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Abstract. One of the approaches to constrain uncertainty in climate models is the identification of emergent constraints. These
are physically explainable empirical relationships between a particular simulated characteristic of the current climate versus
future climate change from an ensemble of climate models, which can be exploited using current observations. In this paper,
we develop a theory to understand the appearance of such emergent constraints. Based on this theory, we also propose a

classification for emergent constraints and applications are shown for several idealized climate models.

1 Introduction

Improving the accuracy of climate projections is one of the most important challenges in climate modeling. The uncertainty can
be reduced by the development of more and more sophisticated global climate models, capturing more processes and scales.
However, the societal importance of climate projections calls for a faster pace of improvement and alternative approaches that
aim to better determine the accuracy of existing models. One of the proposed methods to accomplish this has been the use of
so-called emergent constraints, where current observations are used to constrain future projections (Collins et al., 2012).

In multimodel ensembles of complex climate models, an apparent linear relation can be found between short-term and long-
term changing variables. More credibility is attached to models that match the observed variability or trend well over the recent
period. In this way, current observations provide a constraint to long term trends. The ebservable-observed variable is called the
predictor, while the variable that is to be constrained is called the predictand (Klein and Hall, 2015). In recent years, emergent
constraints have been found for Arctic warming, snow albedo feedback, tropical carbon, the global precipitation among other
variables (Allen and Ingram, 2002; Bracegirdle and Stephenson, 2013; Hall and Qu, 2006; Wenzel et al., 2014) and more
recently, climate sensitivity (Cox et al., 2018).

A prominent example is the emergent constraint found in Hall and Qu (2006) where an emergent relationship was found
between the strength of the snow-albedo feedback (SAF) on a seasonal time scale and the SAF under global warming in a
CMIP4 ensemble. They also elucidated the key physical process behind the emergent constraint. Models where the maximum
albedo of snow is highest have the largest SAF on both time scales because the contrast between snow-covered and snow-free
areas is high (Qu and Hall, 2007).

However, a more general dynamical picture on how emergent constraints occur in multi-model ensembles or even in a

parameter ensemble of a single model is still lacking. Under which circumstances are these constraints expected to arise?
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Some emergent constraints may be spurious and could arise because of shared errors in a particular multimodel ensemble
(Bracegirdle and Stephenson, 2013). A mathematical framework is desired to identify spurious constraints and to give an
indication as to where new emergent constraints might arise.

Here, we investigate how and under what conditions emergent constraints appear and what can be learned about the physics
of the climate system. We will use Linear Response Theory (LRT) to address the problem of forcing-response relations on
different time-scales (Risken, 1996). Ruelle demonstrated that LRT can be extended to study the response of non-equilibrium
systems to external forcing. As with the fluctuation-dissipation theory, Ruelle’s LRT uses the statistical properties of the
unforced (equilibrium) state only but it does not assume (quasi)-equilibrium. Recently, LRT has been proposed as a rigorous
framework for computing the response of the climate system and its applicability has been tested on the Lorenz-96 model and
on the idealized global climate model PlaSim (Lucarini and Sarno, 2011; Ragone et al., 2016).

The paper is organized as follows. To obtain an understanding of emergent constraints we start by formulating a mathematical
framework in terms of susceptibilities by making use of LRT (section 2). This results in explicit expressions for the appearance
of emergent constraints in terms of susceptibility functions. In section 3 a classification scheme for emergent constraints is
proposed. Then, in section 4, applications are presented for conceptual climate models, such as Ornstein-Uhlenbeck processes
in one and two dimensions, an energy balance model and the PlaSim model. The results are summarized and discussed in

section 5.

2 Response functions

In this section explicit expressions are given for response functions of the state of a dynamical system which depends on a

single parameter and which is subjected to a non-stationary forcing. Such response functions are used in the following section
to classify the different emergent constraints. Linear response theory for nonequilibrium systems such as the climate system

was first developed by Ruelle (1998, 2009) and later rigorously justified for a large class of general stochastic systems b
Hairer and Majda (2010).

We illustrate the approach using the general one-dimensional forced Stochastic Differential Equation (SDE)
dX, = (=V'(Xy) + F(t))dt + /odW,. (2.1)

Here V() is a smooth confining potential, meaning that a equilibrium solution exists for the unforced system (Pavliotis, 2014),

and F(t) is a prescribed forcing. Furthermore, o is the noise amplitude and the associated Wiener process is indicated by W;.

Usually, the potential depends on a parameter.
The probability density function of the unforced (F'(¢) = 0) system, say p, satisfies the Fokker-Planck equation

ap _oV'(z)p) , o *p

%= or 200 L0 @2
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which defines the Fokker-Planck operator .£*. The equilibrium distribution of the unforced system, here indicated by p. , is

given by
B 1 —2ve T —2V (x)
Pe(x) = 7€ 7 Z= [ e o  d=x. (2.3)

Linear response theory (Ragone et al., 2016) provides an expression for the change in the expectation value of the change in
an observable O (e.g. the temperature, ice extent or the standard deviation of either), say AO(t) when the system is forced,

compared to the unforced case, i.e.
AO(t) = E[O(X:)] - E[Oc(X4)], 2.4)

where again the subscript e indicates the equilibrium of the unforced system. It follows that

AO(t) = /Ro(t— s)F(s)ds; Ro(t) =H(t) / O(z) eg*t(—%)dx, (2.5)
0 —o0

where Ro(t) is the response function, which is extended to be zero for ¢ < 0 to ensure causality with a Heaviside function

l—[V(Q. When (2.5) is Fourier transformed we find, using the convolution theorem,
F(AO(t))(w) = x(w)F(w), (2.6)

where the Fourier transform x(w) of the response function R (t) is the susceptibility. If we take a cosine forcing, i.e. F(t) =
Fycoswot then F(w) = Fom(5(w — wp) + 6(w +wp)) so once we know x(w), we can determine the response AO(t).

