
Response to Anonymous Referee RC 1 

 

We thank the referee for the careful reading and the useful comments and will adapt the manuscript accordingly. Below 

is a point by point reply with the referee’s comments in bold font, our reply in italic font and the changes in manuscript 

in normal font.  

 

Note: The reply to comment 6 of Referee RC 2 led to the removal of Figure 3, and various textual changes led to changes 

in line numbers. Therefore we consistently refer here to figure and line numbers in the previous version, not the revised 

one. 

 

1. Comment from referee:  

The authors assess temperature rises to 2100 only. For some scenarios the global mean temperature will 

continue to increase well after this date. Those cases should be acknowledged.  

 

Author’s response:  

Such possibility can indeed occur and is implicitly acknowledged in Figures 1, 2 and 4. We do not treat these 

cases in much detail because a) the response function model is based on 140-year long simulations so 

extrapolations far into the future are more uncertain and b) such scenarios exceed our temperature targets and 

are therefore of limited interest in this study. 

 

Changes in Manuscript:  

In line 40, after “usually taken as the year 2100.” we will add the following sentence: “The choice of a particular 

year is necessarily arbitrary and neglects the possibility of additional future warming.” 

 

2. Comment from referee:  

The authors note that 2K warming is commonly seen as a "safe threshold". It may be seen that way, but 

that is a value judgment subject to considerable uncertainty, and this should be acknowledged.  

 

Author’s response: 

We agree with the referee. 

 

Changes in Manuscript:  

In line 32, after “the 2 K warming threshold commonly seen” we will add “ – while gauging  considerable 

uncertainties – “. 

 

3. Comment from referee:  

The assessment of delta T depends on the baseline period chosen. This point is addressed later in the 

report and is said to introduce a sensitivity to the PNR of up to 10 years. The new IPCC special report on 

warming of 1.5C and 2C indicates potentially large differences in delta T for different baseline choices. It 

would be nice to see the authors address this issue more explicitly to have confidence that their PNR 

sensitivity is as low as reported.  

 

Author’s response:  

Within the scope of our model the effect of the baseline on the PNR is such that a lower baseline increases the 

currently realized warming. Therefore, a given temperature threshold is crossed at an earlier point in time. 

 

Changes in Manuscript:  

To clarify this point, the paragraph referring to the temperature baseline (from line 293, “This also”) will be 

replaced by the following: “This also illustrates the importance of the temperature baseline relative to which ∆T 

is defined, as has been found previously (Schurer et al., 2017). Switching to a (lower) 18 th century baseline 

increases current levels of warming by 0.13 K (Schurer et al., 2017) and thereby brings forward the PNR. For 

example, for a maximum temperature threshold of 1.5K the PNR moves from 2022 to 2016 in the MM scenario 

and from 2038 to 2033 for the EM scenario.” 

 

4. Comment from referee:  

The authors use the concept of "negative emissions" in their simulations, but don’t say much about the 

feasibility of negative emissions. Some elaboration would be helpful for the reader.  

 

Author’s response:  

It is not within the scope of this article to provide a detailed discussion of the question of feasibility of negative 

emissions, which is a research area in its own right. Scenarios such as the ones presented here and taken from 



Rogelj et al., (2016a) are usually based on cost-minimization in Integrated Assessment Models (IAMs), and are 

feasible within the constraints and choices enforced there. 

 

Changes to Manuscript:  

In line 223, at the end of the paragraph, we will add the sentence “For details on the scenarios refer to Rogelj et 

al., (2016a). With carbon budgets rapidly running out and the PNR approaching fast, negative emissions may 

have to become an essential part of the policy mix. Such policies are cheap but may only be a temporary fix and 

lead to undesirable spillover effects on neighboring countries (e.g., Wagner and Weitzman, 2015). We abstract 

from these discussions here, since this is beyond the scope of the present paper”. 

 

We will add: “Wagner, G. and M.L. Weitzman (2015). Climate Shock. The Economic Consequences of a Hotter 

Planet, Princeton University Press, Princeton, New Jersey” to reference list.  

 

5. Comment from referee:  

The trajectory of warming from the present point to exceeding the specified temperature threshold will 

not be smooth as it will include multidecadal scale internal variability. That implies that the threshold will 

not be exceeded at a single point in time, but only in some average sense. The degree to which this is an 

issue depends on how well the CMIP5 runs represent multidecadal internal variability and how one treats 

temporal variability and overshoot in relation to the threshold. The authors could provide some discussion 

of this issue in relation to their analysis.  

 

Author’s response:  

It is indeed the case that, due to internal variability, crossing the threshold takes place in some average sense. 

Commonly this is done by temporal averaging. In our case, averaging is done across the ensemble of simulations. 

Therefore, it is indeed possible to pinpoint the crossing of the threshold (at a chosen probability level) to a given 

year, as the large ensemble smooths out the variability (Figure 6). The model is not capable of accurately 

displaying modes of internal variability, nor is it designed to predict (esp. in a one time-series sense) the crossing 

of the threshold. 

 

Changes to Manuscript:  

Before the final paragraph starting in line 345 (“We have shown the constraints...”), we will add the following 

paragraph: 

“In this work a large ensemble of simulations was used in order to average over stochastic internal variability. 

This allows to pinpoint the point in time where a threshold is crossed at a chosen probability level. Such an 

ensemble is not possible for more realistic models, nor do GCMs agree on details of internal variability. 

Therefore, in practice, the crossing of a threshold will likely be determined with hindsight and using 30-year 

temporal means. This fact should lead us to be more cautious in choosing mitigation pathways.” 

  



Response to Anonymous Referee RC 2 

 

We thank the referee for the careful reading and the useful comments and suggestions and will adapt the manuscript 

accordingly. Below is a point by point reply with the referee’s comments in bold font, our reply in italic font and the 

changes in manuscript in normal font.  

 

 

General remarks to the referee: 

The referee remarks that giving precise years for the Point of No Return (PNR) may be misleading due to many 

uncertainties associated with such approaches. This is certainly true and in fact the primary motivation to conduct this 

study in a probabilistic fashion, with the aim to capture climate system uncertainties in the model itself.  

 

We see the presentation of a stochastic model as a major novelty of this paper, building upon and extending previous 

work such as Stocker (2013). The aim was to a) include uncertainties as captured by the CMIP5 ensemble and b) get a 

handle on risk tolerance, allowing us to choose with which probability a certain warming target should not be exceeded. 

Clearly, tighter constraints (i.e. an earlier Point of No Return (PNR)) are intuitively expected for a smaller risk tolerance 

but the model allows us to quantify this. 

 

The stochastic state space model is described in section 2.2 and summarized in Table 2 (where also the noise terms are 

detailed), as stated in line 161. Noise is included in several of the carbon and temperature boxes, where W t denotes the 

Wiener process. These boxes are added to form the total CO2 concentration and temperature anomaly (eqs 10a, 10b). The 

introduction of additive and multiplicative noise is central to this paper, and turns the temperature evolution DT(t) into 

the evolution of a probability density p(DT,t) (Figure 4), capturing the spread of the CMIP5 ensemble.  

 

Reponses to the referee's specific comments: 

 

1. Comment from referee:  

The new approach is essentially twofold: first a very simple deterministic model is developed that reproduces 

global characteristics of CMIP5, and second, emission pathways are given as an exponential increase at rate 

g (information not found in the paper: g=??) multiplied by a linearly decreasing factor (mitigation effect). In 

addition, negative emissions due to carbon capture and storage can be considered in this model framework. It 

would be useful to quantify the difference of the considered paths (11c) to an even more basic choice of just a 

simple exponential decrease of emissions at a constant rate from t_s onwards, as used by Stocker (2013). 

Obviously, the discontinuity of emission rates at t_s (increasing exponentially before, and then decreasing) are 

avoided here, but how would that matter for the PNR? Incidentally, for a given mitigation rate PNR can be 

read off Fig. 2A of Stocker (2013): it is the required starting time of emission reductions. Therefore, much of 

the information, which is the focus of the present paper, has been available already from an even simpler 

framework. This should be mentioned in the introduction. 

 

Author’s response:  

• The referee is right to point out that the original response function model (eqs 8) is deterministic. However, 

as pointed out in the introductory paragraph, this deterministic model is turned into a stochastic one through 

the introduction of stochastic noise terms (see section 2.2, Table 2, Figure 4), and used throughout the 

paper. 

• We thank the referee for noticing the omitted definition of the emissions growth rate. It will be corrected. 



• In the final paragraph of the introduction (lines 66-76) we refer to Stocker (2013) and point out how our 

approach differs from his, in particular by using a stochastic model that is capable of capturing climate 

uncertainties and risk tolerance. We agree with the referee that a comparison of our mitigation pathways 

(11) with exponential pathways (Stocker) is interesting. We have performed such an analysis and show the 

results here, in the manner of Fig. 2A of Stocker (2013). From Figure RC1 one can see that the notable 

novelty of this work is the introduction of probabilities (top right and bottom panels). Comparing Fig. 2A 

of Stocker with the top left panel we find that our results are more optimistic than Stocker’s, allowing for 

smaller reduction rates to reach the same target. Our model is more complex than Stocker’s, and 

considering the good reconstruction of relevant RCP scenarios (Figure 4), we have confidence in our 

results. Under exponential mitigation, the PNR is substantially earlier (Table RC1) when using a value for 

the exponential reduction rate r that is equal to m1. A problem with exponential pathways is that emissions 

never reach exactly zero and can still be non-negligible by 2100, e.g. when starting reduction in 2038 at 

r=0.05 emissions in 2100 still reach 0.56 GtC/yr and 0.26 GtC/yr when starting in 2025. This is difficult to 

bring into agreement with the “net zero emissions” target of the Paris Agreement. We therefore choose to 

continue to use the mitigation pathways as defined in the paper.  

         Changes in Manuscript:  

• No changes 

• In section 2.3, line 179, we will replace “rate g due” by “rate g = 0.01 due”. 

