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Abstract. ESMs (Earth System Models) are important tools that help scientists understand the complexities of the Earth’s 

climate. Advances in computing power have permitted the development of increasingly complex ESMs and the introduction 

of better, more accurate parameterizations of processes that are too complex to be described in detail. One of the least well-10 

controlled parameterizations involves human activities and their direct impact at local and regional scales. In order to 

improve the direct representation of human activities and climate, we have developed a simple, scalable approach that we 

have named the POPEM module (POpulation Parameterization for Earth Models). This module computes monthly fossil fuel 

emissions at grid point scale using the modeled population projections. This paper shows how integrating POPEM 

parameterization into the CESM (Community Earth System Model) enhances the realism of global climate modeling, 15 

improving this beyond simpler approaches. The results show that it is indeed advantageous to model CO2 emissions and 

pollutants directly at model grid points rather than using the same mean value globally. A major bonus of this approach is the 

increased capacity to understand the potential effects of localized pollutant emissions on long-term global climate statistics, 

thus assisting adaptation and mitigation policies. 

 20 

1 Introduction 

The Earth system is a complex interplay of physical, chemical and biological processes that interact in non-linear ways 

(Ladyman et al., 2013; Lorenz, 1963; Rind, 1999; Williams, 2005). Much effort has been devoted to understanding these 

complex interactions, and several improvements have been made since the end of the last century.  

One of the most important advances in this field has been the use of coupled numerical climate models, dubbed Earth 25 

System Models, or ESMs (Edwards, 2011; Flato, 2011; Schellnhuber, 1999). These models aim to simulate the complex 

interactions of the atmosphere, ocean, land surface, and cryosphere, together with the carbon and nitrogen cycles (Giorgetta 

et al., 2013; Hurrell et al., 2013; Martin et al., 2011; Schmidt et al., 2014). 
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However powerful, climate models are far from being perfect (Hargreaves, 2010; Hargreaves and Annan, 2014). Unresolved 

processes (Williams, 2005), limited computational resources (Shukla et al., 2010; Washington et al., 2009), and model 

uncertainties (Baumberger et al., 2017; Lahsen, 2005; Steven and Bony, 2013) are ongoing issues that still require attention 

and further improvement.  5 

 

One of the fields most in need of development is the inclusion of co-evolutionary dynamical interactions of the 

socioeconomic dimension into global models with other Earth system components (Nobre et al., 2010; Robinson et al., 2017; 

Sarofim and Reilly, 2011). Human activity was a major driver of change in the Earth System in the recent past (Alter et al., 

2017; Barnett et al., 2008; Crutzen, 2002), and it now dominates the natural system (Ruth, et al. 2011). However, most 10 

global models use basic socioeconomic assumptions about the behavior of societies and are only unidirectionally linked to 

the biogeophysical part of the Earth system (Müller-Hansen et al., 2017; Smith et al., 2014). The standard way of introducing 

anthropogenic climate change into ESMs is through Representative Concentration Pathways (RCPs). These are consistent 

sets of projections involving only radiative forcing components (van Vuuren et al., 2011), but which represent a step forward 

from the scenario approach of the last decade (Moss et al., 2010; van Vuuren et al., 2014; van Vuuren and Carter, 2014). 15 

However, RCPs are not fully-integrated socioeconomic parameterizations but rather estimates for describing plausible 

trajectories of human climate change drivers (Moss et al., 2010; Vuuren et al., 2012). They provide simplified accounts of 

human activities and processes from one-way coupled Integrated Assessment Models (IAMs, Müller-Hansen et al., 2017).  

 

The use of RCPs is advantageous because they provide a set of pathways that serve to initialize climate models. However, 20 

two major problems remain within this approach. Firstly, human activities are not intrinsically embedded into the ESM, 

impeding sensitivity studies. Secondly, because of the weak coupling of IAMs, they cannot capture the sometimes 

counterintuitive bidirectional feedback and nonlinearity between the socioeconomic and natural subsystems (Motesharrei et 

al. 2016; Ruth et al. 2011). Good examples that illustrate the importance of including such bidirectional feedbacks feature in 

the HANDY model (Motesharrei et al. 2014) which has been used to analyze the key mechanisms behind societal collapses 25 

using the predator-prey model. 

