F1/.ZW/.YL kg C m-2) than taiga (27.7F1W.XWX.[L kg C m-2). 

In general, the taiga region holds on average ~100 % more photosynthetic tissues, ~160 % more structural tissue and ~9	% 

more soil C stocks, than tundra. In other words, taiga holds ~12 % more total C than tundra. The greater living stock of C in 280 
taiga (2.1F1.W/.YL kg C m-2) than tundra (0.8FZ.Y/.\L kg C m-2) means that the relative size of Ra and Rh in the two regions differs. 

Thus in tundra Ra accounts for 51% of total ecosystem respiration, while in taiga this fraction is 57%. Ra is 4% larger than Rh 

in tundra, but 24% greater in taiga, reflecting the greater rates of C cycling in taiga. Uncertainties in estimates of soil C stock 

are notably higher than for living C stocks, highlighting the lack of observational and mechanistic constraint on heterotrophic 

respiration.  285 
The global mean C transit time is 1.3FX.W/.YL years in leaves and labile plant tissue (TTphoto), 4.5 FW1.[W.[ L	years in stems 

and roots (TTveg), and 120.5FYXX.ZV.Y L	years in litter and SOM (TTdom). The total C transit time (TTtot) (133.1FW/W\.ZWW.1 L	years) is 

clearly dominated by the soil C stock, highlighting the very long periods of times that C persists in Arctic soils. CARDAMOM 

calculated 62% longer TTdom in tundra compared to taiga, likely linked to lower temperatures, but uncertainties are large due 

to the limitations of data constraints.  290 

3.2 Data assimilation and uncertainty reduction  

The CARDAMOM framework generated an analysis broadly consistent with the combination of SOC, biomass and 

LAI in each grid cell (Figure 2), and the errors assigned to these data products. The agreement for the SOC dataset by Hugelius 

et al. (2013a) is a 1:1 relationship (R2 = 1.0; RMSE = 0.95 kg C m-2), reflecting a straightforward model parameterisation. The 

biomass product from Carvalhais et al. (2014), was well correlated (R2 = 0.97; RMSE = 0.46 kg C m-2), but CARDAMOM 295 
was consistently biased ~28% low. MODIS LAI data were also well correlated (R2 = 0.79; RMSE = 0.42 kg C m-2), but ~28% 

higher than CARDAMOM analyses. These biases (Figure 2) likely arise due to a low estimate in the photosynthesis model 

(ACM) used in CARDAMOM which propagates through the C cycle. CARDAMOM balances uncertainty in data products 

and the models (ACM photosynthesis model and DALEC2), to generate a weighted analysis, typical of Bayesian approaches. 

The CARDAMOM analysis 90% confidence interval (CI) includes the 1:1 line for biomass and LAI (Figure 2), indicating that 300 
the likelihoods on C cycle analyses include the expected value of the observations.  

The degree to which posterior distributions were constrained from the prior distributions in each of the 17 model 

parameters and 6 initial stock sizes (Table S2) varied considerably depending on the parameters in question and their related 

processes (Table 2 and Figure S2). The 90% CI posterior range of foliar, wood, labile and SOM C stocks (Cfoliar, Cwood, Clabile 

and Csom) as well as parameters such as allocation to foliage (ffol) and lifespan (L) were considerably reduced (>80% uncertainty 305 
reduction compared to priors) most likely controlled by the information on LAI, biomass and SOC constraints. Contrarily, 

parameters that have not been regulated in any way in the MHMCMC algorithm, i.e. turnover processes such as litter 

mineralization (MRlitter), roots turnover (TORroots), wood turnover (TORwood), decomposition rates (Drate) and initial C stock 

such as litter (Clitter) were found poorly constrained (<20% uncertainty reduction). Overall, the uncertainty reduction classified 

by processes and ranked from most to least constrained estimated a 71% reduction for C stocks, 67% reduction for C allocation, 310 
59% for plant phenology and 31% for C turnover related parameters. Although there are not substantial differences between 

tundra and taiga, Croots was better constrained in tundra regions (42%), while leaf onset day (Bday), leaf fall day (Fday), and leaf 

fall duration (Lf) were better constrained in taiga regions (>18% or more). 

