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Abstract. One of the approaches to constrain uncertainty in climate models is the identification of emergent constraints. These

are physically explainable empirical relationships between a particular simulated characteristic of the current climate versus

future climate change from an ensemble of climate models, which can be exploited using current observations. In this paper,

we develop a theory to understand the appearance of such emergent constraints. Based on this theory, we also propose a

classification for emergent constraints and applications are shown for several idealized climate models.5

1 Introduction

Improving the accuracy of climate projections is one of the most important challenges in climate modeling. The uncertainty can

be reduced by the development of more and more sophisticated global climate models, capturing more processes and scales.

However, the societal importance of climate projections calls for a faster pace of improvement and alternative approaches that

aim to better determine the accuracy of existing models. One of the proposed methods to accomplish this has been the use of10

so-called emergent constraints, where current observations are used to constrain future projections (Collins et al., 2012).

In multimodel ensembles of complex climate models, an apparent linear relation can be found between short-term and long-

term changing variables. More credibility is attached to models that match the observed variability or trend well over the recent

period. In this way, current observations provide a constraint to long term trends. The observed variable is called the predictor,

while the variable that is to be constrained is called the predictand (Klein and Hall, 2015). In recent years, emergent constraints15

have been found for Arctic warming, snow albedo feedback, tropical carbon, the global precipitation among other variables

(Allen and Ingram, 2002; Bracegirdle and Stephenson, 2013; Hall and Qu, 2006; Wenzel et al., 2014) and more recently,

climate sensitivity (Cox et al., 2018).

A prominent example is the emergent constraint found in Hall and Qu (2006) where an emergent relationship was found

between the strength of the snow-albedo feedback (SAF) on a seasonal time scale and the SAF under global warming in a20

CMIP3 ensemble. They also elucidated the key physical process behind the emergent constraint. Models where the maximum

albedo of snow is highest have the largest SAF on both time scales because the contrast between snow-covered and snow-free

areas is high (Qu and Hall, 2007).

However, a more general dynamical picture on how emergent constraints occur in multi-model ensembles or even in a

parameter ensemble of a single model is still lacking. Under which circumstances are these constraints expected to arise?25
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Some emergent constraints may be spurious and could arise because of shared errors in a particular multimodel ensemble

(Bracegirdle and Stephenson, 2013). A mathematical framework is desired to identify spurious constraints and to give an

indication as to where new emergent constraints might arise.

Here, we investigate how and under what conditions emergent constraints appear and what can be learned about the physics

of the climate system. We will use Linear Response Theory (LRT) to address the problem of forcing-response relations on5

different time-scales (Risken, 1996). Ruelle demonstrated that LRT can be extended to study the response of non-equilibrium

systems to external forcing. As with the fluctuation-dissipation theory, Ruelle’s LRT uses the statistical properties of the

unforced (equilibrium) state only but it does not assume (quasi)-equilibrium. Recently, LRT has been proposed as a rigorous

framework for computing the response of the climate system and its applicability has been tested on the Lorenz-96 model and

on the idealized global climate model PlaSim (Lucarini and Sarno, 2011; Ragone et al., 2016).10

The paper is organized as follows. To obtain an understanding of emergent constraints we start by formulating a mathematical

framework in terms of susceptibilities by making use of LRT (section 2). This results in explicit expressions for the appearance

of emergent constraints in terms of susceptibility functions. In section 3 a classification scheme for emergent constraints is

proposed. Then, in section 4, applications are presented for conceptual climate models, such as Ornstein-Uhlenbeck processes

in one and two dimensions, an energy balance model and the PlaSim model. The results are summarized and discussed in15

section 5.

2 Response functions

In this section explicit expressions are given for response functions of the state of a dynamical system which depends on a

single parameter and which is subjected to a non-stationary forcing. Such response functions are used in the following section

to classify the different emergent constraints. Rigorous results for linear response properties of large class of general stochastic20

systems was obtained by Hairer and Majda (2010) (linear response theory for nonequilibrium systems was developed by Ruelle

(1998, 2009)).

We illustrate the approach using the general one-dimensional forced Stochastic Differential Equation (SDE)

dXt = (−V ′(Xt) +F (t))dt+
√
σdWt. (2.1)

Here V (x) is a smooth confining potential, meaning that a equilibrium solution exists for the unforced system (Pavliotis, 2014),25

and F (t) is a prescribed forcing. Furthermore, σ is the noise amplitude and the associated Wiener process is indicated by Wt.

Usually, the potential depends on a parameter.

The probability density function of the unforced (F (t) = 0) system, say p̄, satisfies the Fokker-Planck equation

∂p̄

∂t
=
∂(V ′(x)p̄)

∂x
+
σ

2

∂2p̄

∂x2
= L ∗(p̄) (2.2)
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which defines the Fokker-Planck operator L ∗. The equilibrium distribution of the unforced system, here indicated by p̄e , is

given by

p̄e(x) =
1

Z
e

−2V (x)
σ ; Z =

∞∫
−∞

e
−2V (x)

σ dx. (2.3)

Linear response theory (Ragone et al., 2016) provides an expression for the change in the expectation value of the change in

an observable O (e.g. the temperature, ice extent or the standard deviation of either), say ∆O(t) when the system is forced,5

compared to the unforced case, i.e.