 

The RCP approach has been used in climate models because of its low computational cost. However, advances in 

computational resources now allow to parameterize human-Earth processes in a more detailed way, including the inclusion 

of population dynamics into the modeling, as in the POPEM (POpulation Parameterization for Earth Models) module 30 

(Navarro et al., 2017). 

 

One important, but sometimes overlooked process is the direct, regional effect of anthropogenic greenhouse gas (GHG) 

emissions. Although some GHGs quickly mix in the atmosphere (IPCC, 2014a), their mixing times and lifetimes vary 
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(Archer et al., 2009; Prather, 2007), and localized emissions may produce a transient response in the atmosphere. Given the 

highly non-linear character of the processes involved, it is not unreasonable to assume that accounting for geographical 

variability is significant, and the spatial and time distribution of these emissions may affect global climate (Alter et al., 2017; 

Grandey et al., 2016; Guo et al., 2013). This hypothesis has seldom been investigated, as most current models treat certain 

GHG emissions as a homogeneously distributed forcing. Thus, for instance, the most typical CESM (Community Earth 5 

System Model) simulations prescribe a CO2 concentration on the assumption that it is well-mixed in the atmosphere (Neale 

et al., 2012).  

 

This paper describes the results of a 50-year simulation with a simple parameterization of fossil fuel CO2 emissions at model 

grid point scale, integrating the POPEM module into the CESM. The aim of this paper is to show that this grid point scale 10 

modeling of anthropogenic CO2 emissions (and other pollutants) represents an improvement over simpler approaches, and 

leads to better representation of the geographical variability of precipitation. 

 

The purpose of the new modeling is not only to improve precipitation and temperature estimates, but also help understand 

the carbon cycle feedback, and evaluate the climate sensitivity of the Earth under alternative GHG emission scenarios. While 15 

our focus here is anthropogenic CO2 emissions, the POPEM parameterization can accommodate other GHGs and human-

dependent processes in order to advance CESMs towards a comprehensive, fully-coupled modeling of anthropogenic 

dynamics in the global climate. 

 

The paper is organized as follows: in section 2, we present the validation of the POPEM standalone mode and set the 20 

framework for evaluating the impact of POPEM parameterization –its incorporation into the CESM and the testing 

framework; in section 3, we compare the outputs of CONTROL and POPEM runs and see how they compare with 

observations. In the conclusion and future work section, we highlight the importance of the dynamical modeling of 

anthropogenic emissions at grid point scale to better represent the socioeconomic parameters in the CESM model and 

improve precipitation estimates. 25 

2. Material and methods 

2.1 The CESM model 

The Community Earth System Model (CESM) is a state-of-the-art ESM and probably the most widely used climate model. It 

was developed and is maintained by the National Center for Atmospheric Research (NCAR), with contributions from 

external researchers funded by the U.S. Department of Energy (DOE), the National Aeronautics and Space Administration 30 

(NASA), and the National Science Foundation (NSF) (Hurrell et al., 2013). CESM is an ESM comprising a system of multi-

geophysical components, which periodically exchange two-dimensional boundary data in the coupler (Craig et al., 2012). It 
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consists of five component models and one central coupler component: the atmosphere model CAM (Community 

Atmosphere Model; (Tilmes et al., 2015), the ocean model POP (Parallel Ocean Program; (Kerbyson and Jones, 2005); the 

land model CLM (Community Land Model; (Lawrence et al., 2011); the sea ice model CICE (Community Ice Code; (Hunke 

and Lipscomb, 2008); and the ice sheet model CISM (Community Ice Sheet Model; (Lipscomb et al., 2013).  

 5 

CESM –formerly the Community Climate System Model (CCSM)- was conceived as a coupled atmospheric-oceanic 

circulation model (Boville and Gent, 1998; Collins et al., 2006; Gent et al., 2011; Hurrell et al., 2013; Williamson, 1983). 