In the appendix, it is shown that when we take the identity operator O = x as the observable, thus taking the mean value as
our-observableri-e—for-O-—=-=;0f this variable, the response function and its corresponding susceptibility can be written as

Ro(t) = 23 e, vw)= 23 ex)
=1

where )\; are the eigenvalues of the so-called generator .Z

ou o 0%u

o8 00U
gu_v(x)3x+28z27

2.8)

and the §; are projection coefficients that indicate how strongly the system responds to the forcing. See the appendix for a more

detailed description. F

)\l :A/l ; Ql(*L) — 7Hn
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Goingbaeck-to-thegeneral-case-the-The amplitude A of the response to a periodic forcing F'(t) = Fy coswot is determined
by the absolute value of the susceptibility

A(AX (1)) (2.9)

-y
)\2 + w3
Fhe-When the predictor is a response to a uniform frequency forcing, it will have this form. The predictand will generally also

have this form, as a forcing with a long time scale can be approximated by a low-frequency forcing. The previous analysis can
be generalised to more dimensions. In two dimensions, for example, with a state vector Y; = (Y7, Ygt)T, the SDE becomes

dY, = (=VV(Y}) 4 F(t)1)dt + /o L,dW;, (2.10)

where the term F'(t)i denotes a forcing in the direction of the first variable and I the identity matrix. As shown in Pavliotis
(2014), the derivation of the response function follows the one-dimensional case closely, resulting in:

oo

2
Ry, (t) == ge™™" Ry, (t the*“ @2.11)

=1
where ¢; and h; are again projection coefficients, g; and h; containing a term describing strength of the response in Y; and

Y, respectively. The derivation of the exact terms is given in the Appendix. Calculating the response is analogous to the
one-dimensional case, so that the Fourier transforms of the response functions are given by

A (AYA(t) ; Z A(AYa(t)

-1 \//\2+W0 z::\/)‘erwo

Note that generalizing to uncoupled multidimensional systems, the eigenfunctions are found to be the tensor products of

2.12)

c:.\m

the eigenfunctions in the one-dimensional case, while the corresponding eigenvalues are the sum of the eigenvalues in the

one-dimensional case. o

d)l,m - O/ (yl)@rn (;1/2):

3 Classification of emergent constraints

Although a wide set of different emergent constraints have been found, no attempts have been made to classify them so
far using dynamical criteria. Here, a classification is proposed based on the time-characteristics of the predictor and on the
relationship between the predictor and the predictand. Using this classification, assessment of their applicability becomes
easier. Furthermore, a classification is a prerequisite for a dynamical description of emergent constraints.

Firstly, an emergent constraint can be either direct or indirect. In the direct case, the predictor and predictand are the same
observable, while in the indirect case the-they are not. In the latter case, the predictor variable and predictand variable have to be
hinked-closely linked, for instance via a physical process. We make a further distinction between static and dynamic emergent
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constraints. In a dynamic emergent constraint a response to a known, or sometimes even unknown, forcing in the (present-day)
predictor is linked to the response of the (future) predictand under the same (or a similar) forcing. For example: the forcing
can be the annual cycle of solar radiation, but can also be caused by ENSO or historical climate change. In a static emergent
constraint a relationship between the time-independent quantity of the unforced system in the present-day (predictor) is linked
to the response in a quantity under climate change.

As an illustration, we apply our classification to examples of emergent constraints found in the literature in Table 1. Although
this is not a complete overview, examples are found of the four types of emergent constraints. There are many examples of direct
dynamical constraints, such as the one involving the snow-albedo feedback shown in figure 1 (Hall and Qu, 2006). Dynamic
direct emergent constraints are the most intuitive. As long as the variations in the predictor are of a sufficient amplitude
compared to those of the predictand, a correlation between the predictor and predictand automatically points towards a common
physical basis, for example a common dynamical response to an external forcing. The direct static emergent constraint found
by (Bracegirdle-and-Stephenson;2043)-Bracegirdle and Stephenson (2013) makes use of spatial patterns. All of the indirect
constraints involve equilibrium climate sensitivity as the predictand. Often a-the mean of some variable with some known
bias in the model ensemble is linked to ECS. For instance, in Tian (2015) the asymmetry bias in ITCZ is linked to climate

sensitivity. An example of a dynamical indirect emergent constraint is provided by Cox et al. (2018), who relate a function of

autocorrelation of global surface temperature to ECS. In this case the short-time forcing is assumed to be caused by internal

variability.
Based on the response function theory in section 2, we further elaborate on the classification and also discuss conditions for

each type of constraint for a dynamical system with varying parameters (which defines the ensemble of models).

For a direct dynamical emergent constraint, the-in the standard case of a linear relationship, the relation has the following
form; Predictand = C*! Predictor, where C*! is a constant independent of the parameter used to generate the ensemble.
Rewriting this, the ratio of the responses to the-forcing of frequencies w; and wy should be constant over the (parameter)
ensemble members e;{forsimplicity,we-only-considerlinearrelationships). For the simple case of two forcings that only differ

in frequency, we find the condition from the ratio of the susceptibilities SR as

o0 B

sR(e) = ABOWNw) - Z=VAE o

ABOM)@n) Yo, 2

to a second variable (O), while being itself forced externally (F7). The predictor and predictand are then given by the quotient
of the response functions of O and B. A further complication is that often the forcing patterns are not exactly the same for the
short () and long (F1) periodic forcing, In this case (3.1) has to be adjusted to:

_A(AO(t)| k) (w2) A(AB(t)| 1) (w1) e
SRE) = R0 r) () ABBOp) ) G-




10

15

20

25

This is further discussed in the example of the idealized energy balance model. For-the-Ornstein-Uhlenbeckease;theratio-of

2
SR(y) = DUV H W] 1+ (2)
YA \/1+</2)2

Physically, we expect that the same mechanisms to be responsible for the response at a short and long time scale to obtain this

type of emergent constraint. The system should have response times smaller than the time scale of the forcing or equivalently:
the generator should have eigenvalues A larger than the frequency of the forcing. Naturally, the response times % of the
dominant processes are expected to be at least smaller than the time scale of the slow forcing w%

Mathematically, the ratio in (3.1) becomes one in the case that all eigenvalues \; are much larger than the forcing frequencies.
Interestingly, the linear relation breaks down in the case that the fast forcing has the same order of magnitude as the eigenvalues
of the dominant terms in the susceptibility. Under the assumption of a single dominant term in the susceptibility and a slow
forcing with frequency ws — 0 the first correction term to the slope-one linear relation between predictand y and predictor z,
is cubic in z.