∆O(t) = E[O(Xt)]−E[Oe(Xt)], (2.4)

where again the subscript e indicates the equilibrium of the unforced system. It follows that

∆O(t) =

t∫
0

RO(t− s)F (s)ds; RO(t) =H(t)

∞∫
−∞

O(x) eL ∗t(−∂p̄e
∂x

)dx, (2.5)

where RO(t) is the response function, which is extended to be zero for t < 0 to ensure causality with a Heaviside function10

H(t). When (2.5) is Fourier transformed we find, using the convolution theorem,

F(∆O(t))(ω) = χ(ω)F̂ (ω), (2.6)

where the Fourier transform χ(ω) of the response function RO(t) is the susceptibility. If we take a cosine forcing, i.e. F (t) =

F0 cosω0t then F̂ (ω) = F0π(δ(ω−ω0) + δ(ω+ω0)) so once we know χ(ω), we can determine the response ∆O(t).

In the appendix, it is shown that when we take the identity operator O = x as the observable, thus taking the mean value of15

this variable, the response function and its corresponding susceptibility can be written as

RO(t) =
2

σ

∞∑
l=1

βle
−λlt, χ(ω) =

2

σ

∞∑
l=1

βl
λl + iω

(2.7)

where λl are the eigenvalues of the so-called generator L

L u= V ′(x)
∂u

∂x
+
σ

2

∂2u

∂x2
, (2.8)

and the βl are projection coefficients that indicate how strongly the system responds to the forcing. See the appendix for a more20

detailed description.

The amplitude A of the response to a periodic forcing F (t) = F0 cosω0t is determined by the absolute value of the suscep-

tibility

A(∆X(t))(ω0) =
2F0

σ

∞∑
l=1

βl√
λ2
l +ω2

0

. (2.9)

When the predictor is a response to a uniform frequency forcing, it can be expressed as in (2.9). The predictand will generally

also have this form, as a forcing with a long time scale can be approximated by a low-frequency forcing. The previous analysis
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can be generalised to more dimensions. In two dimensions, for example, with a state vector Yt = (Y1t,Y2t)
T , the SDE becomes

dYt = (−∇V (Yt) +F (t)̂i)dt+
√
σI2dWt, (2.10)5

where the term F (t)̂i denotes a forcing in the direction of the first variable and I2 the identity matrix. As shown in Pavliotis

(2014), the derivation of the response function follows the one-dimensional case closely, resulting in:

RY1
(t) =

2

σ

∞∑
l=1

gle
−λlt; RY2

(t) =
2

σ

∞∑
l=1

hle
−λlt, (2.11)

where gl and hl are again projection coefficients, gl and hl containing a term describing strength of the response in Y1 and

Y2 respectively. The derivation of the exact terms is given in the Appendix. Calculating the response is analogous to the10

one-dimensional case, so that the Fourier transforms of the response functions are given by

A (∆Y1(t))(ω0) =
2

σ

∞∑
l=1

gl√
λ2
l +ω2

0

; A(∆Y2(t))(ω0) =
2

σ

∞∑
l=1

hl√
λ2
l +ω2

0

(2.12)

Note that generalizing to uncoupled multidimensional systems, the eigenfunctions are found to be the tensor products of

the eigenfunctions in the one-dimensional case, while the corresponding eigenvalues are the sum of the eigenvalues in the

one-dimensional case.15

3 Classification of emergent constraints

Although a wide set of different emergent constraints have been found, no attempts have been made to classify them so

far using dynamical criteria. Here, a classification is proposed based on the time-characteristics of the predictor and on the

relationship between the predictor and the predictand. Using this classification, assessment of their applicability becomes

easier. Furthermore, a classification is a prerequisite for a dynamical description of emergent constraints.20

Firstly, an emergent constraint can be either direct or indirect. In the direct case, the predictor and predictand are the same

observable, while in the indirect case they are not. In the latter case, the predictor variable and predictand variable have to

be closely linked, for instance via a physical process. We make a further distinction between static and dynamic emergent

constraints. In a dynamic emergent constraint a response to a known, or sometimes even unknown, forcing in the (present-day)

predictor is linked to the response of the (future) predictand under the same (or a similar) forcing. For example: the forcing25

can be the annual cycle of solar radiation, but can also be caused by ENSO or historical climate change. In a static emergent

constraint a relationship between the time-independent quantity of the unforced system in the present-day (predictor) is linked

to the response in a quantity under climate change.

As an illustration, we apply our classification to examples of emergent constraints found in the literature in Table 1. Although

this is not a complete overview, examples are found of the four types of emergent constraints. There are many examples of direct

dynamical constraints, such as the one involving the snow-albedo feedback shown in figure 1 (Hall and Qu, 2006). Dynamic
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direct emergent constraints are the most intuitive. As long as the variations in the predictor are of a sufficient amplitude

compared to those of the predictand, a correlation between the predictor and predictand automatically points towards a common

physical basis, for example a common dynamical response to an external forcing. The direct static emergent constraint found5

by Bracegirdle and Stephenson (2013) makes use of spatial patterns. All of the indirect constraints involve equilibrium climate

sensitivity as the predictand. Often the mean of some variable with some known bias in the model ensemble is linked to ECS.

