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The authors substantially revised the manuscript and addressed my comments
appropriately.

I only disagree how uncertainties where used during the data assimilation. Specifically,
the authors state at several places (lines 86, 184-85) that the (biomass) dataset lacks
uncertainty or error estimates and hence they used a global uncertainty factor of 1.5 in
the cost function.

It is clearly a wrong statement that the biomass maps by Carvalhais et al. (2014) miss
uncertainty estimates.

In this dataset, uncertainty was provided based on an ensemble of biomass estimates.
This biomass map is also based on the map of forest biomass by Thurner et al. (2014)
which also includes a detailed estimate of uncertainties for various vegetation carbon
pools.

Please remove the wrong statements about missing uncertainty estimates for the
biomass datasets and describe why you did not use these uncertainty estimates or how a
potential use could affect your results. With these changes, I'm happy to accept the
manuscript for publication.

We apologise for the lack of clarity about uncertainty derivation for the analysis. Here we have
adjusted the text on the Introduction section (S1) to remove the sentence

“However, these products tend to lack clear error estimates.”
On S2.2.2, L188-195 we have adjusted the text to:

“The reported uncertainty on biomass data from Thurner et al. (2014) was +/- 37% at
pixel scale. Because of undetermined errors related to tree cover thresholds used in the
upscaling, and to reflect unknown model structural error, we slightly inflate the error
estimate and use a log-transform(1.5) of x/+1.5 (i.e. x/+1.5 spans 67% of the expected
error). We use the same proportional error for SOC. For MODIS LAI we inflate the
proportional error further to log(2) based on well reported biases in this product for
evergreen forests (De Kauwe et al. 2011) and the estimated measurement and
aggregation uncertainty for boreal forest LAI of 1 m? m? reported by Goulden et al.
(2011). The uncertainty assumptions in expression 3 are chosen in lack of better
knowledge about the combined uncertainties arising from model representation errors
and observation errors:”

In the Discussion we also now review the challenges associated with generating observation
and model errors (see response to reviewer 2).
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I’m going to be upfront that I’m very torn about what to recommend with respect to this
paper. On the one hand, I acknowledge the incredible amount of work that went into this
project and believe that there is important and interesting science coming out of this
project. On the other hand, based on the responses to questions raised, it is now clear
there are definitely things here that I don’t think were done correctly. What complicates
this is that many of the things done wrong (especially with respect to model process error)
were also done wrong in previous papers on the Bayesian calibration of terrestrial carbon
models (both by this team and others). This helps explain such mistakes, but it doesn’t
justify them, and I worry that continuing to allow papers to make the same mistakes just
perpetuates the situation. The crux of the issue is really in how the authors are treating
the error term in their likelihood. First, they are ascribing 100% of the error as coming
from the observations, and not acknowledging (statistically) that their model is imperfect
(though their own Results and Discussion clearly demonstrate that the model is far from
perfect). By incorrectly ascribing 100% of the error to observations, and none to process
error (model misspecification, stochastic events, unaccounted for heterogeneity), the
authors are also missing that (unlike observation error) process error propagates
forward into model predictions. This means that modeled fluxes and pools are going to
be consistently overconfident by an unknown (but potentially nontrivial) amount.
Second, not only do the author ascribe all the error to observations, but they treat that
observation error as a known parameter, despite acknowledging that the data products
used don’t have error estimates. This is a significant departure from standard statistical
modeling, where the variance is an unknown fit parameter. For example, when you fit a
linear regression the model has three unknown parameters (slope, intercept, sigma) and
sigma is virtually never treated as an a prior known quantity. While treating sigma as a
known shouldn’t have large effects on the mean values of the model parameters (though
this is far from guaranteed when dealing with nonlinear models; Jensen’s Inequality),
more important is that it can have a real effect on the uncertainties about the model
parameters. By subjectively choosing the observation error, one is also subjectively
choosing the confidence intervals on the parameters. And since in CARDAMOM the only
uncertainties that are included in predictions are parameter uncertainties, this also
means you are subjectively choosing the uncertainty in the predictive confidence
intervals. Ideally, these models should be refit including an unknown, fit model process
error, and then that process error should be propagated into predictions/hindcasts. This
process error ideally should also be in addition to, not instead of, an observation error
(which may not be a known, but may have an informative prior on it)

We recognise the reviewer’s concerns about using the correct process for error characterisation
in analyses such as that we present here. We agree that our model is not perfect and that
identification of process error is critical. We also regret that we did not provide the necessary
information on how data uncertainties were derived. We do appreciate the reviewer’s concern



about effective error characterisation, and have adjusted the text to reflect this, and to make
recommendations about how to address this better.