• No changes 

 

 

 

 

 

Figure RC1: Reconstruction of Fig. 2A from Stocker (2013) (top left) and panels for different 

probability threshold. E.g. the top right panel gives the year (x-axis) where exponential emission 

reduction at different rates (lines) needs to be initiated to limit warming below a given threshold 

(y-axis) with a probability of 67%. Increasing the required probability tightens the constraint. 

 

 𝛽 0.5 0.67 0.9 0.95 noise-free 

Scenario Threshold      

r = 0.1 1.5 K 2028 2024 2016 – 2027 

 2.0 K 2046 2042 2033 2028 2045 

r = 0.05 1.5 K 2019 – – – 2018 

 2.0 K 2038 2033 2024 2020 2037 

r = 0.02 1.5 K – – – – – 

 2.0 K 2022 2017 – – 2020 
Table RC: PNR with exponential mitigation at different rates r 



2. Comment from referee:  

Uncertainty is only substantively addressed in the text of the appendix. As this is a short text, I suggest to 

incorporate the appendix into the main text and amplify it. Regarding uncertainty, a general caveat would be 

useful in the abstract and the conclusion. Otherwise, the stated years of PNR are somewhat misleading.  

 

Author’s response:  

Uncertainty is an essential part of this work. We assume that the spread in the CMIP5 ensemble captures all kinds 

of uncertainties, including parameter uncertainties (for example, in climate sensitivity). To this distribution we fit 

our stochastic model, accounting for all variations between the climate models. Nevertheless, an additional 

sensitivity study is certainly useful and was therefore performed. We thank the referee for the suggestion and will 

move the appendix to the end of the results section. 

 

Changes in Manuscript:  

At the end of the abstract, we will add the following sentence: “Sensitivity studies show that the PNR is robust with 

uncertainties of at most a few years.”.  Table 8 will be adapted, the appendix modified appropriately and moved to 

the end of section 3 (Results). 

 

3. Comment from referee:  

A constant factor A in the forcing (8b) is used to optimize the agreement with CMIP5. The size of this factor 

is quite large (1.48). For alpha_CO2 (in 8b) the correct value is taken (see Tab 3 - however inconsistent 

parameter notation - only alpha there!). The authors justify the factor A with the existence of non-CO2 GHG 

drivers in the CMIP5 results (RCP scenarios), but the effects of these drivers have a time evolution and 

characteristic time scales that are very different from the primary driver CO2. So I don’t quite understand 

how is it possible to achieve a better match with CMIP5 by using a simple scaling of (8b).  

 

Author’s response:  

The factor A captures all processes that are not represented in our (simple) model. This includes non-CO2 drivers 

as well as non-fossil CO2 drivers. In addition, our carbon model and our temperature model come from different 

model ensembles that are here joined together, and A is a matching factor. Thirdly, as discussed in the paper, the 

used carbon model is pulse-size-independent, which is a simplification that underestimates concentrations at high 

emissions. The factor A scales up the forcing from the unrealistically low concentrations to still give the required 

high radiative forcing. 

 

Changes in Manuscript:  

In line 143, we will replace “and non-CO2 GHG emissions.” by “and non-CO2 GHG emissions, and matches the 

carbon and temperature models estimated from different model ensembles) together. The constant A = 1.48 was 

found in order to optimize the agreement of \Delta T with CMIP5 RCPs. The resulting reconstruction of temperatures 

from RCP CO2 concentrations overlaid with CMIP5 data (Figure 1b) gives a good agreement.” The lines 119-124 

(“In order to apply … gives a good agreement.”) are deleted. 

 

4. Comment from referee:  

It is not clear, why in (11) both mitigation and abatement are used. Also, there is a conflict of parameters (a_0 

in 6 and 11). Is 11b, i.e. a(t), really needed and relevant in this paper? I see no discussion in the text or the 

figures relating to the difference of m(t) and a(t) pathways. In fact, inspecting (11c) I can see no benefit why 

one would consider both mitigation and abatement. Both have the same linear time dependence, even the same 

rate. Therefore, the difference seems to lien in the quadratic (positive) contribution a(t)*m(t) to the emission 

factor, essentially (m1ˆ2)(t-t_s)ˆ2, presumably a rather small contribution. Therefore, for simplicity, I suggest 

that you would eliminate a(t) altogether, which would also remove the parameter conflict of a_0. 

 

Author’s response:  

We thank the referee for noticing the parameter conflict which will be resolved by renaming the coefficients in (6) 

from a_0, a_1, a_2, a_3 to \mu_0, \mu_1, \mu_2, \mu_3. 

We think like many others that there are several important dimensions to climate policy. This includes the substitution 

of fossil fuel by renewable energies (mitigation) as well as directly reducing the CO2 output via sequestration 

mechanisms (abatement). We consider it important to include both these dimensions (as a third dimension one might 

point to negative emissions which we briefly cover as well). It is true that the abatement pathway is chosen very 

similar to mitigation, both because of simplicity and due to a lack of better estimates. Many now believe that some 

form of abatement will be necessary, for example to deal with the problem of “stranded assets”. Neglecting 

abatement would clearly require much higher mitigation rates to reach the same targets. For these reasons we 

decided to include both abatement and mitigation into our modelling framework. Note also that the quadratic term 

is not necessarily small, for m1 = 0.02, m0 = 0.14 it reaches >40% of the linear term after 40 years, which slows the 

decay to zero. 



 

Changes in Manuscript:  

The coefficients in (6), a_0, a_i will be renamed \mu_0, \mu_i.  

 

 

5. Comment from referee:  

Further to the emission pathway described in 11c, I note that E_neg is included. However, it is not clear from 

the text, how Fig. 3 is constructed. From the rather short caption I surmise that this is taken from Rogelj et 

al., and then just prescribed here. This must be stated in section 2.3 more clearly. 

 

Author’s response:  

The referee is correct that Fig. 3 is constructed from scenarios simply taken from Rogelj et al, as is discussed in the 

final paragraph of the Methods section.  

 

Changes in Manuscript:  

Considering the response to comment 6, resulting in the removal of Fig. 3, no changes will be performed. 

 

6. Comment from referee:  

You seem to consider only the strong negative emission of Fig. 3 for the calculation of PNR in Tab. 6. As this 

strong case appears nearly exponential in nature, I would suggest that you simply approximate the Rogelj 

negative emissions by an exponential and a starting time, and give it explicitly in eq 11 with its associated rate. 

This would eliminate Fig. 3, be more transparent for the reader and actually more consistent with the simple 

scenario approach that you chose in eq 11. 

 

Author’s response:  

The referee is correct that only results for the strong pathway are presented, so for clarity only it will now be 

mentioned. We thank the referee for the excellent suggestion to approximate the negative emissions by an exponential. 

It turns out that the fit is very good. 

 

Changes in Manuscript:  

In the first paragraph of section 2.3 the sentence “in addition, negative … concentration.” will be  replaced by: “In 

addition, negative emission technologies may be employed. They cause a direct reduction in atmospheric CO2 

concentration and are here modelled as an exponential E_neg(t) = E_{neg,\infty} * (1 – exp(r *time)).” A footnote 

is added to “exponential” in this sentence: “For long timescales, these (after a transient) constant negative emissions 

may not be realistic. However, we are interested in timescales until 2100.” 

The final paragraph of section 2.4 (“Since it is now … (red) pathway.”) will be removed. 

Figure 3 will be removed (in this response we continue to the original Figure numbers). 

As the final paragraph of section 2.3 the following will be added: 

“From these scenarios we obtain a family of negative emission scenarios out of which we pick a pathway with strong 

negative emissions. It is very well approximated by setting E_{neg,\infty} = 4.21 and r=-0.0283.” 

 

7. Comment from referee:  

In order to construct ensembles, the mitigation rate m_1 is drawn from a Beta distribution. It would be helpful 

for the reader to have an explanation why this distribution is chosen and what difference a simple uniform or 

normal distribution would make. 

 

Author’s response:  

The Beta distribution is chosen for purely practical reasons to get a better coverage of emission scenarios. m0 is 

drawn from a uniform distribution [0,0.7], so when drawing m1 from e.g. a uniform distribution, many of the m0, m1 

pairs would result in a very quick mitigation, resulting in an under-sampling of scenarios with high cumulative 

emissions. The Beta distribution has the advantage that it is both bounded and (with these parameter values) highly 

skewed towards small m1, so that the scenario sample is more uniform in terms of cumulative emissions. The choice 

of distribution has no consequences on the results. 

 

Changes in Manuscript:  

In line 245, we will add the following sentence after “latest in 2080.” : “The Beta distribution is chosen for practical 

reasons to a sample of (m0, m1) pairs. As m0 is drawn from a uniform distribution, doing likewise for m1 would 

result in many pathways with very quick mitigation and low cumulative emissions. Choosing a Beta distribution for 

m1 makes draws of small m1 much more likely and leading to a better sampling of high cumulative emission 

scenarios. The choice of distribution has no consequences on the results.”  

 



8. Comment from referee:  

Some noise is added to the model as stated on line 167ff. It seems of only minor relevance for the results (see 

Tab 5 and 6 - PNR changes only by about 1 year compared to the 50%-probability case). I wonder then why 

the addition of noise should be necessary at all. I cannot see any new insight from this. If you retain the noise, 

a more detailed description would be necessary. In particular, the noise should be evident in eqs 10a and 10b 

as additional terms. 

