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We thank the two reviewers for their ideas and suggestions to improve this paper. We have 
carefully considered them all and changed our manuscript accordingly. In the following we 
include a point-by-point response to the reviews, and attached a marked-up manuscript version 
showing the differences to the initially submitted version. Please note that the line numbers 
point to the non-marked manuscript.  
 
In general lines we cautiously considered each of the REF#1 and REF#2 comments, paying 
special attention to the tundra-taiga domain split, biases with biomass and GPP, the uncertainty 
reduction of the model parameters, and the GVM benchmarking exercise. We have included 
detailed answers to the questions raised, and have performed additional implementations, tests 
and changes to provide more support on these items. We paid special attention to 6 issues:  
 

• We revised the paper to specifically improve the introduction to facilitate a better 
understanding of the research context. We highlighted the explanation of transit time, 
its importance and the difference with other similar terminology used in literature. 

• The structure of some sections has been modified to improve comprehension and 
readability. Now it reads as:  

• We improved the method section with supporting equations and supplementary tables 
to better describe the experimental design and the data-assimilation framework.  

• We implemented a new conceptual diagram in Figure 1summarizing the C flux, stocks 
and transit times numbers described in section 3.1. We also implemented a new Table 
2 to illustrate the uncertainty reduction (priors vs posteriors) from all parameters in the 
model. Similarly, Figure 2, 3, 4, 5, 6, and 7, as well as Table 1, 3 were all implemented 
as result of the specific requirements from the Referees. 

• We substituted ISI-MIP models (forced with GCMs data) for ISI-MIP2a models (forced 
with ERA-Interim data) in the benchmarking analysis. Apart from the fact that these 
new models are run with similar climatic forcing, the ISI-MIP2a models also cover a 
larger temporal period (2000-2010) compared to the old 2000-2004 period. 

• We carefully edit the paper for clarity and communication (wrong wording and 
repetitions). Also, we incorporated a list of acronyms in the supplementary material to 
facilitate the large number of variable names, parameters and models.   
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1 Summary 
 
López-Blanco et al. apply a land carbon data assimilation system to assess carbon fluxes, 
stocks, and turnover times in arctic and boreal regions. Within the CARDAMON system, 
parameters of the DALEC2 model are optimized per 1◦ grid cell against observational 
datasets of LAI, biomass, and soil organic carbon. From the optimized model, carbon 
stocks, fluxes and turnover times are computed and then compared against results from 
global vegetation models (GVMs). The approach is very valuable because the carbon 
turnover in land ecosystem is a main uncertain feature of the global carbon cycle. I really 
appreciate this work; however, the paper needs substantial revisions before I can 
recommend publication in ESD (see major comments). Also the structure of many 
chapters needs to be revised because information are either repeated often at several 
places or is not given at the appropriate places (see specific comments). 
 
We thank Matthias Forkel for taking the time to assess our manuscript. We believe the 
comments have substantially improved the manuscript. We thoroughly considered each of the 
comments, paying special attention to the structure of the paper, to the tundra-taiga domain 
split, biases with biomass and GPP, the uncertainty reduction of the model parameters, and the 
GVM benchmarking exercise with the required ISI-MIP2a comparison 
 
2 Major comments 
 
2.1 Tundra-taiga transition and Mongolian grasslands 
 
The grassland region in Mongolia is rather a “steppe” than a tundra (lines 110-112, Fig. 
S1). Please separate steppe and tundra by either using a latitude threshold, temperature 
conditions, or a biome map. 
 
The reviewer is correct that the steppe should not be considered as tundra in lines 132-134, Fig. 
S1. We decided to remove the grasslands/steppes, and focus on higher latitudes and Arctic 
ecosystems consistent with the focus of the paper. We set the southern boundary of the taiga 
as our limit - that cuts out the Mongolian grasslands and looks more natural (see Figure S1). 
 
 
 
 



2.2 Computation of transit times 
 
Based on our theoretical assumptions on carbon turnover times (Carvalhais et al., 2014) 
[supplement], your computations of transit times are partly wrong. The turnover (or 
transit) time is defined by the C stock of a carbon pool and its outgoing flux. For ex- 
ample the transit time of vegetation is TT_vegetation = biomass / T whereby T includes 
all processes that remove C from vegetation (litter fall, disturbance, mortality, etc.). Un- 
der the steady state assumption (i.e. T = NPP), the transit time of the entire vegetation 
can be defined as TT_veg = biomass / NPP. Accordingly for the entire ecosystem, the 
transit time can be defined under the steady state assumption as TT_eco = (biomass + 
SOC) / Reco = (biomass + SOC) / GPP. 
In your calculations, all transit time are computed based on NPP However, only a fraction 
of NPP goes into the different C pools which is in DELC well defined based on the 
allocation parameters. Hence the correct computation of a transit time for a certain 
carbon pool should be based on a fraction of NPP: 
NPP_photo = a_foliage * NPP + a_labile * NPP [I assume that C_photo contains the foliar 
and labile C pools of DALEC2 but this is not described in the paper.] 
TT_photo = C_photo / NPP_photo 
TT_veg = C_veg / (NPP – NPP_photo) [should this rather be named TT_wood?] TT_soil 
= C_soil / litterfall [?] = C_soil / Rh [Why you name this TT_dom?] 
 
First, we need to clarify the terminology used here: Cphoto indeed corresponds to the sum of the 
foliar and labile pools, Cveg refers to the sum of all vegetation pools (foliar, labile, wood and 
roots) while Cdom is the sum of the litter and SOM pools. 
We were not clear here - we have used C input into each pool to calculate each pool’s transit 
time (as Matthias suggests). The text in the original paper section 2.2 was wrong in saying: 
 

“In this study, we addressed C turnover rates and decomposition processes as their 
inverse rates, this is the C transit time (TTphoto, TTveg and TTdom), represented as the 
ratio between each C stock and NPP.”  
 

The last bit should be (S2.2.1, L155-158): 
 

“In this study, we addressed C turnover rates and decomposition processes as their 
inverse rates, this is the C transit time (TTphoto, TTveg and TTdom), represented as the 
ratio between the mean C stock and the mean C input into that stock during the 
simulation period.”.  
 

 
To clarify, the transit time for each C pool at grid cell is derived following Bloom et al. (2016) 
procedure (explained in detail in their Supplementary material, equation 8) as:  
 

TTpool= !"##$
%&'(∆!"##$

 

 
Where Cpool is the mean pool size, Fin is the mean annual C pool input, and ∆Cpool is the mean 
annual change in pool size through 2000-2015 used to  correct the calculation for any changes 
in mean stocks over the study period. 
 
 



2.3 GVMs with GCM climate forcing 
 
What is the reason for using GVM results that are based on climate forcing from GCMs 
(lines 176-182)? ISIMIP provides also historical forcing that is based on observed cli- 
mate data and at least LPJmL provides also model output based on historical data 
(ISIMIP2A). I assume that the historical climate data better represents climate conditions 
than the (even though bias-corrected) GCM outputs. Differences in climate forcing can 
have huge impacts in GVMs. Hence, the comparison between CARDAMON (forced with 
reanalysis data) and GVM outputs is per se unfair and not comparable. 
I request that the comparison between CARDAMON and GVMs should be made com- 
parable by either taking GVM outputs from the historical forcing with ERA-Interim data 
or by running the optimized CARDAMON with the same GCM forcing. 
 
We understand Matthias' point about consistency between climate drivers. Therefore, we 
downloaded and used the ISIMIP2a simulations instead of the original ISIMIP1. This new 
implementation presents many advantages like a longer overlap of simulations (2001-2010) 
and more similar climate drivers based on the ERA-Interim reanalysis. Overall ISI-MIP2a 
models are closer related to CARDAMOM than ISI-MIP. ISI-MIP2a models estimated lower 
NPP, Cveg and TTveg than ISI-MIP, and the uncertainties were also lower. In general, we found 
higher R2 and lower RMSEs in NPP than Cveg and TTveg. Moreover, by using ISI-MIP2a models 
we remove odd comparisons such as with HYBRID, which may have led to a bias in the 
attribution analysis we earlier preformed. 
 
We therefore changed the method’s part related to ISI-MIP2a (S2.4, L223-232): 
 

“We compared CARDAMOM analyses of pan-Arctic net primary production (NPP), 
vegetation biomass carbon stocks (Cveg) and vegetation transit times (TTveg) against six 
participating GVMs in the ISI-MIP2a comparison project (Akihiko et al., 2017). In this 
study we have considered DLEM (Tian et al., 2015), LPJmL (Schaphoff et al., 2013; 
Sitch et al., 2003), LPJ-GUESS (Smith et al., 2014), ORCHIDEE (Guimberteau et al., 
2018), VEGAS (Zeng et al., 2005), and VISIT (Ito and Inatomi, 2012). The specific 
properties and degree of complexity of each ISI-MIP2a model are summarized in Table 
S5. The comparisons have been performed under the same spatial resolution as the 
CARDAMOM spatial resolution (1° x 1°) for the 2000-2010 period. Also, the chosen 
GVMs from the ISI-MIP2a phase have their forcing based on ERA-Interim climate 
data, similar to the forcing used in CARDAMOM. We estimated the degree of 
agreement using the statistics of linear fit (slope, intercept, R2, RMSE, and bias) per 
variable and model between CARDAMOM and GVMs, but also their spatial variability 
including stipples where the GVM datasets are within the CARDAMOM’s 90% 
confidence interval.” 

 
And the results section (S3.4, L311-338): 
 

“We used our highest confidence retrievals of NPP, Cveg and TTveg (i.e. retrievals 
including assimilated LAI, biomass and SOC) to benchmark the performance of the 
GVMs from the ISI-MIP2a project. In this assessment we compared not only their 
spatial variability across the pan-Arctic, tundra and taiga region (Figure 5), but also the 
degree of agreement between their mean model ensemble within the 90% confidence 
interval of our assimilation framework (Figure 6, Table 3). Overall, ISI-MIP2a models 
are in poor agreement with CARDAMOM across the pan-Arctic. NPP estimates 



(RMSE = 0.1 kg C m-2 yr-1; R2= 0.44) are in better agreement than Cveg (RMSE = 1.8 
kg C m-2; R2= 0.22) and TTveg (RMSE = 4.1 years; R2= 0.12). Moreover, the assessed 
GVMs estimated 8% lower NPP, 16% higher Cveg and 22% longer TTveg than 
CARDAMOM across the entire pan-Arctic domain (Figure 5 and 6) on average, with 
very varied spatial patterns.  
 
The poor agreement regarding TTveg between CARDAMOM and ISI-MIP2a (Table 3) 
is indicative of uncertainties in the internal C dynamics of these models. For instance, 
the slopes in Table 3 are steep and the R2 are poor – so there is a substantial 
disagreement in the spatial pattern, not just a large bias. Spatially, the stippling in Figure 
6 indicates areas where the GVMs are within the 90% CI of CARDAMOM; agreement 
is best over the taiga domain, rather than in tundra for TTveg. Some models (LPJ-
GUESS and ORCHIDEE) systematically calculate lower values in all the assessed 
variables, while others (LPJmL and VISIT) calculate higher estimates. The models in 
closer agreement with CARDAMOM were DLEM (5% difference) and LPJ-GUESS 
(17%) while VEGAS (44%) and ORCHIDEE (56%) were the models with larger 
discrepancies (Table 3; Figure 5 and 6). 
 