In the case of indirect dynamical emergent constraints, a relationship between a predictor Y7 and a predictand Y5 is found.
Assuming the predictor Y; is again a response to some forcing, we can repeat the analysis above for direct constraints for a
system of two dimensions, where a forcing is added in one direction. Mutatis mutandis, a condition very similar to (3.1) is

found, as

AQYA(0)(w2) _ 251 VAT
ABLO)@) X

where g; and h; are defined as in (2.11). For an emerging constraint to exist, the projection terms of the different observables

_o (3.3)

should thus change in a similar fashion under the change in parameter.

Static direct constraints link the mean of an observable (predictor) to a change in the system under a specific forcing
(predictand). Note that the susceptibility only contains information about the response to such forcing. Even in the limit of
w — 0, it denotes the linear response of the system, without any information on the mean state (Lucarini and Sarno, 2011). So,
to derive the condition for a linear relationship the mean E[O.(X;)] = [*._p.O(x) dx and the susceptibility at frequency w;
are used.

For static emergent constraints, the linear relationship between the respense-and-the-mean-state-predictand and the predictor
is not expected to pass through the origin, since the mean-predictor will in general be nonzero. Therefore, an additional term

1 is added to the ratio, denoting the intercept of the line between the predictor’s mean state and the respense-with—varying
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parameterspredictand. Instead, the susceptibility is compared to the mean state and the following condition is derived, where

Ot should again be a constant independent of parameter(s) that is used to generate the ensemble:

El0u] -1 e peO1 )dx I
AQO ) wr) 12 s

Again C*! can either be positive or negative, depending on the physics under consideration. This equation is both valid for

=C. (3.4)

direct and indirect static emergent relationships; the-in the case of a direct constraint O; = O, and the term h; contains either
the-information about the sam i i
Gndireet—response of O to a forcing, while in the indirect case O

05 and h; contains information about O5.

As an illustration of the theory from section 2 and a direct dynamical emergent constraint, we take the Ornstein-Uhlenbeck

rocess (OU process). Here V' (z) = v, where v is a parameter that indicates the steepness of the potential. The eigenvalues

and eigenfunctions of the generator are given by (Pavliotis, 2014)

1 2
N=ali i) = / gx), (3.5)

where H,, are the Hermite polynomials. For the Ornstein-Uhlenbeck case, the ratio of response amplitudes reduces to

SR Bi/VAN w3 \/1+(w1/7
7)) = (3.6)
/61/\//\1+OJ1 \/1 WQ/’Y

since both the observable and the derivative of the potential are orthogonal to all eigenfunctions other than ¢;. This ratio is

dependent on 7. In the case v > w; for 7 € {1,2} this ratio is nearly one and an emergent relationship is present for a model

ensemble generated by varying ~.

4 Application to idealized climate models

From the previous sections, it appears that the computation of the eigensolutions of the generator of the dynamical system
are central to determine whether an emergent constraint will appear or not. In this section, we will provide examples using
idealized climate models.

The eigenvalues and eigenfunctions of the generator were numerically determined using the fact that the eigenvalues of
the Fokker-Planck operator .Z* are equal to those of the generator and that the eigenfunctions can be computed from the
transformation: ¢; = ¢;/p.. The Fokker-Planck operator was discretized with use of Chang-Cooper algorithm (Chang and
Cooper, 1970). Eigenvalues and eigenvectors were determined using an Implicitly Restarted Arnoldi Method (Lehoucq et al.,
1998). Explicit simulations of the SDEs were performed the-using a stochastic Runge-Kutta method (Kloeden and Platen,
1992).
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4.1 Ornstein-Uhlenbeck cases

First, the one-dimensional Ornstein-Uhlenbeck process is considered with SDE

forcing F;(t) = sin 27tw; and frequencies wy = 0.001 and ws = 0.1. A parameter ensemble is created by varying -. In this case,
analytic solutions exist for the eigenvalues and eigenvectors of the generator. Eigenvectors and eigenvalues were determined
using the Chang-Cooper scheme on a domain [—25,25] with Az = 0.25. The numerically computed susceptibilities, as shown
in figure 2b, are in agreement with the analytic ones and capture the response (figure 2a) well, as expected in this linear case.

In the two-dimensional Ornstein-Uhlenbeck case, the same forcing F;(¢) is added but only in the first dimension. The
governing SDE is given by
axo= [T 0 ) (PO aeva [P O s, 4.2)

0  —m 0 0 1
and a parameter ensemble is generated by changing the damping rate ;. Two ensembles are compared with 6 = 0.2 in the first
ensemble and 6 = 0.5 in the second. The damping term -5 is held constant at y5 = 0.7.

In figure 3, the eigenvalues and susceptibility ratios are plotted. In the case of a relatively weak coupling (6 = 0.2) all nonzero
eigenvalues are larger than the fast forcing frequency ws, so the system response time is smaller than the forcing time scales.
On the other hand, the strong coupling (6 = 0.5) leads to a slow down of the system, so that some eigenvalues now become
smaller than w». In these cases (77 < 0.5) the system does not have time to portray the full response to a forcing, while for
others (y; > 0.5) it does. Consequently, the strength of the response actually decreases for v; < 0.5. Directly calculating the
expectation value as the mean of 500 stochastic trajectories confirms this result (not shown).