3.3 Independent evaluation: from global to local scale  

We compared our estimates of GPP and Rh with independent datasets to evaluate the model performance (Figure 3). 315 
We found GPP to be well correlated (R2 = 0.81; RMSE = 0.43 kg C m-2), but biased lower (~53%) compared to Jung et al. 
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(2017)’s GPP estimates. There are in general very few pixels where FLUXCOM product falls within CARDAMOM’s 90% 

confidence interval. Additionally, the Rh product from Hashimoto et al. (2015) is less consistent with our estimates (R2 = 0.40; 

RMSE = 0.09 kg C m-2), presenting a tendency towards lower values in tundra pixels and higher values in taiga pixels. The 

spatial variability of Rh is considerably smaller in Hashimoto et al. (2015) compared to our CARDAMOM estimates. Rh falls 320 
within the 90% confidence interval of CARDAMOM in most of the pan-Arctic region due to the fact that the Rh uncertainties 

are significant (Figure 3). This finding confirms the uncetartantiesuncertainties previously noted in modelled respiratory 

processes (Table 1) where the upper P95 in Rh dominated NEE’s uncertainties, but also the soil C stocks and transit times.  

For comparison with direct ground observations from the FLUXNET2015 dataset, we report here monthly aggregated 

P50 ± P05-95 estimates of NEE, GPP and Reco to show timing and magnitudes, but also to diagnose whether CARDAMOM 325 
is in general agremmentagreement with flux tower data. Overall, CARDAMOM performed well in simulating observed NEE 

(R2 = 0.66; RMSE = 0.51 g C m-2 month-1; Bias = 0.16 g C m-2 month-1), GPP (R2 = 0.85; RMSE = 0.89 g C m-2 month-1; Bias 

= 0.5 g C m-2 month-1) and Reco (R2 = 0.82; RMSE = 0.63 g C m-2 month-1; Bias = 0.35 g C m-2 month-1) across 8 sub-Arctic 

and high-Arctic sites from the FLUXNET2015 dataset (Figure 4; Table S6). CARDAMOM NEE is ~25% lower than 

FLUXNET2015, while GPP and Reco are ~30% and ~10% higher, respectively. This mismatch is important in the context of 330 
the FLUXCOM GPP upscaling, 50% higher than CARDAMOM GPP. At some sites such as Hakasia, Samoylov, Poker Flat 

and Manitoba (NEE R2 = 0.73; GPP R2 = 0.92 and Reco R2 = 0.88) CARDAMOM better matches the seasonality and the 

magnitude of the C fluxes than the rest, i.e. Tiksi, Kobbefjord, Zackenberg and UCI-1998 (NEE R2 = 0.58; GPP R2 = 0.67 and 

Reco R2=0.67). In general, CARDAMOM captured the beginning and the end of the growing season well (Figure 4), although 

the assimilation system has some bias due to (1) difference in timing (e.g. earlier shifts of peak of the growing season in 335 
Manitoba GPP and Reco and  earlier end of the growing season in Poker Flat NEE) and (2) differences in flux magnitudes (such 

as in Hakasia GPP and Reco and Kobbefjord NEE).  

3.4 Benchmarking ISI-MIP2a models with CARDAMOM 

We used our highest confidence retrievals of NPP, Cveg and TTveg (i.e. retrievals including assimilated LAI, biomass 

and SOC) to benchmark the performance of the GVMs from the ISI-MIP2a project. In this assessment we compared not only 340 
their spatial variability across the pan-Arctic, tundra and taiga region (Figure 5), but also the degree of agreement between 

their mean model ensemble within the 90% confidence interval of our assimilation framework (Figure 6, Table 3). Overall, 

ISI-MIP2a models are in poor agreement with CARDAMOM across the pan-Arctic. NPP estimates (RMSE = 0.1 kg C m-2 yr-

1; R2= 0.44) are in better agreement than Cveg (RMSE = 1.8 kg C m-2; R2= 0.22) and TTveg (RMSE = 4.1 years; R2= 0.12). 