The attribution analysis to identify the origin of bias from ISI-MIP2a models indicated 
a joint split between NPP and Cveg for TTveg error simulated in GVMs (Figure 7). We 
used CARDAMOM to calculate two hypothetical TTveg (i.e. EXPERIMENT A TTveg = 
ISI-MIP2a Cveg / CARDAMOM NPP and EXPERIMENT B TTveg = CARDAMOM 
Cveg / ISI-MIP2a NPP) and then assessed the largest difference with CARDAMOM’s 
CONTROL TTveg. We estimated the hypothetical TTveg for each pixel in each model, 
and derived a pixel-wise measure of the contribution of biases in NPP and Cveg to biases 
in TTveg by overlapping their distribution functions (Figure 7). The distribution of the 
differences relative to CARDAMOM revealed that the higher error (i.e. the lower 
overlapped area, and by extension the largest contributor to TTveg biases) comes from 
ISI-MIP2a NPP with a 69% agreement in the distribution, while Cveg agrees 72%. In 
fact, the TTveg R2 for each model (Table 3) is very close to the product of the NPP R2 
and Cveg R2 for that model. i.e. the uncertainty on the TTveg is a direct interaction of 
NPP and Cveg uncertainty (R2 of the correlation = 0.71). This finding supports Figure 6, 
which shows TTveg error derives equally from both NPP and Cveg.” 

 
And the discussion section (S4.2, L420-446): 
 

“An ideal benchmarking tool for GVMs would compare model state variables and 
fluxes against multiple, independent, unbiased, error-characterised measurements 
collected repeatedly at the same temporal and spatial resolution. Of course direct 
measurements of key C cycle variables like these are not available. Even at FLUXNET 
sites GPP and Reco must be inferred, and NEE data often gap-filled. Satellite data can 
provide continuous fields, but do not directly measure ecological variables like biomass 
or LAI, so calibrated models are required to generate ecological products. Atmospheric 
conditions can introduce biases and data gaps into optical data that are poorly 
quantified. Upscaling of FLUXNET data requires other spatial data, e.g. MODIS LAI, 
which challenges the characterisation of error and generates complex hybrid products. 
We suggest that CARDAMOM provides some of the requirements of the ideal 
benchmark system – an error-characterised, complete analysis of the C cycle that is 
based on a range of observational products. CARDAMOM includes its own C cycle 
model; this has the advantage of evaluating the observational data for consistency (e.g. 



with mass balance), propagating error across the C cycle, and generating internal model 
variables such as TT. Further the model is of low complexity and independent of the 
benchmarked models. 
 
Using CARDAMOM as a benchmarking tool for six GVMs we found major 
disagreements for mapping of NPP, Cveg and TTveg across the Pan-Arctic for all models 
(Figure 6) against CARDAMOM confidence intervals. GVM NPP estimates had a 
higher correlation than TTveg and Cveg with CARDAMOM analyses (Table 3), but 
because CARDAMOM confidence intervals on NPP were relatively narrow (Figure 1) 
the benchmarking scores GVM NPP relatively poorly (Figure 6). Consequently, we 
used CARDAMOM to calculate the relative contribution of productivity and biomass 
to the transit times bias by applying a simple attribution analysis (Figure 7). We 
concluded that the largest bias to transit times originated not by a deficient 
understanding of one single component, but by an equal combination of both 
productivity and biomass errors together. Therefore, this study partially agrees with 
previous studies (Friend et al., 2014; Nishina et al., 2014; Thurner et al., 2017) 
highlighting the deficient representation of transit times/turnover dynamics, but we 
further suggest that GVM and ESM modellers need to focus on the productivity and 
vegetation C stocks dynamics to improve inner C dynamics. A major challenge for 
GVMs is the spin-up problem (Exbrayat et al., 2014). GVMs need to find a way to 
ensure that the spin-up process produces biomass estimates consistent with the growing 
availability of biomass maps from earth observations. CARDAMOM solves this 
problem by avoiding spin-up. Its fast run time allows the biomass maps to act as a 
constraint on the probability distribution of model parameters. There may be 
opportunities to use CARDAMOM style approaches to assist the GVM community 
address this problem.” 

 
2.4 Biases with biomass and GPP – wrong use of data and parameter uncertainties? 
CARDAMON underestimates the biomass and FLUXCOM GPP. The overestimation of 
FLUXNET GPP is contradictory but the source of the mismatch is almost impossible to 
assess given the scale mismatch between FLUXNET sites and 1◦ grid cells. However, if 
we would assume that both biomass and FLUXCOM GPP are consistent; this could tell 
us that CARDAMON only needs a higher GPP to gain higher biomass. I’m wondering if 
it was actually possible to constrain both biomass and GPP within the assimilation 
framework. Were there any prior parameters used that constrain GPP? As far as I can 
understand the setup of the approach, there were no data and no parameters included 
that would constrain GPP (apart from LAI that, however, likely only constrains the 
seasonality of GPP). To better understand the assimilation results, it is necessary to show 
maps of reduction of uncertainty of each DALEC2 model parameter. Which parameters 
were mostly reduced (phenology, allocation, C pools, turnover rates)? 
Please also note that the biomass map by Thurner et al. (2014) is largely in agreement 
with in situ observations of forest carbon density in Russia and slightly underestimates 
in the USA. If CARDAMON underestimates the biomass, this implies that it would even 
stronger underestimate the in situ observations than the biomass map. From the results, 
I get the feeling that the assimilation is over-confident in the SOC data and degrades the 
performance with the biomass map. Hence the key question is how data uncertainties 
were used as weights in the assimilation? The uncertainties in SOC are much larger than 
in biomass (Carvalhais et al., 2014); so I expect that CARDAMON should rather fit the 
biomass map than the SOC map if these data uncertainties were correctly used. 
 



Matthias asks why the biomass relationship is not 1:1, i.e. why does CARDAMOM not force 
biomass or LAI to match the assimilated data from Carvalhais et al. (2014) and Myneni et al. 
(2002), when we do effectively get SOM to match the assimilated data.  
 
It is correct that we do not have a direct constraint on the magnitude of GPP, except for the 
prior we provide (Table S1). The magnitude of GPP is not so well constrained in 
CARDAMOM as is its spatial and temporal variability by LAI. We rely on the Aggregated 
Canopy Model (ACM; Williams et al. 1997) global calibration which is based on SPA runs 
with some fixed leaf N content. The comparison here suggests that the ACM prior is biased 
compared to the Arctic, and hence the mismatch. We could assimilate the FLUXCOM GPP 
data, but here wanted to use FLUXCOM as an independent check. By not assimilating Jung et 
al., 2017 we have a clearer idea of model reliability and the calculation of transit times. We can 
conclude that the mismatch is due to using different models; (Jung et al. (2017) uses a range of 
machine-learning techniques to upscale flux data, we use a process-based ecosystem model 
DALEC2). 
 
The likely answer to why CARDAMON underestimates FLUXCOM GPP perhaps is that our 
GPP estimate is biased low to Jung et al. (due to the calibration of ACM); this leads to less 
NPP which results in a low bias on LAI and biomass. The new implementation in Figure 2 
shows that our error includes the 1:1 line, so we are not far out. However, we note that the 
CARDAMOM regional mean GPP estimate of 314 gC m-2 yr-1 in tundra is intermediate 
between the regional models’ (350) and global models’ (272) reported in McGuire et al. (2012) 
estimates, as noted in the Discussion). 
 
We add the following text to the discussion (S4.1, L386-400): 
 

 “In general, we found a reasonable agreement between CARDAMOM and assimilated 
and independent data at pan-Arctic scale. CARDAMOM retrievals of assimilated data 
are in good agreement with the SOC (Figure 2). The simulation of TTdom is weakly 
constrained (Table 1) - our analysis adjusts TT to match mapped stocks, hence the 
strong match of modelled to mapped SOC. So, independent data on TTdom data (e.g. 
14C) is required across the pan-Arctic region to provide stronger constraint on process 
parameters and reduce the very broad confidence intervals of CARDAMOM analyses. 
The low bias in mean estimates of LAI and biomass (Figure 2) likely relates to the 
strong prior on photosynthesis estimates from the ACM model, which lacks a 
temperature acclimation for high latitudes in this implementation. However, the 
uncertainty in the biomass and LAI analyses spans the magnitude of the bias. So, 
CARDAMOM generates some parameters sets that are consistent with observations. 
CARDAMOM produces analyses that reproduce the pattern of LAI, GPP, biomass and 
SOC (Figure 2 and 3) – this demonstrates that the DALEC model structure can be 
calibrated to simulate the links between these variables as a function of mass balance 
constraints, and realistic process interactions and climate sensitivities. Biases could be 
reduced by assimilation of data with better resolved errors. Greater confidence in LAI 
and biomass data would increase the weight on their assimilation, and result in analyses 
closer to these data, overriding model priors by adjusting photosynthesis upwards. 
Further experiments can evaluate this possibility. Certainly the need for robust 
characterisation of error for data products is of critical importance for improved 
analyses” 

 



On top of that, the mapping of uncertainty reduction was a very good idea, which we have 
implemented (Table 2 and Figure S2):  
 
 

Table 2. Parameter uncertainty reduction in percentage ranked from least (red) to most 
(blue) constrained in the pan-Arctic, tundra and taiga domains. The reduction 
percentage is calculated based on the difference between the 90% CI prior range and 
the 90% CI posterior range.  

 

Parameter Name Process Pan-Arctic Tundra Taiga
MRlitter Litter mineralization Turnover 3.3 3.6 2.9
TORroots Root turnover Turnover 4.8 7.2 2.2
TORwood Wood turnover Turnover 9.0 8.5 9.7
Clitter Litter C stock Stocks 13.9 13.7 14.1
Drate Decomposition rate Turnover 18.2 18.6 17.8
frau Fraction of GPP respired (Autotropic respiration) Allocation 30.9 31.7 30.2
Lf Leaf fall duration Phenology 37.3 25.0 51.1
LMA Leaf mass per  area Phenology 42.8 46.3 38.9
Croots Fine root C stock Stocks 52.4 72.1 30.3
Rl Labile C release duration Phenology 53.1 52.0 54.4
fwood Fraction of NPP to wood C pool Allocation 65.8 68.1 63.3
Fday Leaf fall day Phenology 67.0 51.1 84.8
MRsom Soil organic matter mineralization Turnover 69.1 69.6 68.6
flabile Fraction of NPP to labile C pool Allocation 74.2 75.5 72.8
Ceff Canopy efficency Phenology 74.7 75.5 73.7
froots Fraction of NPP to roots C pool Allocation 75.7 74.7 76.8
Bday Leaf onset day Phenology 76.2 67.4 86.1
CSOM Soil organic matter C stock Stocks 80.7 81.4 80.0
L Lifespan Turnover 83.4 76.4 91.4
ffoliar Fraction of NPP to foliage C pool Allocation 88.0 88.6 87.4
Clabile Labile C stock Stocks 92.2 95.3 88.8
Cwood Woody C stock Stocks 92.6 90.1 95.5
Cfoliar Foliar C stock Stocks 95.2 96.0 94.3



 
Figure S2. Posterior distributions of parameters estimated for the CARDAMOM 
assimilation framework in the Pan-Arctic pan-Arctic, tundra and taiga. All y-axes have 
been scaled to indicate prior ranges (Table S1). Whiskers indicate 90% confidence 
interval (P05-P95), box indicates interquartile range (P25-P75) and center line 
represents the median (P50). The whisker plots represents the average (spatial 
variability in pan-Arctic, tundra and taiga domains) for each percentile (P05, P25, P50, 
P75, P95).  