 

Author’s response:  

We would like to point the referee to the opening paragraph of this response. Our stochastic state space model 

consists of four carbon and three temperature boxes, as shown in Table 2. The noise is in several of the carbon and 

temperature boxes, with Wt denoting the Wiener process. The boxes are simple added (eqs 10a, 10b) to obtain the 

total, so no additional noise terms are required in this summation. The introduction of additive and multiplicative 

noise is central to this paper, allowing to get probability distributions (Figure 4). The referee is right to point out the 

similar values for PNR (Table 5 and 6) for the “noise-free” and 50%-probability case, which is because the 

deterministic model (setting the noise terms to zero) is very similar to the 50th percentile of the distribution (as can 

be seen in Figure 5). However, the temperature distributions are in fact not symmetric (Figure 4), so (this being a 

crucial result) the PNR changes substantially when requiring higher safety probabilities \beta (Tables 5 and 6) – in 

practice, it is likely preferable to have a probability higher than 50% (IPCC works with 67%). 

 

Changes in Manuscript:  

We thank the referee for pointing this out and will do our best to clarify the introduction on this point. 

The caption of Table 2 will be changed to the following: “Stochastic State Space Model. Carbon model on the left, 

temperature model on the right. Wt denotes the Wiener process”. 

In line 63, we will replace “stochastic model is then” by “stochastic model – representing all kinds of uncertainties 

in the climate model ensemble – is then”. 

In line 61f, we will replace “stochastic model” by “stochastic state-space model”. 

 

9. Comment from referee:  

Table 5, 6, and 7 could be presented in a more effective way. Table 7 is trivial (just the difference Tab6 - Tab5) 

and could therefore be omitted. I further suggest to combine Tables 5 and 6 into one table. Each probab ility 

column should then contain two subcolumns, one without E_neg the other one with E_neg. The small 

difference caused by E_neg makes would then be directly visible. 

 

Author’s response:  

These suggestions are very welcome and the tables will be formatted as suggested. 

 

Changes in Manuscript:  

Table 7 will be omitted. Table 6 will be combined into Table 5 by splitting the probability columns into sub-columns, 

for the case with/without negative emissions. 

 

10. Comment from referee:  

In the appendix and in Tab. 8 some parameters (\gamma_0, r_\gamma) are listed without explanation. Where 

do they come from? Are they needed in this paper? 

 

Author’s response:  

These are parameters connected to related research not included in the final paper. They will be removed. 

 

Changes in Manuscript:  

Mentions and discussions of \gamma_0, r_\gamma will be removed from the appendix. 

 

11. Comment from referee:  

Line 374: please spell IPCC correctly. It is an edited document and that information is missing, as well as the 

total page number. 

 

Author’s response:  

We thank the referee for this remark and will correct the formatting. 

 

Changes in Manuscript: The reference will be formatted correctly. 

 

12. Comment from referee:  

Figure 2: Put the 10ˆ3 factor into the label unit (1000 ppm). 

 



Author’s response:  

The formatting of Figure 2 will be adapted. 

 

Changes in Manuscript:  

The factor of 10^3 in Figure 2, top right panel will be included in the tick label (1000 and 2000 ppm), as an inclusion 

into the unit label did not fit well into the formatting. 

 

13. Comment from referee:  

Figure 2 and line 147. The discrepancy with the CMIP5 CO2 concentrations for RCP8.5 is quite worrying. 

This would imply that cumulative emissions will be way off, as well. The discrepancy for the forcing is removed 

by introducing the factor A, but what about CO2(t) and cumE(t)?? This must be addressed in a more 

convincing way. 

 

Author’s response:  

Our model has indeed substantial discrepancies in CO2 concentrations for high-emission scenarios such as RCP8.5. 

The reason for this is the use of a pulse-size-independent carbon response function (essentially meaning that carbon 

sinks operate at the same efficiency independent of CO2 concentration, temperature, and reservoir sizes). This is 

introduced in section 2.1 (line 125-139) and discussed in section 4 (lines 310ff). This is indeed a problem for the 

CO2 concentration, but, as seen in Figure 2, not for radiative forcing or temperature due the factor A (see also 

comment 3). We are not focused on the intermediate variable CO2(t), and compute cumE(t) directly from the 

emissions, so this has no substantial effect on our results.  

 

Changes in Manuscript:  

In line 148, we will replace “natural sinks saturate.” with “natural sinks saturate, which is a process the pulse-size-

independent carbon response function cannot adequately capture.” 

 

14. Comment from referee:  

Figure 6: Caption should be amplified by elaborating on the "different policies". You could add, e.g.: "... as 

described by m in eq 11, the rate of mitigation increase per year." 

 

Author’s response:  

We thank the referee for his suggestion and will incorporate it. 

 

Changes in Manuscript:  

The caption of Figure 6 will be  adapted. “different policies, without … negative emissions.” is replaced by “different 

policies as described by in eq 11 with different choices for m1, the rate of mitigation increase per year. Top and 

bottom panels show the cases without and with strong negative emissions, respectively.” 

 

15. Comment from referee:  

Figure 7: y-axis labels not complete. 

 

Author’s response:  

We thank you for the remark and have corrected the labels. 

 

Changes in Manuscript:  

The y-axis labels of Figure 7 will be formatted correctly.  
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Abstract. If the Paris targets are to be met, there may be very few years left for policy makers to start cutting emissions.

Here, we ask by what year at the latest one has to take action to keep global warming below the 2 K target (relative to

preindustrial levels) at the year 2100 with a 67% probability; we call this the Point of No Return (PNR). Using a novel,

stochastic model of CO2 concentration and global mean surface temperature derived from the CMIP5 ensemble simulations,

we find that cumulative CO2 emissions from 2015 onwards may not exceed 424 GtC and that the PNR is 2035 for the policy5

scenario where the share of renewable energy rises by 2% per year. Pushing this increase to 5% per year delays the PNR until

2045. For the 1.5 K target, the carbon budget is only 198 GtC and there is no time left before starting to increase the renewable

share by 2% per year. If the risk tolerance is tightened to 5%, the PNR is brought forward to 2022 for the 2 K target and has

been passed already for the 1.5 K target. Including substantial negative emissions towards the end of the century delays the

PNR from 2035 to 2042 for the 2 K and to 2026 for the 1.5 K target, respectively. We thus show the impact on the PNR not10

only of the temperature target and the speed by which emissions are cut, but also of risk tolerance, climate uncertainties and

the potential for negative emissions.
:::::::::
Sensitivity

::::::
studies

:::::
show

:::
that

:::
the

::::
PNR

::
is
::::::
robust

::::
with

::::::::::
uncertainties

:::
of

::
at

::::
most

:
a
::::
few

:::::
years.

:

1 Introduction

The Earth System is currently in a state of rapid warming that is unprecedented even in geological records (Pachauri et al.,

2014). This change is primarily driven by the rapid increase in atmospheric concentrations of greenhouse gases (GHG) due15

to anthropogenic emissions since the industrial revolution (Myhre et al., 2013). Changes in natural physical and biological

systems are already being observed (Rosenzweig et al., 2008), and efforts are made to determine the ‘anthropogenic impact’

on particular (extreme weather) events (Haustein et al., 2016). Nowadays, the question is not so much if, but by how much and

how quickly the climate will change as a result of human interference, whether this change will be smooth or bumpy (Lenton

et al., 2008) and whether it will lead to dangerous anthropogenic interference with the climate (Mann, 2009).20

The climate system is characterized by positive feedbacks causing instabilities, chaos and stochastic dynamics (Dijkstra,

2013) and many details of the processes determining the future behavior of the climate state are unknown. The debate on

action on climate change is therefore focused on the question of risk and how the probability of dangerous climate change can

1



be reduced. In scientific and political discussions, targets on ‘allowable’ warming (in terms of change in Global Mean Surface

Temperature (GMST) relative to pre-industrial conditions1) have turned out to be salient, with the .
::::
The 2 K warming threshold

commonly seen
::
is

:::::::::
commonly

::::
seen

:
–
:::::
while

:::::::
gauging

:::::::::::
considerable

:::::::::::
uncertainties

:
–
:
as a safe threshold to avoid the worst effects

that might occur when positive feedbacks are unleashed (Pachauri et al., 2014). Indeed, in the Paris COP21 conference it was

agreed to attempt to limit warming below 1.5 K (United Nations, 2015). It is, however, questionable whether the commitments5

made by countries (the so-called Nationally Determined Contributions (NDCs)) are sufficient to keep temperatures below the

1.5 K and possibly even the 2.0 K target (Rogelj et al., 2016a).

A range of studies has appeared to provide insight on the safe level of cumulative emissions to stay below either the 1.5 K

or 2.0 K target at a certain time in the future with a specified probability, usually taken as the year 2100.
:::
The

::::::
choice

::
of

::
a

::::::::
particular

::::
year

::
is

:::::::::
necessarily

::::::::
arbitrary

::::
and

:::::::
neglects

:::
the

:::::::::
possibility

::
of

:::::::::
additional

:::::
future

:::::::::
warming. Early studies made use of10

Earth System Models of Intermeditate Complexity (EMICs) (Zickfeld et al., 2009; Huntingford et al., 2012; Steinacher et al.,

2013) to obtain such estimates. Because it was found that peak warming depends on cumulative carbon emissions EΣ but is

independent of the emission pathway (Allen et al., 2009; Zickfeld et al., 2012), focus has been on the specification of a safe

level of EΣ values corresponding to a certain temperature target. In more recent papers, also emulators derived from either

C4MIP models (Sanderson et al., 2016) or CMIP5 (Coupled Model Intercomparison Project 5) models (Millar et al., 2017b),15

with specified emission scenarios, were used for this purpose. Such methodology was recently used in (Millar et al., 2017a) to

argue that a post-2015 value of EΣ ∼ 200 GtC would limit post-2015 warming to less than 0.6◦C (so meeting the 1.5 K target)

with a probability of 66%.

In this paper we pose the following question: assume one wants to limit warming to a specific threshold in the year 2100,

while accepting a certain risk tolerance of exceeding it, then, when, at the latest, does one have to start to ambitiously reduce20

fossil fuel emissions? The point in time when it is ‘too late’ to act in order to stay below the prescribed threshold is called (van

Zalinge et al., 2017) the Point of No Return (PNR). The value of the PNR will depend on a number of quantities, such as the

climate sensitivity and the means available to reduce emissions. To determine estimates of the PNR, a model is required of

global climate development that a) is accurate enough to give a realistic picture of the behavior of GMST under a wide range

of climate change scenarios, b) is forced by fossil fuel emissions, c) is simple enough to be evaluated for a very large number25

of different emission and mitigation scenarios and d) provides information about risk, i.e., it cannot be purely deterministic.