Moreover, tThe assessed GVMs estimated on average 8% lower NPP, 16% higher Cveg and 22% longer TTveg than 345 
CARDAMOM across the entire pan-Arctic domain (Figure 5 and 6) on average. Thus, at regional aggregation CARDAMOM 

analyses agreed more closely with ISI-MIP2a models than with FLUXCOM (51% difference) and with the Carvalhais et al. 

(2014) biomass data (28% bias)., with very varied spatial patterns.   

The poor spatial agreement regarding TTveg between CARDAMOM and ISI-MIP2a (Table 3) is indicative of 

uncertainties in the internal C dynamics of these models. For instance, the slopes in Table 3 are steep and the R2 are poor – so 350 
there is a substantial disagreement in the spatial pattern, not just a large bias. For ISI-MIP2a comparison R2 values ranged 

from 0.03-0.52 for NPP; 0.00-0.31 for Cvegvegetation carbon; and 0.00-0.24 for TTveg. Spatially, the stippling in Figure 6 

indicates areas where the GVMs are within the 90% CI of CARDAMOM; agreement is best over the taiga domain rather than 

in tundra for TTveg. The benchmark area of consistency (stippling) is more extensive for Cveg and TTveg than for NPP. Thus, 

while there is a stronger spatial correlation for NPP between CARDAMOM and GVMs (Table 3), this is a clearer bias for 355 
NPP. Some models (LPJ-GUESS and ORCHIDEE) systematically calculate lower values in all the assessed variables while 

others (LPJmL and VISIT) calculate higher estimates. The models in closer agreement with CARDAMOM were DLEM (5% 
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difference) and LPJ-GUESS (17%) while VEGAS (44%) and ORCHIDEE (56%) were the models with larger discrepancies 

(Table 3; Figure 5 and 6). 

The attribution analysis to identify the origin of bias from ISI-MIP2a models indicated a joint split between NPP and 360 
Cveg for TTveg error simulated in GVMs (Figure 7). We used CARDAMOM to calculate two hypothetical TTveg (i.e. 

EXPERIMENT A TTveg = ISI-MIP2a Cveg / CARDAMOM NPP and EXPERIMENT B TTveg = CARDAMOM Cveg / ISI-MIP2a 

NPP) and then assessed the largest difference with CARDAMOM’s CONTROL TTveg. We estimated the hypothetical TTveg 

for each pixel in each model, and derived a pixel-wise measure of the contribution of biases in NPP and Cveg to biases in TTveg 

by overlapping their distribution functions (Figure 7). The distribution of the differences relative to CARDAMOM revealed 365 
that the higher error (i.e. the lower overlapped area, and by extension the largest contributor to TTveg biases) comes from ISI-

MIP2a NPP with a 69% agreement in the distribution, while Cveg agrees 72%. In fact, the TTveg R2 for each model (Table 3) is 

very close to the product of the NPP R2 and Cveg R2 for that model, i.e. the uncertainty on the TTveg is a direct interaction of 

NPP and Cveg uncertainty (R2 of the correlation = 0.71). This finding supports Figure 6, which shows TTveg error derives equally 

from both NPP and Cveg.  370 

4 Discussion  

4.1. Pan-Arctic retrievals of C cycle  

The CARDAMOM framework has been used to evaluate the terrestrial pan-Arctic C cycle in tundra and taiga at 

coarse spatio-temporal scale (at monthly and annual time steps for the 2000-2015 period and at 1° x 1° grid cells). Overall, we 

found that the pan-Arctic region (1) was most likely a consistent sink of C (weaker in tundra and stronger in taiga), although 375 
the large uncertainties derived from respiratory processes (Table 1) strongly increase the 90% confidence interval uncertainty; 

(2). We estimate that tundra experienced 62% longer transit times in litter and SOM C stocks in tundra compared to than taiga 

ecosystems; and (3). Further, the contribution of Ra and Rh to total ecosystem respiration was similar in tundra (51%, 49%) 

but dominated by Ra in taiga (57% compared to , 43% in tundra).  