The results in figure 4 show a large variation over the ensemble in the projection term of the predictor on the eigenfunctions
(g1, see appendix). In constrast, the product of the two projection terms in the predictand (h;) changes relatively little over
the ensemble for both coupling strengths. Even though the projection terms now play a significant role in determining the
response, the eigenvalues still determine whether the relation is linear (fast compared to forcing) or nonlinear (similar size to
forcing frequency). In the weak-coupling system, the susceptibility ratio is almost constant and an emergent linear relationship
is found. The strong-coupling system does only portray an emergent relationship for certain regimes (low or high ;). A case
can be made though that the highly coupled system is the system for which finding an emergent constraint is more likely,

because the strength of the response is substantially higher and a better signal-to-noise ratio can be obtained.
4.2 Energy Balance model

In this section a specific emergent constraint is examined in more detail, namely the one pertaining to the snow-albedo feedback
(SAF) first described by (Hall-and-Qu;2006)Hall and Qu (2006). They found a correlation between SAF on a seasonal scale
and SAF as a result of climate change. In models with a high snow albedo, the contrast between snow-covered and bare surfaces

was largest and consequently the sensitivity to changes in temperature was largest (Qu and Hall, 2007). To study this emergent
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constraint we modify a simple energy balance model and-make-the—albedo-based on the seminal work by Budyko (1969)
and Sellers (1969). The albedo is made temperature-dependent, following Fraedrich (1979) and a stochastic term is added
following Sutera (1981). A parameter in the albedo function will be used to define a parameter ensemble.

With constant albedo, the energy balance model reads:

dT = 1 (Q(l—a)+Aln

cr

Cif +G— eaBT4> dt + \Jor dW;, (4.3)
where dT is the temperature change, ¢ the atmospheric heat capacity, @ the solar insolation, « the albedo, C' the concentration
of greenhouse gases, C,..r a reference concentration, G represents the radiative forcing due to the reference greenhouse gas
concentration, o the Stephan-Boltzmann constant and € the emissivity of the Earth. The standard parameter values for this
model can be found in Table 2. The parameters of the albedo function are chosen to ensure that no bistability is present in the
model, in which case LRT would break down.

Before examining the snow-albedo feedback, note that for some variables, notably the climate sensitivity, a simple EBM can
react differently to forcing from solar insolation or greenhouse gases. This can be determined from, with H = G+ Aln %
and for a value of e = 1,
99T _ o/t ( 3Q(1—a) _1> o 99T _ 3Qa'/*
000Q  4(Q(1—a)+H)Y* \QU—a)+H ’ 0a0H  16(Q(1—a)+H))/*

>0 (4.4)

Sensitivity to greenhouse forcing decreases when albedo decreases, while sensitivity to solar insolation (seasonal sensitivity)
increases for an increasing albedo, using typical values for ¢ and H.
To mimic the physical mechanism behind the emergent constraint, the albedo is taken to be temperature dependent, i.e., for

low (high) temperatures, the albedo is high (low). A logistic function is used to model this effect,

_ ) QXamp
o(T) = i + 1o HE s 4.5)

where iy, is the minimum albedo, o, is the amplitude, & is a steepness factor and T}, is the temperature at which half of
the amplitude is reached. The amplitude avmp, is the parameter that is varied over the ensemble.

In the first case, the insolation forcing is given by @ = Qo(1 + Qsin27t/7) where 7 corresponds to one year and Q) is a
seasonal modulation amplitude, with parameter values are shown in Table 2. The snow-albedo feedback term is then computed
by dividing the amplitude of the albedo cycle by the amplitude of the temperature cycle. A second case is considered in which
the greenhouse gas concentration C' is increased 0.3% per year from 295 ppmv over a period of 300 year. Here the snow-albedo
feedback is computed by dividing the total albedo response by the total temperature response. In each case, the variance of
the noise o in (4.3) was chosen as 107 K?/s. Changing this parameter does not influence the eigenvalues as expected from
the theory (Pavliotis, 2014). While the projections of the eigenvalues and eigenfunctions did change slightly, the susceptibility
ratio was not influenced significantly by a variation of the o (halving and doubling of o, not shown). In the computation of
the solution of the Fokker-Planck equation using the Chang-Cooper scheme, we used a resolution of 1 K which is sufficient to

accurately determine the eigenvalues and eigenfunctions of the generator.
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As mentioned above, application of equation 3.1 is not self-evident. Considering temperature to be a forcing ignores the fact
that temperature responds differently to seasonal and greenhouse gas forcing, as shown in equation 4.4. Secondly, using do/dT
as the observable directly does not work either. Linear response theory does not give the expectation value of the observable,
but the expectation value of the deviation due to the forcing, while we are interested in the change due to a parameter change.

Instead, the SAF can be described by two observables: SAF is determined by taking the ratio of the susceptibilities of albedo

to temperature. Therefore, we use the modified equation (3.2):

ABa(®)]Q)(wa) AAT®)c)(w)) 1= w;i’ o W X%

RES(camp) = R et @) AAT(H) ) (wa) S, I T, w m — ot (4.6)
where

= {a,¢1)p, (1 = a(T)V'(T), b1)p,, Y= {0, ¢0)p (V' (T), b1)p,

B = (T, d1)p. (1 = (T))V'(T), P1)p. o= (T, 01)p. (V' (T), 01)p. - 4.7

In the case the susceptibilities are all dominated by one term with index I, this reduces to C*" = (ay6;)/(Biy) = 1

In figure 5 the sensitivity of temperature to varying amplitude of the albedo function is shown, as well as the sensitivity
of the snow-albedo feedback and condition for the existence of an emergent constraint. As shown in figure 5a, no emergent
relationship is found for climate sensitivity, a feature that was analytically found in the case of constant albedo. In figure 5b
the emergent constraint on SAF is shown. In the warm regime (low albedo, lower line in the figure), the SAF becomes larger
for larger avgmp. The larger the maximum albedo, the steeper the logistic albedo function. A second effect also takes place:
with higher maximum albedo, the warmer it gets. Consequently, sensitivity of the albedo function is smaller. This decrease
in sensitivity also takes place in the cold regime; the colder it gets, the less sensitive the albedo gets. In the cold regime it is
clear that this second mechanism dominates. The results can be reproduced by use of LRT, as shown in figure 5c and 5d. The
discrepancies disappear when forcing is small; the climate change forcing in particular is causing most of the differences.

One can extend the energy balance model by representing the response of snow and ice explicitly as a relaxation towards the

logistic reference albedo function a(7") given in (4.5). This gives the extended model

dT = i(Q(l—&)—&—H—eaTﬂ dt +/or dW,; doao=——(a—aT)) dt+ /o5 dW;, 4.8)

cr Ts
where 7, = 4 x 10%s is the response time of the albedo. The drift term in the Fokker-Planck equation corresponding to (4.8) is
not the gradient of a potential but the eigensolutions of the generator can of course still be computed numerically.
Extending the model with an explicit albedo function does not change the dynamics of the system significantly, nor the
eigenvalues and eigenvectors. Figure 6b shows the eigenvalues of the extended EBM to be almost exactly equal to the eigen-
values of the original model, the imaginary parts continuing to be zero. The projection coefficients are very similar as well (not

shown). Thus, the inclusion of a smaller time scale does not improve the response.