For instance, in Tian (2015) the asymmetry bias in ITCZ is linked to climate sensitivity. An example of a dynamical indirect

emergent constraint is provided by Cox et al. (2018), who relate a function of autocorrelation of global surface temperature to

ECS. In this case the short-time forcing is assumed to be caused by internal variability.10

Based on the response function theory in section 2, we further elaborate on the classification and also discuss conditions for

each type of constraint for a dynamical system with varying parameters (which defines the ensemble of models).

For a direct dynamical emergent constraint, in the standard case of a linear relationship, the relation has the following form:

Predictand = Cst Predictor, where Cst is a constant independent of the parameter used to generate the ensemble of models.

Rewriting this, the ratio of the responses to forcing of frequencies ω1 and ω2 should be constant over the (parameter) ensemble15

members ei. For the simple case of two forcings that only differ in frequency, we find the condition from the ratio of the

susceptibilities SR as

SR(e) =
A(∆O(t))(ω2)

A(∆O(t))(ω1)
=

∑∞
l=1

βl√
λ2
l+ω

2
2∑∞

l=1
βl√
λ2
l+ω

2
1

= Cst, (3.1)

One variable (B) can act as forcing to a second variable (O), while being itself forced externally (F ). The predictor and

predictand are then given by the quotient of the response functions of O and B. A further complication is that often the forcing20

patterns are not exactly the same for the short (F2) and long (F1) periodic forcing. In this case (3.1) has to be adjusted to:

SR(e) =
A(∆O(t)|F2)(ω2)

A(∆O(t)|F1
)(ω1)

A(∆B(t)|F1)(ω1)

A(∆B(t)|F2
)(ω2)

= Cst, (3.2)

This is further discussed in the example of the idealized energy balance model.

Physically, we expect that the same mechanisms to be responsible for the response at a short and long time scale to obtain this

type of emergent constraint. The system should have response times smaller than the time scale of the forcing or equivalently:25

the generator should have eigenvalues λ larger than the frequency of the forcing. Naturally, the response times 1
λ of the

dominant processes are expected to be at least smaller than the time scale of the slow forcing 1
ω1

.

Mathematically, the ratio in (3.1) becomes one in the case that all eigenvalues λl are much larger than the forcing frequencies.

Interestingly, the linear relation breaks down in the case that the fast forcing has the same order of magnitude as the eigenvalues

of the dominant terms in the susceptibility. Under the assumption of a single dominant term in the susceptibility and a slow30

forcing with frequency ω2→ 0 the first correction term to the slope-one linear relation between predictand y and predictor x,

is cubic in x.

In the case of indirect dynamical emergent constraints, a relationship between a predictor Y1 and a predictand Y2 is found.

Assuming the predictor Y1 is again a response to some forcing, we can repeat the analysis above for direct constraints for a
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system of two dimensions, where a forcing is added in one direction. Mutatis mutandis, a condition very similar to (3.1) is

found, as

A(∆Y1(t))(ω2)

A(∆Y2(t))(ω1)
=

∑∞
l=1

gl√
λ2
l+ω

2
2∑∞

l=1
hl√
λ2
l+ω

2
1

= Cst, (3.3)

where gl and hl are defined as in (2.11). For an emerging constraint to exist, the projection terms of the different observables5

should thus change in a similar fashion under the change in parameter.

Static direct constraints link the mean of an observable (predictor) to a change in the system under a specific forcing (predic-

tand). Note that the susceptibility only contains information about the response to such forcing. Even in the limit of ω→ 0, it

denotes the linear response of the system, without any information on the mean state (Lucarini and Sarno, 2011). So, to derive

the condition for a linear relationship the mean E[Oe(Xt)] =
∫∞
−∞ p̄eO(x) dx and the susceptibility at frequency ω1 are used.10

For static emergent constraints, the linear relationship between the predictand and the predictor is not expected to pass

through the origin, since the predictor will in general be nonzero. Therefore, an additional term I is added to the ratio, denoting

the intercept of the line between the predictor’s mean state and the predictand. Instead, the susceptibility is compared to the

mean state and the following condition is derived, where Cst should again be a constant independent of parameter(s) that is

used to generate the ensemble:15

E[O1t]− I
A(∆O2(t))(ω1)

=

∫∞
−∞ p̄eO1(x) dx− I∑∞

l=1
2
σ

hl√
λ2
l+ω

2
1

= Cst. (3.4)

Again Cst can either be positive or negative, depending on the physics under consideration. This equation is both valid for

direct and indirect static emergent relationships; in the case of a direct constraintO1 =O2 and the term hl contains information

about the response of O1 to a forcing, while in the indirect case O1 6=O2 and hl contains information about O2.