The models used in van Zalinge et al. (2017) are clearly too idealized to determine adequate estimates of the PNR under

different conditions. In this paper, we therefore construct a stochastic
::::
state

:::::
space

:
model from the CMIP5 results where many

global climate models were subjected to the same forcing for a number of climate change scenarios (Taylor et al., 2012). This

stochastic model
:
–
::::::::::
representing

:::
all

:::::
kinds

::
of

:::::::::::
uncertainties

::
in

:::
the

:::::::
climate

:::::
model

::::::::
ensemble

::
– is then used together with a broad30

range of mitigation scenarios to determine estimates of the PNR under different risk tolerances.

If
::::::::::::::::::
Stocker (2013) showed

::::
that

::
if the Paris temperature targets are to be met, only a few years are left for policy makers to

take action by cutting emissions(Stocker, 2013): with an emissions reduction rate of 5 %yr−1, the 1.5 K target has become

unachievable and the 2.0 K target becomes unachievable after 2017. The Stocker (2013)
:::::::::::::
Stocker (2013) analysis highlights the

1We define pre-industrial temperature as the 1861-1880 mean temperature, in accordance with IPPC AR5.
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crucial concept of the closing door or PNR of climate policy, but it is deterministic. It does not take account of the possibility

that these targets are not met, and does not allow for negative emissions scenarios. We here show how the considerable climate

uncertainties captured by our stochastic state-space modelof the carbon dynamics and temperature inertia,
:
, the degree to which

policy makers are willing to take risk, and the potential of negative emissions affect the carbon budget and the date at which

climate policy becomes unachievable (the PNR). The climate policy is here not defined as an exponential emission reduction5

as in Stocker (2013) but as a steady increase in the share of renewable energy in total energy
:::::::::
generation.

2 Methods

We let ∆T be the annual-mean area-weighted Global Mean Surface Temperature (GMST) deviation from pre-industrial con-

ditions of which the 1861-1880 mean is considered to be representative (Pachauri et al., 2014; Schurer et al., 2017). From the

CMIP5 scenarios we use the simulations of the pre-industrial control, abrupt quadrupling of atmospheric CO2, smooth increase10

of 1% CO2 per year, and the RCP (Representative Concentration Pathways) scenarios 2.6, 4.5, 6.0 and 8.5 (Taylor et al., 2012).

The data is obtained from the German Climate Computing Center (DKRZ), the ESGF Node at DKRZ, and KNMI’s Climate

Explorer. The CO2 forcings (concentrations (Meinshausen et al., 2011) and emissions (van Vuuren et al., 2007; Clarke et al.,

2007; Fujino et al., 2006; Riahi et al., 2007)) are obtained from the RCP Database (available at http://tntcat.iiasa.ac.at/RcpDb).

As all CMIP5 models are designed to represent similar (physical) processes but use different formulations, parametrizations,15

resolutions and implementations, the results from different models offer a glimpse into the (statistical) properties of future

climate change, including various forms of uncertainty. We perceive each model simulation as one possible, equally likely,

realization of climate change. Applying ideas and methods from statistical physics (Ragone et al., 2016), in particular Linear

Response Theory (LRT), a stochastic model is constructed that represents the CMIP5 ensemble statistics of the GMST.

2.1 Linear Response Theory20

We use only those ensemble members from CMIP5 for which the control run and at least one perturbation run are available,

leading to 34 members for the abrupt (CO2 quadrupling) and 39 for the smooth-forcing experiment. Considering those members

from the RCP runs also available in the abrupt forcing run, we have 25 members for RCP2.6, 30 for RCP4.5, 19 for RCP6.0

and 29 for RCP8.5.

The CO2 concentration as a function of time for the abrupt quadrupling and smooth CO2 increase is prescribed as25

CCO2,abrupt(t) = C0(3θ(t) + 1) (1)

CCO2,smooth(t) =

C0 , t≤ 0

C01.01t , t > 0
(2)
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with time in years from the start of the forcing, pre-industrial CO2 concentration C0 and Heaviside function θ(t). The radiative

forcing ∆F due to CO2 relative to pre-industrial conditions is given as

∆F = αCO2 ln

(
CCO2(t)

C0

)
(3)

with αCO2 = 5.35Wm−2 (Myhre et al., 2013). With LRT, the Green’s function for the temperature response is computed from

the abrupt forcing case as the time derivative of the mean response (Ragone et al., 2016)5

GT (t) =
1

∆Fabrupt

d

dt
∆Tabrupt (4)

where ∆Fabrupt(t) = ln(4C0/C0) = ln(4). The temperature deviation from the pre-industrial state for any forcing ∆Fany in

then obtained, via the convolution of the Green’s function, as

∆Tany(t) =

t∫
0

GT (t′)∆Fany(t− t′) dt′ (5)

Because equation (4) is exact we expect that (5) with ∆Fany = ∆Fabrupt will exactly reproduce the abrupt CMIP5 response.10

In addition, for the LRT to be a useful approximation, the response has to reasonably reproduce the smooth 1 %yr−1 CMIP5

response with ∆Fany = ∆Fsmooth. Figure 1a shows that LRT applied to the abrupt perturbation recovers perfectly – as required

– the abrupt response and is well able to recover the response to a smooth forcing. The correspondence is very good for the

mean response and also the variance is captured quite well. In order to apply LRT to the RCP scenarios, the radiative forcing

has to be scaled up by a constant factor A as these - unlike the idealized abrupt and smooth scenarios - include non-fossil CO215

emissions and non-CO2 GHG emissions. The constant A= 1.48 was found in order to optimize the agreement of ∆T with

CMIP5. The resulting reconstruction of temperatures from RCP CO2 concentrations overlaid with CMIP5 data (Figure 1b),

also gives a good agreement.

Beyond finding the temperature change as a result of CO2 variations, eventually emissions ECO2 cause these CO2 changes

and have to be addressed explicitly. A multi-model study of many carbon models of varying complexity under different back-20

ground states and forcing scenarios was recently presented (Joos et al., 2013). A fit of a three-timescale exponential with

constant offset was proposed for the ensemble mean of responses to a 100 GtC emission pulse to a present-day climate of the

form

GCO2(t) = aµ
:

0 +

3∑
i=1

aµ
:
ie
− t
τi (6)

Coefficients ai, i= 0 . . .3
:::::::::::
µi, i= 0, . . . ,3

:
and timescales τi, i= 1 . . .3 are determined using least-square fits on the multi-model25

mean. The CO2 concentration then follows from

CCO2(t) =

t∫
0

GCO2(t′) ECO2(t− t′) dt′ (7)
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In doing so, we use a response function that is independent of the size of the impulse, i.e. the carbon cycle reacts in the same

way to pulses of all sizes other than 100 GtC. This is of course a simplification, especially as very large pulses might unleash

positive feedbacks to do with the saturation of natural sinks such as the oceans (Millar et al., 2017b), but works reasonably

well in the range of emissions we are primarily interested in.

The full (temperature and carbon) LRT model is summarized as

CCO2(t) = CCO2,0 +

t∫
0

GCO2(t′) ECO2(t− t′) dt′ (8a)

∆FCO2(t) = A αCO2 ln(CCO2(t)/C0) (8b)

∆T (t) = ∆T0 +

t∫
0

GT (t′)∆FCO2(t− t′)dt′ (8c)

and relates fossil CO2 emissions ECO2 to mean GMST perturbation ∆T with initial conditions CCO2,0 for CO2 and ∆T0 for5

GMST perturbation. This is quite a simple model with few ‘knobs to turn’. The only really free parameter is the constant A

that scales up CO2-radiative forcing to take into account non-fossil CO2 and non-CO2 GHG emissions .
:::
(not

::::::
present

:::
in

:::
the

:::::::
idealized

:::::::::
scenarios),

::::
and

:::::::
matches

:::
the

::::::
carbon

::::
and

::::::::::
temperature

:::::::
models

:::::::::
(estimated

::::
from

::::::::
different

:::::
model

::::::::::
ensembles)

::::::::
together.

:::
The

:::::::
constant

::::::::
A= 1.48

::::
was

:::::
found

::
in

:::::
order

::
to

::::::::
optimize

:::
the

:::::::::
agreement

::
of

:::
∆T

:::::
with

::::::
CMIP5

::::::
RCPs.

:::
The

::::::::
resulting

::::::::::::
reconstruction

::
of

:::::::::::
temperatures

::::
from

:::::
RCP

::::
CO2:::::::::::::

concentrations
:::::::
overlaid

::::
with

:::::::
CMIP5

::::
data

:::::::
(Figure

:::
1b)

:::::
gives

::
a

::::
good

::::::::::
agreement.

:
Internally,10

emissions need to be converted from GtCyr−1 to ppmyr−1 using the respective molar masses and the mass of the Earth’s

atmosphere as ECO2
[ppmyr−1] = γECO2

[GtCyr−1] with γ = 0.46969ppmGtC−1. In Table ?? we summarize our
:::
Our

estimates of the model’s ten parameters
:::
are

:::::
found

::
in

:::::
Table

:
2.

In Figure 2 we show the results obtained for RCP emissions. For very high emission scenarios we underestimate CO2 con-

centrations because for such emissions natural sinks saturate
:
,
:::::
which

::
is

:
a
:::::::

process
:::
the

:::::::::
pulse-size

::::::::::
independent

::::::
carbon

::::::::
response15

:::::::
function

::::::
cannot

:::::::::
adequately

::::::
capture. However, the up-scaling of radiative forcing is quite successful, yielding a good tempera-

ture reconstruction.