10
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4.3 PlaSim

To bridge the gap between parameter ensembles in simple dynamical systems and Earth System Models, the SAF emergent
constraint is further examined in PlaSim. PlaSim is a numerical model of intermediate complexity, developed at the University
of Hamburg to provide a fairly realistic present climate which can still be simulated on a personal computer (Fraedrich et al.,
2005). The atmospheric dynamics are modelled using the primitive equations formulated for temperature, vorticity, divergence
and surface pressure. Moisture is included by transport of water vapor. The equations are solved using the spectral method.
A full set of parameterizations is used for unresolved processed such as long and shortwave radiation with interactive clouds,
boundary layer fluxes of latent and sensible heat and diffusion.

In this climate model snow albedo is a function of surface temperature 7§, snow depth and vegetation cover. The bare soil

snow albedo in PlaSim is described by:

Amaz, if Ty, <10° C.
Asnow = Amin; if Ts, > 0° C. 4.9)
Amin — (Amaz — Amin) T2 otherwise.
This equation is modified in the presence of vegetation and in the case of shallow snow depth. See Lunkeit et al. (2011) for
more details. A set of simulations was performed with A, varying between 0.650 and 0.900. The historical forcing in PlaSim
was approximated by a COq increase from 295 ppm at a rate of 0.3% per year in the 20th century and 1% per year in the 21st
century before it stabilised at 720 ppm; a 50-year spin-up corresponding to the period 1850-1900 was used.

In figure 7 the PlaSim results are shown which can be compared to the results from Hall and Qu (2006) in figure 1. Note that
the variation in CMIP4 is significantly larger than the variation found in PlaSim, but that the PlaSim results fit on the relation
found by Hall and Qu (2006). Variations in other parameterizations, such as the maximum snow albedo over forested regions,
increase the spread in PlaSim SAF further (not shown). This simulation shows that the constraint that emerges in a multi-model
ensemble with structurally different formulations of the snow response can to some extent also be reproduced using variations
in one parameter. This provides the justification for simplifying further to energy balance models to examine the SAF emergent

constraint.

5 Summary, Discussion and Conclusions

In this paper, we have presented a dynamical framework behind the occurrence of emergent constraints in parameter dependent
stochastic dynamical systems. In these systems, emergent constraints are related to ratios of response functions which can be
determined using linear response theory. It was shown that for a large class of systems, these ratios could be expressed in terms
of eigenvalues and projections on eigenvectors of the generator of the system.

A classification of emergent constraints was given and several types could be distinguished depending on whether similar
(direct) or different (indirect) observables are considered and whether a response in present-day climate (dynamical) or the

time-independent part of present-day climate (static) is linked to a response of the future climate system. For a linear dynamical

11
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emergent constraint, the ratio of susceptibilities at the two frequencies under consideration should be a positive constant over the
ensemble. When the response is computed with respect to an internal variable (in contrast to an external forcing), a condition is
posed on the susceptibilities of the two observables in the system. Static constraints are encountered when a linear relationship
is found between the expectation value of the observable and the susceptibility at the frequency of the forcing.

Examples were given using several idealized climate modelsand-in-. In particular the emergent constraints involving the
snow-albedo feedback was considered in detail. We found that linear dynamical emergent relationships can occur when the

time scale of the system, indicated by the eigenvalues, changes with the parameter and is smaller than the forcing time scales.

ofthe-predietand-This is of particular interest because differences in response size between climate models is often determined

by feedbacks strength in climate systems. Larger feedbacks give rise to larger timescales (Roe, 2009), which is reflected in
the eigenvalues of the generator. For an emergent constraint on a feedback quantity a more complicated constraint mechanism

occurs, where one has to take into account the response to two different observables, which typically have different time scales.

When the condition of the predictor’s time scale being smaller than the forcing time scale is not met, deviations from linearity
occur. When the linearity of the relation is exploited in further analysis. such as in the interpretation of emergent constraints by
Wenzel et al. (2014), this might lead to a bias in the estimate of the predictand.

Modelling emergent constraints with conceptual models is justified when different ESMs are closely related and structural
differences can be parametrized. This can for instance be tested using an intermediate complexity model with full parametrization
of the process under consideration.

The classification of emergent constraints provided gives a hint to which kind of emergent constraints one can look out for
in an ensemble of high-dimensional Global Climate Models (GCMs). To find an emergent constraint for climate sensitivity
by data mining in a CMIP5 ensemble proved fruitless (Caldwell et al., 2014). Using the susceptibilities to find new emergent
constraints does not seem to have a direct advantage above directly looking for plausible correlations, but susceptibilities might
provide additional information. For example, when a susceptibility shows a resonance at a certain frequency over the ensemble
of models, this could suggest that the same feedback is present in all simulations.

In a high-dimensional dynamical system eigenfunctions and eigenvalues can be accessed with the help of transfer operators,
associated with the propagation of probability densities associated with the Fokker-Planck operator. The eigenfunctions that
lie on the invariant measure are then computed by making use of the ergodic properties of the climate system. To overcome
the burden of high-dimensionality, a reduced transfer operator can be computed from a very long simulation, from which the
eigenfunctions on the attractor are approximated (Tantet, 2016). However, a forcing on the system does not generally lie only
on the attractor and should be split into a part parallel and perpendicular to the attractor. Consequently, the igenvectors off
the attractor cannot a priori be ignored (Lucarini and Sarno, 2011). Gritsun and Lucarini (2017) showed that indeed for some
geophysical systems, specifically quasi-geostrophic flow with orographic forcing, the response to the forcing may have no

resemblance to the unforced variability in the same range of spatial and temporal scales.