As an illustration of the theory from section 2 and a direct dynamical emergent constraint, we take the Ornstein-Uhlenbeck20

process (OU process). Here V ′(x) = γx, where γ is a parameter that indicates the steepness of the potential. The eigenvalues

and eigenfunctions of the generator are given by (Pavliotis, 2014)

λl = γl ; φl(x) =
1√
l!
Hn(

√
2γ

σ
x), (3.5)

where Hn are the Hermite polynomials. For the Ornstein-Uhlenbeck case, the ratio of response amplitudes reduces to

SR(γ) =
β1/
√
λ2

1 +ω2
2

β1/
√
λ2

1 +ω2
1

=

√
1 + (ω1/γ)

2√
1 + (ω2/γ)

2
, (3.6)25

since both the observable and the derivative of the potential are orthogonal to all eigenfunctions other than φ1. This ratio is

dependent on γ. In the case γ� ωi for i ∈ {1,2} this ratio is nearly one and an emergent relationship is present for a model

ensemble generated by varying γ.
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4 Application to idealized climate models

From the previous sections, it appears that the computation of the eigensolutions of the generator of the dynamical system

are central to determine whether an emergent constraint will appear or not. In this section, we will provide examples using

idealized climate models.5

The eigenvalues and eigenfunctions of the generator were numerically determined using the fact that the eigenvalues of

the Fokker-Planck operator L ∗ are equal to those of the generator and that the eigenfunctions can be computed from the

transformation: φl = φ∗l /p̄e. The Fokker-Planck operator was discretized with use of Chang-Cooper algorithm (Chang and

Cooper, 1970). Eigenvalues and eigenvectors were determined using an Implicitly Restarted Arnoldi Method (Lehoucq et al.,

1998). Explicit simulations of the SDEs were performed using a stochastic Runge-Kutta method (Kloeden and Platen, 1992).10

4.1 Ornstein-Uhlenbeck cases

First, the one-dimensional Ornstein-Uhlenbeck process is considered with SDE

dXt = (−γXt +Fi(t))dt+
√
σdWt, (4.1)

forcing Fi(t) = sin2πtωi and frequencies ω1 = 0.001 and ω2 = 0.1. A parameter ensemble is created by varying γ. In this case,

analytic solutions exist for the eigenvalues and eigenvectors of the generator. Eigenvectors and eigenvalues were determined15

using the Chang-Cooper scheme on a domain [−25,25] with ∆x= 0.25. The numerically computed susceptibilities, as shown

in figure 2b, are in agreement with the analytic ones and capture the response (figure 2a) well, as expected in this linear case.

In the two-dimensional Ornstein-Uhlenbeck case, the same forcing Fi(t) is added but only in the first dimension. The

governing SDE is given by

dXt =

−γ1 δ

δ −γ2

Xt +

Fi(t)
0

dt+
√
σ

1 0

0 1

dWt, (4.2)20

and a parameter ensemble is generated by changing the damping rate γ1. Two ensembles are compared with δ = 0.2 in the first

ensemble and δ = 0.5 in the second. The damping term γ2 is held constant at γ2 = 0.6.

In figure 3, the eigenvalues and susceptibility ratios are plotted. In the case of a relatively weak coupling (δ = 0.2) all nonzero

eigenvalues are larger than the fast forcing frequency ω2, so the system response time is smaller than the forcing time scales.

On the other hand, the strong coupling (δ = 0.5) leads to a slow down of the system, so that some eigenvalues now become25

smaller than ω2. In these cases (γ1 < 0.5) the system does not have time to portray the full response to a forcing, while for

others (γ1 > 0.5) it does. Consequently, the strength of the response actually decreases for γ1 < 0.5. Directly calculating the

expectation value as the mean of 500 stochastic trajectories confirms this result (not shown).

The results in figure 4 show a large variation over the ensemble in the projection term of the predictor on the eigenfunctions

(gl, see appendix). In constrast, the product of the two projection terms in the predictand (hl) changes relatively little over30

the ensemble for both coupling strengths. Even though the projection terms now play a significant role in determining the

response, the eigenvalues still determine whether the relation is linear (fast compared to forcing) or nonlinear (similar size to

7



forcing frequency). In the weak-coupling system, the susceptibility ratio is almost constant and an emergent linear relationship

is found. The strong-coupling system does only portray an emergent relationship for certain regimes (low or high γ1). A case

can be made though that the highly coupled system is the system for which finding an emergent constraint is more likely,

because the strength of the response is substantially higher and a better signal-to-noise ratio can be obtained.5

4.2 Energy Balance model

In this section a specific emergent constraint is examined in more detail, namely the one pertaining to the snow-albedo feedback

(SAF) first described by Hall and Qu (2006). They found a correlation between SAF on a seasonal scale and SAF as a result

of climate change. In models with a high snow albedo, the contrast between snow-covered and bare surfaces was largest and

consequently the sensitivity to changes in temperature was largest (Qu and Hall, 2007). To study this emergent constraint we10

modify a simple energy balance model based on the seminal work by Budyko (1969) and Sellers (1969). The albedo is made

temperature-dependent, following Fraedrich (1979) and a stochastic term is added following Sutera (1981). A parameter in the

albedo function will be used to define a parameter ensemble.