2.2 Stochastic State Space Model

The model outlined above still contains a data-based temperature response function and it informs only about the mean CMIP5

response. However, our main motivation is to obtain new insights on the possible evolution to a ‘safe’ carbon-free , state and20

such paths necessarily depend strongly on the variance of the climate and on the risk one is willing to take. This variance in

temperature is quite substantial, as is evident from Figure 1b
:::
and

:::
1c. Therefore we translate our response function model to a

state-space model and incorporate the variance via suitable stochastic terms.

The response function GT from the 140-year abrupt quadrupling ensemble is well approximated by

GT (t) =

2∑
i=0

bie
− t
τbi (9)25
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Although τb0→∞, we require a finite τb0 for temperatures to stabilize at some level. Hence, we choose a long time scale

τb0 = 400yr that cannot really be determined from the 140 yr abrupt forcing (CMIP5) runs. By writing

C = CP +

3∑
i=1

Ci (10a)

∆T =

2∑
i=0

∆Ti (10b)

the LRT model can be transformed into the 7-dimensional Stochastic State Space Model (SSSM) shown in Table 1 with

parameters in Table 2. Initial conditions are obtained by running the noise-free model forward from pre-industrial conditions

(CP = C0 and Ci = ∆Ti = 0, i= 1,2,3) to present-day, driven by historical emissions 2. As these temperatures are now given

relative to the start of emissions, i.e. 1765, we add the 1961-1990 model mean to the HadCRUT4 dataset to get observed

temperature deviation relative to 1765, and compute ∆T relative to 1861-1880 by adding the 1861-1880 mean of this deviation5

time series.

The major benefit of this formulation is that we can include stochasticity. We introduce additive noise to the carbon model

such that the standard deviation of the model response to an emission pulse as reported by (Joos et al., 2013) is recovered. For

the temperature model we introduce (small) additive noise to recover the (small) CMIP5 control run standard deviation. In the

CMIP5 RCP runs the ensemble variance increases with rising ensemble mean. This calls for the introduction of (substantial)10

multiplicative noise, which we introduce in ∆T2, letting these random fluctuations decay over an 8-year timescale. The mag-

nitude of these fluctuations is (especially at high temperatures) likely to be unrealistic when looking at individual time series.

However, the focus here is on ensemble statistics.

2.3 Transition Pathways

The SSSM described in the previous section is forced with fossil CO2 emissions. We assume that, in the absence of any15

mitigation actions, emissions increase from their initial value E0 at an exponential rate g
:::::::::::
g = 0.01yr−1

:
due to economic and

population growth. Political decisions cause emissions to decrease from starting year ts onward as fossil energy generation is

replaced by non-GHG producing forms such as wind, solar and water (mitigationm) and by an increasing share of fossil energy

sources the emissions of which are not released but captured and stored away by Carbon Capture and Storage (abatement

m). In addition, negative emission technologies Eneg may be employedthat lead to a net
:
.
::::
They

::::::
cause

:
a
:::::
direct

:
reduction in20

atmospheric CO2 concentration
:::
and

:::
are

::::
here

::::::::
modelled

::
as

:::
an

:::::::::
exponential

:

3
::::::::::::::::::::::::::::
Eneg(t) = Eneg,∞(1− exp(−rt)). We model this

2these
:::

These
:
are the fossil fuel and cement production emissions from (Le Quéré et al., 2016), accessed 28th March, 2017

:::
2017.

3
::
For

:::
long

:::
time

:::::
scales,

::::
these

::::
(after

:
a
::::::
transient)

::::::
constant

:::::
negative

:::::::
emissions

:::
may

::
not

::
be
::::::
realistic.

:::::::
However,

::
we

::
are

:::::::
interested

:
in
:::
the

::::
period

:::
until

:::
the

:::
year

::::
2100.
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in a very simple way by letting both mitigation and abatement increase linearly until emissions are brought to zero:

m(t) =

m0 t≤ ts
min(m0 +m1(t− ts),1) t > ts

(11a)

a(t) =

a0 t≤ ts
min(a0 +m1(t− ts),1) t > ts

(11b)

E(t) = E0e
gt(1− a(t))(1−m(t))−Eneg(t) (11c)

with constants m0,a0 giving the mitigation and abatement rates at the start of the scenario and m1 the incremental year-to-5

year increase. The simplified model (11) is very well able (not shown) to reproduce the IAM pathways from that fulfil the

NDCs until 2030 and afterwards reach the 2 K target with a 50-66% probability (Rogelj et al., 2016a). These pathways are

exemplary for those that continue on the low-commitment path for a while, followed by strong and decisive action.
::::
From

:::::
them

::
we

::::::
obtain

:
a
::::::
family

::
of

::::::::
negative

:::::::
emission

::::::::
scenarios

::::
out

::
of

:::::
which

:::
we

::::
pick

::
a

:::::::
pathway

::::
with

::::::
strong

:::::::
negative

:::::::::
emissions.

::
It

::
is

::::
very

:::
well

::::::::::::
approximated

::
by

::::::
setting

:::::::::::::::::
Eneg,∞ = 4.21GtC

:::
and

:::::::::::::::
r = 0.0283yr−1.10

2.4 Point of No Return

With the emission scenarios and the SSSM - returning CO2 concentrations and GMST for any such scenario - one can now

address the issue of transitioning from the present-day (year 2015) to a carbon-free era such as to avoid catastrophic climate

change. We need to take into account both the target threshold and the risk one is willing to take to exceed it. The maximum

amount of cumulative CO2 emissions that allows reaching the 1.5 and 2 K targets, as a function of the risk tolerance, is called15

the Safe Carbon Budget (SCB). It is well established in the literature (Meinshausen et al., 2009; Zickfeld et al., 2009) but does

not contain information on how these emissions are spread in time. This is where the Point of No Return (PNR) comes in:

The PNR is the point in time where starting mitigating action is insufficient to stay below a specified target with a chosen risk

tolerance.

Concretely, let the temperature target ∆Tmax be the maximum allowable warming and denote the parameter β as the prob-20

ability of staying below a given target (a measure of the risk tolerance). For example the case ∆Tmax = 2K and β = 0.9

corresponds to a 90% probability of staying below 2 K warming, i.e. 90 of 100 realizations of the SSSM, started in 2015 and

integrated until 2100, do not exceed 2K in the year 2100.

Then, in the context of (11), the PNR is the earliest ts that does not result in reaching the defined ‘Safe State’ (van Zalinge

et al., 2017) in terms of ∆Tmax and β. It is determined from the probability distribution p(∆T2100) of GMST in 2100.25

Both SCB and PNR depend on temperature target, climate uncertainties and risk tolerance, but the PNR also depends on

the aggressiveness of the climate action considered feasible (here given by the value of m1). This makes the PNR such an

interesting quantity, since the SCB does not depend on the time path of emission reductions. Clearly there is a close connection

between the PNR and the SCB. Indeed, one could define a PNR also in terms of the ability to reach the SCB. The one-to-one

7



relation between cumulative emissions and warming gives the PNR in ‘carbon space’. Its location in time, however, depends

crucially on how fast a transition to a carbon-neutral economy is feasible.

Since it is now recognized that negative emissions may be essential in meeting temperature targets, we include this possibility

into the PNR computation. From the IAM scenariosthat Rogelj et al. (2016a) found to fulfill NDCs until 2030 and stay below

2 K with 50-66% probability, we obtain a family of negative emission pathways (Figure ??) out of which we pick a ‘moderate’5

(orange) and a ‘strong’ (red)pathway.
::
For

::::::
details

:::
on

:::
the

:::::::::
scenarios,

:::
we

:::::
refer

::
to

::::::::::::::::::
Rogelj et al. (2016a).

:::::
With

::::::
carbon

:::::::
budgets

::::::
rapidly

::::::
running

:::
out

::::
and

:::
the

::::
PNR

::::::::::
approaching

::::
fast,

:::::::
negative

:::::::::
emissions

::::
may

::::
have

::
to

:::::::
become

::
an

:::::::
essential

::::
part

::
of

:::
the

::::::
policy

::::
mix.

::::
Such

:::::::
policies

:::
are

:::::
cheap

:::
but

::::
may

::::
only

::
be

:
a
:::::::::
temporary

::
fix

::::
and

::::
lead

::
to

:::::::::
undesirable

::::::::
spillover

:::::
effects

:::
on

::::::::::
neighboring

::::::::
countries

::::
(e.g.

:::::::::::::::::::::::::
Wagner and Weitzman (2015)).

:::
We

:::::::
abstract

::::
from

:::::
these

::::::::::
discussions

::::
here

::::
since

::::
this

:
is
:::::::
beyond

:::
the

:::::
scope

::
of

:::
the

::::::
present

:::::
paper.

:

3 Results10

To demonstrate the quality of the SSSM we initialise it at pre-industrial conditions, run it forward and compare the results with

those of CMIP5 models. The SSSM is well able to reproduce the CMIP5 model behavior under the different RCP scenarios

(Figure 3, shown for RCP2.6 and 4.5). As these scenarios are very different in terms of rate of change and total cumulative

emissions this is not a trivial finding. It is actually remarkable that the SSSM, which is based on a limited amount of CMIP5

model ensemble members, performs so well. As an example, the RCP2.6 scenario contains substantial negative emissions,15

responsible for the downward trend in GMST, which our SSSM correctly reproduces. The mean response for RCP8.5 is

slightly underestimated (not shown) because the uncertainty in the carbon cycle plays a rather minor role compared to that in

the temperature model. In addition, for such large emission reductions positive feedback loops set in from which our SSSM

abstracts. The temperature perturbation ∆T is very closely log-normally distributed while for weak forcing scenarios (e.g.,

RCP2.6 and RCP4.5) the distribution is approximately Gaussian. The CO2 concentration is found to be Gaussian distributed20

for all RCP scenarios. These findings (log-normal temperature and Gaussian CO2 concentration) result from the multiplicative

and additive noise in temperature and carbon components of the SSSM, respectively.