 
A new paragraph in section the implemented section 3.2 rank the uncertainty reduction (prior 
range vs posterior range) per parameter (S3.2, L274-285):  
 

“The degree to which posterior distributions were constrained from the prior 
distributions in each of the 17 model parameters and 6 initial stock sizes (Table S2) 
varied considerably depending on the parameters in question and their related 
processes (Table 2 and Figure S2). The 90% CI posterior range of foliar, wood, labile 
and SOM C stocks (Cfoliar, Cwood, Clabile and Csom) as well as parameters such as 
allocation to foliage (ffol) and lifespan (L) were considerably reduced (>80% 
uncertainty reduction compared to priors) most likely controlled by the information 
on LAI, biomass and SOC constraints. Contrarily, parameters that have not been not 
regulated in any way in the MHMCMC algorithm, i.e. turnover processes such as litter 
mineralization (MRlitter), roots turnover (TORroots), wood turnover (TORwood), 
decomposition rates (Drate) and initial C stock such as litter (Clitter) were found poorly 
constrained (<20% uncertainty reduction). Overall, the uncertainty reduction 
classified by processes and ranked from most to least constrained estimated a 71% 
reduction for C stocks, 67% reduction for C allocation, 59% for plant phenology and 
31% for C turnover related parameters. Although there are not substantial differences 
between tundra and taiga, Croots was better constrained in tundra regions (42%), while 
leaf onset day (Bday), leaf fall day (Fday), leaf fall duration (Lf) were better constrained 
in taiga regions (>18% or more).” 

 
In summary, please report: 
 

1. Which data uncertainties were used and how they were included in the 
assimilation;  
 
We defined uncertainties used in the likelihood function based on Bloom et al. (2016): 
log (1.5) for SOC and biomass, both assumed to be representative of initial conditions, 
and log (2) for LAI. Please see at point 3 the cost function used and how data 
uncertainty were included in the assimilation.  
 

 
2. How parameter prior uncertainties were included in the assimilation; 
 
In each 1º x 1º pixels, we applied the MHMCMC algorithm to determine the probability 
distribution of the optimal parameter set and initial conditions (𝑥+;	Table S2) given 
observational constraints (𝑂+; LAI, SOC and biomass, Table S3) using the same 
Bayesian inference approach described in Bloom et al. (2016): 
 
𝑝(𝑥+ |𝑂+) ∝ 𝑝(𝑥+) 𝑝(𝑂+ |𝑥+)         (1) 
 
First, in the expression 1, 𝑝 (𝑥+) represents the prior probability distribution of each 
DALEC2 parameter (𝑥+) and is expressed as: 

𝑝(𝑥+) = 𝑝12!(𝑥+)  𝑒
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where	𝑝12!(𝑥+) is the prior parameter probability according to the EDCs included in 
Table S2 and described in Bloom and Williams (2015). In addition, prior values for two 
parameters and their uncertainties (canopy efficiency[Ceff] and fraction of GPP respired 
[fauto]) are imposed with a log-normal distribution following Bloom et al. (2016) to be 
consistent with the global GPP range estimated in Beer et al. (2010) and fauto ranges 
specified by DeLucia et al. (2007) respectively. 
 
3. How the cost function was designed and the different datasets weighted; 
 
𝑝(O|𝑥+) from expression 1 represents the likelihood of	𝑥+ with respect to 𝑂+, and it is 
calculated based on the ability of DALEC2 to reproduce (1) biomass (Carvalhais et al., 
2014), (2) SOC (Hugelius et al., 2013a, Hugelius et al., 2013b), and (3) MODIS LAI 
(Myneni et al., 2002). Because MODIS LAI, SOC and biomass data lack specific 
uncertainty estimates, we used the same broad uncertainty factors as per Bloom et al. 
2016: log-transformed (1.5) for SOC and biomass (i.e. ´/÷ 1.5 spans 67% of the 
expected error), both assumed to be representative of initial conditions, and log(2) for 
LAI: 
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4. What are the changes between prior and posterior parameter uncertainties. 

 
This question has been addressed earlier on in point 2.4, referring to new Table 2, 
Figure S2 and Text in S3.2, L274-285. 
 
 

In order to improve a solid piece all together with the above set of requests, and because the 
initial text in the method part referred mostly to previous work and lacked a more specific 
description of CARDAMON, we decided to redraft this new section (S2.2.2, L160-202) to 
provide some more details and equations: 
 

“The intermediate complexity of the DALEC2 model compared to typical GVMs 
models facilitates computationally intense data-assimilation to optimize the initial stock 
conditions and the 17 process parameters that shape C dynamics. CARDAMOM is 
forced with climate data from the European Centre for Medium-Range Weather 
Forecast Reanalysis interim (ERA-interim) dataset (Dee et al., 2011) for the 2000-2015 
period. A Bayesian Metropolis-Hastings Markov chain Monte Carlo (MHMCMC) 
algorithm is used to retrieve the posterior distributions of the process parameters 
according to observational constraints and Ecological and Dynamic constraints (EDCs; 
Bloom and Williams, 2015). EDCs ensure that DALEC2 simulations of the terrestrial 
carbon cycle are realistic and ecologically viable and help to reduce the uncertainty in 
the model parameters by rejecting estimations that do not satisfy different conditions 
applied to C allocation and turnover rates as well as trajectories of C stocks.  
 
Observational constraints include monthly time series of Leaf Area Index (LAI) from 
the MOD15A2 product (Myneni et al., 2002), estimates of vegetation biomass 
(Carvalhais et al., 2014) and soil organic carbon content (Hugelius et al., 2013a; 
Hugelius et., 2013b) (Table S3). We aggregated ~130,000 1-km resolution MODIS LAI 



data monthly within each 1x1 degree pixel. We aggregated biomass data at 0.5° 
resolution from Carvalhais et al. (2014) to 1° resolution. These are based on remotely-
sensed forest biomass and upscaled GPP based on data driven estimates (Jung et al., 
2011) covering the pan-Arctic domain. We used the NCSCD spatial explicit product 
(Hugelius et al., 2013a; Hugelius et al., 2013b)  which was generated from 1778 soil 
sample locations interpolated to a 1° grid. There is significant uncertainty for these data, 
due to the models involved in generating LAI and biomass, and the interpolation 
process for soils. Hence we apply broad confidence intervals commensurate with this 
uncertainty (Equation 3).).  
 
We apply the setup described above to 3304 1º x 1º pixels (1686 in tundra; 1618 in 
taiga) using a monthly time step. Each pixel is treated independently without assuming 
a prior land cover or plant functional type and we assume no spatial correlation between 
uncertainties in all pixels. In each 1º x 1º pixels, we applied the MHMCMC algorithm 
to determine the probability distribution of the optimal parameter set and initial 
conditions (𝑥+;	Table S2) given observational constraints (𝑂+; LAI, SOC and biomass, 
Table S3) using the same Bayesian inference approach described in Bloom et al. (2016): 
 
𝑝(𝑥+ |𝑂+) ∝ 𝑝(𝑥+) 𝑝(𝑂+ |𝑥+)        (1) 
 
First, in the expression 1, 𝑝 (𝑥+) represents the prior probability distribution of each 
DALEC2 parameter (𝑥+) and is expressed as: 
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where	𝑝12!(𝑥+) is the prior parameter probability according to the EDCs included in 
Table S2 and described in Bloom and Williams (2015). In addition, prior values for two 
parameters and their uncertainties (canopy efficiency[Ceff] and fraction of GPP respired 
[fauto]) are imposed with a log-normal distribution following Bloom et al. (2016) to be 
consistent with the global GPP range estimated in Beer et al. (2010) and fauto ranges 
specified by DeLucia et al. (2007) respectively.  
 
Second,  𝑝(O|𝑥+) from expression 1 represents the likelihood of	𝑥+ with respect to 𝑂+, 
and it is calculated based on the ability of DALEC2 to reproduce (1) biomass 
(Carvalhais et al., 2014), (2) SOC (Hugelius et al., 2013a, Hugelius et al., 2013b), and 
(3) MODIS LAI (Myneni et al., 2002). Because MODIS LAI, SOC and biomass data 
lack specific uncertainty estimates, we used the same broad uncertainty factors as per 
Bloom et al. 2016: log-transformed (1.5) for SOC and biomass (i.e. ´/÷ 1.5 spans 67% 
of the expected error), both assumed to be representative of initial conditions, and log(2) 
for LAI: 
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For each 1º x 1º pixel we run three MHMCMC chains with 107 accepted simulations 
each until convergence of at least two chains. We use 500 parameter sets sampled from 
the second half of each chain to describe the posterior distribution of parameter sets. 
We produce confidence intervals of terrestrial C fluxes and stocks from the selected 
parameter sets. In the following we report highest confidence results (median; P50) and 



the uncertainty represented by the 90% confidence interval (5th percentile to 95th 
percentile, RS8

R68 ).”  
 
2.5 Benchmarking ISIMIP with CARDAMON 
At this point, I will not further comment on chapter 3.3. given the inconsistencies in cli- 
mate forcing between CARDAMON and GVMs and given the fact that it is not clear how 
data uncertainties were treated in the assimilation and hence affect the CARDAMON 
results. 
 
We both addressed new analysis with ISI-MIP2a datasets (responses to point 2.3) and the new 
information provided based on data uncertainties (point 2.4B). 
 
3 Specific comments 
 
1 Introduction: I suggest to slightly restructure the Introduction to make things a bit 
more clear. For example, several topics are mentioned twice: “transit times” (around 
lines 48 and 76), the available data (lines 46-59 and 83-86), and the specific features of the 
arctic carbon cycle (1. Paragraph, lines 55-59). In addition, the meaning of “transit times” 
is never explained. I suggest to: 
- keep the first paragraph as it is, 
 
We slightly implemented it with few more items (S1, L35-53): 

 
“Arctic ecosystems play a significant role in the global carbon (C) cycle (Hobbie et al., 
2000; McGuire et al., 2009; McGuire et al., 2012). Slow organic matter decomposition 
rates due to cold and poorly drained soils in combination with cryogenic soil processes 
have led to an accumulation of large stocks of C stored in the soils, much of which is 
currently held in permafrost (Tarnocai et al., 2009). The permafrost region soil organic 
C (SOC) stock is more than twice the size of the atmospheric C stock; and accounts for 
approximately half of the global SOC stock (Hugelius et al., 2014; Jackson et al., 2017). 
High latitude ecosystems are experiencing a temperature increase that is nearly twice 
the global average (AMAP, 2017). The expected future increase of temperature (IPCC, 
2013), precipitation (Bintanja and Andry, 2017), and growing season length (Aurela et 
al., 2004; Groendahl et al., 2007) will likely have consequences the the Arctic net C 
balance. As high latitudes warm, C cycle dynamics may lead to an increase of carbon 
dioxide (CO2) emissions through ecosystem respiration (Reco) driven by for example 
larger heterotrophic respiration (Commane et al., 2017; Schuur et al., 2015; Zona et al., 
2016), drought stress on plant productivity (Goetz et al., 2005) and episodic 
disturbances (Lund et al., 2017; Mack et al., 2011). However, temperature-induced 
vegetation changes may counterbalance those effects by photosynthetic enhancement 
(Forkel et al., 2016; Graven et al., 2013; Lucht et al., 2002; Zhou et al., 2001; Zhu et 
al., 2016). Two examples are the increase of gross primary productivity (GPP) due to 
extended growing seasons, nutrient availability and CO2 fertilization (Abbott et al., 
2016; Myers-Smith et al., 2015; Myneni et al., 1997) and the shifts in vegetation 
dynamics such as shrub expansion (Myers-Smith et al., 2011). Consequently, 
phenology shifts may feedback on climate with unclear magnitude and sign (Anav et 
al., 2013; Murray-Tortarolo et al., 2013; Peñuelas et al., 2009). As a result of the 
significant changes that are already affecting the structure and function of Arctic 
ecosystems, it is critical to understand and quantify the C dynamics of the terrestrial 
tundra and taiga and their responses to climate change (McGuire et al., 2012).” 