CARDAMOM retrievals are consistent with outcomes from relevant papers such as the (I) C flux observations and 380 
model estimates reported in McGuire et al. (2012); (II) C stocks and transit times described by Carvalhais et al. (2014), and 

(III) NPP, C stocks and turnover rates stated in Thurner et al. (2017): 

 

I. The CARDAMOM NEE estimates reported in this study for the tundra domain are inside the variability comparison 

of values compiled by McGuire et al. (2012) considering field observation, regional process-based models, global-385 
process based models and inversion models. The authors reported that Arctic tundra was a sink of CO2 of -150 Tg C 

yr-1 (SD=45.9) across the 2000-2006 period over an area of 9.16 x 106 km2. Here, CARDAMOM NEE estimated -

129 Tg C yr-1 over an area of 8.1 x 106 km2 for the same period. This exhaustive assessment of the C balance in Arctic 

tundra included approximately 250 estimates using the chamber and eddy covariance method from 120 published 

papers (McGuire et al., 2012; Supplement 1) with an area-weighted mean of means of -202 Tg C yr-1. The regional 390 
models, including runs from LPJ-Guess WHyMe (Wania et al., 2009a, b), Orchidee (Koven et al., 2011), TEM6 

(McGuire et al., 2010), and TCF model (Kimball et al., 2009), reported a NEE of -187 Tg C yr-1 and GPP, NPP, Ra 

and Rh of  350, 199, 151 and 182 g C m-2y-1, respectively. GVMs applications such as CLM4C (Lawrence et al., 2011), 

CLM4CN (Thornton et al., 2009), Hyland (Levy et al., 2004), LPJ (Sitch et al., 2003), LPJ- Guess (Smith et al., 2001), 

O-CN (Zaehle and Friend, 2010), SDGVM (Woodward et al., 1995), and TRIFFID (Cox, 2001) estimated a NEE of 395 
-93 Tg C yr-1 and GPP, NPP, Ra and Rh of 272, 162, 83 and 144 g C m-2yr-1. For the same period, CARDAMOM has 

estimated 330, 167, 160 and 154 g C m-2 yr-1 respectively for the same gross C fluxes.  
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II. Carvalhais et al. (2014) estimated a total ecosystem carbon (Ctot) of 20.5F1X.1Y./ L kg C m-2 for tundra and 24.8F1Y./W1.XL kg 

C m-2 for taiga, while values from CARDAMOM were 24.6F1/.ZW/.YL kg C m-2 for tundra, and 27.7F1W.XWX.[L	kg C m-2 in taiga 

(Figure 5; Table 1) for the same area.Thus, Carvalhais et al. (2014)’s Ctot product stored 20% and 12% less carbon in 400 
tundra and taiga respectively than CARDAMOM. Overall, CARDAMOM calculated 20% and 6% longer transit times 

for tundra and taiga respectively, with average values of 80.8FWV1.XXW.Y L years in tundra and 51.2FW/V.\XX.W L years in taiga 

(Table 1) compared to the 64.4FX1V.YX1.[ L years in tundra and 48.2FWWW.ZX].V L years in taiga in Carvalhais et al. (2014). These 

numbers have been retrieved from the same biome classification and they include the 90% confidence interval of the 

assessed spatial variability. Also, we applied a correction factor of TTgpp = TTnpp*(1-fraction of GPP respired) to be 405 
comparable with Carvalhais et al. (2014) TT. Both datasets agree on the fact that high (cold) latitudes, first tundra, 

and second taiga have the longest transit times in the entire globe (Bloom et al., 2016; Carvalhais et al., 2014). 