To determine the SCB, 6000 emission reduction strategies (with Eneg(t) = 0) were generated and, using the SSSM, an

8000-member ensemble for each of these emission scenarios starting in 2015 was integrated. Emission scenarios are generated

from (11) by letting a(t) = 0, a uniform m0 ∈ [0,0.7] and m1 drawn from a beta distribution (with distribution function25

p(m) = 1
B(α,δ)m

α(1−m)(δ−1), where B(α,δ) is the beta function; parameters are chosen as α= 1.2, δ = 3), with the [0,1]

interval scaled such that m= 1 latest in 2080.
:::
The

::::
Beta

::::::::::
distribution

:
is
::::::
chosen

:::
for

::::::::
practical

::::::
reasons

::
to
:::::::
sample

::::::::
(m0,m1)

:::::
pairs.

::
As

:::
m0::

is
::::::
drawn

::::
from

:
a
:::::::
uniform

:::::::::::
distribution,

:::::
doing

:::::::
likewise

::
for

::::
m1 :::::

would
:::::
result

::
in

:::::
many

::::::::
pathways

::::
with

::::
very

:::::
quick

:::::::::
mitigation

:::
and

:::
low

::::::::::
cumulative

:::::::::
emissions.

::::::::
Choosing

:
a
::::
Beta

::::::::::
distribution

:::
for

:::
m1 :::::

makes
::::::
draws

::
of

:::::
small

:::
m1 :::::

much
::::
more

:::::
likely

::::
and

::::
leads

::
to

::
a

:::::
better

:::::::
sampling

:::
of

::::
high

:::::::::
cumulative

::::::::
emission

::::::::
scenarios.

::::
The

:::::
choice

::
of
::::::::::
distribution

:::
has

:::
no

:::::::::::
consequences

:::
on

:::
the

::::::
results.30

The temperature anomaly in 2100 (∆T2100) as a function of cumulative CO2 emissions EΣ is shown in Figure 4. The same

calculation is also shown for the deterministic case without climate uncertainty (no noise in the SSSM). In Figure 4, the SCB

is given by the point on the EΣ-axis where the (colored) line corresponding to a chosen risk tolerance crosses the (horizontal)
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line corresponding to a chosen temperature threshold ∆Tmax. The curves ∆T2100 = f(EΣ) (Figure 4) are very well described

by expressions of the type

f(EΣ) = a ln

(
EΣ

b
+ 1

)
+ c (12)

with suitable coefficients a,b and c, each depending on the tolerance β. For the range of emissions considered here, a linear fit

would be reasonable (Allen et al., 2009). However, our expression also works for cumulative emissions in the range of business5

as usual (when fitting parameters on suitable emission trajectories). From Figure 4 we easily find the SCB for any combination

of ∆Tmax and β, as shown in Table 3.

Allowable emissions are drastically reduced when enforcing the target with a higher probability (following the horizontal

lines from right to left in Figure 4). These results show in particular the challenges posed by the 1.5 K compared to the 2 K

target. The sensitivity of the SCB to the relevant model parameters is shown in the Appendix and the values are robust. From10

IPCC-AR5 (IPCC, 2013) we find cumulative emissions post-2015 of 377 GtC to 517 GtC in order to ‘likely’ stay below 2 K

while we find an SCB of 424 GtC for ∆Tmax = 2K,β = 0.67 which lies in the same range. Like Millar et al. (2017a) we find

approximately 200 GtC to stay below 2 K with β = 0.67.

To determine the PNR, we resort to three illustrative choices to model the abatement and mitigation rates with Eneg(t) =

0. Following (11) we construct Fast Mitigation (FM) and Moderate Mitigation (MM) scenarios with m1 = 0.05 and 0.02,15

respectively. In addition, in an Extreme Mitigation (EM) scenario m= 1 can be reached instantaneously. This corresponds to

the most extreme physically possible scenario and serves as an upper bound. When varying ts to find the PNR for the three

scenarios, we always keep m0 = 0.14 and a0 = 0 at 2015 values (World Energy Council, 2016).

As an example, ts = 2025 leads to total cumulative emissions from 2015 onward of 109, 183 and 335 GtC for the mitigation

scenarios EM, FM and MM, respectively. Note that while MM is the most modest scenario,
:::
but it is actually quite ambitious,20

considering that with m= 0.1355 in 2005 and m= 0.14 in 2015 (World Energy Council, 2016) the current year-to-year

increases in the share of renewable energies are very small.

Figure 5 shows the probabilities for staying below the 1.5 and 2.0 K thresholds in 2100 as function of ts for different

policies, including FM (m1 = 0.05) and MM (m1 = 0.02), while the EM policy bounds the unachievable region. It is clear

that this region is larger for the 1.5 than for the 2.0 degree target, and shrinks when including negative emissions. From the25

plot we can directly see the consequences of delaying action until a given year. For example, if policy makers should choose to

implement the MM strategy only in 2040, the chances of reaching the 1.5 (2.0) degree target are only 2% (47%). We conclude

that the remaining ‘window of action’ may be small, but a window still exists for both targets. For example, the 2 K target is

reached with a probability of 67% even when starting MM is delayed until 2035. However, reaching the 1.5 K target appears

unlikely as MM would be required to start in 2018 for a probability of 67%. When requiring a high (≥ 0.9) probability, it30

is impossible to reach with the MM scenario. The PNR for the different targets and probabilities is given in Table ??. The

robustness of these PNR values is shown in the Appendix.
:::::
shown

::
in

:::::
Table

::
4

:::
and

::::::
Figure

::
5.

We also see from Figure 5and Table ?? that the inclusion of
:::::::
Including

::::::
strong

:
negative emissions delays the PNR by 6-

10 years(see Table ??), which may be very valuable especially for ambitious targets. For example, when including ‘strong’

9



negative emissions one can
:::
one

::::
can

::::
then reach 1.5 K with a probability of up to 66% in the MM scenario when acting before

2026, 8 years later than without. The PNR varies substantially for slightly different temperature targets. This also illustrates

the importance of the temperature baseline relative to which ∆T is defined. This ,
::
as

:
has been found previously (Schurer et al.,

2017), and we find (not shown) that switching to an .
:::::::::
Switching

::
to

:
a
:::::::

(lower) 18th century baseline can move the PNRearlier

by up to 10 years
:::::::
increases

::::::
current

:::::
levels

::
of

::::::::
warming

::
by

:::::::::::::::::::::::::::
0.13 K (Schurer et al., 2017) and

:::::::
thereby

:::::
brings

:::::::
forward

:::
the

:::::
PNR.

:::
For5

:::::::
example,

:::
for

::
a
:::::::::
maximum

::::::::::
temperature

::::::::
threshold

::
of

::::::::
1.5 K the

:::::
PNR

::::::
moves

::::
from

:::::
2022

::
to

:::::
2016

::
in

:::
the

::::
MM

::::::::
scenario

:::
and

:::::
from

::::
2038

::
to

:::::
2033

::
for

:::
the

::::
EM

:::::::
scenario.

It is clear that an energy transition more ambitious than RCP2.6 is required to stay below 1.5 K with some acceptable

probability, and whether that is feasible is doubtful. For all other RCP scenarios, exceeding 2 K is very likely in this century

(Figure 6).10

:::
The

:::::::::
parameter

::::::::::
sensitivities

:::
of

:::::
SCB

::::
and

::::
PNR

:::::
were

::::::::::
determined

:::
by

:::::::
varying

:::::
each

:::::::::
parameter

:::
by

:::::
±5%.

::::::
Table

::
5
::::::
shows

::
the

::::::
results

::::
for

:::::::
selected

::::::::::
parameters

:::
for

:
a
::::::

small
:::::::::::::::::::::
(Tmax = 1.5K,β = 0.95),

:::::::::::
intermediate

:::::::::::::::::::::
(Tmax = 1.5K,β = 0.5),

::::
and

:::::
large

::::::::::::::::::::
(Tmax = 2.0K,β = 0.5)

::::
SCB,

::::::::::::
corresponding

::
to
::
a
:::::
close,

::::::::::
intermediate

::::
and

::
far

:::::
PNR.

:

:::
The

:::::::
biggest

::::::::::
sensitivities

:::
are

:::::
found

:::
for

:::
the

::::::::
radiative

::::::
forcing

:::::::::
parameter

::
A.

::::
The

::::::::::
parameters

::
of

:::
the

::::::
carbon

::::::
model

::::::
(µi, τi):::

do

:::
not

::::
have

:::
big

:::::::
impacts

::
on

:::
the

::::::
found

::::
SCB,

:::
on

:::
the

:::::
order

::
of

::::::::::
0− 17GtC,

:::::
with

:::::
larger

:::::::
numbers

:::::
found

:::
for

::::::
larger

:::::::
absolute

:::::
values

:::
of15

::::
SCB.

::::
The

::::::::::::::::
temperature-model

:::::::::
parameters

:::
are

:::::
more

:::::::::
important,

::::::::
changing

:::
the

::::
SCB

:::
by

::
up

::
to

::::::
around

:::::
10%

:::
for

::::
large

::::
and

::::
50%

:::
for

::::
small

::::::
values.

::::
The

::::::
model

::
is

::::::::::
particularly

:::::::
sensitive

::
to

:::::::
changes

::
in

:::
the

:::::::::::
intermediate

::::::::
timescale

::::::::
(b2, τb2).

:::
The

:::::
PNR

::::::::::
sensitivities

:::
are

:::::::
generally

::::::
small.

:::
We

::::
find

:::
the

::::
most

::::::::
relevant,

:::
yet

:::::
small,

::::::::::
sensitivities

::
in

:::
the

::::::::::
temperature

::::::
model

::::::::::
parameters.