With constant albedo, the energy balance model reads:

dT =
1

cT

(
Q(1−α) +A ln

C

Cref
+G− εσBT 4

)
dt+
√
σT dWt, (4.3)15

where dT is the temperature change, cT the atmospheric heat capacity,Q the solar insolation, α the albedo,C the concentration

of greenhouse gases, Cref a reference concentration, G represents the radiative forcing due to the reference greenhouse gas

concentration, σB the Stephan-Boltzmann constant and ε the emissivity of the Earth. The standard parameter values for this

model can be found in Table 2. The parameters of the albedo function are chosen to ensure that no bistability is present in the

model, in which case LRT would break down.20

Before examining the snow-albedo feedback, note that for some variables, notably the climate sensitivity, a simple EBM can

react differently to forcing from solar insolation or greenhouse gases. This can be determined from, with H =G+A ln C
Cref

and for a value of ε= 1,

∂

∂α

∂T

∂Q
=

σ1/4

4(Q(1−α) +H)
3/4

(
3Q(1−α)

Q(1−α) +H
− 1

)
< 0;

∂

∂α

∂T

∂H
=

3Qσ1/4

16(Q(1−α) +H))
7/4

> 0 (4.4)

Sensitivity to greenhouse forcing decreases when albedo decreases, while sensitivity to solar insolation (seasonal sensitivity)25

increases for an increasing albedo, using typical values for Q and H .

To mimic the physical mechanism behind the emergent constraint, the albedo is taken to be temperature dependent, i.e., for

low (high) temperatures, the albedo is high (low). A logistic function is used to model this effect,

α(T ) = αmin +
αamp

1 + exp(k(T −Th))
(4.5)

where αmin is the minimum albedo, αamp is the amplitude, k is a steepness factor and Th is the temperature at which half of30

the amplitude is reached. The amplitude αamp is the parameter that is varied over the ensemble.
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In the first case, the insolation forcing is given by Q=Q0(1 +Qs sin2πt/τ) where τ corresponds to one year and Qs is a

seasonal modulation amplitude, with parameter values are shown in Table 2. The snow-albedo feedback term is then computed

by dividing the amplitude of the albedo cycle by the amplitude of the temperature cycle. A second case is considered in which

the greenhouse gas concentration C is increased 0.3% per year from 295 ppmv over a period of 300 year. Here the snow-albedo5

feedback is computed by dividing the total albedo response by the total temperature response. In each case, the variance of

the noise σT in (4.3) was chosen as 10−7 K2/s. Changing this parameter does not influence the eigenvalues as expected from

the theory (Pavliotis, 2014). While the projections of the eigenvalues and eigenfunctions did change slightly, the susceptibility

ratio was not influenced significantly by a variation of the σT (halving and doubling of σ, not shown). In the computation of

the solution of the Fokker-Planck equation using the Chang-Cooper scheme, we used a resolution of 1 K which is sufficient to10

accurately determine the eigenvalues and eigenfunctions of the generator.

As mentioned above, application of equation 3.1 is not self-evident. Considering temperature to be a forcing ignores the fact

that temperature responds differently to seasonal and greenhouse gas forcing, as shown in equation 4.4. Secondly, using dα/dT

as the observable directly does not work either. Linear response theory does not give the expectation value of the observable,

but the expectation value of the deviation due to the forcing, while we are interested in the change due to a parameter change.15

Instead, the SAF can be described by two observables: SAF is determined by taking the ratio of the susceptibilities of albedo

to temperature. Therefore, we use the modified equation (3.2):

RFS(αamp) =
A(∆α(t)|Q)(ω2)

A(∆α(t)|C)(ω1)

A(∆T (t)|C)(ω1)

A(∆T (t)|Q)(ω2)
=

∑∞
l=1

αl√
λ2
l+ω

2
2∑∞

l=1
γl√
λ2
l+ω

2
1

∑∞
l=1

δl√
λ2
l+ω

2
1∑∞

l=1
βl√
λ2
l+ω

2
2

= Cst, (4.6)

where

αl = 〈α,φl〉p̄e〈(1−α(T ))V ′(T ),φl〉p̄e , γl = 〈α,φl〉p̄e〈V ′(T ),φl〉p̄e

βl = 〈T,φl〉p̄e〈(1−α(T ))V ′(T ),φl〉p̄e , δl = 〈T,φl〉p̄e〈V ′(T ),φl〉p̄e . (4.7)20

In the case the susceptibilities are all dominated by one term with index l, this reduces to Cst = (αlδl)/(βlγl) = 1