 
- to rewrite the second paragraph: define “transit” and/or “turnover” and /or “residence” 
time and why it is important, 
 
In S1, L54-71: 
 

“Although the land surface is estimated to offset 30% of anthropogenic emissions of 
CO2 (Canadell et al., 2007; Le Quéré et al., 2018), the terrestrial C cycle is currently 
the least constrained component of the global C budget and large uncertainties remain 
(Bloom et al., 2016). Despite the importance of Arctic tundra and taiga biomes in the 
global land C cycle, our understanding of interactions between the allocation of C from 
net primary productivity (NPP), C stocks (Cstock), and transit times (TT), is deficient 
(Carvalhais et al., 2014; Friend et al., 2014; Hobbie et al., 2000). The TT is a concept 
that represents the time it takes for a particle of C to persist in a specific C stock and it 
is defined by the C stock and its outgoing flux, here addressed as TT = C stock / NPP at 
steady state. According to a recent study by Sierra et al. (2017), TT is an important 
diagnostic metric of the C cycle and a concept that is independent of model internal 
structure and theoretical assumptions for its calculation. Terms such as residence time 
(Bloom et al., 2016; Friend et al., 2014), turnover time (Carvalhais et al., 2016), and 
turnover rate (Thurner et al., 2016; TT = 1/turnover rate) are used in the literature to 
represent the concept of TT (Sierra et al. 2017). Studies have focused more on the 
spatial variability with climate of ecosystem productivity rather than for C transit time 
dynamics (Friend et al., 2014; Nishina et al., 2015; Thurner et al., 2016; Thurner et al., 
2017). Friend et al. (2014) detailed that transit time dominates uncertainty in terrestrial 
vegetation responses to future climate and atmospheric CO2. They found a 30% larger 
variation in modelled vegetation C change than response of NPP. Nishina et al. (2015) 
also suggested that long term C dynamics within ecosystems (vegetation turnover and 
soil decomposition) are more critical factors than photosynthetic processes (i.e. GPP or 
NPP). The respective contribution of bias from biomass and NPP to biases in transit 
times remains unquantified. Without an appropriate understanding of current state and 
dynamics of the C cycle, its feedbacks to climate change remains highly uncertain 
(Hobbie et al., 2000; Koven et al., 2015b).” 
 

 
- to write in the third paragraph about the available in situ and satellite-based data to 
assess “turnover” times and the associated uncertainties, 
 
In S1, L72-87: 
 

“There are currently efforts to incorporate both in-situ and satellite-based datasets to 
assess C cycle retrievals and to reduce uncertainties. At local scale, the net ecosystem 
exchange (NEE) of CO2 between the land surface and the atmosphere is usually 
measured using eddy covariance EC techniques (Baldocchi, 2003). International efforts 
have led to the creation of global networks such as FLUXNET 
(http://fluxnet.fluxdata.org/) and ICOS (https://www.icos-ri.eu/), to harmonise data and 
support the reduction of uncertainties around the C cycle and its driving mechanisms. 
However, upscaling field observations to estimate regional to global C budget presents 
important challenges due to insufficient spatial coverage of measurements and 
heterogeneous landscape mosaics (McGuire et al., 2012). Furthermore, harsh 
environmental conditions in high latitude ecosystems and their remoteness complicates 



the collection of high-quality data (Grøndahl et al., 2008; Lafleur et al., 2012). Given 
the lack of continuous, spatially distributed in situ observations of NEE in the Arctic, it 
remains a challenging task to calculate with certainty whether or not the Arctic is a net 
C sink or a net C source, and how the net C balance will evolve in the future (Fisher et 
al., 2014). Over the past decade, regional to global products generated from in situ 
networks and/or satellite observations have improved our understanding of the 
terrestrial C dynamics. These range from machine-learning based upscaling of 
FLUXNET data (Jung et al., 2017), remotely-sensed biomass products (Carvalhais et 
al., 2014; Thurner et al., 2014) and the creation of a global soil database 
(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). However, these products tend to lack clear 
error estimates. Due to a reliance on interpolation and upscaling with other spatial data, 
it is challenging to evaluate these products for inherent biases. ” 

 
- to write in the fourth paragraph about the inabilities and uncertainties of GVMs with 
respect to turnover times, 
 
In S1, L88-103: 
 

“Global Vegetation Models (GVM) have been developed to determine global terrestrial 
C cycles and represent vegetation ecosystem processes including the structural (i.e. 
growth, competition, and turnover) and biogeochemical (i.e. water, carbon, and 
nutrients cycling) responses to climate variability (Clark et al., 2011; Fisher et al., 2014; 
Friend and White, 2000; Ito and Inatomi, 2012; Pavlick et al., 2013; Sitch et al., 2003; 
Smith et al., 2001; Woodward et al., 1995). The advantage of using process-based 
models to characterise C dynamics is that processes which drive ecosystem-atmosphere 
interactions can be simulated and reconstructed when data is scarce. However, C cycle 
modelling in GVMs typically relies on pre-arranged parameters retrieved from 
literature, prescribed plant-functional-type (PFT) and spin-up processes until the C 
stocks (biomass and SOC) reach their steady state. Further, inherent differences of 
model structure contribute more significantly to GVM uncertainties (Exbrayat et al., 
2018; Nishina et al., 2014), than from differences in climate projections (Ahlström et 
al., 2012). Many model inter-comparison projects have demonstrated a lack of 
coherence in future projections of terrestrial C cycling (Ahlström et al., 2012; 
Friedlingstein et al., 2014). Recent studies have used simulations from the first phase 
of the Inter-Sectoral Impact Model Inter-comparison Project (ISI-MIP) (Warszawski et 
al., 2014) to evaluate the importance of key elements regulating vegetation C dynamics, 
but also the estimated magnitude of their associated uncertainties (Exbrayat et al., 2018; 
Friend et al., 2014; Nishina et al., 2014; Nishina et al., 2015; Thurner et al., 2017). An 
important insight is that TTs in GVMs are a key uncertain feature of the global C cycle 
simulation. Further, GVMs tend not to report uncertainties in their estimates of stocks 
and fluxes, which weakens their analytical value.”  

 
- and finally to present model-data integration and CARDAMON as the potential 
“solution” in the last paragraph including the definition of your objectives. 
 
In S1, L104-122: 
 

“An approach to address these issues is to integrate models and data more formally. 
Data assimilation quantifies how model parameters can be adjusted to estimate C stocks 
and fluxes consistent with multiple observations (Fox et al., 2009; Luo et al., 2009; 



Williams et al., 2005). By following Bayesian methods, the uncertainty on observations 
weights the degree of data constraint, and the outcome is a set of acceptable 
parameterisations linked to likelihoods. Overall, this approach determines whether 
model structure, observations and forcing are (in)consistent, and thus assesses validity 
of model structure. By assimilating co-located climatic, ecological and biogeochemical 
data from remote sensing observations at a specific grid scale across landscapes and 
regions we can map parameter estimation and uncertainties.  
 
Here, we use the CARbon DAta MOdel framework (CARDAMOM) (Bloom and 
Williams, 2015; Bloom et al., 2016; Smallman et al., 2017) to retrieve the pan-Arctic 
terrestrial carbon cycle at 1º resolution for the 2000-2015 period in agreement with 
gridded observations of LAI, biomass and SOC stocks. We compare analyses of C 
dynamics of Arctic tundra and taiga against (a) global products of GPP (Jung et al., 
2017) and heterotrophic respiration (Rh) (Hashimoto et al., 2015); (b) NEE, GPP and 
Reco field observations from 8 sub- and high- Arctic sites included in the 
FLUXNET2015 dataset, and (c) 6 extensively used GVMs from the ISI-MIP2a 
comparison project (Warszawski et al., 2014). Our objectives are to (1) present and 
evaluate the analyses and uncertainties of the current state of the pan-Arctic terrestrial 
C cycling using a model-data fusion system, (2) quantify the degree of agreement 
between the CARDAMOM product with local to global scale sources of available data, 
and (3) use CARDAMOM as a benchmarking tool for the ISI-MIP2a models to provide 
general guidance towards GVM improvements in transit time simulations, taking the 
advantage that this assimilation system produces error estimates, and is constrained by 
observations. Finally, we suggest future work to be done in the context of advancing 
pan-Arctic C cycling modelling.” 

 
 
Line 37: Use either “warming” or “temperature increase” but not “warming increase” 
because this would be an acceleration in temperature increase. 
 
This has been changed to temperature increase (S1, L40). 
 
Line 40-41: In addition to Lucht et al. and Myneni et al., you could also cite more recent 
related publications (Forkel et al., 2016; Graven et al., 2013; Zhu et al., 2016) [I don’t 
request to include my paper!] 
 
Thanks for the recommendation, all the suggested publications have been added (S1, L46-47). 
 
Line 48 and lines 75-82: “transit times” – Carvalhais et al. use “turnover” time, Friend 
et al. “residence” time, and Thurner et al. (2016) “turnover rate”. Is there a reason why 
you use “transit time” and why you are not using one of the other terms? Please provide 
a short definition of these terms or the term that you are using and how they differ. 
 
The “transit time” terminology instead of others arose from a paper by Sierra et al. (2017): 
https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.13556  
 
The new paragraph two of the introduction (S1, L54-71) has been restructured based on your 
previous comment and we clarified why we used transit time and not the other terms. We also 
provided a short definition and how they differ. 
 



Line 61: “PFT or spin-up”: The “or” should be replaced by “and”. 
 
Changed accordingly (S1, L94). 
 
Line 74: Relevant is also the work by Thurner et al. (2016) 
 
Reference included now (S1, L65). 
 
Lines 84-85: Please provide references. 

 
References have been provided accordingly (S1, L82-85): 
 

“Over the past decade, regional to global products generated from in situ networks 
and/or satellite observations have improved our understanding of the terrestrial C 
dynamics. These range from machine-learning based upscaling of FLUXNET data 
(Jung et al., 2017), remotely-sensed biomass products (Carvalhais et al., 2014; Thurner 
et al., 2014) and the creation of a global soil database 
(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012).” 

 
Line 87: A reference to a general overview paper on model-data integration might be 
useful. 

 
An updated text, including extra information and general references regarding model-data 
integration, have been implemented (S1, L104-110): 

 
“An approach to address these issues is to integrate models and data more formally. 
Data assimilation quantifies how model parameters can be adjusted to estimate C stocks 
and fluxes consistent with multiple observations (Fox et al., 2009; Luo et al., 2009; 
Williams et al., 2005). By following Bayesian methods, the uncertainty on observations 
weights the degree of data constraint, and the outcome is a set of acceptable 
parameterisations linked to likelihoods. Overall, this approach determines whether 
model structure, observations and forcing are (in)consistent, and thus assesses validity 
of model structure. By assimilating co-located climatic, ecological and biogeochemical 
data from remote sensing observations at a specific grid scale across landscapes and 
regions we can map parameter estimation and uncertainties.” 