:::
For

::::::::
example,

:
a
:::::

10%

::::
error

::
in

:::
τb2:::

can
:::::
move

:::
the

::::
PNR

:::
by

:::
3-4

:::::
years.

:

:::
The

:::::::::
sensitivity

::
of

:::::
SCB

:::
and

:::::
PNR

::
to

:::
the

:::::
noise

::::::::::
amplitudes

::
is

:::::
small,

:::::
with

::::::
largest

:::::
values

::::::
found

:::
for

:::
the

::::::::::::
multiplicative

:::::
noise20

::::::::
amplitude

::::
σT2 :::

that
::
is

::::::::::
responsible

::
for

:::::
most

::
of

:::
the

::::::
spread

::
of

:::
the

::::::::::
temperature

::::::::::
distribution.

:::::::::
Increasing

::::
noise

::::::::::
amplitudes

::::::::
decreases

::
the

:::::
SCB,

::
in

::::::::::
accordance

::::
with

:::
the

:::::::::
expectation

::::
that

:::::
larger

::::::
climate

:::::::::
uncertainty

:::::
leads

::
to

::::::
tighter

:::::::::
constraints.

::
It
::
is

:::::
useful

::
to

:::::::::
remember

:::
that

:::
the

:::::::::
stochastic

::::::::::
formulation

::
of

:::
our

::::::
model

::
is

::::::::
designed

::::
with

:::
the

:::::::
explicit

:::::::
purpose

::
to

::::::::::
incorporate

::::::::
parameter

::::::::::
uncertainty

::
in

::
a

::::::
natural

:::
way

:::
via

:::
the

:::::
noise

:::::
term,

::::::
without

::::::
having

::
to

:::::
make

:::::::
specific

::::::::::
assumptions

:::
on

::
the

:::::::::::
uncertainties

::
of

:::::::::
individual

::::::::::
parameters.

4 Summary, Discussion and Conclusions25

We have developed a novel stochastic state space model (SSSM) to accurately capture the basic statistical properties (mean

and variance) of the CMIP5 RCP ensemble, allowing us to study warming probabilities as function of emissions. It represents

an alternative to the approach that contains stochasticity in the parameters rather than the state. Although the model is highly

idealized, it captures simulations of both temperature and carbon responses to RCP emission scenarios quite well.

A weakness of the SSSM is the simulation of temperature trajectories beyond 2100 and for high emission scenarios. The30

large multiplicative noise factor leads – especially at high mean warmings – to immensely volatile trajectories that in all

likelihood are not physical (on the individual level, the distribution is still well-behaved). It might be a worthy endeavour

:::::::::
worthwhile

:
to investigate how this could be improved. Another weakness in the carbon component part of the SSSM is that

10



the real carbon cycle is not pulse-independent
::::
pulse

::::::::::::::
size-independent. Hence, using a single constant response function has

inherent problems, in particular when running very high-emission scenarios. This is because the efficiency of the natural

carbon sinks to the ocean and land reservoirs is a function both of temperature and the reservoir sizes. The SSSM has therefore

slight problems reproducing CO2 concentration pathways (Figure 2), a price we accept to pay as we focus on the CMIP5

temperature reproduction. Taking account of non-CO2 emissions more fully beyond our simple scaling and
:::
also

:
avoiding5

temporary overshoots of the temperature caps would reduce the carbon budgets (Rogelj et al., 2016b) and thus lead to earlier

PNRs than given here. Therefore the values might be a little too optimistic.

In Millar et al. (2017b), the authors draw a different conclusion from studying a similar problem. They introduce in their

FAIR model response functions that dynamically adjust parameters based on warming to represent sink saturation. Conse-

quently, their model gives much better results in terms of CO2 concentrations. It would be an interesting lead for future10

research to conduct our analysis here (in terms of SCB and PNR) with other simple models (such as FAIR or MAGICC) to

discover similarities and differences. However, only rather low-emission scenarios are consistent with the 1.5 or 2 K targets, so

we do not expect this
:::
such

::::::::::::
nonlinearities to play a major role, and indeed our carbon budgets are very similar to Millar et al.

(2017a).

The concept of a Point of No Return introduces a novel perspective into the discussion of carbon budgets that is often15

centered on the question of when the remaining budget will have ‘run out’ at current emissions. In contrast, the PNR concept

recognizes the fact that emissions will not stay constant and can decay faster or slower depending on political decisions. With

these caveats in mind, we conclude that, first, the PNR is still relatively far away for the 2.0 K target: with the MM scenario and

β = 67% we have 17 years left to start. When allowing to set all emissions to zero instantaneously, the PNR is even delayed to

the 2050s. Considering the slow speed of large-scale political and economic transformations, decisive action is still warranted,20

as the MM scenario is a large change compared to current rates. Second, the PNR is very close or passed for the 1.5 K target.

Here more radical action is required – 9 years remain to start the FM policy to avoid 1.5 K with a 67% chance, and strong

negative emissions gives
::::
give us 8 years under the MM policy.

Third, we can clearly show the effects of changing ∆Tmax,β and the mitigation scenario. Switching from 1.5 to 2 K buys

an additional ≈ 16 years. Allowing a one-third, instead of one-tenth exceedance risk, buys an additional 7-9 years. Allowing25

for the more aggressive FM policy instead of MM buys an additional 10 years. This allows to assess trade-offs, for example

between tolerating higher exceedance risks and implementing more radical policies. Fourth, negative emissions can offer a

brief respite but only delay the PNR by a few years, not taking into account the possible decrease in effectiveness of these

measures in the long term (Tokarska and Zickfeld, 2015).

::
In

:::
this

:::::
work

:
a
:::::
large

::::::::
ensemble

::
of

::::::::::
simulations

:::
was

::::
used

::
in
:::::
order

::
to

:::::::
average

::::
over

::::::::
stochastic

:::::::
internal

:::::::::
variability.

::::
This

::::::
allows

::
to30

::::::::
determine

:::
the

::::
point

::
in
::::
time

::::::
where

:
a
::::::::
threshold

::
is

::::::
crossed

::
at

:
a
::::::
chosen

:::::::::
probability

:::::
level.

::::
Such

:::
an

::::::::
ensemble

:
is
:::
not

:::::::
possible

:::
for

:::::
more

::::::
realistic

:::::::
models,

:::
nor

:::
do

::::::
GCMs

:::::
agree

::
on

::::::
details

:::
of

::::::
internal

:::::::::
variability.

:::::::::
Therefore,

:::
in

:::::::
practice,

:::
the

:::::::
crossing

:::
of

:
a
::::::::
threshold

::::
will

:::::
likely

::
be

::::::::::
determined

::::
with

::::::::
hindsight

:::
and

:::::
using

::::
long

::::::::
temporal

::::::
means.

::::
This

:::
fact

::::::
should

::::
lead

::
us

:::
to

::
be

:::::
more

:::::::
cautious

::
in

::::::::
choosing

::::::::
mitigation

:::::::::
pathways.
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We have shown the constraints put on future emissions by restricting GMST increase below 1.5 and 2 K, respectively, and

the crucial importance of the safety probability. Further (scientific and political) debate is essential on what are the right values

for both temperature threshold and probability. Our findings are sobering in light of the bold ambition in the Paris agreement,

and add to the sense of urgency to act quickly before the PNR has been crossed.
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Figure 1. Ensemble mean (A) and variance (B) of temperature response from CMIP5 (solid) and LRT reproduction (dashed). Year 0 gives the

start of the perturbation. (C) Reconstruction of RCP temperature evolution from concentration pathways using CO2 only. Blue, orange and

green lines gives CMIP5 data for RCP4.5, RCP6.0 and RCP8.5, respectively, with the ensemble mean given in black solid (RCP4.5), dotted

(RCP6.0) and dashed (RCP8.5) black. Reconstruction using CO2 radiative forcing in red (RCP4.5), purple (RCP6.0) and brown (RCP8.5).
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Figure 2. Reconstruction of RCP results using the Response Function Model. In all panels, solid lines refer to RCP4.5, dotted to RCP6.0 and

dashed lines to RCP8.5. Black lines show RCP data while colors (blue: RCP4.5, orange: RCP6.0, green: RCP8.5) give our reconstruction.

(A): Fossil CO2 emissions. (B): CO2 concentrations from RCP and reconstructed using GCO2. (C): Total anthropogenic radiative forcing

(black) and radiative forcing from CO2 only (red) (both from RCP) and reconstructed forcing using the relations above. (D): Temperature

perturbation from CMIP5 RCP (ensemble mean) and the our reconstruction.
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Negative Emissions from IAM scenarios (Rogelj et al., 2016a), with two sample pathways marked.
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Figure 3. Stochastic State Space Model applied to RCP scenarios. (A,B): Ensemble mean and 5th, 95th percentile envelopes of CMIP5

RCPs (blue) and stochastic model (orange). (C): Probability density functions for ∆T in 2100 based on 5000 ensemble members, and driven

by forcing from RCP2.6 (blue), RCP4.5 (orange), RCP6.0 (green) and RCP8.5 (red). In black are fitted lognormal distributions.

C0 (ppm) a0 a1 a2 a3 278 0.2173 0.2240 0.2824 0.2763 A α (Wm−2) τ1 τ2 τ3 1.48 5.35 394.4 36.54 4.304 Response

Function Model Parameters. All timescales τi are in years and the carbon model amplitudes ai are dimensionless for E in

ppmyr−1.
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Figure 4. The Safe Carbon Budget. ∆Tmax in 2100 such that p(∆T2100 ≤ ∆Tmax) = β as a function of cumulative emissions for different

β. The black curve gives the deterministic results with noise terms in the stochastic model set to zero.
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Figure 5. The Point of No Return. Probability of staying below the 1.5 K (left) or 2.0 K (right) threshold when starting emission reductions

in a given year, for different policies
::
as

:::::::
described

::
by

::
in
:::::::
equation

::
11

::::
with

:::::::
different

::::::
choices

::
for

:::
m1,

::
the

::::
rate

::
of

::::::::
mitigation

::::::
increase

:::
per

::::
year.