Since the release of the first version, CESM has evolved into a complex Earth System Model now used in different fields. 

This includes research into atmospheric (Bacmeister et al., 2014; Liu et al., 2012; Yuan et al., 2013), biogeochemical 

(Lehner et al., 2015; Nevison et al., 2016; Val Martin et al., 2014), and human-induced processes (Huang and Ullrich, 2016; 10 

Levis et al., 2012; Oleson et al., 2011), as well as others. The core code of CESM has also been utilized by various research 

centers for developing their own models (norESM, Bentsen, 2013; CMCC–CESM–NEMO, Fogli and Iovino, 2014; MIT 

IGSM-CAM, Monier et al., 2013). CESM has been used in many hundreds of peer-reviewed studies to better understand 

climate variability and climate change (Hurrell et al., 2013; Kay et al., 2015; Sanderson et al., 2017). Simulations performed 

with CESM have made a significant contribution to international assessments of climate, including those of the 15 

Intergovernmental Panel on Climate Change (IPCC) and the CMIP5/6 project (Coupled Model Intercomparison Project 

Phase 5/6) (Eyring et al., 2016; IPCC, 2014b; Taylor et al., 2012). 

 

A major advantage of CESM over other ESMs is its availability. Some climate models are developed by scientific groups 

and access to the source code is limited. The CESM source code is free and available to download from the NCAR website. 20 

This approach helps improve the model by setting up a framework for collaborative research and makes the model fully 

auditable. CESM is a good example of a ‘full confidence level’ model, after Tapiador et al. (2017), where many ‘avatars’ of 

the code are routinely run in several independent research centers, and there is an entire community improving the model and 

reporting on issues and results. However, the model is not immune to bias. One important shortcoming is the poor 

representation of precipitation in terms of spatial structure, intensity, duration, and frequency (Dai, 2006; Tapiador et al., 25 

2018; Trenberth et al., 2017, Trenberth et al., 2015). Another major bias is the anomalous warm surface temperature in 

coastal upwelling regions (Davey et al., 2001; Justin Small, 2015; Richter, 2015). 

 

2.2 POPEM specifics and standalone validation 

2.2.1 POPEM parameterization model overview 30 

The POPEM module is a demographic projection model coded in FORTRAN that is intended to estimate monthly fossil fuel 

CO2 emissions at model grid point scale using population as the input. Due to a lack of actual GHG measurements at 
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appropriate spatial and temporal scales, it is necessary to use a proxy. For this, POPEM employs population, the evolution of 

which is modeled using external parameters that feed the module. The idea of using population as proxy is not new, and 

population density has previously been used to downscale national CO2 emissions (Andres et al., 1996, 2016). However, 

these inventories were not dynamical, but instead tied to historical data so it is not possible to use them either to estimate 

future changes in emissions, or coupled with other components of the model. This change represents an important advance in 5 

the way emissions are computed. Thus, POPEM uses a bottom-up approach, where emissions are calculated at cell level on 

the basis of population dynamics, while global inventories use a top-down approach, which is less flexible when coupled 

with other components of the ESM. 

 

The demographic/emissions module presented here is an updated version of the demographic module explained in Navarro 10 

et. al (2017). The differences between the versions are minimal. They involve better approximation of emissions in highly 

polluting regions with poor population data, such as China; a better estimate for coastal zones and country limits; and a 

change in the model time step for more efficient coupling with CESM. The inclusion of these changes results in more 

accurate emissions estimates when compared with inventories than the previous version did. However, the model is not 

immune to bias. The most important limit is the degradation of the model outputs when there is increased spatial resolution –15 

resolution of 0.25o and higher–. 

 

Detailed information on POPEM and its validation in the demographic realm can be found in (Navarro et al., 2017). In short, 

from an initial condition, the routine computes the population for each model grid point in a 2D matrix and then calculates 

fossil fuel CO2 emissions using per capita emission rates by nations. The process is repeated for each time step (e.g. 20 

annually) throughout the simulation period.  