We did specifically focus on identification of model process error by comparison with
independent data (GPP, Ry). Thus, we identified biases in our estimates of LAI, GPP and
biomass at landscape scale, and suggest that these likely reflect systematic bias in our
photosynthesis model. A next step is to analyse the representation of photosynthesis process
error and include this in further analyses. On the other hand, we note that independent
evaluation of fluxes at site scale (FLUXNET2015) does not match the GPP bias at landscape
pixel scale (FLUXCOM). New site level comparisons (see below) also suggest CARDAMOM
produces reasonable or slightly high biased results. We conclude that further investigations
into heterogeneity error are required, linked to process error calculation on products such as
FLUXCOM as well as our GPP model.

We have adjusted the text (S2.2.2, L188-195) to clearly state that error in the biomass product
is reported, and have explained why we have inflated this error in our analysis. We also note
that MODIS LAI products have large reported biases, and local observations have important
errors, which justifies the larger error we assigned to these data. Our point here is to report an
honest overview of uncertainty assumptions used in CARDAMOM:

“The reported uncertainty on biomass data from Thurner et al. (2014) was +/- 37% at
pixel scale. Because of undetermined errors related to tree cover thresholds used in the
upscaling, and to reflect unknown model structural error, we slightly inflate the error
estimate and use a log-transform(1.5) of x/+1.5 (i.e. x/=1.5 spans 67% of the expected
error). We use the same proportional error for SOC. For MODIS LAI we inflate the
proportional error further to log(2) based on well reported biases in this product for
evergreen forests (De Kauwe et al. 2011) and the estimated measurement and
aggregation uncertainty for boreal forest LAI of 1 m? m? reported by Goulden et al.
(2011). The uncertainty assumptions in expression 3 are chosen in lack of better
knowledge about the combined uncertainties arising from model representation errors
and observation errors:”

We note the reviewer’s concerns about making forecasts without properly accounting for
model process error. This paper involves an analysis of historical fluxes constrained by
contemporary forcing and data. We do not make forecasts or hindcasts, so this criticism is not
relevant for this paper.

We have adjusted the text in the discussion (S4.3; L487-501) to reflect the lack of robust
knowledge on the interactions between random and systematic biases in the observations,
model representation errors and errors in the model drivers:

“Our approach has used estimated observation error, and inflated this to include
unknown errors associated with model process representation. We currently lack any
better knowledge of the combined uncertainties arising from model representation
errors and observation errors. We acknowledge that all models are an imperfect
representation of C dynamics, which generates irreconcilable model-data errors due to
the inherent assumptions in model structure. Future analyses should investigate model
structural error, using for example error-explicit Bayesian approaches (Xu et al., 2017),
or comparing the likelihoods of alternate model structures, of varying complexity.
Using multiple sources of data, we have highlighted systematic errors in the model at



landscape scale (Figure 2 and 3) for LAI, GPP and biomass. However, these biases are
not consistent for site-scale evaluations. Thus, a next step would be to include explicitly
both random and systematic process errors for C fluxes in the data assimilation. These
errors could be determined from field scale evaluation of model process representation
(Table 2) using e.g. FLUXNET2015 data. We also need to understand better the error
associated with landscape heterogeneity of C stocks and fluxes, to upscale from flux
tower observations, or direct measurements of LAI, to landscape pixel. This could be
achieved by constructing robust observation error models (Dietze, 2017) from field to
pixel scale, for e.g. GPP, LAI and foliar N. Evaluation of the sensitivity of C cycling
DA analyses to observation error has shown relatively low sensitivity to data gaps and
random error on net ecosystem flux data (Hill et al., 2012), but further analyses of error
sensitivity are required for multiple streams of stock data.”