III. A recent study from Thurner et al. (2017) assessed temperate and taiga-related TTs presenting a 5-year average NPP 

dataset applying both MODIS (Running et al., 2004; Zhao et al., 2005) and BETHY/DLR (Tum et al., 2016) products 

and an inovative biomass product (Thurner et al., 2014) accounting for both forest and non-forest vegetation. Our 410 
estimate of TTveg for the exact same period is 5.3FWY.XW.V L years, compared to Thurner et al. (2017)’s TT, 8.2FWW.11.1 L years 

using MODIS and 6.5FY.[].XL years using BETHY/DLR. A note of caution here, the number reported by the authors are 

turnover rates, which are inferred to transit times by just applying the inverse of turnover rates (TTveg=1/turnover 

rates). Additionally, their NPP estimates, 0.35 and 0.45 kg C m-2 yr-1 from both MODIS and BETHY/DLR, is only 

5% more productive as average than CARDAMOM NPP estimate, 0.4F/.Z/.\L kg C m-2 yr-1; and the biomass derived 415 

from Thurner et al. (2014), 3.0 ±1.1 kg C m-2, is ~30% lower than CARDAMOM Cveg, 2.2F1./W.WLkg C m-2, calculated 

for the same period and for the same taiga domain.  

 

In general, we found a reasonable agreement between CARDAMOM and assimilated and independent data at pan-

Arctic scale. CARDAMOM retrievals of assimilated data are in good agreement with the SOC (Figure 2).	The simulation of 420 
TTdom is weakly constrained (Table 1) - our analysis adjusts TT to match mapped stocks, hence the strong match of modelled 

to mapped SOC. So, independent data on TTdom data (e.g. 14C) is required across the pan-Arctic region to provide stronger 

constraint on process parameters and reduce the very broad confidence intervals of CARDAMOM analyses. The low bias in 

mean estimates of LAI and biomass (Figure 2) likely relates to the strong prior on photosynthesis estimates from the ACM 

model, which lacks a temperature acclimation for high latitudes in this implementation. However, the uncertainty in the 425 
biomass and LAI analyses spans the magnitude of the bias. So, CARDAMOM generates some parameters sets that are 

consistent with observations. CARDAMOM produces analyses that reproduce the pattern of LAI, GPP, biomass and SOC 

(Figure 2 and 3) – this demonstrates that the DALEC model structure can be calibrated to simulate the links between these 

variables as a function of mass balance constraints, and realistic process interactions and climate sensitivities. Biases could be 

reduced by assimilation of data with better resolved errors. Greater confidence in LAI and biomass data would increase the 430 
weight on their assimilation, and result in analyses closer to these data, overriding model priors by adjusting photosynthesis 

upwards. Further experiments can evaluate this possibility. Certainly the need for robust characterisation of error for data 

products is of critical importance for improved analyses. 

There are clear biases in CARDAMOM analyses compared to independent global upscaled GPP (Jung et al., 2017) 

and Rh products (Hashimoto et al., 2015) (Figure 3). However, CARDAMOM resolves the spatial pattern in GPP effectively, 435 
while the spatial mismatch in Rh estimates is markedclear (Figure 3), echoing the large uncertainty found in NEE (Figure 1, 

Table 1). One difference with Hashimoto et al. (2015)’s Rh model is the lack of moisture limitation on respiration in 

CARDAMOM. Conversely, GPP is relatively well-constrained in space through the assimilation of LAI and a prior for 
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productivity (Bloom et al., 2016), although an important mismatch has been found: CARDAMOM GPP is 50% lower than 

FLUXCOM, but 30% higher than FLUXNET2015 EC data.  440 
The agreement between CARDAMOM analyses and EC data is good high given the scale difference. A direct point-

to-grid cell comparison with local observations derived from the FLUXNET2015 dataset (Figure 4, Table S6) is challenging 

and always difficult. CARDAMOM outputs covers 1° x 1° grid cells, whereas local eddy covariance flux measurements are 

in the order of 1-10 hectaresha. Thus, for observational sites located in areas with complex terrain, such as Kobbefjord in 

coastal Greenland, the agreement can be expected to be low. For inland forest sites, such as Poker Flat in Alaska, there may 445 
be less differences in vegetation characteristics and local climatology between the local scale measurement footprint and the 

corresponding CARDAMOM grid cell. This scaling issue is likely to have a larger impact on flux magnitudes compared with 

seasonal dynamics. In general, CARDAMOM captured the seasonal dynamics in NEE, GPP and Reco well (Figure 4, Table 

S6), although the monthly model time-step does reduce skill in shoulder seasons. There was , however, a consistent timing-

mismatch in early season flux increase, where CARDAMOM predicts earlier growing season onset compared with 450 
observations. This is likely due to the impact of snow cover, which is not explicitly included in the CARDAMOM framework.  