 
Line 95-96: It is not clear to me how your analysis will provide further insight into GVMs 
that goes beyond the work of Friend et al. (2014), Carvalhais et al. (2014), and Thurner 
et al. (2017). Please make clear what kind of additional knowledge you are expecting from 
your analysis on the problems of GVMs. 
 
Our system is constrained by both model structure and varied observations, using the EDCs to 
make sure that processes are realistic and ecologically viable. The previous studies have largely 
focused either on model analyses (Friend et al) or on combining data products (Carvalhais, 
Thurner et al) to generate TT. Here we use CARDAMOM to combine the information 
contained in model structure with independent observational data to produce a consistent, 
robust analysis. Our approach avoids using PFTs and steady state assumptions (typical in the 
GVMs). By including a mass balance constraint on the C cycle we evaluate consistency among 
different data sets (e.g. SOM, biomass, LAI, climate) using our model structure to generate TT. 
Thus the novelty of this study is a data-constrained descriptions of C cycling for numerous live 



and dead pools, and their transit times, with errors at pixel scale. We use the complete 
assessments to assess better GVMs, to identify how to produce more constrained forecasts of 
this sensitive region. 
 
We refined the aim (3) in the following (S1, L116-121): 
 

“Our objectives are to (1) present and evaluate the analyses and uncertainties of the 
current state of the pan-Arctic terrestrial C cycling using a model-data fusion system, 
(2) quantify the degree of agreement between the CARDAMOM product with local to 
global scale sources of available data, and (3) use CARDAMOM as a benchmarking 
tool for the ISI-MIP2a models to provide general guidance towards GVM 
improvements in transit time simulation, taking the advantage that this assimilation 
system produces error estimates, and is constrained by observations.” 

 
Lines 106-107: Please define which classes you used to separate forest and non- forest. 
 
This new line has been included in the text to better refer to the different classes used to separate 
tundra and taiga domains (S2.1, L129-130): 

“A complete description of the classes included in each domain can be found in Figure 
S1 and caption.” 
 

Figure S1 caption states now: 
  

“Figure S1. Spatial domain defined by the Northern Circumpolar Soil Carbon Database 
version 2 (NCSCDv2) region. The tundra- taiga regions were separated based on the 
presence-absence of forested areas using the GlobCover map 
(http://due.esrin.esa.int/page_globcover.php). Forested areas (taiga) included: closed to 
open broadleaved evergreen or semi-deciduous forest (>5m), closed (>40%) 
broadleaved deciduous forest (>5m), open (15-40%) broadleaved deciduous 
forest/woodland (>5m), closed (>40%) needleleaved evergreen forest (>5m), open (15-
40%) needleleaved deciduous or evergreen forest (>5m) and closed to open (>15%) 
mixed broadleaved and needleleaved forest (>5m). Non-forested areas (tundra) 
included the rest of classes: mosaic forest or shrubland (50-70%) / grassland (20-
50%),mosaic grassland (50-70%) / forest or shrubland (20-50%), closed to open 
(>15%) (broadleaved or needleleaved, evergreen or deciduous) shrubland, closed to 
open (>15%) herbaceous vegetation (grassland, savannas or lichens/mosses), sparse 
(<15%) vegetation, closed to open (>15%) broadleaved forest regularly flooded (semi-
permanently or temporary), closed (>40%) broadleaved forest or shrubland 
permanently flooded, and closed to open (>15%) grassland or woody vegetation on 
regularly flooded or waterlogged, post-flooding or irrigated croplands (or aquatic), 
rainfed croplands, mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) 
(20-50%), mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-
50%), bare areas and permanent snow and ice. On top of that, latitudes lower than 52°N 
within the tundra domain were neglected to focus on higher latitudes.” 

 
Section 2.2: The description of CARDAMON refers mostly to previous work. However, 
to understand _this_ paper, I suggest to provide some more details or equations with 
respect to the following questions: 
 



- LAI, biomass, and SOC are used as data sets in a cost function for parameter 
estimation and not as forcing data. Is this correct? 
 
This is correct, we now better describe this in the methods (see our latter comment in 
point 2.4 (major comments) including the new section 2.2.2 from the main text). On 
top of this, we included a new Table S3 describing which datasets were used as forcing, 
data constraints and independent validation. 
 
- What is the cost function? How are the differences in the number of data points 
weighted (LAI is a time series, SOC and biomass only single values per grid cell)? 
 
The cost function was already described before in point 2.4 (major comments) 
including the new section 2.2.2 from the main text.  
Regarding the second question, basically Equations 2 and 3 answer this: we did not 
weight for differences in the number of data points.  
 
- Why is the MHMCMC algorithm used three times? Does it not explore the full 
parameter space if it is applied only once? Or are there difference in initial values? 
 
The process is repeated to make sure independent chain converge to the same posterior 
distribution. This is a standard procedure in MCMC analyses, see for example Vrugt et 
al. (2003) and Kuczera and Parent (1998). In CARDAMOM we only keep parameters 
from the chains which have converged. 
 
Vrugt, J. A., H. V. Gupta, W. Bouten, and S. Sorooshian (2003), A Shuffled Complex 

Evolution Metropolis algorithm for optimization and uncertainty assessment 
of hydrologic model parameters, Water Resour. Res., 39, 1201, doi: 
10.1029/2002WR001642, 8. 

 
Kuczera, G., and Parent, E.: Monte Carlo assessment of parameter uncertainty in 

conceptual catchment models: the Metropolis algorithm, Journal of 
Hydrology, 211, 69-85, https://doi.org/10.1016/S0022-1694(98)00198-X, 
1998. 

 
- Can you make a conceptual figure that shows which data sets go into the 
assimilation and which are only used as independent evaluation data? 
 
We implemented a new Table S3 (S2.2.2, L171) instead, since we also implemented a 
conceptual Figure 1 (S3.1, L235) representing key C fluxes, stocks and transit times 
which is already complex enough: 
 
Table S3. Forcing dataset, observational constraints and independent validation 
datasets used in this study’s experimental design. 



 
 

Line 147: What is the difference between “photosynthetic” and “vegetation” C stocks? Is 
photosynthesis not vegetation? 
 
Text now has been updated to explicitly define “photosynthetic” and “vegetation” C stocks 
(S2.2.1, L150-152): 
 

“For practical purposes we aggregated the different C stocks into photosynthetic (Cphoto; 
leaf and labile), vegetation (Cveg; leaf, labile, wood and roots), soil (Cdom; litter and 
SOM) and total (Ctot = Cphoto + Cveg + Cdom) C stocks.” 

  
Line 159: Did you directly compare the 1◦ grid cell with the FLUXNET site? If yes, how 
are the FLUXNET sites representative for the 1◦ grid cell? If no, did you run 
CARDAMON with the site meteorological data? Add: Only from the discussion (lines 
318-238), I now learn that you did a grid cell to point comparison. This should be al- 
ready mentioned in the methods and be recalled at the appropriate place in the results 
section. 
 
We included a whole paragraph discussion on how FLUXNET2015 sites are representative for 
the 1◦ grid cell in the S4.1. However, the referee is right that it was only mentioned in the 
discussion part, so we implemented the following text in S2.3, L219-221: 
 

“We performed a point-to-grid cell comparison to assess the degree of agreement 
between each flux magnitude and seasonality calculating the statistics of linear fit 
(slope, intercept, R2, RMSE, and bias) per flux and site between CARDAMOM and 
FLUXNET2015 datasets.” 
 

Lines 166-168: This is a repetition from lines 123-125. Please merge the two sentences. 
 
We have merged the two sentences as requested (S2.2.1, L152-155): 
 

“The Net Ecosystem Exchange (NEE) is calculated as the difference between GPP and 
the sum of the respiration fluxes (Reco = Ra + Rh), while Net Primary Productivity (NPP) 
is the difference between GPP and Ra. Only NEE follows the standard 
micrometeorological sign convection presenting the uptake of C as negative (sink), and 
the release of C as positive (source); both GPP and Reco are reported as positive fluxes.” 

 
Line 171: TT_veg was already mentioned at line 148. I suggest to remove both occurrence 
of TT_veg and to already define TT_veg in the new second paragraph of the introduction. 
 
We followed this request, and we restructured the introduction to define transit times (TT) in 
the second paragraph as you suggested above. 

Dataset Source Forcing Constraint Validation
ERA-Interim Dee et al. (2011) X
MODIS - LAI Myneni et al. (2002) X
NCSCD - SOC Hugelius et al. (2003) X
Biomass Carvalhais et al. (2014) X
NEE, GPP, Reco FLUXNET2015 X
GPP Jung et al. (2017) X
Rh Hashimoto et al. (2015) X



 
Line 171: At the end CARDAMON is also just only a GVM but with grid cell-specific 
parameters. I don’t see how CARDAMON then serve as a benchmark for the other 
GVMs. Would it be not enough to directly benchmark the GVMs against the reference 
data? You should try to better motivate already in the Introduction why you can use 
CARDAMON as a benchmark for GVMs. 
 
We implemented already aim (3) in the introduction, see above. We use CARDAMOM 
because it provides estimates of TT with errors that are consistent with theories of C cycling 
and with multiple observational data. CARDAMOM avoids the significant problem of spin-up 
associated with GVMs. 
 
Moreover, we implemented the following text in the discussion (S4.2, L420-431): 
 

“An ideal benchmarking tool for GVMs would compare model state variables and 
fluxes against multiple, independent, unbiased, error-characterised measurements 
collected repeatedly at the same temporal and spatial resolution. Of course direct 
measurements of key C cycle variables like these are not available. Even at FLUXNET 
sites GPP and Reco must be inferred, and NEE data often gap-filled. Satellite data can 
provide continuous fields, but do not directly measure ecological variables like biomass 
or LAI, so calibrated models are required to generate ecological products. Atmospheric 
conditions can introduce biases and data gaps into optical data that are poorly 
quantified. Upscaling of FLUXNET data requires other spatial data, e.g. MODIS LAI, 
which challenges the characterisation of error and generates complex hybrid products. 
We suggest that CARDAMOM provides some of the requirements of the ideal 
benchmark system – an error-characterised, complete analysis of the C cycle that is 
based on a range of observational products. CARDAMOM includes its own C cycle 
model; this has the advantage of evaluating the observational data for consistency (e.g. 
with mass balance), propagating error across the C cycle, and generating internal model 
variables such as TT. Further the model is of low complexity and independent of the 
benchmarked models. 
” 

 
Line 173: LPJmL (capital L). Please indicate which version of LPJmL was used. Is it the 
most recent version (LPJmL4) (Schaphoff et al., 2018a)? LPJmL4 includes also a new 
permafrost module (Schaphoff et al., 2013) and a data-constrained phenology module 
(Forkel et al., 2014) and hence better reproduces boreal and arctic carbon stocks and 
carbon cycling than the previous versions (Forkel et al., 2016; Schaphoff et al., 2018b). 
 