Additional points of concern:

1) Neither the DALEC2 model nor the CARDAMOM system appear to be publically
archived. This means this work can’t be reproduced or expanded upon by others. I don’t
know if such lack of openness is within the letter of the law of this journal, but it’s
definitely a deviation from the current norms of the community.

We agree that openness is critical to scientific advances. We have submitted the code for
DALEC2 on Edinburgh DataShare. We are working to release a community version of
CARDAMOM. At present we invite researchers to contact us to gain access to the code.

We have adjusted the text (L517-520):
“Data and software availability

CARDAMOM output used in this study is available from Exbrayat and Williams
(2018) from the University of Edinburgh’s DataShare service at
https://doi.org/10.7488/ds/2334. The DALEC2 code is also available on Edinburgh
DataShare at https://doi.org/10.7488/ds/2504. Contact MW for access to the
CARDAMOM software.”

2) As noted in my original review, I’m not comfortable with this system being called data
assimilation, at least not with some additional qualifier being added (e.g. “parameter data
assimilation”) to make it clear that the outputs are deterministic model forward
simulations not a reanalysis. To me, calling this data assimilation is like calling linear
regression “machine learning.” Sure people do it, but it makes the term pretty
meaningless.

We disagree; we are using Bayesian parameter calibration of a dynamic model - which is
typically referred to as data assimilation or model-data fusion; see “Ecological Forecasting” p.
168, by M. Dietze. However, we adjust our introductory text to improve clarity (S1; L100-
104):

“To address these issues we integrate model and data more formally. We apply data
assimilation (DA), defined as a Bayesian calibration process for a model of a dynamic



system. DA, through probabilistic parameterisation, supports robust model estimates of
C stocks and fluxes consistent with multiple observations and their errors (Fox et al.,
2009; Luo et al., 2009; Williams et al., 2005). By following Bayesian methods, the
uncertainty on observations weights the degree of data constraint, and the outcome is a
set of acceptable parameterisations for a given model structure linked to likelihoods.”

3) After clearly diagnosing your photosynthesis scheme (ACM) as being at the root of
model biases and compensating errors, the decision to not include any ACM parameters
in the calibration (and toss the issue up to a lack of acclimation rather than simple
miscalibration) strikes me as odd and I cannot understand why the authors are digging
in their heels on this.

We do include an ACM parameter (Cesr) in the calibration (and so it is adjusted by the
MHMCMC), according to Bloom et al. (2016). We apologise for not making this clear. We
consequently have adjusted the Methods text (S2.2.1; L143-145) to read:

“DALEC2 simulates canopy-level GPP via the Aggregated Canopy Model (ACM;
Williams et al., 1997) and the most sensitive ACM parameter, related to canopy
photosynthetic efficiency, is included in the CARDAMOM calibration.”

4) Similar to (3), since NPP in DALEC is very tightly tied to GPP, and TT = Cstock/NPP,
it sure seems like systematic biases in GPP will translate to systematic biases in TT. As
noted earlier, I find some of the reported TT estimates to be implausible and don’t
understand the authors resistance to even considering comparing their results to
independent field estimates.

We note that the mean NPP for GVMs across the region is 8% lower than in CARDAMOM,
so the regional GVM-CARDAMOM NPP analyses are less different on average than the
comparisons of CARDAMOM against data such as FLUXCOM (for GPP). We note that the
high latitude TT estimates for CARDAMOM, GVMs (Figure 5) and reported in Carvalhais et
al. (2014) are broadly similar. The critical issue we identify is that the spatial differences in
NPP and Cyeg between CARDAMOM and GVMs result in important spatial mismatches in TT
estimated by both (compare Figure 5 and Figure 6).