In figure 5 the sensitivity of temperature to varying amplitude of the albedo function is shown, as well as the sensitivity

of the snow-albedo feedback and condition for the existence of an emergent constraint. As shown in figure 5a, no emergent

relationship is found for climate sensitivity, a feature that was analytically found in the case of constant albedo. In figure 5b

the emergent constraint on SAF is shown. In the warm regime (low albedo, lower line in the figure), the SAF becomes larger25

for larger αamp. The larger the maximum albedo, the steeper the logistic albedo function. A second effect also takes place:

with higher maximum albedo, the warmer it gets. Consequently, sensitivity of the albedo function is smaller. This decrease

in sensitivity also takes place in the cold regime; the colder it gets, the less sensitive the albedo gets. In the cold regime it is

clear that this second mechanism dominates. The results can be reproduced by use of LRT, as shown in figure 5c and 5d. The

discrepancies disappear when forcing is small; the climate change forcing in particular is causing most of the differences.
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One can extend the energy balance model by representing the response of snow and ice explicitly as a relaxation towards the

logistic reference albedo function α(T ) given in (4.5). This gives the extended model

dT =
1

cT

(
Q(1− ᾱ) +H − εσT 4

)
dt+
√
σT dWt dᾱ=− 1

τs
(ᾱ−α(T )) dt+

√
σᾱ dWt, (4.8)

where τs = 4× 106s is the response time of the albedo. The drift term in the Fokker-Planck equation corresponding to (4.8) is5

not the gradient of a potential but the eigensolutions of the generator can of course still be computed numerically.

Extending the model with an explicit albedo function does not change the dynamics of the system significantly, nor the

eigenvalues and eigenvectors. Figure 6b shows the eigenvalues of the extended EBM to be almost exactly equal to the eigen-

values of the original model, the imaginary parts continuing to be zero. The projection coefficients are very similar as well (not

shown). Thus, the inclusion of a smaller time scale does not improve the response.10

4.3 PlaSim

To bridge the gap between parameter ensembles in simple dynamical systems and Earth System Models, the SAF emergent

constraint is further examined in PlaSim. PlaSim is a numerical model of intermediate complexity, developed at the University

of Hamburg to provide a fairly realistic present climate which can still be simulated on a personal computer (Fraedrich et al.,

2005). The atmospheric dynamics are modelled using the primitive equations formulated for temperature, vorticity, divergence15

and surface pressure. Moisture is included by transport of water vapor. The equations are solved using the spectral method.

A full set of parameterizations is used for unresolved processed such as long and shortwave radiation with interactive clouds,

boundary layer fluxes of latent and sensible heat and diffusion.

In this climate model snow albedo is a function of surface temperature Ts, snow depth and vegetation cover. The bare soil

snow albedo in PlaSim is described by:20

Asnow =


Amax, if Ts ≤ 10◦ C.

Amin, if Ts > 0◦ C.

Amin− (Amax−Amin)Ts10 otherwise.

(4.9)

This equation is modified in the presence of vegetation and in the case of shallow snow depth. See Lunkeit et al. (2011) for

more details. A set of simulations was performed withAmax varying between 0.650 and 0.900. The historical forcing in PlaSim

was approximated by a CO2 increase from 295 ppm at a rate of 0.3% per year in the 20th century and 1% per year in the 21st

century before it stabilised at 720 ppm; a 50-year spin-up corresponding to the period 1850-1900 was used.25

In figure 7 the PlaSim results are shown which can be compared to the results from Hall and Qu (2006) in figure 1. Note that

the variation in CMIP3 is significantly larger than the variation found in PlaSim, but that the PlaSim results fit on the relation

found by Hall and Qu (2006). Variations in other parameterizations, such as the maximum snow albedo over forested regions,

increase the spread in PlaSim SAF further (not shown). This simulation shows that the constraint that emerges in a multi-model

ensemble with structurally different formulations of the snow response can to some extent also be reproduced using variations

10



in one parameter. This provides the justification for simplifying further to energy balance models to examine the SAF emergent

constraint.

5 Summary, Discussion and Conclusions

In this paper, we have presented a dynamical framework behind the occurrence of emergent constraints in parameter dependent5

stochastic dynamical systems. In these systems, emergent constraints are related to ratios of response functions which can be

determined using linear response theory. It was shown that for a large class of systems, these ratios could be expressed in terms

of eigenvalues and projections on eigenvectors of the generator of the system.

A classification of emergent constraints was given and several types could be distinguished depending on whether similar

(direct) or different (indirect) observables are considered and whether a response in present-day climate (dynamical) or the10

time-independent part of present-day climate (static) is linked to a response of the future climate system. For a linear dynamical

emergent constraint, the ratio of susceptibilities at the two frequencies under consideration should be a positive constant over the

ensemble. When the response is computed with respect to an internal variable (in contrast to an external forcing), a condition is

posed on the susceptibilities of the two observables in the system. Static constraints are encountered when a linear relationship

is found between the expectation value of the observable and the susceptibility at the frequency of the forcing.15

Examples were given using several idealized climate models. In particular the emergent constraints involving the snow-

albedo feedback was considered in detail. We found that linear dynamical emergent relationships can occur when the time

scale of the system, indicated by the eigenvalues, changes with the parameter and is smaller than the forcing time scales. This

is of particular interest because differences in response size between climate models is often determined by feedbacks strength

in climate systems. Larger feedbacks give rise to larger timescales (Roe, 2009), which is reflected in the eigenvalues of the20

generator. For an emergent constraint on a feedback quantity a more complicated constraint mechanism occurs, where one has

to take into account the response to two different observables, which typically have different time scales. When the condition

of the predictor’s time scale being smaller than the forcing time scale is not met, deviations from linearity occur. When the

linearity of the relation is exploited in further analysis, such as in the interpretation of emergent constraints by Wenzel et al.