12



In conclusion, while the current theoretical framework provides an understanding on how emergent constraints may arise in
low-dimensional stochastic dynamical systems, its application to output from GCMs, in particular in finding novel and useful

emergent constraints, is a challenging issue for future work.
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Appendix: Response function expansion

For A = z, we find from (2.5) that

oo

Ra(t) = / . ef*t(—%%) dz.

—00

Using the expression for the equilibrium solution p. from (2.3), we find

B Ope 2
or o

and hence (5.1) becomes

Ra(t) = / x ef*t(gv/(:r)ﬁe) dz.

5.1)

(5.2)

(5.3)

With the standard L2-inner product, the adjoint of .# determined as (.Z*g,h) = (g,.Zh), where .Z is the generator of the

OU process, is given by

ou o 0%u

_ya Y% gou
gu_v(x>8x+23x2

Using this property in (5.3), we find

{a,e” (V! (2)pe)) = (72, V' (x)pe)

and hence

Ra)=> [ () V/(@)p. do

Next an inner product (g, k)5, is defined as

oo

(9, h)p. = / ghpe dx

— 00

As a next step, let \; and ¢; be the eigenvalues of the generator, i.e. solutions v of

Lo=—\¢

14

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)



For reversible processes, these eigenvalues are real, positive and discrete under the inner product (, )5, . The eigenfunctions

10 form a complete orthonormal basis, such that (@, . )p. = dnm (Pavliotis, 2014). Now eZ* () represents solutions u(x,t) of

15

the problem
ou

— =
ot~ "

with initial condition u(z,0) = x. We can expand v into eigenfunctions as

u(,t) =3 aun()e
=1

From the initial condition, we find

> agi(x) =
=1

and using the orthogonality of the ¢; under the inner product (,);,, we find

ar = (x,¢1)p,

On the other hand, substituting the expression for u into (5.6) gives

/ S agi(@)e MV (@)p, da =3 pre !
=1 =1

where

Bi=u(V'(x),d1)p. = (x,61)5. (V' (2),61)p,

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

Repeating the derivation with a general observable A = f(z) gives (f(z),¢1)5. (V' (x),¢1)5.. The first term in 5; denotes

the projection of the observable on the eigenfunctions and could intuitively be interpreted (for [ > 0) as the amenability of the

observable to change. The second projection term in [3; can be understood to be the amenability of the whole system to change

under the influence of the forcing field. In (2.11) those observables are Y; and Y5, so that g; = (Y]

h = (Y2.01)5.(V (x 5

15
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Reference Climate predictor Future climate predictand Type

Knutti et al. (2006) Seasonal cycle land temperature am- | ECS DD
plitude

Hall and Qu (2006); Qu and | Springtime SAF SAF under climate warming DD

Hall (2014)

Boe et al. (2009) Arctic sea ice extent trend 1979-2007 | Arctic sea ice extent DD

Clement et al. (2009) Sensitivity LLC to pacific decal vari- | Sign LLC feedback DD
ability

Trenberth and Fasullo (2010) | SH net radiation TOA ECS IS

Fasullo and Trenberth (2012) | Mid-tropospheric RH over ocean in | ECS IS
subsidence region

Bracegirdle and Stephenson | Arctic SAT Arctic SAT under climate warming DS

(2013)

Gordon and Klein (2014) Sensitivity of extra-tropical LLC op- | Extra-tropical LLC optical depth re- | DD
tical depth to temperature sponse to climate warming.

Qu et al. (2014) Sensitivity of LLC cover to SST LCC cover changes under climate | DD

warming

Sherwood et al. (2014) Strength cloud-scale and large-scale | ECS IS
lower tropospheric mixing over
oceans

Su et al. (2014) RH & cloud fraction tropics ECS IS

Wenzel et al. (2014) Short-term sensitivity of atmospheric | Sensitivity tropical land carbon stor- | DD
carbon dioxide age to climate warming

Tian (2015) Precipitation & mid-tropospheric RH | ECS IS
asymmetry bias (for ITCZ)

Kwiatkowski et al. (2017) Tropical primary production under | Tropical primary production under | DD
ENSO-driven SST variations climate change

Cox et al. (2018) Function of autocorrelation of GMST | ECS ID

Table 1. Application of our classification of emergent constraints to a selection of examples found in literature. DD is a direct dynamical
constraint, DS a direct static constraint and IS is an indirect static constraint, while ID denotes indirect dynamical emergent constraints.

Abbreviations stand for RH: relative humidity, ITCZ: inter-tropical convergence zone, TOA: top of atmosphere, SH: southern hemisphere,
ECS: equilibrium climate sensitivity, LLC: low-level cloud, SAF: snow-albedo feedback. SAT: surface air temperature. The emergent con-
straint found by Trenberth and Fasullo (2010) seems to be spurious: no physical mechanism was proposed and it did not appear in different

ensembles, such as CMIP5 (Grise et al., 2015).
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Constant | Value Constant | Value

cr 5.0 x 108 J/m? /K € 1.0

A 20.5 W/m? oB 5.67 x 1078 W/m? /K*
Qo 342 W/m? Qmin 0.2

Qs 115 W/m? Camp 0.05-0.5

G 150 W /m? k 0.5

Chrey 280 ppmv Th 284 K

Ts 4.0 x10%s or 1.0x 107" K?/s

Oa 1.0x 107557t

Table 2. Constants for the energy balance model.
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SAF in climate change and
seasonal cycle contexts
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Figure 1. The emergent constraint on snow-albedo feedback 2‘%5 (from Hall and Qu (2006), as given in units of %). This is an example

of a direct emergent constraint (it links the SAF in both past and future time) and a dynamical emergent constraint (it uses a response to a

seasonal forcing as its predictor).
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Figure 2. (a) Response to forcings at two different frequencies of the one-dimensional Ornstein-Uhlenbeck process. Shown is the average
of a 500-member simulation of trajectories (b) The susceptibility at these frequencies, whose ratio is given in the inset figure. This is an

example of a direct dynamical emergent relationship.
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Corresponding susceptibilities, with their ratio in the inset figures. This is an example of an indirect dynamical emergent relationship. Note
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that for reasons of numerical stability, the range of v is different than that of + in figure 2.
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Figure 5. (a) The relation between temperature response to the seasonal cycle and the temperature response to greenhouse gas forcing. (b)
The strength of the snow-albedo feedback to solar and greenhouse gas forcing on different time scales. In the inset: their ratio as a function
of amaz. For clearness, (a,b) are shown without noise. (c) The susceptibilities for temperature as the observable (d) The ratio of albedo and

temperature susceptibilities and their ratio (RFS).