We are confused at the statement that we have “resistance to even considering comparing
their results to independent field estimates”; we have presented a clear evaluation against
multiple independent FLUXNET site data, shown in Figure 4. Nonetheless, we add some
further field-based estimates to complement these comparisons in the Discussion (S4.1, L421-
435):

“For a further independent evaluation of CARDAMOM outputs, we compare the tundra
and boreal estimates to plot scale flux and stock information. For tundra, Street et al.
(2012) calculate growing season GPP estimates of 263-380 g C m™ for Empetrum
nigrum communities, and 295-386 g C m™ for Betula nana communities, which is
consistent with the ranges in Figure 1 for tundra. Biomass stocks for Arctic tundra
recorded in the Arctic LTER at Toolik Lake range from 105-1160 g C m2 (Hobbie and
Kling, 2014), which are consistent with the estimates from CARDAMOM, albeit at the
lower end of the model estimates. For boreal forests, Goulden et al. (2011) report annual
GPP estimates across a chronosequence of stands, and thus a variation across canopy
densities, which varied from 450-720 g C m? yr'!. These data are consistent with the



span of GPP in CARDAMOM (Figure 1), again best matching the lower end of the
model estimates. For the same study, the vegetation C stock estimates varied from 100-
5000 g C m2, consistent with CARDAMOM, and with measurements of 10 to 40-year
old boreal stands best matching the CARDAMOM median estimate of ~1500 g C m™.
We conclude from comparisons against site data that CARDAMOM analyses are
broadly consistent, with some tendency for CARDAMOM to have a high bias. This
comparison is similar to the FLUXNET2015 evaluation of CARDAMOM. But it
conflicts with the estimation of low bias from the comparison of CARDAMOM against
FLUXCOM GPP and Carvalhais et al. (2014) biomass stock maps. It is possible that
the scale differences between site level products and landscape estimates is confusing
these comparisons, but there is clearly a need to understand better these inconsistencies
in C cycle estimates.”

5) The differences between DALEC and observations are greater than the differences
between DALEC and the ISI-MIP models, so why are the authors so hard on the ISI-MIP
models?

Our key point is that DALEC outputs match the spatial variation in independent (FLUXCOM)
and assimilated data (LAI, biomass) well. There may be biases in these comparisons, indicative
of model process error and/or upscaling error in the biomass and FLUXCOM products, but
CARDAMOM can match the pattern in LAI, biomass, and SOC very well (Figure 2). The poor
agreement with ISI-MIP models is with the spatial pattern (Table 3), not with regional median
values (Figure 5). From these analyses we note that a reasonable regional estimate is not very
useful if patterns are wrong, as this challenges the reliability of ISIMIP models when used for
projections. Some models actually match CARDAMOM well, and we noted this clearly. We
have edited the text to emphasise these points:

In Results (S3.4, L318-330):

“We used our highest confidence retrievals of NPP, Cyeg and TTyeg (i.€. retrievals
including assimilated LAI, biomass and SOC) to benchmark the performance of the
GVMs from the ISI-MIP2a project. In this assessment we compared not only their
spatial variability across the pan-Arctic, tundra and taiga region (Figure 5), but also the
degree of agreement between their mean model ensemble within the 90% confidence
interval of our assimilation framework (Figure 6, Table 3). NPP estimates (RMSE =
0.1 kg C m? yr!; R?= 0.44) are in better agreement than Cyeg (RMSE = 1.8 kg C m™%;
R?=0.22) and TTyeg (RMSE = 4.1 years; R>= 0.12). The assessed GVMs estimated on
average 8% lower NPP, 16% higher Cyeg and 22% longer TTye, than CARDAMOM
across the entire pan-Arctic domain (Figure 5 and 6) on average. Thus, at regional
aggregation CARDAMOM analyses agreed more closely with ISI-MIP2a models than
with FLUXCOM (51% difference) and with the Carvalhais et al. (2014) biomass data
(28% bias).

The poor spatial agreement regarding TTve; between CARDAMOM and ISI-MIP2a
(Table 3) is indicative of uncertainties in the internal C dynamics of these models. For
instance, the slopes in Table 3 are steep and the R? are poor — so there is a substantial
disagreement in the spatial pattern, not just a large bias. For ISI-MIP2a comparison R?
values ranged from 0.03-0.52 for NPP; 0.00-0.31 for Cyeg; and 0.00-0.24 for TTye,.”



In Discussion (S4.3, L449-451):

“Using CARDAMOM as a benchmarking tool for six GVMs we found disagreements
that varied among models for spatial estimates of NPP, Cyez and TTyeg across the Pan-
Arctic (Figure 6) in comparison against CARDAMOM confidence intervals.”