 

Figure 1 about here 

 

 25 

As seen in Figure 1, POPEM stores gridded emission data in a 3D array (time, latitude and longitude) to be used by the 

modified version of the co2_cycle module. This module reads emissions data and passes this to the atm_comp_mct, which 

calculates the total amount of CO2 emissions from different sources (land, ocean and fossil fuel). 

 

2.2.2 POPEM trend verification 30 

Prior to coupling POPEM with CESM we performed several tests to evaluate its ability to reproduce historical population 

trends and CO2 emissions. To do this, we ran the module in standalone mode. In a first test, we ran a short simulation (1950-

2013) and compared the emissions data with a standard emissions inventory (CDIAC). In a second test, POPEM was run for 
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70 years (1950-2020) and population estimates were validated against the UN (United Nations) population statistics database 

for those years when data was available. 

 

Figure 2 about here 

 5 

As shown in Figure 2, POPEM is capable of satisfactorily simulating the dynamics of the population. Comparison with UN 

data shows good agreement. However, POPEM presents slight differences from the reference data in some regions. Several 

of these discrepancies can be explained by the initial model conditions; POPEM uses the same age distribution inside each 

grid cell to initiate the model (only for the first time-step). This distribution is based on the global average age structure. 

Consequently, the model overestimates the population in those regions with a more elderly age structure, i.e., Europe and 10 

North America, and underestimates areas with younger populations, i.e., Latin America and Asia.  

 

These disparities in population counts have a diverse effect on the outputs in terms of GHG emissions. Thus, for example, 

the bias in Europe seems to be more important than the bias in Latin America and Oceania. Two principal reasons could 

explain this: population size, as Europe has a larger population than Oceania, so there is greater bias in the CO2 emissions 15 

estimation; and the per capita emissions rate, as Latin American countries have lower per capita emissions rates than 

European nations. 

 

It is worth noting here that the POPEM outputs in Figure 2 are clearly non-linear and thus not trivially derived from simply 

extrapolating population. The North American estimate of CO2 emissions (second row from the bottom) clearly shows the 20 

added value introduced by the model.  

 

Figure 3 shows how POPEM distributes CO2 emissions for different years in the recent past. In 1950, the majority of 

emissions tended to be concentrated in the USA and Europe, while in 2000, China, the USA and India were the most 

polluting countries. This is consistent with the literature: POPEM’s estimates generally agree with the emissions maps for 25 

the recent past (Andres et al., 1996; Boden et al., 2017; Oda et al., 2018; Rayner et al., 2010), as well as with regional studies 

on CO2 emissions (Gately et al., 2013; Gurney et al., 2009). 

 

Figure 3 about here 

 30 

The regionalized distribution of emissions depicted in Figure 3 represents a vast improvement over the standard procedure of 

using globally-averaged emissions. Even accounting for rapid mixing of GHGs gases, transient effects are likely to appear 

given the hemispheric contrast and regional differences in the emissions. The differences in Asia are illustrative of the 

economic changes in the recent past and the exponential pace of industrialization in that region. 
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2.3 CESM experimental setup 

The CESM used in this work is based on version 1.2.2 (http://www.cesm.ucar.edu/models/). This set includes active 

components for the atmosphere, land, ocean, and sea ice, all coupled by a flux coupler. The latest atmospheric module 

CAM5 (Neale et al., 2012) is used to introduce more accurate modeling of atmospheric physics. Additionally, the carbon 5 

cycle module is included in CESM’s atmosphere, land, and ocean components (Lindsay et al., 2014). 

 

We ran an experiment at 1.9o degrees of spatial resolution for the period 1950-2000. Two simulations were performed to 

analyze the effects of the regionalized emissions (Figure 3) on the CESM. Our control case used homogeneous CO2 

concentration parameters (standard procedure in ESMs), while the POPEM case used geographically-distributed CO2 10 

emissions data. In the latter, the POPEM module was coupled with the atmospheric CO2 flux routine to provide monthly 

gridded CO2 emissions. The gridded data was used at each time step by the atmospheric routine. Apart from this change, 

both simulations were identical in order to identify the effects (if any) of the POPEM parameterization. 