For an further independent evaluatione of CARDAMOM outputs, we compare the tundra and boreal estimates to plot 

scale flux and stock information. For tundra, Street et al. (2012) calculate growing season GPP estimates of 263-380 g C m-2 

for Empetrum nigrum communities, and 295-386 g C m-2 for Betula nana communities, which is consistent with the ranges in 

Figure 1 for tundra. Biomass stocks for Arctic tundra recorded in the Arctic LTER at Toolik Lake range from 105-1160 g C 455 
m-2 (Hobbie and Kling, 2014), which are consistent with the estimates from CARDAMOM, albeit at the lower end of the 

model estimates. For boreal forests, Goulden et al. (2011) report annual GPP estimates across a chronosequence of stands, and 

thus a variation across canopy densities, which varied from 450-720 g C m-2 yr-1. These data are consistent with the span of 

GPP in CARDAMOM (Figure 1), again best matching the lower end of the model estimates. For the same study, the vegetation 

carbonC stock estimates varied from 100-5000 g C m-2, consistent with CARDAMOM, and with measurements of 10 to 40-460 
year old boreal stands best matching the CARDAMOM median estimate of ~1500 g C m-2. We conclude from comparisons 

against site data that CARDAMOM analyses are broadly consistent, with some tendency for CARDAMOM to have a high 

bias. This comparison is similar to the FLUXNET2015 evaluation of CARDAMOM. But it conflicts with the estimation of 

low bias from the comparison of CARDAMOM against FLUXCOM GPP and Carvalhais et al. (2014) biomass stock maps. It 

is possible that the scale differences between site level products and landscape estimates is confusing these comparisons, but 465 
there is clearly a need to understand better these inconsistencies in C cycle estimates. 

4.2. CARDAMOM as a model benchmarking tool 

An ideal benchmarking tool for GVMs would compare model state variables and fluxes against multiple, independent, 

unbiased, error-characterised measurements collected repeatedly at the same temporal and spatial resolution. Of course direct 

measurements of key C cycle variables like these are not available. Even at FLUXNET sites GPP and Reco must be inferred, 470 
and NEE data often gap-filled. Satellite data can provide continuous fields, but do not directly measure ecological variables 

like biomass or LAI, so calibrated models are required to generate ecological products. Atmospheric conditions can introduce 

biases and data gaps into optical data that are poorly quantified. Upscaling of FLUXNET data requires other spatial data, e.g. 

MODIS LAI, which challenges the characterisation of error and generates complex hybrid products. We suggest that 

CARDAMOM provides some of the requirements of the ideal benchmark system – an error-characterised, complete analysis 475 
of the C cycle that is based on a range of observational products. CARDAMOM includes its own C cycle model; this has the 

advantage of evaluating the observational data for consistency (e.g. with mass balance), propagating error across the C cycle, 

and generating internal model variables such as TT. Further the model is of intermediate low complexity and independent of 

the benchmarked models. 
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Using CARDAMOM as a benchmarking tool for six GVMs we found major disagreements that varied among models 480 
for mapping spatial estimates of NPP, Cveg and TTveg across the Pan-Arctic for all models (Figure 6) in comparison against 

CARDAMOM confidence intervals. GVM NPP estimates had a higher correlation than TTveg and Cveg with CARDAMOM 

analyses (Table 3), but because CARDAMOM confidence intervals on NPP were relatively narrow (Figure 1) the 

benchmarking scores from GVM NPP were relatively poor (Figure 6). Consequently, we used CARDAMOM to calculate the 

relative contribution of productivity and biomass to the transit times bias by applying a simple attribution analysis (Figure 7). 485 
We concluded that the largest bias to transit times originated not by a deficient understanding of one single component, but by 

an equal combination of both productivity and  biomass errors together. Therefore, this study partially agrees with previous 

studies (Friend et al., 2014; Nishina et al., 2014; Thurner et al., 2017) highlighting the deficient representation of transit 

times/turnover dynamics, but we further suggest that GVM and ESM modellers need to focus on the productivity and 

vegetation C stocks dynamics to improve inner C dynamics. A major challenge for GVMs is the spin-up problem (Exbrayat 490 
et al., 2014). GVMs need to find a way to ensure that the spin-up process produces biomass estimates consistent with the 

growing availability of biomass maps from earth observations. CARDAMOM solves this problem by avoiding spin-up.  Its 

fast run time allows the biomass maps to act as a constraint on the probability distribution of model parameters. There may be 

opportunities to use CARDAMOM style approaches to assist the GVM community address this problem. 