Detailed comments:

L60: The authors responses suggested that a more complex calculation of TT was actually
performed that relaxed the assumption of steady state. I would include that here (along
with the steady state calculation) as I suspect a number of readers (myself included)
would prefer to know that you’re not relying on a steady state assumption to assess a
system that’s clearly not in steady state.

The residence time is calculated as per Bloom et al. (2016) equation S8 (SI text, S3 Global
State and Process Variables), which specifically accounts for changes in stocks over time. We
now adjust the text accordingly in the Introduction (S1) by removing “at steady state” and the
Methods (S2.2.2; L202-203):

“We calculate the transit time for C pools using the approach for non-steady state pools
described in Bloom et al. (2016), supplementary information S3.”

L160: This line refers to DALEC2 as an ‘intermediate complexity’ model, but later
arguments actually hinge on it being a simple model, and most of us would consider
DALEC to really be on the simple end of the process-model spectrum

We have had internal discussions about where on the spectrum of complexity DALEC lies. We
have decided that simple models would have only a handful of parameters and few state
variables. DALEC has 17 parameters and 6 state variables, so it just qualifies as intermediate.
We agree that this is partially a subjective categorisation (now in S2.2.2; L157). We also
changed wording in L110, L447, L474, and L478 to keep consistency across the full text.

L171: MODIS LAI reports an uncertainty estimate. How did you aggregate those
uncertainties when aggregated the observations? This is nontrivial as neither the MODIS
products or MODIS LAI validation papers report anything about the spatial or temporal
autocorrelation in the product’s errors.

We have adjusted our text to report on MODIS uncertainties (S2.2.2, L191-193):

“For MODIS LAI we inflate the proportional error further to log(2) based on well
reported biases in this product for evergreen forests (De Kauwe et al. 2011) and the

estimated measurement and aggregation uncertainty for boreal forest LAI of 1 m? m™
reported by Goulden et al. (2011).”

We have also adjusted the discussion to note the challenge for scaling these errors (S4.3, L496-
499):

“We also need to understand better the error associated with landscape heterogeneity
of C stocks and fluxes, to upscale from flux tower observations, or direct measurements



of LAI, to landscape pixel. This could be achieved by constructing robust observation
error models (Dietze, 2017) from field to pixel scale, for e.g. GPP, LAI and foliar N.”

L188: Table S2 looks like it just contains a bunch of uniform priors for all other
parameters. I think that should be stated here so that readers don’t need to find the
supplement to learn that. It’s perfectly fair, however, to make readers go to the
supplement to see the exact numerical values of the priors.

We now include a note (S2.2.1, L143):
“(Table S2; most priors are uniform with broad ranges)”

Moreover, we corrected a mistake with C pools units in Table S2. We replaced g C m2 yr with
g Cm?,

L.194: This sentence states that MODIS doesn’t report an uncertainty estimate, but that’s
not accurate.

The cited statement was removed and we have adjusted (see above) our text to report on
MODIS uncertainties (S2.2.2, L191-193):

“For MODIS LAI we inflate the proportional error further to log(2) based on well
reported biases in this product for evergreen forests (De Kauwe et al. 2011) and the

estimated measurement and aggregation uncertainty for boreal forest LAI of 1 m? m™
reported by Goulden et al. (2011).”

L206: I’m concerned about the way the statistics are being reported here. For example,
the RMSE of a model is traditionally based on the model error (difference between the
model and the observations). Here, the authors are defining the model’s RMSE as the
RMSE after applying both a multiplicative and additive bias correction (i.e. the
predicted/observed regression). Similarly, the R2 isn’t the variance explained by the
model, but the variance jointly explained by the model and a linear bias correction to that
model. This results in a very optimistic view of the model’s actual performance.

We have calculated RMSE following the traditional approach, and we have adjusted the text
to clarify this (S2.3, L207-209):

“To assess the degree of statistical agreement we calculated linear goodness-of-fit
(slope, intercept, R?) between CARDAMOM and the two independent datasets and
determined RMSE and bias from direct comparison on model-data residuals.”

Following the same logic, we have also clarified this in S2.3, L221-223:

“We performed a point-to-grid cell comparison to assess the degree of agreement
between each flux magnitude and seasonality calculating the statistics of linear fit
(slope, intercept, R?) per flux and site between CARDAMOM and FLUXNET2015
datasets and determined RMSE and bias from model-data residuals comparison.”