(2014), this might lead to a bias in the estimate of the predictand.25

Modelling emergent constraints with conceptual models is justified when different ESMs are closely related and structural

differences can be parametrized. This can for instance be tested using an intermediate complexity model with full parametriza-

tion of the process under consideration.

The classification of emergent constraints provided gives a hint to which kind of emergent constraints one can look out for

in an ensemble of high-dimensional Global Climate Models (GCMs). To find an emergent constraint for climate sensitivity30

by data mining in a CMIP5 ensemble proved fruitless (Caldwell et al., 2014). Using the susceptibilities to find new emergent

constraints does not seem to have a direct advantage above directly looking for plausible correlations, but susceptibilities might

provide additional information. For example, when a susceptibility shows a resonance at a certain frequency over the ensemble

of models, this could suggest that the same feedback is present in all simulations.

11



In a high-dimensional dynamical system eigenfunctions and eigenvalues can be accessed with the help of transfer operators,

associated with the propagation of probability densities associated with the Fokker-Planck operator. The eigenfunctions that

lie on the invariant measure are then computed by making use of the ergodic properties of the climate system. To overcome

the burden of high-dimensionality, a reduced transfer operator can be computed from a very long simulation, from which the5

eigenfunctions on the attractor are approximated (Tantet, 2016). However, a forcing on the system does not generally lie only

on the attractor and should be split into a part parallel and perpendicular to the attractor. Consequently, the igenvectors off

the attractor cannot a priori be ignored (Lucarini and Sarno, 2011). Gritsun and Lucarini (2017) showed that indeed for some

geophysical systems, specifically quasi-geostrophic flow with orographic forcing, the response to the forcing may have no

resemblance to the unforced variability in the same range of spatial and temporal scales.10

In conclusion, while the current theoretical framework provides an understanding on how emergent constraints may arise in

low-dimensional stochastic dynamical systems, its application to output from GCMs, in particular in finding novel and useful

emergent constraints, is a challenging issue for future work.

Code availability. All the code used in this paper is available on request.
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Appendix: Response function expansion

For A= x, we find from (2.5) that

RA(t) =

∞∫
−∞

x eL ∗t(−∂p̄e
∂x

) dx. (5.1)

Using the expression for the equilibrium solution p̄e from (2.3), we find5

−∂p̄e
∂x

=
2

σ
V ′(x)p̄e (5.2)

and hence (5.1) becomes

RA(t) =

∞∫
−∞

x eL ∗t(
2

σ
V ′(x)p̄e) dx. (5.3)

With the standard L2-inner product, the adjoint of L determined as 〈L ∗g,h〉= 〈g,L h〉, where L is the generator of the

OU process, is given by10

L u= V ′(x)
∂u

∂x
+
σ

2

∂2u

∂x2
(5.4)

Using this property in (5.3), we find

〈x,eL ∗t(V ′(x)p̄e)〉= 〈eL tx,V ′(x)p̄e〉 (5.5)

and hence

RA(t) =
2

σ

∞∫
−∞

eL t(x) V ′(x)p̄e dx (5.6)15

Next an inner product 〈g,h〉p̄e is defined as

〈g,h〉p̄e =

∞∫
−∞

ghp̄e dx (5.7)

As a next step, let λl and φl be the eigenvalues of the generator, i.e. solutions v of

L φ=−λφ (5.8)
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For reversible processes, these eigenvalues are real, positive and discrete under the inner product 〈,〉p̄e . The eigenfunctions

form a complete orthonormal basis, such that 〈φn,φm〉p̄e = δnm (Pavliotis, 2014). Now eL t(x) represents solutions u(x,t) of

the problem

∂u

∂t
= L u (5.9)5

with initial condition u(x,0) = x. We can expand u into eigenfunctions as

u(x,t) =

∞∑
l=1

αlφl(x)e−λlt (5.10)

From the initial condition, we find

∞∑
l=1

αlφl(x) = x (5.11)

and using the orthogonality of the φl under the inner product 〈,〉p̄e , we find10

αl = 〈x,φl〉p̄e (5.12)

On the other hand, substituting the expression for u into (5.6) gives

∞∫
−∞

∞∑
l=1

αlφl(x)e−λltV ′(x)p̄e dx=

∞∑
l=1

βle
−λlt (5.13)

where

βl = αl〈V ′(x),φl〉p̄e = 〈x,φl〉p̄e〈V ′(x),φl〉p̄e (5.14)15

Repeating the derivation with a general observable A= f(x) gives 〈f(x),φl〉p̄e〈V ′(x),φl〉p̄e . The first term in βl denotes

the projection of the observable on the eigenfunctions and could intuitively be interpreted (for l > 0) as the amenability of the

observable to change. The second projection term in βl can be understood to be the amenability of the whole system to change

under the influence of the forcing field. In (2.11) those observables are Y1 and Y2, so that gl = 〈Y1,φl〉p̄e〈V ′(x),φl〉p̄e and

hl = 〈Y2,φl〉p̄e〈V ′(x),φl〉p̄e
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Reference Climate predictor Future climate predictand Type