4.3 Outlook 495 

Although CARDAMOM estimates for pan-Arctic C cycling are in moderately good agreement with observations and 

data constraints, we have not included important components controlling ecosystem processes that could potentially improve 

our understanding on C feedbacks, and with emphasis for high latitude ecosystems. For example, thaw and release of 

permafrost C is not represented in CARDAMOM, but the influence on vegetation dynamics, permafrost degradation and soil 

respiration is critical in high latitudes (Koven et al., 2015; Parazoo et al., 2018). Also, Koven et al. (2017) shown that soil 500 
thermal regimes are key to resolving the long-term vulnerability of soil C. Moreover, we have not characterized snow dynamics 

and nor the insulating effect of snow affecting respiratory losses across wintertime periods either (López-Blanco et al., 2018). 

Further, methane emissions, another important contributor to total C budget (Mastepanov et al., 2008; Zona et al., 2016), was 

neglected from this modelling exercise since it is not easy to model due to its three complex transport mechanisms (Walter et 

al., 2001).  505 
However, our approach to use a lown intermediate complexity model has the strong advantage of allowing very large 

(107) model ensembles per pixel, and thus a thorough exploration of model-parameter interactions, that is not feasible with 

typical complex modelsGVMs. OThere are other viable options include usingavailable that work with larger models, such 

emulators (Fer et al., 2018) and particle filters (Arulampalam et al., 2002), but MCMC methods provide the most detailed 

description of error distributions. There remains a strong argument to utilize intermediate low complexity models like 510 
DALEC2 to evaluate the minimum level of detail required to represent ecosystem processes consistent with local observations, 

and to allow testing of alternate model structures. And, assimilating further data products, for instance patterns in soil 

hydrology and snow states across the pan-Arctic from earth observation, could provide useful information on spatio-temporal 

controls on soil activity and microbial metabolism to constrain below ground processes. This information would need to be 

tied to process level information on SOM turnover generated from experimental studies, and included in updated versions of 515 
DALEC.  

Thus, in order to reduce uncertainties on the balance between photosynthetic inputs and respiratory outputs, we must 

devise intermediate low complexity model representations of SOC decomposition by microbial activity (Xenakis and 

Williams, 2014), nutrient interactions with carbon (Thomas and Williams, 2014), and mechanisimsmechanisms driving carbon 

use efficiency (Manzoni et al., 2018), and or photosynthesis-respiration couplingdrivers of gross flux coupling  (López-Blanco 520 
et al., 2017). There are opportunities to constrain such modelling using data on plant trait relationships across pan-Arctic 
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regions (Reichstein et al., 2014; Sloan et al., 2013). We also need to assimilate data describing annual biomass maps, and 

landscape disturbances such as fires and moth outbreaks  at the pan-Arctic scale. From a modelling perspective, wThus, me 

consider that more field observations are crucial across the pan-Arctic, specifically on decomposition and TT from plant and 

soil C stocks decompositionof SOC (C stocks turnover rates)(He et al., 2016) and respiratory processes such as (partitioning 525 
of Reco into Ra and Rh) (Hobbie et al., 2000; McGuire et al., 2000), not only across the growing season, but and also during 

wintertime (Commane et al., 2017; Zona et al., 2016). These data could be upscaled using machine learning, following the 

approaches used for creating SOM maps, with uncertainty attribution, as further assimilation data sets for frameworks like 