Thanks for the correction, we now refer to the model as “LPJmL”. LPJmL4 seems a very good 
candidate to be compared against CARDAMOM. However, the LPJmL version (version name 
is missing) available in the ISI-MIP2a database only includes the permafrost module 
(Schaphoff et al., 2013) you mentioned with runs dated from 2016: 
https://www.isimip.org/impactmodels/details/81/#tab_isimip2a  
 
Lines 184-194: I got really confused by this paragraph because initially I got the im- 
pression that you “jump” across all results without explanation. Please make clear that 
this paragraph is a summary of all results by either using a heading or a suitable topic 
sentence. 
 



Following Matthias comment, together with the one from REF#2, we decided to drop the 
summary paragraph in the results section. We believe this also contributes to a lighter text. 
 
Line 202: Which of the used data sets constrain the separation between GPP and NPP? 
 
We only have a prior of Ra:GPP = 0.5 
 
 
Line 216: Do you find spatial pattern in TT_photo that would resample the distribution 
of evergreen and deciduous trees? 
 
In this initial study using CARDAMOM over the pan-Arctic region we decided to partition 
results into tundra (grass/shrub dominated) and taiga (forest dominated) areas. Given the fact 
that the text is already quite dense, we believe further analysis such as the one you proposed 
(partition evergreen and deciduous trees) would add an extra layer of complexity to this 
manuscript. However, we find this suggestion quite relevant and attractive, and so it would be 
wise to have it addressed in coming papers.  
 
Line 219: “Interestingly” – Please tell me why this is “interestingly”.  
 
We removed the wording “Interestingly”, plus we rephrased the sentence to (S3.1, LX-X): 
 

“CARDAMOM calculated 62% longer TTdom in tundra compared to taiga, likely linked 
to lower temperatures, but uncertainties are large due to the limitations of data 
constraints.” 

 
Line 257: “as noted “ – Please check. 
 
We rephrased the sentence to (S3.3, LX-X): 
 

“This mismatch is important in the context of the FLUXCOM GPP upscaling, 50% 
higher than CARDAMOM.” 

 
Lines 330-331: This sentence should be merged with the numbers given at lines 349- 352. 
 
We restructured the section 4.1. to improve readability and clarity (L347-349): 
 

“CARDAMOM retrievals are consistent with outcomes from relevant papers such as 
the (I) C flux observations and model estimates reported in McGuire et al. (2012); (II) 
C stocks and transit times described by Carvalhais et al. (2014), and (III) NPP, C stocks 
and turnover rates stated in Thurner et al. (2017):” 

 
This paragraph is now followed by a list of 3 numbers (I, II, III) focusing on each of the 
previous relevant papers addressed above. 
 

I.   The CARDAMOM NEE estimates reported in this study for the tundra domain are 
inside the variability comparison of values compiled by McGuire et al. (2012) 
considering field observation, regional process-based models, global-process based 
models and inversion models. The authors reported that Arctic tundra was a sink of CO2 
of -150 Tg C yr-1 (SD=45.9) across the 2000-2006 period over an area of 9.16 x 106 



km2. Here, CARDAMOM NEE estimated -134 Tg C yr-1 over an area of 8.1 x 106 km2 

for the same period. This exhaustive assessment of the C balance in Arctic tundra 
included approximately 250 estimates using the chamber and eddy covariance method 
from 120 published papers (McGuire et al., 2012; Supplement 1) with an area-weighted 
mean of means of -202 Tg C yr-1. The regional models, including runs from LPJ-Guess 
WHyMe (Wania et al., 2009b, a), Orchidee (Koven et al., 2011), TEM6 (McGuire et 
al., 2010), and TCF model (Kimball et al., 2009), reported a NEE of -187 Tg C yr-1 and 
GPP, NPP, Ra and Rh of  350, 199, 151 and 182 g C m-2y-1, respectively. GVMs 
applications such as CLM4C (Lawrence et al., 2011), CLM4CN (Thornton et al., 2009), 
Hyland (Levy et al., 2004), LPJ (Sitch et al., 2003), LPJ- Guess (Smith et al., 2001), O-
CN (Zaehle and Friend, 2010), SDGVM (Woodward et al., 1995), and TRIFFID (Cox, 
2001) estimated a NEE of -93 Tg C yr-1 and GPP, NPP, Ra and Rh of 272, 162, 83 and 
144 g C m-2yr-1. For the same period, CARDAMOM has estimated 327, 166, 158 and 
151 g C m-2 yr-1 respectively for the same gross C fluxes.  

II. Carvalhais et al. (2014) estimated a total ecosystem carbon (Ctot) of 20.5 8T.8
U.6  kg C m-

2 for tundra and 24.8 8U.6
V8.T  kg C m-2 for taiga, while values from CARDAMOM were 

24.6 WX.8
V6.Y  kg C m-2 for tundra, and 27.7 8V.T

VT.X kg C m-2 in taiga (Figure 5; Table 1) for 
the same area.Thus, Carvalhais et al. (2014)’s Ctot product stored 20% and 12% less 
carbon in tundra and taiga respectively than CARDAMOM. Overall, CARDAMOM 
calculated 20% and 6% longer transit times for tundra and taiga respectively, with 
average values of 80.8 VS8.T

TV.U  years in tundra and 51.2 V6S.Y
TT.V  years in taiga (Table 1) 

compared to the 64.4 T8S.U
T8.X  years in tundra and 48.2 VVV.Z

TW.S  years in taiga in Carvalhais 
et al. (2014). These numbers have been retrieved from the same biome classification 
and they include the 90% confidence interval of the assessed spatial variability. Also, 
we applied a correction factor of TTgpp = TTnpp*(1-fraction of GPP respired) to be 
comparable with Carvalhais et al. (2014) TT. Both datasets agree on the fact that high 
(cold) latitudes, first tundra, and second taiga have the longest transit times in the entire 
globe (Bloom et al., 2016; Carvalhais et al., 2014). 

III. A recent study from Thurner et al. (2017) assessed temperate and taiga-related TTs 
presenting a 5-year average NPP dataset applying both MODIS (Running et al., 2004; 
Zhao et al., 2005) and BETHY/DLR (Tum et al., 2016) products and an inovative 
biomass product (Thurner et al., 2014) accounting for both forest and non-forest 
vegetation. Our estimate of TTveg for the exact same period is 5.3 VU.T

V.S  years, compared 
to Thurner et al. (2017)’s TT, 8.2 VV.8

8.8  years using MODIS and 6.5 U.X
W.T  years using 

BETHY/DLR. A note of caution here, the number reported by the authors are turnover 
rates, which are inferred to transit times by just applying the inverse of turnover rates 
(TTveg=1/turnover rates). Additionally, their NPP estimates, 0.35 and 0.45 kg C m-2 yr-

1 from both MODIS and BETHY/DLR, is only 5% more productive as average than 
CARDAMOM NPP estimate, 0.4 6.8

6.Y  kg C m-2 yr-1; and the biomass derived from 
Thurner et al. (2014), 3.0 ±1.1 kg C m-2, is ~30% lower than CARDAMOM Cveg, 2.1 
8.V
6.U kg C m-2, calculated for the same period and for the same taiga domain.  

 
Line 341: Are you sure to use the right reference for LPJ-GUESS-WhyMe?  
 
Matthias is right, we changed this reference to (S4.1, L358): 
 

“LPJ-Guess WHyMe (Wania et al., 2009a, b)” 
 



Wania, R., Ross, I., and Prentice, I. C.: Integrating peatlands and permafrost into a dynamic 
global vegetation model: 1. Evaluation and sensitivity of physical land surface 
processes, Global Biogeochemical Cycles, 23, doi:10.1029/2008GB003412, 2009a. 

 
Wania, R., Ross, I., and Prentice, I. C.: Integrating peatlands and permafrost into a dynamic 

global vegetation model: 2. Evaluation and sensitivity of vegetation and carbon cycle 
processes, Global Biogeochemical Cycles, 23, doi:10.1029/2008GB003413, 2009b. 
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In this paper the authors take the CARDOMOM + DALEC Bayesian calibration system 
an apply it specifically to the arctic using a number of regional-scale data products. Once 
the model is fit to data, it is then used to assess carbon pools and benchmark global 
vegetation models. The scale and scope of the analysis is quite impressive – building up 
their system to this point was clearly a lot of work and the attempt to synthesize multiple 
data constraints at a regional scale is really important, especially for a highly influential 
and understudied region like the arctic.  
 
We are thankful for the reviewer’s insightful and thorough comments. We believe this review 
has substantially improved the manuscript, spotting incomplete areas and highlighting 
convincing areas that perhaps we could further emphasize. We have carefully considered the 
reviewer’s remarks and clarified our manuscript accordingly.  
 
That said, I do have a few high level concerns about what the authors have done. The 
easiest of these to address is that the details of what was actually done was insufficient 
and teasing out important high-level facets of CARDOMOM are left to the reader 
tracking down earlier papers. Particularly important is to clarify whether DALEC is 
calibrated independently for every pixel, in some sort of spatially correlated manner, or 
with a single parameterization for the two PFTs across the whole region. My recollection 
from earlier papers made me think the first (independent fits), but in reading the results 
it is hard to distinguish parameter uncertainty from parameter spatial heterogeneity. The 
authors need to be more explicit about this. Likewise, the authors need to be more clear 
about whether this is really a data assimilation system, or if it’s just a calibration system. 
This matters because in DA (e.g. EnKF) the analysis provides a formal synthesis of 
observations and process understanding, but in a calibration system your estimated states 
are ultimately just a forward model run. To me, it feels like the authors are treating a 
forward model run as if it were a reanalysis product. If this is true what the authors did 
is still valuable but they should be more open about this and the limitations of this 
approach. 
 
We fully understand this point, agreeing with the REF#1 (one of the major critic comments). 
DALEC2 is independently calibrated in each pixel. We tried to do a better job in showing the 
within pixel parameter error. In order to do so, we added to the main text, figures, tables and 
SI: 
 
1) An implemented section 2.2 (The CARbon Data Model framework) in methods (L136-

141) 
 
“Here we use the CARbon DAta MOdel framework (CARDAMOM; Bloom et al., 
2016) (list of acronyms can be found in Table S1) to retrieve terrestrial C cycle 
dynamics, including explicit confidence intervals, in the pan-Arctic region. 



CARDAMOM consist of two key components: (1) an ecosystem model, the Data 
Assimilation Linked Ecosystem Carbon version 2 (DALEC2) (Bloom and Williams, 
2015; Williams et al., 2005), constrained by observations and (2) a data-assimilation 
system (Bloom et al., 2016). This framework reconciles observational datasets as part 
of a representation of the terrestrial C cycle in agreement with ecological theory. 
 

2) An implemented section 2.2.1 (DALEC2) in methods (L143-158) 
 
“DALEC2 ecosystem model simulates land-atmosphere C fluxes and the evolution of 
six C stocks (foliage, labile, wood, roots, soil organic matter (SOM) and surface litter) 
and corresponding fluxes. DALEC2 includes 17 parameters controlling the processes 
of plant phenology, photosynthesis, allocation of primary production to respiration and 
vegetation carbon stocks, plant and organic matter turnover rates, all established within 
specific prior ranges based on ecologically viable limits (Table S2). DALEC2 simulates 
canopy-level GPP via the Aggregated Canopy Model (ACM; Williams et al., 1997) and 
its allocation to the four plant stocks (foliage, labile, wood and roots) and autotrophic 
respiration (Ra) as time-invariant fraction of GPP. Plant C decays into litter and soil 
stocks where microbial decomposition generates heterotrophic respiration (Rh). 
Turnover of litter and soil stocks is simulated using temperature dependent first-order 
kinetics. For practical purposes we aggregated the different C stocks into 
photosynthetic (Cphoto; leaf and labile), vegetation (Cveg; leaf, labile, wood and roots), 
soil (Cdom; litter and SOM) and total (Ctot = Cphoto + Cveg + Cdom) C stocks. The Net 
Ecosystem Exchange (NEE) is calculated as the difference between GPP and the sum 
of the respiration fluxes (Reco = Ra + Rh), while Net Primary Productivity (NPP) is the 
difference between GPP and Ra. Only NEE follows the standard micrometeorological 
sign convection presenting the uptake of C as negative (sink), and the release of C as 
positive (source); both GPP and Reco are reported as positive fluxes. In this study, we 
addressed C turnover rates and decomposition processes as their inverse rates, this is 
the C transit time (TTphoto, TTveg and TTdom), represented as the ratio between each C 
stock and the NPP allocated into that stock.” 