Knutti et al. (2006) Seasonal cycle land temperature am-

plitude

ECS DD

Hall and Qu (2006); Qu and

Hall (2014)

Springtime SAF SAF under climate warming DD

Boe et al. (2009) Arctic sea ice extent trend 1979-2007 Arctic sea ice extent DD

Clement et al. (2009) Sensitivity LLC to pacific decal vari-

ability

Sign LLC feedback DD

Trenberth and Fasullo (2010) SH net radiation TOA ECS IS

Fasullo and Trenberth (2012) Mid-tropospheric RH over ocean in

subsidence region

ECS IS

Bracegirdle and Stephenson

(2013)

Arctic SAT Arctic SAT under climate warming DS

Gordon and Klein (2014) Sensitivity of extra-tropical LLC op-

tical depth to temperature

Extra-tropical LLC optical depth re-

sponse to climate warming.

DD

Qu et al. (2014) Sensitivity of LLC cover to SST LCC cover changes under climate

warming

DD

Sherwood et al. (2014) Strength cloud-scale and large-scale

lower tropospheric mixing over

oceans

ECS IS

Su et al. (2014) RH & cloud fraction tropics ECS IS

Wenzel et al. (2014) Short-term sensitivity of atmospheric

carbon dioxide

Sensitivity tropical land carbon stor-

age to climate warming

DD

Tian (2015) Precipitation & mid-tropospheric RH

asymmetry bias (for ITCZ)

ECS IS

Kwiatkowski et al. (2017) Tropical primary production under

ENSO-driven SST variations

Tropical primary production under

climate change

DD

Cox et al. (2018) Function of autocorrelation of GMST ECS ID

Table 1. Application of our classification of emergent constraints to a selection of examples found in literature. DD is a direct dynamical

constraint, DS a direct static constraint and IS is an indirect static constraint, while ID denotes indirect dynamical emergent constraints.

Abbreviations stand for RH: relative humidity, ITCZ: inter-tropical convergence zone, TOA: top of atmosphere, SH: southern hemisphere,

ECS: equilibrium climate sensitivity, LLC: low-level cloud, SAF: snow-albedo feedback. SAT: surface air temperature. The emergent con-

straint found by Trenberth and Fasullo (2010) seems to be spurious: no physical mechanism was proposed and it did not appear in different

ensembles, such as CMIP5 (Grise et al., 2015).
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Constant Value Constant Value

cT 5.0× 108 J/m2/K ε 1.0

A 20.5 W/m2 σB 5.67× 10−8 W/m2/K4

Q0 342 W/m2 αmin 0.2

Qs 115 W/m2 αamp 0.05–0.5

G 150 W/m2 k 0.5

Cref 280 ppmv Th 284 K

τs 4.0× 106 s σT 2.0× 10−7 K2/s

σα 1.0× 10−5 s−1

Table 2. Constants for the energy balance model.
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Figure 1. The emergent constraint on snow-albedo feedback ∆αs
∆Ts

(from Hall and Qu (2006), αs given in units of %). This is an example

of a direct emergent constraint (it links the SAF in both past and future time) and a dynamical emergent constraint (it uses a response to a

seasonal forcing as its predictor).
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Figure 2. (a) Response to forcings at two different frequencies of the one-dimensional Ornstein-Uhlenbeck process. Shown is the average

of a 500-member simulation of trajectories (b) The susceptibility at these frequencies, whose ratio is given in the inset figure. This is an

example of a direct dynamical emergent relationship.
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Figure 3. Eigenvalue spectrum for (a) δ = 0.2 and (b) δ = 0.5. The dashed line corresponds to the frequency ω2 of the fast forcing (c,d)

Corresponding susceptibilities, with their ratio in the inset figures. This is an example of an indirect dynamical emergent relationship. Note

that for reasons of numerical stability, the range of γ1 is different than that of γ in figure 2.
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Figure 4. (a,b) Projections gl (of predictor variable) and hl (of predictand variable) for a weakly coupled two-dimensional OU system with

δ = 0.2, (c,d) same for δ = 0.5.
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Figure 5. (a) The relation between temperature response to the seasonal cycle and the temperature response to greenhouse gas forcing. (b)

The strength of the snow-albedo feedback to solar and greenhouse gas forcing on different time scales. In the inset: their ratio as a function

of αmax. For clearness, (a,b) are shown without noise. (c) The susceptibilities for temperature as the observable (d) The ratio of albedo and

temperature susceptibilities and their ratio (RFS).
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Figure 6. (a) Eigenvalues of the EBM depending on the amplitude of the albedo function for the simple EBM. The zero eigenvalues

correspond to the invariant measure. (b) The extended EBM. (c) Albedo projection terms for solar forcing (αl) as defined in Equation 4.7

where the markers denote l (d) Same for temperature βl (e,f) projections terms for GHG forcing γl and δl respectively.
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Figure 7. Same as figure 1, but now results from PlaSim
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