L251: Just want to continue to express my skepticism about some of these pool and flux
estimates. For example, in my own experiences in Alaska, the boreal forest has WAY



more than 160% more structural tissue than the tundra. There needs to be some
independent plot-scale validation of this.

Independent data from Toolik Lake (tundra) and Boreas (boreal) sites shows the general
validity of the CARDAMOM outputs at these intensively studied ecological field sites.

As we presented earlier on, we included the following text in S4.1, L.421-430:

“For a further independent evaluation of CARDAMOM outputs, we compare the tundra
and boreal estimates to plot scale flux and stock information. For tundra, Street et al.
(2012) calculate growing season GPP estimates of 263-380 g C m™ for Empetrum
nigrum communities, and 295-386 g C m? for Betula nana communities, which is
consistent with the ranges in Figure 1 for tundra. Biomass stocks for Arctic tundra
recorded in the Arctic LTER at Toolik Lake range from 105-1160 g C m2 (Hobbie and
Kling, 2014), which are consistent with the estimates from CARDAMOM, albeit at the
lower end of the model estimates. For boreal forests, Goulden et al. (2011) report annual
GPP estimates across a chronosequence of stands, and thus a variation across canopy
densities, which varied from 450-720 g C m? yr'!. These data are consistent with the
span of GPP in CARDAMOM (Figure 1), again best matching the lower end of the
model estimates. For the same study, the vegetation C stock estimates varied from 100-
5000 g C m2, consistent with CARDAMOM, and with measurements of 10 to 40-year
old boreal stands best matching the CARDAMOM median estimate of ~1500 g C m™2".

L258: Likewise, this stem turnover time seems much too fast and needs independent
validation. I understand that grid cell to plot- or plant-scale validation isn’t perfect, but
it’s better to report the performance explicitly, and then cushion it based on possible scale
mismatch, rather than to ignore whether these estimates are consistent with prior
research.

Based on comparison to Carvalhais et al. (2014) TT estimates and to the GPP and Cyc, estimates
reported above, our TT estimates are consistent with independent calculations and their
component parts. We understand that TT seem short compared to concepts of stand age.
However, litterfall (plant mortality) occurs throughout succession, from all live pools, which
means that C turns over faster than age suggests.

L294: typo on “uncertainties”
Corrected.

L313: It would be good to have some sort of quantification of spatial coherence beyond
RMSE & R2 (which are nonspatial). Look to the GIS and remote sensing literature for
examples of what sort of statistics are available to do this.

There are a number of potential statistics to use. We suggest that our choice of statistics is
familiar to biogeochemists and earth system scientists. Coupled with direct mapping of ratios
and confidence intervals for visual assessment, we suggest our analysis provides readers with
the relevant information on spatial coherence. Adding further statistics is likely to provide only
marginal gains, but also increase the intricacy of an already complex paper.



L.328: Don’t introduce new Methods in the Results. Please document what this analysis is
and why you are doing it earlier in the paper.

We agree the reviewer 2 is correct and we have adjusted the text as requested, moving material
into the last part of the Methods (S2.4, L235-239):

“To understand the sources of errors in TTyee calculations, we used CARDAMOM to
calculate two hypothetical TTveg (i.e. EXPERIMENT A TTyeg = ISI-MIP2a Cyeg /
CARDAMOM NPP and EXPERIMENT B TTye; = CARDAMOM Cyeg / ISI-MIP2a
NPP) and then assessed the largest difference with CARDAMOM’s CONTROL TTyeg.
We estimated the hypothetical TTyeg for each pixel in each model, and derived a pixel-
wise measure of the contribution of biases in NPP and Cyee to biases in TTyeg by
overlapping their distribution functions.”

L378: Consistent with my previous concerns, DALEC appears to be running to fast. That
said, this is still a comparison to other models, not to data.

We agree that biases may exist in the CARDAMOM TT estimate, but see above about
difference between stand age and TT (L258 comment). Also, note that we are exploring where
ISI-MIP2a models lie outside the analysis confidence intervals of CARDAMOM for TT.