 
3) An implemented section 2.2.2 (Data-assimilation) in methods (L160-202) to be more 

explicit about the experimental design including equations as noted above in responding to 
the REF#1,  
 

4) A new section in the results section regarding Data assimilation and uncertainty reduction 
(S3.2, L274-285) together with a new Table 2 and Figure S2 as noted above in responding 
to the REF#1. 

 
Second, in light of the earlier point about reanalysis vs forward simulation, I am really 
uncomfortable about the author’s use of their model as benchmark for other models. This 
is particularly true given the non-trivial biases in some of the verification (biomass) and 
validation (GPP, Rh) analyses and the lack of independent validation of a number of the 
other processes in the model (e.g. turnover). I think this manuscript could stand alone 
without the GVM component. 
 
In this manuscript we want to recognise that the uncertainties are large – uncertainties are rarely 
if ever calculated and presented, and this means analyses have been overconfident. We agree 
that the full descriptions of C cycling with errors are novel. We aim to go further to use the 



complete assessments of C cycling to assess better GVM, to allow more constrained forecasts 
for this region. 
 
As noted above in responding to the REF#1, CARDAMOM reconciles observational datasets 
as part of a representation of the terrestrial C cycle in agreement with ecological theory – 
CARDAMOM provides observationally-constrained estimates of C dynamics. A key reason to 
use CARDAMOM as a benchmark for GVMs is that CARDAMOM produces parameter 
likelihoods for each pixel based on data, and it does not assume PFTs or steady states, hence it 
is much more strongly data constrained that a GVM. CARDAMOM takes data and the model 
to produce parameter maps, whereas GVMS take PFT maps of parameters to produce 
flux/stock outputs. For this reason, we used our data assimilation system as a benchmarking 
tool for six GVMs.  
 
Our analyses of the C cycle are independent of the GVMs. As the referee notes there are biases 
in the verification and validation. However, because our approach takes into account the error 
in assimilated data, we produce uncertainties on our C cycle estimates. Our analytical 
uncertainties on e.g. biomass include the data within their confidence intervals, so the potential 
for this bias is explicit within our outputs, and propagated into e.g. TT estimates. Independent 
estimates of TT do not exist – one purpose of this study is to provide robust estimates of TT 
from CARDAMOM to compare with GVMs. The novelty here is that we can locate which 
GVMs and for which regions the TT estimates of models are outside CARDAMOM confidence 
intervals (stippling in Figure 6). 
 
Third, I’m really concerned about how the authors assimilate these derived data 
products. There’s not really any discussion of how the observation errors in the data and 
process error in the model are treated. There’s not any discussion of how the authors 
handled the non-independence of spatial pixels in these data products. Indeed the authors 
seem to treat data products as if they are truly data, which likely results in an 
overestimation of the true information content in the data. For example, if I have 10 
observations I can Krige a map that has 10k grid cells, but my true sample size remains 
10 not 10k and any data assimilation system needs to reflect that. 
 
As noted above in responding to the REF#1, errors from the observational products are not 
available from the data providers but we still defined them in the likelihood function based on 
Bloom et al. (2016). Therefore, there were errors attached to each observation, e.g. MODIS 
LAI, biomass for each pixel. We assumed independent data in each grid cell for LAI and 
biomass deriving from satellite products. We recognise that the algorithms used to produce e.g. 
LAI may include spatial assumptions that generate correlated biases. We acknowledge that the 
soil C data are interpolated using machine learning approaches. Our response is to include a 
large error on the data for each pixel in the absence of a detailed, spatially defined error.  
 
As we pointed earlier (REF#1 response), we included a full new description about how these 
data were assimilated and which uncertainties were considered in each dataset (S2.2.2, L178-
202). More specifically in this new section we mention that “Each pixel is treated 
independently without assuming a prior land cover type and we assume no spatial correlation 
between uncertainties in all pixels.” 
 
Detailed Comments: 
 
L126: 1) Is calibration really data assimilation? 2) inclusion of process error? 



 
The correct term for CARDAMOM is data assimilation or model-data fusion. Again, new 
sections 2.2.1 (DALEC2) and 2.2.2 (Data-assimilation) were implemented in the methods 
section to better address parameter uncertainty reduction. Data assimilation explicitly 
propagates data uncertainty into model calibration. 
 
L135: What is the actual underlying sample size? Derived data products can massively 
conflate the actual information content. Errors in these data products are hugely 
autocorrelated and that observation uncertainty is not captured correctly in these 
products. Also, many of these constraints are not data (GPP, LAI, biomass) but just 
different models. 
 
We have updated section 2.2.2 with the following text (L169-177): 
 

“Observational constraints include monthly time series of Leaf Area Index (LAI) from 
the MOD15A2 product (Myneni et al., 2002), estimates of vegetation biomass and soil 
organic carbon content (Table S3). We aggregated ~130,000 1-km resolution MODIS 
LAI data monthly within each 1x1 degree pixel.  We aggregated biomass data at 0.5° 
resolution from Carvalhais et al. (2014) to 1° resolution. These are based on remotely-
sensed forest biomass and upscaled GPP based on data driven estimates (Jung et al., 
2011) covering the pan-Arctic domain. We used the NCSCD spatial explicit product 
(Hugelius et al., 2013a; Hugelius et al., 2013b)  which was generated from 1778 soil 
sample locations interpolated to a 1° grid. There is significant uncertainty for these data, 
due to the models involved in generating LAI and biomass, and the interpolation 
process for soils. Hence we apply broad confidence intervals commensurate with this 
uncertainty (Equation 3).”  
   

 
 
L144: 500 samples per chain? That’s way too small. Also, what’s the effective sample size 
after accounting for autocorrelation? I’d recommend the authors shoot for an effective 
sample size around ∼5000 total, which likely will require a much larger total number of 
samples given their reliance on Metropolis-Hastings. Not stated explicitly whether this is 
one global parameter set or one per grid cell? My memory from Bloom et al 2016 is the 
latter. 
 
We apologise that we did not explain our process more clearly; we ran three chains 
accumulating 107 accepted parameters We ensured convergence in at least 2 chains and 
gathered 500 sampled parameter sets from each chain. This sampling was used to generate a 
distribution of model analyses that we then analysed and plotted, see section 2.2.2. 
 
L146: A 90% CI is typical. Reason for not 95% norm? 
 
A 90% CI is a widely used in the literature so we decided to assess this specific uncertainty 
range in our analysis.  
 
L154: This isn’t independent of the calibration product 
 
Indeed, this is independent of the calibration product. We do not assimilate GPP, but LAI. 
The new text in Section 2.2.2 hopefully clarifies this, together with the new Table S3. 



 
 
L164: should really include the 95% CI in addition to the interquartile 
 
We changed from 50% CI to 90% CI. Figure 4 has been updated accordingly, and uncertainties 
represent the 25th and 50th percentiles (darker shade) and the 5th and 95th percentiles (lighter 
shade) of both field observations and the CARDAMOM framework. 
 
L169: You can’t compare a complex model against a (mis)calibrated simple model and 
call it a benchmark. Especially true if you’re looking at the marginal distributions of 
indirectly inferred latent variables. 
 
This point is arguable – what do we mean by a benchmark? As the referee has acknowledged, 
all global/gridded data products involve some degree of modelling (e.g. FLUXCOM, MODIS 
LAI), and hence are not direct measurements. Thus, a comparison against a data product is 
open to this same criticism. In response we make the following addition to the text in the 
discussion (S4.2, L420-431): 
 

“An ideal benchmarking tool for GVMs would compare model state variables and 
fluxes against multiple, independent, unbiased, error-characterised measurements 
collected repeatedly at the same temporal and spatial resolution. Of course direct 
measurements of key C cycle variables like these are not available. Even at FLUXNET 
sites GPP and Reco must be inferred, and NEE data often gap-filled. Satellite data can 
provide continuous fields, but do not directly measure ecological variables like biomass 
or LAI, so calibrated models are required to generate ecological products. Atmospheric 
conditions can introduce biases and data gaps into optical data that are poorly 
quantified. Upscaling of FLUXNET data requires other spatial data, e.g. MODIS LAI, 
which challenges the characterisation of error and generates complex hybrid products. 
We suggest that CARDAMOM provides some of the requirements of the ideal 
benchmark system – an error-characterised, complete analysis of the C cycle that is 
based on a range of observational products. CARDAMOM includes its own C cycle 
model; this has the advantage of evaluating the observational data for consistency (e.g. 
with mass balance), propagating error across the C cycle, and generating internal model 
variables such as TT. Further the model is of low complexity and independent of the 
benchmarked models” 

 
L177: If looking at the historical period, why weren’t models run under reanalysis 
meteorology rather than GCMs? 
 
We have adjusted our analysis in response to this comment. A complete new GVM exercise 
was performed since both REF#1 and REF#2 raised the same criticism. As we pointed earlier 
(REF#1 response), we used the ISI-MIP2a simulations instead of the original ISI-MIP1. This 
new implementation presents many advantages like the full overlap of the studied period 
(2001-2010) and more similar climate drivers. Earlier we also specified that we changed the 
method’s part related to ISI-MIP2a (S2.4, L223-232), the results section (S3.4, L311-338) and 
discussion (S4.2, L420-446). 
 
L184: Drop this whole paragraph – it’s a bit confusing to give a summary of the results 
before presenting the results without making it clear that this is a summary of highlights. 



Right now it just feel like you’re going though the results really quickly without much 
explanation. 
This summarizing has been deleted accordingly since REF#1 suggested that too. 
 
 L187: A 28% bias against the data that the model was calibrated to seems like a pretty 
big problem. 
 
As discussed for REF#1, this bias likely arises from a lower predicted rate of photosynthesis 
in Arctic systems in the ACM photosynthesis model. The newly implemented Figure 2 shows 
that the 90% CI includes the 1:1 line. Thus, our analysis is not inconsistent with the data. We 
should note that the data may also be biased. Further, at regional scale our GPP estimates lie 
within the ranges of GVMs and regional models. 
 
L190: “This mismatch is important in the context of FLUXCOM, as noted” what do you 
mean "as noted" you never noted anything 
 
We rephrased the sentence to (S3.3, L302-303): 
 

“This mismatch is important in the context of the FLUXCOM GPP upscaling, 50% 
higher than CARDAMOM GPP.” 

 
L203: “and marginally varied across tundra” I don’t understand what you mean here 
 
Wrong wording, we meant (S3.1, L242): 
 
 “and marginally varied between tundra 0.50 6.8W

6.WZ  and taiga 0.52 6.8Z
6.WZ .” 