:::
Top

:::
and

:::::
bottom

:::::
panels

:::::
show

::
the

::::
cases

:
without (top) and with (bottom) strong negative emissions,

:::::::::
respectively. The Point of No Return for a

given policy is given by the point in time where the probability drops below a chosen threshold. The default threshold of two-thirds is dashed.

The unachievable region is bounded by the extreme mitigation scenario.
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::::::::::::::::::::::::::::

dCP = µ0Edt

dC1 = (µ1E− 1

τ1
C1)dt

dC2 = (µ2E− 1

τ2
C2)dt+σC2 dWt

dC3 = (µ3E− 1

τ3
C3)dt

C = CP +

3∑
i=1

Ci

∆F =A α ln(C/C0)

d∆T0 = (b0∆F − 1

τb0
∆T0)dt+σT0 dWt

d∆T1 = (b1∆F − 1

τb1
∆T1)dt

d∆T2 = (b2∆F − 1

τb2
∆T2)dt +σT2∆T2 dWt

∆T =

2∑
i=0

∆Ti

Table 1. Stochastic State Space Model. Carbon model on left, temperature model on the right.
:::
Wt ::::::

denotes
::
the

::::::
Wiener

::::::
process.

a0 ::
µ0 a1 ::

µ1 a2 ::
µ2 a3 ::

µ3 τ1:::
(yr)

:
τ2 :::

(yr) τ3:::
(yr)

0.2173 0.2240 0.2824 0.2763 394.4 36.54 4.304

C0 (ppm) b0::::::::::::::
(Kyr−1 W−1 m2) b1::::::::::::::

(Kyr−1 W−1 m2) b2::::::::::::::
(Kyr−1 W−1 m2) τb0 :::

(yr) τb1 :::
(yr)

:

278 0.00115176 0.10967972 0.03361102 400 1.42706247

A α (Wm−2) σC2 (ppm/yr1/2) σT0 (K/yr1/2) σT2 (yr−1/2) τb2 :::
(yr)

:

1.48 5.35 0.65 0.015 0.13 8.02118539
Table 2. Stochastic State Space Model Parameters. All timescales are in years, the carbon model amplitudes ai ::

µi are dimensionless for E

in ppmyr−1, the temperature model amplitudes bi are in KW−1 m2 yr−1.
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β 0.5 0.67 0.9 0.95 Noise-free

Tmax = 1.5K 247 198 107 69 233

Tmax = 2.0K 492 424 298 245 469
Table 3. Safe Carbon Budget (in GtC since 2015) as function of threshold and safety probability β.

β 0.5 0.67 0.9 0.95 noise-free

Eneg none strong none strong none strong none strong none strong

EM Tmax = 1.5K 2038 2046 2034 2042 2026 2035 2022 2032 2037 2045

Tmax = 2.0K 2056 2062 2051 2058 2042 2049 2038 2046 2055 2061

FM Tmax = 1.5K 2032 2039 2027 2036 2020 2028 2016 2025 2030 2038

Tmax = 2.0K 2050 2056 2045 2052 2036 2043 2032 2039 2048 2055

MM Tmax = 1.5K 2022 2029 2018 2026 – 2019 – – 2021 2029

Tmax = 2.0K 2040 2046 2035 2042 2026 2033 2022 2030 2038 2045
Table 4. Point of No Return as function of threshold and safety probability β without and with strong negative emissions.

Appendix: SCB and PNR Parameter Sensitivity

SCB and PNR sensitivities were determined by varying each parameter by ±10% and running the calculation to see how the

obtained value changes. Sensitivities were determined for all discussed values of Tmax,β, and the EM, FM and MM scenarios

in case of PNR. We show (Table 5) sample values for a small (Tmax = 1.5K,β = 0.95), intermediate (Tmax = 1.5K,β = 0.5),

and large (Tmax = 2.0K,β = 0.5) SCB, corresponding to a close, intermediate and far PNR.5

The biggest effects on the SCB are found for the initial condition of the large carbon reservoirs and the radiative forcing

parametersA,α andC0 that are essentially fixed constants. The parameters of the carbon model (ai, τi) do not have big impacts

on the found SCB, on the order of 0− 17GtC, with the larger numbers found for larger absolute values of SCB. Varying the

temperature-model parameters can have quite noticeable effects, up to 10% for large and up to 50% for small values of SCB.

The model is particularly sensitive to changes in the intermediate timescale (b2, τb2). Likely, possible variations in the (model)10

parameters are not independent, potentially canceling each other. The sensitivity of SCB and PNR to the noise amplitudes

is small, with largest values found for the multiplicative noise amplitude that is responsible for much of the spread of the

temperature distribution (so increasing σT2 decreases the SCB).

The PNR sensitivities are generally small and in no way change our message qualitatively. The effect of initial conditions

and carbon model parameters is small, often even unnoticeable (with the exception of the permanent carbon reservoir, due to15

its large size). We find the most relevant, yet small, sensitivities in the temperature model parameters. For example, a 10%

error in τb2 can move the PNR by 2-3 years. An interesting effect is the case of rγ , the energy-saving progress (reduction in

energy-intensity of a unit of economic output and in effect equivalent to a decrease in the emission growth rate) which is taken

24



SCB PNR

Tmax,β 1.5K,0.95 1.5K,0.5
::::::::
1.5K,0.67 2.0K,0.5

::::::::
2.0K,0.67

:
1.5K,0.95 1.5K,0.5

::::::::
1.5K,0.67 2.0K,0.5

::::::::
2.0K,0.67

undisturbed 68.63
:
69

:
247.02

:::
198 492.09

:::
424 2022 2036

::::
2034 2050

::::
2051

C1 ::
µ1 15.06, -15.01

:
3,

::
-3 14.75, -14.48

::
8,

::
-8 14.65, -13.41

::
16,

:::
-17

:
2, -1 1, -1 1, 0 C2 1.59, -2.07 1.96, -2.0 1.47, -1.88 0, 0

:
-1

:
0, 0 0, 0

::
2,

::
-1

∆T1 ::
µ2:

-0.12, -0.05 0.09, -0.0 0.52, 0.04 0, 0 0, 0 0, 0 ∆T2 -0.04, -0.03 0.05, 0.1 -0.04, -0.49 1, 0
:
-1
:

0, 0
:
2,
::
-3

:
0, 0 a1 :

5,
::
-8 2.81, -2.82 10.24, -9.41 19.52, -17.2 0, 0 0, -1 1, -1 a2 0.68, -0.79 3.27, -2.91 7.76, -6.49 1, 1 0 , -1 1, 0

τ1 3.64, -3.02
:
4,
::
-3

:
4.73, -3.75

::
4,

::
-4 5.92, -4.43

:
4,
::

-6
:

0
:
1, 0 0, 0

:
-1

:
1, 0

τ2 4.58, -4.48
:
4,
::
-4

:
7.6, -7.1

:
6,

::
-6 12.44, -11.08

:
8,

:::
-11 1, 0 0, -1 1, 0

A 55.59, -44.99
::
56,

:::
-45 80.98, -64.43

:::
73,

:::
-59 118.57, -93.23

:::
104,

:::
-86

:
5, -4 5, -5 6, -5 α 55.76, -44.97 80.91, -64.52 118.18, -92.85 5, -4 5, -5 6, -5

::
8,

::
-6

C0 :
b1: –, 169.67 -188.37, 182.48 -205.7, 199.12 –, 13 -15, 11

::
12,

:
-12 , 10 b1 12.17, -11.57

:::
19,

:::
-19 22.74, -21.04

::
27,

:::
-28

:
32.55, -31.19 1, -1 2

:
1, -2 2, -1

::
-2

b2 32.08, -28.29
::
32,

:::
-28 38.94, -34.41

:::
37,

:::
-33 57.89, -50.29

::
54,

:::
-49

:
4, -2

::
3,

::
-3 2

:
3, -3 3, -2

::
4,

::
-3

τb1 12.31, -11.83
::
12,

:::
-12 23.02, -21.17

:::
19,

:::
-18 34.51, -30.64

::
27,

:::
-28

:
1
:
2, -1 1, -2 2

:
3, -1

τb2 37.84, -33.21
::
38,

:::
-33 38.13, -33.51

:::
38,

:::
-34 56.77, -49.36

::
55,

:::
-50

:
4, -3 2

:
3, -3 3, -2

::
4,

::
-3

γ0 :::
σT2 ∼, ∼

::
10,

:::
-10 ∼, ∼

:
0,

:
0
:

∼,∼ 1, -12, -2 3, -2 rγ ∼,∼ ∼,∼ ∼,∼ 1, 1 2, 5 6, 15 σT2 10.04, -10.16 -3.0, 3.55 -4.68, 5.15 1, -1 0, 0 0, 0
Table 5. Sensitivity of Safe Carbon Budget and Point of No Return to

:::::
selected

:
parameter variations. Values as difference in GtC (SCB) and

number of years (PNR) from
::::::
relative

::
to the undisturbed value (first

::
top

:
row). The PNR values all refer to the EM scenario. First and second

numbers give 10% parameter decrease and increase, respectively.Exception is rγ (in orange) which is zero by default and where first and

second numbers give rγ = 0.01 and rγ = 0.02, respectively. No sensitivities are calculated for the SCB for the economic parameters γ0 and

rγ and replaced by (∼), whereas (–) implies no positive SCB/PNR could be calculated. The fields corresponding to the radiative forcing

parameters A,α,C0 are colored in cyan, while the most sensitive climate model parameters b2, τb2 are given in orange.

zero by default. Increasing it to 1% or 2% has little effect on close PONR (e.g. 2020) but is capable of delaying late PNR by

up to 15 years, and the effect is more substantial for the less ambitious scenarios. This is an interesting finding, showing that

in the long run increasing energy efficiency can play a role in avoiding the PNR.
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