L391: Here you say you had a ‘strong prior on photosynthesis’ but as far as I can tell the
photosynthetic parameters were fixed at defaults, not assigned priors. According to Eqn
2, the only 2 parameters assigned non-uniform priors were canopy efficiency (which in
Tables 2 and S2 is labeled as a phenology parameter) and autotrophic respiration

As noted before, the canopy efficiency is the calibrated parameter in CARDAMOM for the
photosynthesis model ACM; we apologise for confusion in not making this clear before. Now
this point is clarified in text (S2.2.2, L143-145):

“DALEC2 simulates canopy-level GPP via the Aggregated Canopy Model (ACM;
Williams et al., 1997) and the most sensitive ACM parameter, related to canopy
photosynthetic efficiency, is included in the CARDAMOM calibration.”

L397: If you’ve demonstrated a bias in your photosynthetic model, I’m not sure I agree
that this could be resolved with more precise data if you’re not updating the parameters
in the photosynthetic submodel

Again, we have now clarified that a parameter in the photosynthesis model (canopy efficiency
in ACM) is being updated by CARDAMOM.

L427: 1 fundamentally disagree that models should be benchmarked against highly-
derived, model-based data products. But this isn’t the central point of the paper and thus
I won’t hold up this paper over that disagreement.

Every data product used here is in some way model-derived — LAI from MODIS requires a
model, biomass from radar and landcover maps also, SOC data from interpolation and machine
learning approaches, even in-situ data such as GPP and Rec, are separated from NEE using a
wide range of partitioning algorithms.



L459: While it’s true that brute-force MCMC is not feasible for complex models, but
there are other options available that do work with larger models, such emulators (Fer et
al 2018 Biogeoscience) and ensemble or particle filters.

We agree that there are a range of alternative approaches beyond MCMC and decided to
include a sentence in Discussion including reviewer 2’s suggestion (S4.3; L476-477):

“Other viable options include using emulators (Fer et al., 2018) and particle filters
(Arulampalam et al., 2002), but MCMC methods provide the most detailed description
of error distributions.”

We also re-arranged the following sentences and merged paragraphs to improve clarity (S4.3;
L477-486):

“There remains a strong argument to utilize intermediate complexity models like
DALEC?2 to evaluate the minimum level of detail required to represent ecosystem
processes consistent with local observations, and to allow testing of alternate model
structures. And, assimilating further data products, for instance patterns in soil
hydrology and snow states across the pan-Arctic from earth observation, could
provide useful information on spatio-temporal controls on soil activity and microbial
metabolism to constrain below ground processes. This information would need to be
tied to process level information on SOM turnover generated from experimental
studies, and included in updated versions of DALEC. Thus, more field observations
are crucial across the pan-Arctic, specifically on decomposition and TT of SOC (He
et al., 2016) and respiratory processes such as partitioning of Reco into Ra and Ry
(Hobbie et al., 2000; McGuire et al., 2000), across the growing season and also during
wintertime (Commane et al., 2017; Zona et al., 2016).”

L477: For the record, if you didn’t fit every grid cell independently then you wouldn’t
need to upscale/interpolate field observations.

Our point is that critical ecological processes remain poorly understood, and so further field
observations are required to constrain these processes. Also, if each pixel had not been treated
independently, we would have then relied on PFTs with all their problems (clearly pointed at
Introduction and Discussion sections), and which is basically the opposite to what
CARDAMOM framework is about.

L495: Where are the DALEC2 and CARDAMOM code repositories?

Following up on reviewer 2 initial concern, we have submitted the code for DALEC2 on
Edinburgh DataShare. We are working to release a community version of CARDAMOM.

We have adjusted the text (L517-520):
“Data and software availability
CARDAMOM output used in this study is available from Exbrayat and Williams

(2018) from the University of Edinburgh’s DataShare service at
https://doi.org/10.7488/ds/2334. The DALEC2 code is also available on Edinburgh



DataShare at https://doi.org/10.7488/ds/2504. Contact MW for access to the
CARDAMOM software.”

Table 2: I find it interesting that, given the papers focus on turnover times, turnover
parameters are the least constrained part of the model.

Yes, this is the case, and reinforces the focus on TT in this analysis — we will only improve
forecasts of high latitude C dynamics from better understanding TT.