25



Qamp Qzmp
:' :0 .0 I . - - L]
0.45 2L, E 0.45 .OE .o:o.. o*
*e & 00 1 LN N N ]
s 88 & & * 89 & &
SELE Si LY, |
0.30 %% % %" 0.30 %% % %% H
%% % e’ e % e %e’e
.. .. .. [ ] . [ ] . .. [ ] .. [ ] . [ ] .
[ ] [ ] [ ] [ ] [ | L] [ ] L ] [ ] [ |
0.15 ..o ..o ..o e D. * e 0.15 ..o ..o ..o ‘e |. *e
[ ] [ ] [ ] [ ] [ ] [ ] L] L ] [ ] [ ]
[] [ ] L ] L ] L ] .. .. .. .. L ] °
L ] .. .. .. .. .. [ ] [ ] [ ] [ ] [ ]
0.0 0.4 0.8 12 0.0 0.4 0.8 1.2 16
Al (years™1) A (years™1)
(a) (b)
0.5 a1 0.5 : N
2 » 2
0.4 2 0.41 M3 2?
2 3 $13 2.7
1 1 2 ;’ [ ¥} 3 1
o 0.3 1 1 2 a:‘ a 0.3 ;2’3 2 1 1
£ 1 2 % 52 2 1
t'? 1, o =] B _2
0.2 1, 021 34
1 | [ ¥} 1
1 1 3 a2 1
1, g 1
0.1 . 014 B L
1, H i
—0.012 -0.008 -0.004 0.000  0.004 0.0 0.3 Ojg 0.9 12
a |
(© (d)
0.5 e 0.5 H 1
.2 H E
= 2
0.4 PR 0.4 o N .
1 t 2 ' 8,2, 1
a 034! . 2 o 03] 332 1
E 2 E pa 2 1
5 ' ? [} B 2
0.2 1y 021 a2 L
1 1 Ini I.II
1 [ -] 1
0.1 1 014 ® 1
1 : i
—0.018  -0.012 _?’}606 0.000  0.006 0.0 04 05_'8 12 16
|
© ®

Figure 6. (a) Eigenvalues of the EBM depending on the amplitude of the albedo function for the simple EBM. The zero eigenvalues

correspond to the invariant measure. (b) The extended EBM. (c¢) Albedo projection terms for solar forcing (o) as defined in Equation 4.7

where the markers denote [ (d) Same for temperature 3; (e,f) projections terms for GHG forcing +; and d; respectively.
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Response to Anonymous Referee RC 1

We thank the referee for the careful reading and the useful comments and will adapt the manuscript accordingly.
Below is a point by point reply with the referee’s comments in bold font, our reply in italic font and the changes
in manuscript in normal font.

1. Comment of the referee:

This manuscript is dealing with the problem of the understanding of emergent constraints in
projections based on climate models. The main idea is to develop a mathematical framework
based on the linear response theory. The approach is applied in the context of several models of
increasing complexity. A classification of emergent constraints is also proposed. This is a very
interesting approach to the problem that is worth publishing. The organization of the manuscript is
however confusing to me. Section 2 is mixing the general development of the approach and the
application to an Ornstein-Uhlenbeck process. It is therefore difficult to figure out what is general
or not. | would suggest the authors to reorganize this section 2 (and also section 3), by first
presenting the general framework based on Response theory and then the specific application to
the O-U C1 ESDD Interactive comment Printer-friendly version Discussion paper process, maybe by
putting a section 2.1 and a second section 2.2 (or by rearranging section 2 and 3 together).

Author’s response:
We will follow the suggestion of the referee to clarify better what is general and what applies to the
OU case and reorganize the paper accordingly.

Changes in the text:
The sections 2 and 3 will be reorganized to better separate the general and specific cases.

2. Comment of the referee:
Page 1, Line 14, remove “variable”

Author’s response:
We have changed the word observable to observed to clarify that it is an adjective and avoid
confusion with the noun observable which is a near synonym of variable.

Changes in the text:
Observable is changed into observed

3. Comment of the referee:
Page 3, Line 12. O=x. Is it really a mean value?

Author’s response:
It was meant to indicate the identity operation.

Changes in the text:
We will mention this now in words in the revised text.

4. Comment of the referee:
Page 4, Eq 2.12-2.13. The way to compute the g_I| and h_| should be explained.

Author’s response:
Suggestion followed.

Changes in the text:
A reference to the appendix will be added. The appendix will contain the explicit computation of g_|
and h_|.



5. Comment of the referee:
Page 5, Eq 3.1. Is it only valid for O-U process? This point is related to the general comment above.
What is general and what is specific to the O-U process? This should be clarified.

Author’s response:
This is valid in general.

Changes in the text:
In the revised paper this will be made clear by restructuring the material as mentioned under
comment 1 above.

6. Comment of the referee:
Page 6. Same as the previous point for Eq 3.4 and 3.5

Author’s response:
These results are also general.

Changes in the text:
In the revised paper this will be made clear by restructuring the material as mentioned under
comment 1 above.

7. Comment of the referee:
Page 6, line 29. Remove “the”.

Author’s response:
Suggestion followed.

Changes in the text:
‘the’ will be removed.

8. Comment of the referee:
Page 8, Eq. 4.3. References to these type of models are needed. You can go back to the pioneers on
that topic.

Author’s response:
Suggestion followed.

Changes in the text:
Several references will be added, e.g., Budyko (1969), Sellers (1969), Fraedrich (1979) and Satura
(1981) .

9. Comment of the referee:
Page 9. Eq. 4.6, one omega_2 should be omega_1, | guess.

Author’s response:
Thanks.

Changes in the text:
The equation (4.6) will be corrected.

10. Comment of the referee:
Page 9. Eq 4.8. Is this model presented elsewhere? References are needed.



Author’s response:
No, as far as we know this is the first time such a formulation has been used.