 
L209: Distinguish tundra and taiga. These numbers don’t seem plausible for tundra 
 
 
As requested, we implemented to (S3.1, L247-249): 
 

“Among the living C stocks, 93% of the C (88% in tundra and 90% in taiga) is allocated 
to the structural stocks (wood and roots; 1.4 8.Z

6.W  kg C m-2) compared to 7% (12% in 
tundra and 10% in taiga) to the photosynthetic stock (leaves and labile; 0.1 6.T

6.V  kg C 
m-2).” 

 
L211: That the tundra numbers are so close to the taiga numbers doesn’t seem correct. 
How well do these numbers validate against direct field data (not derived data products)? 
 
The relatively small differences between tundra and taiga are a result of the coarse scale of the 
data and the relatively low values of biomass in the assimilated product (Figure 2). It is not 
appropriate to evaluate biomass products against field data due to the scale mismatch. As the 
other referee has noted: 
“…the biomass map by Thurner et al. (2014) is largely in agreement with in situ 
observations of forest carbon density in Russia and slightly underestimates in the USA.” 
 
L216: A transit time of 4.3 years in the woody tissues of a spruce tree seems really fast 
give their lifespan. How does this compare to field data (e.g. isotopes) 



 
The 4.3 years does not differentiate between branch size of woody components. This value 
represents the median’s of all woody material in the entire pan-Arctic region, including twigs, 
branches, stems and coarse roots. 
 
L217: The CI on the SOM is really large (essentially 10-1000 years). Is this just the prior? 
 
Yes, due to the lack of data on SOM turnover, the TT for SOM remains poorly constrained.  
 
L228: This results needs additional explanation with regards to what this test statistic 
applies to. You calibrated a mechanistic model via MCMC, this isn’t a t-test. What 
specifically changed that much? 
 
This entire paragraph has been dropped. Please check answer to REF#2 in L295 (three points 
later). 
This change arose mainly due to the fact that the presented sensitivity analysis did not included 
a version without a soil C constraint. The fair analogy should be done by removing soil C as a 
constraint, or by using other biomass product as constraint. Otherwise, the information content 
in both data-streams cannot be comparable by this exercise that eliminates one data stream and 
compares two of them. 
 
L234: What do you mean priors, isn’t this the data? 
 
Confusing wording here, we implemented the text to (S3.2, LX-X): 
 

“The CARDAMOM framework generated an analysis broadly consistent with the 
combination of SOC, biomass and LAI in each grid cell (Figure 2), and the errors 
assigned to these data products (Figure 2).” 

 
L257: This is almost the exact same sentence as L190 
 
Since the initial summarizing paragraph in the results section has been dropped following 
REF#1 and REF#2 suggestions, this sentence now can be kept, but rephrased to (S3.3, L303-
304): 
 

“This mismatch is important in the context of the FLUXCOM GPP upscaling, 50% 
higher than CARDAMOM GPP.” 

 
L295: Is this statement that CARDOMOM is more sensitive biomass than soil C really 
fair? In one case you’re comparing whether a data constraint is included at all, while in 
the other your comparing different derived data products, which are likely relying on 
similar underlying raw data. I think for this to be fair you would want to include a version 
where you don’t have any soil C constraint. 
 
The referee is completely right, the presented sensitivity analysis did not include a version 
without a soil C constraint. The fair analogy should be done by removing soil C as a constraint, 
or by using other biomass product as constraint. Otherwise, the information content in both 
data-streams cannot be comparable by this exercise that eliminates one data stream and 
compares two of them. Therefore, and because the manuscript is complex enough, this entire 
paragraph has been dropped. 



 
L308: There’s a 28% bias in biomass, how is that "good agreement". The Discussion 
seems to be missing the critical point that if a model is faced with multiple constraints 
and can’t reconcile them then there’s either inconsistencies in the data, structural errors 
in the model, or both. And why is there no comparison to LAI and GPP constraints? Also, 
there seems to be no discussion of how observations error in the data are derived/treated 
and how you’re handling the process error in the model (is this a fit parameter or just 
ignored). 
 
As we pointed earlier (REF#1 response), the magnitude of biomass is not so well constrained 
in CARDAMOM (although the 90% CI include the 1:1 line, see new Figure 2) as is its spatial 
and temporal variability (well constrained by LAI). We do not have a direct constraint on the 
magnitude of GPP, except for the prior we provide (Table S1). We rely on the Aggregated 
Canopy Model (ACM; Williams et al. 1997) calibration which is based on SPA runs with some 
fixed leaf N content. Perhaps ACM is biased compared to the Arctic, lacking a temperature 
acclimation, and hence the mismatch. We now include reference to this issue in the text, and 
include comparison to GPP explicitly earlier in the results and discussion. We note the 
importance of data error in the resulting biases in both calibration and validation, and the need 
for more robust error characterisation of data products.  
We note that the Calvalhais et al. (2014) biomass data relies on various assumptions in areas 
of low tree cover, covering much of the high latitudes. In these areas GPP data from Jung et al. 
are used for calculating herbaceous biomass. Thus, there is a dependence between these data 
products. We need fully independent, error characterised data to make the next steps forward. 
Hence the broad errors set on data products in this analysis. 
 
A new comparison set of assimilated LAI has been implemented in Figure 2 as was requested 
by REF#2. 
We have adjusted the text in 3.2 to read (L264-273): 
 

“The CARDAMOM framework generated an analysis broadly consistent with the 
combination of SOC, biomass and LAI in each grid cell (Figure 2), and the errors 
assigned to these data products. The agreement for the SOC dataset by Hugelius et al. 
(2013a) is a 1:1 relationship (R2 = 1.0; RMSE = 0.97 kg C m-2), reflecting a 
straightforward model parameterisation. The biomass product from Carvalhais et al. 
(2014), was well correlated (R2 = 0.97; RMSE = 0.46 kg C m-2), but CARDAMOM 
was consistently biased ~28% low. MODIS LAI data were also well correlated, but 
~28% higher than CARDAMOM analyses. These biases likely arise due to a low 
estimate in the photosynthesis model (ACM) used in CARDAMOM (Figure 3) which 
propagates through the C cycle. CARDAMOM balances uncertainty in data products 
and the models (ACM photosynthesis model and DALEC2), to generate a weighted 
analysis, typical of Bayesian approaches. The CARDAMOM analysis 90% confidence 
interval (CI) includes the 1:1 line for biomass and LAI (Figure 2), indicating that the 
likelihoods on C cycle analyses include the expected value of the observations.  
” 

 
The capacity of DALEC2 to reproduce the patterns in LAI, SOM, biomass and GPP is a strong 
indicator that the model structure is valid. What we notice is bias on the estimation of some of 
these parameters across the region. We relate this bias to a strong model prior on photosynthesis 
and large uncertainty on the LAI and biomass data. An increase in data confidence would 
resolve this problem.  



 
In the discussion 4.1 (L386-400) we now state: 
 

“In general, we found a reasonable agreement between CARDAMOM and assimilated 
and independent data at pan-Arctic scale. CARDAMOM retrievals of assimilated data 
are in good agreement with the SOC (Figure 2). The simulation of TTdom is weakly 
constrained (Table 1) - our analysis adjusts TT to match mapped stocks, hence the 
strong match of modelled to mapped SOC. So, independent data on TTdom data (e.g. 
14C) is required across the pan-Arctic region to provide stronger constraint on process 
parameters and reduce the very broad confidence intervals of CARDAMOM analyses. 
The low bias in mean estimates of LAI and biomass (Figure 2) relates to the strong 
prior on photosynthesis estimation from the ACM model, which lacks a temperature 
acclimation for high latitudes in this implementation. However, the uncertainty in the 
biomass and LAI analyses spans the magnitude of the bias. So, CARDAMOM 
generates some parameters sets that are consistent with observations. CARDAMOM 
produces analyses that reproduce the pattern of LAI, GPP, biomass and SOC (Figure 2 
and 3) – this demonstrates that the DALEC2 model structure can be calibrated to 
simulate the links between these variables as a function of mass balance constraints, 
and realistic process interactions and climate sensitivities. Biases could be reduced by 
assimilation of data with smaller errors. Greater confidence in LAI and biomass data 
would increase the weight on their assimilation, and result in analyses closer to these 
data, overriding model priors by adjusting photosynthesis upwards. Further 
experiments can evaluate this sensitivity. Certainly, the need for robust characterisation 
of error for data products is of critical importance for improved analyses.” 

 
L312: I haven’t looked into the details of the Jung 2011 product vs the Jung 2017 product, 
but I’m skeptical that these are independent. Would be good to state more explicitly what 
each product is upscaling to generate GPP (FLUXNET? SIF?). If they’re both 
FLUXNET-based then they’re not independent if they’re just applying different al- 
gorithms to upscale the same underlying data. 
 
We only used Jung et al 2017’s GPP product as independent validation, thus we do not see 
why we should state more explicitly what each product is upscaling to generate GPP. However, 
it seems that there is a misunderstanding - REF#2 believes that GPP has been assimilated in 
CARDAMOM. We hope now that the new section 2.2.2 in the method section had clarified 
this point. 
 
L314: “One difference between these two models is. . .” What two models? 
 
This sentence has been changed accordingly (4.1, L403-404): 
 

“One difference with Hashimoto et al. (2015)’s Rh model is the lack of moisture 
limitation on respiration in CARDAMOM.” 

 
L317: I’d recommend making this sentence the start of the next paragraph 
 
This sentence has been also changed accordingly to properly conclude the paragraph (4.1, 
L404-407): 
 



“Conversely, GPP is relatively well-constrained in space through the assimilation of 
LAI and a prior for productivity (Bloom et al., 2016), although an important mismatch 
has been found: CARDAMOM GPP is 50% lower than FLUXCOM, but 30% higher 
than FLUXNET2015 EC data.” 

 
L319: How do you know that the issue is only one of scale difference, and not some other 
error in the model or DA system? What could you do to confirm this (e.g. run with local 
drivers)? 
 
We cannot be certain here, but mismatch on LAI due to local variability seems the most likely 
cause of mismatch. We could confirm this by running using LAI data directly determined from 
the study site at an appropriate scale. 
 
L326: This error in timing is an example of why it might be better to run a system that 
performs both state and parameter data assimilation, rather than just parameters. 
 
We believe parameter estimation should be acceptable – given that the parameters we 
incorporate for calibration include those that drive phenology, and thus state changes. 
 
L328: It’s a bit surprising that you’re running a model in the arctic that doesn’t include 
snow or permafrost. I see that this point is in the Discussion, but it seems really important 
to be more upfront about this earlier in the paper, as it’s a pretty limiting assumption 
and should lead to greater caution in how confidently you interpret the results. It also 
begs the question as to why you didn’t couple CARDOMOM to a more sophisticated land 
model for this analysis. 
 
Our goal is to use a C model as simple as possible, with strong data constraint. DALEC has 
direct state variable linkage to LAI, biomass, SOM. Key processes are climate-sensitive (GPP, 
Rh). For forecasts of the future C cycle we agree that simulating the changes to permafrost and 
hydrology would be vital, but for analyses of the current C cycle and its internal dynamics, 
snow and permafrost are secondary factors. 
 
L365: But is there any direct field constraint (e.g. isotope data)  
 
We recognise the value of using independent data on turnover rates (e.g. from isotopes) to 
evaluate analytical estimates. Such comparison was beyond the scope of this paper, but is the 
target of current and future research. 
 
---------------------------------------------------------------------------------------------------------------- 
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