CARDAMOM. An improved data-model integration will move us towards enhanced analytical robustness and a decrease of 

model uncertainties.  530 
Our approach has ascribedused estimated observation error, to observations only, and we have ignoredand inflated 

this to include unknown errors associated with model process representation. We currently lack any better knowledge of the 

combined uncertainties arising from model representation errors and observation errors, stochastic events, and unaccounted 

for heterogeneity, for example. We acknowledge both that anyall models is are an imperfect representation of C dynamics, 

which generates irreconcilable model-data errors due to the inherent assumptions in model structureand the need to quantify 535 
model process error. Future analyses should investigate model structural error, using for example error-explicit Bayesian 

approaches (Xu et al., 2017), or comparing the likelihoods of alternate model structures, of varying complexity.  In our case, 

uUsing multiple sources of data, we have highlighted systematic errors in the model at landscape scale (Figure 2 and 3) for 

LAI, GPP and biomass, which may be related to the prior from the photosynthesis we used. However, these biases are not 

consistent for site-scale evaluations. Thus, There is, therefore, irreconcilable model-data errors due to the inherent assumptions 540 
in model structure, but attempts have been made pointing to potential methods for optimizing uncertainty choices (Caldararu 

et al., 2012) and error models in model-data fusion systems (Schoups & Vrugt, 2010). We certainly need to consider these 

options as feasible ways to account for model structural errors in future implementations of CARDAMOM. aA next step for 

our analysis is towould be to include explicitly both random and systematic photosynthesis process errors for C fluxes in the 

data assimilation. These errors could be determined from field scale evaluation of model process representation (Table 2) using 545 
e.g. FLUXNET2015 data. However, wWe also need  to first understand better the error associated with landscape heterogeneity 

of C stocks and fluxes, to upscale from flux tower observations, or direct measurements of LAI, to landscape pixel. This could 

be achieved by constructing robust observation error models (Dietze, 2017) from field to pixel scale, for e.g. GPP, LAI and 

foliar N. Evaluation of the sensitivity of C cycling DA analyses to observation error has shown relatively low sensitivity to 

data gaps and random error on net ecosystem flux data (Hill et al., 2012), but further analyses of error sensitivity are required 550 
for multiple streams of stock data.We need to explain the contrasting photosynthesis biases at landscape (Figure. 3) and flux 

site scales (Figure. 4) in order to understand and scale the C flux process error. 

5 Conclusions 

The Arctic is experiencing rapid environmental changes, which will influence the global C cycle. Using a data-

assimilation framework we have evaluated the current state of key C flux, stocks and transit times for the pan-Arctic region, 555 
2000-15. We found that the pan-Arctic was a likely sink of C, weaker in tundra and stronger in taiga, but uncertainties around 

the respiration losses are still large, and so the region could be a source of C. Comparisons with global and local scale datasets 

demonstrate the capabilities of CARDAMOM for analysing the C cycle in the Arctic domain. CARDAMOM is a data-

constrained and data-integrated analysis, evaluated for internal consistency, and is therefore a good candidate to benchmark 

performance of global vegetation/ecosystem models. We conclude that a GVM bias found in transit time of vegetation C is 560 
the result of a joint combination of uncertainties from productivity processes and biomass in GVMs, and thus these are a major 

component of error in their forecasts. While spatial patterns in GVM predictions of NPP are reasonable, particularly in taiga, 
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they have significant biases against the CARDAMOM benchmark. Improved mapping of vegetation and soil C stocks and 

change over time is required for better analytical constraint. Moreover, future work is required on assimilating data on soil 

hydrology, permafrost and snow dynamics to improve accuracy and decrease uncertainties on belowground processes. This 565 
work establishes the baseline for further process-based ecological analyses using the CARDAMOM data-assimilation system 

as a technique to constrain the pan-Arctic C cycle. 

Data and software availability 

CARDAMOM output used in this study is available from Exbrayat and Williams (2018) from the University of 

Edinburgh’s DataShare service at http://dx.doi.org/10.7488/ds/2334. The DALEC2https://doi.org/10.7488/ds/2334. The 570 
DALEC2  code  is also available on Edinburgh DatasShare at (https://doi.org/10.7488/ds/2504datashare.is.ed.ac.uk). Contact 

MW for access to the CARDAMOM software. 
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