Changes in the text:
None.

11. Comment of the referee:
Page 10. Line 12. What means “a 50-year spin-up was used”? Before the 20th and 21th centuries?

Author’s response:
A spin-up was used before the 20" century, so from 1850-1900.

Changes in the text:
This will be clarified in the revised text.



Response to Referee RC 2 (Valerio Lucarini)

We thank the referee for the careful reading and the useful comments and will adapt the manuscript
accordingly. Below is a point by point reply with the referee’s comments in bold font, our reply in
italic font and the changes in manuscript in normal font.

1. Comment of the referee:
I see as main (yet minor) pitfalls of your paper the somewhat confused presentation in Section 2
and the fact that the classification of the emergent constraints is also a bit unclear.

Authors response:
We will aim to clarify both issues.

Changes in the text:

Section 2 and 3 will be rewritten as to separate the more general derivation from the Ornstein-
Uhlenbeck example. The classification of the emergent constraints in section 3 will be made more
clear as per the suggestions of the referee.

2. Comment of the referee:
I think you should also discuss a bit more in detail the difference between considering multiple
models, instead of one with parametric modulations.

Authors response:
Suggestion followed.

Changes in the text:
We will address the differences between the two cases (multiple models vs parameter variation in a
single model) in the revised discussion section of the paper.

3. Comment of the referee:

Additionally, you might find useful a recent preprint of mine:

https://arxiv.org/abs/1806.03983 where | address the problem of looking at observables as
predictands and predictors. This problem is (briefly) mentioned in your paper, but maybe my
preprint can be useful for discussing your results.

Authors response:
We have read the paper and the material is indeed highly interesting and relevant for our paper.

Changes in the text:
It will be used when rewriting part of section 3 on the classification of the emergent constraints.

4. Comment of the referee:

Please also note the supplement to this comment:
https://www.earth-syst-dynam-discuss.net/esd-2018-15/esd-2018-15-RC2-
supplement.pdf

Authors response:
Many thanks for the very useful questions, remarks and suggestions for changes; they are discussed

below.

Changes in the text:


https://arxiv.org/abs/1806.03983

All these suggestions will be taken into account in the revised paper as per the point-by-point reply
below.

5. Comment of the referee:
Section 2: | think you should frame response theory in general terms, and then propose this
(relevant and illustrative) example. Otherwise, the reader can be a bit confused.

Authors response:
Good point. Now we only refer to the general theory of response theory in the introduction and
discussion, but this is the most logical place.

Changes in the text:
Section 2 will be rewritten to better separate the general results from that of the example.

6. Comment of the referee:

I also think you should cite the Hairer and Majda 2010 paper regarding response theory for
stochastic systems and the original Ruelle 1998, 2009 papers on response theory in a deterministic
setting.

Authors response:
We indeed mainly referred to the book by Pavliotis, but it is indeed better to cite the papers in which
these advancements were made.

Changes in the text:
References to the papers by Ruelle (1998, 2009) and Hairer and Majda (2010) will be added.

7. Comment of the referee:

Page 3, line 30 (in the version attached to review, which is the 2-column version of the ESDD
paper): be more specific. Firstly, an emergent constraint can be either direct or indirect. In the
direct case, the predictor and predictand are the same observable, while in the indirect case the
predictor variable and predictand variable have to be linked via a physical process.

Authors response:
Indeed, it was not made explicit that indirect simply means not the same variable.

Changes in the text:

The sentence will be changed to: Firstly, an emergent constraint can be either direct or indirect. In
the direct case, the predictor and predictand are the same observable, while in they are not. In the
latter case, the predictor variable and predictand variable have to be closely linked, for instance via a
physical process.

8. Comment of the referee:
Page 3, line 69: Do you mean: when taking ensemble averages?

Authors response:
Not when we talk about an ensemble generated by varying a parameter. For a linear relationship to
appear (A = C* B), the ratio of susceptibilities should be constant (A/B= C*).

Changes in the text:
We will write out that (A= C*B) to show readers nothing special is going on here.



9. Comment of the referee:
Page 3, line 79: The equation 3.2 is unclear

Authors response:
Indeed, the accompanying text was quite unclear.

Changes in the text:

We will add: “One variable (B) can act as forcing to a second variable (O), while being itself forced by
some external variable (F). Furthermore, often the forcing patterns are not exactly the same for the
short (F2) and long (F1) periodic forcing, leading to:”

10. Comment of the referee:
Page 4, line 7 Yes, but you have lost sensitivity on \gamma

Authors response:
This is the point. If there was still a dependence on gamma, no linear relationship would have
appeared.

Changes in the text:
By making equation 3.1 more clear, we will make this more apparent.

11. Comment of the referee:
Page 4, line 18: This has to do in fact, with the sum rules and asymptotic properties studied in
Lucarini and Sarno (2011).

Authors response:
Thanks for this remark, but it would be too much detailed to discuss that here.

Changes in the text:
None.

12. Comment of the referee:
Page 4, line 55: isn’t this just a special case of 3.1, just with \omega_2=0?

Authors response:

This is not a special case of equation 3.1. Here we are not interested in the response to forcing at all,
only in the expectation value. This was explained in the text in the left column, but apparently not
sufficiently clear.

Changes in the text:

The difference between the low frequency limit \omega_2 - 0 of (3.1) and equation (3.5) will be
explained in the revised text.

13. Comment of the referee:

Page 5, line 31. maybe it can be made a bit clearer?

Authors response:

The reason why was indeed omitted.

Changes in the text:



The last sentence of this paragraph will be changed to clarify the role of the signal-to-noise ratio
In finding an emergent constraint.

14. Comment of the referee:
Page 7, line 15: As long as different models are closely related and structural differences can be
approximately parameterized.

Authors response:
Agreed.

Changes in the text:

This has been added to the revised section 5 including a sentence explaining how models of
intermediate complexity can be used to figure out if the bridge between parametrized conceptual
models and structually different model can be bridged.

15. Comment of the referee:
Page 7, line 29: | believe that this specific classification should be better explained.

Authors response:
Agreed.

Changes in the text:
This has been now made more clear in section 3 and will be repeated in the revised discussion
section.