 

2.4 Validation data 15 

2.4.1 GPCP data set 

Precipitation is one of the key elements for balancing the energy budget, and one of the most challenging aspects of climate 

modeling. Hence, high quality estimates of precipitation distribution, amount and intensity are essential (Hou et al., 2014; 

Kidd et al., 2017; Xie and Arkin, 1997). While there are many sources of precipitation data to be used as a reference (see 

(Tapiador et al., 2012) for a review), only a few qualify as ‘full confidence level validation data’ (Tapiador et al., 2017). 20 

 

The Global Precipitation Climatology Project (GPCP; Adler et al., 2016) has several products suitable for validating climate 

models. GPCP-Monthly is one of the most popular precipitation data sets for climate variability studies. It combines data 

from rain gauge stations and satellite observations to estimate monthly rainfall on a 2.5-degree global grid from 1979 to the 

present. The careful combination of satellite-based rainfall estimates results in the most complete analysis of rainfall 25 

available to date over the global oceans, and adds necessary spatial detail to rainfall analyses over land. Due to its relevance 

and global coverage, it has been widely used for validating precipitation in climate models (Li and Xie, 2014; Pincus et al., 

2008; Stanfield et al., 2016; Tapiador, 2010). 
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2.4.2 CRU data set 

Global surface temperature data sets are an essential resource for monitoring and understanding climate variability and 

climate change. One of the most commonly used data sets is produced by The Climate Research Unit at the University of 

East Anglia (CRU). This group produces a high-resolution gridded climate dataset for land-only areas, the Climate Research 

Unit Timeseries (CRUTS; Harris et al., 2014). CRUTS contains monthly time series of ten climate variables, including 5 

surface temperature. The data set is derived from monthly observations at meteorological stations. Station anomalies are 

interpolated into 0.5º latitude/longitude grid cells covering the global land surface and combined with existing climatology 

data to obtain absolute monthly values (New et al., 1999, 2000). It is commonly used in the validation of climate models 

because of its confidence levels, together with temporal and spatial coverage, and the fact it compiles station data from 

multiple variables from numerous data sources into a consistent format (Christensen and Boberg, 2012; Hao et al., 2013; Liu 10 

et al., 2014; Nasrollahi et al., 2015). 

 

2.4.3 GISTEMP data set  

NASA’s GISTEMP (GISS Surface Temperature Analysis) is a global surface temperature change dataset (Hansen and 

Lebedeff, 1987; see Hansen et al. 2010 for an updated version). It combines land and ocean surface temperatures to create 15 

monthly temperature anomalies at 2o x 2o degrees of spatial resolution. The use of anomalies reduces the estimation error in 

those places with incomplete spatial and temporal coverage (Hansen and Lebedeff, 1987). The anomalies are calculated over 

a fixed base period (1951-1980) that makes the anomalies consistent over long periods of time. 

The first version was originally conceived only for land areas (Hansen and Lebedeff, 1987) but in 1996 marine surface 

temperatures were added (Hansen et al., 1996). The updated version of GISTEMP includes satellite-observed nightlights to 20 

identify stations located in extreme darkness and adjust temperature trends of urban stations for non-climatic factors (Hansen 

et al. 2010). Just like CRUTS, GISTEMP is commonly used to validate climate models because of its coverage and 

confidence levels (Baker and Taylor, 2016; Brown et al., 2015; Neely et al., 2016, Peng et al., 2015). 

 

 25 

3. Results and discussion 

3.1 Comparison between the CONTROL and POPEM runs 

It is worth stressing that a parameterization which performs well when tested for the variable it models does not necessarily 

translate into an overall improvement of the other variables in the model. An accepted practice in climate modeling is to tune 

ESMs by adjusting some parameters to achieve a better agreement with observations (Hourdin et al., 2017; Mauritsen et al., 30 
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2012). These adjustments to specific targets may, however, decrease the model’s overall performance (Hourdin et al., 2017), 

and give poor scores for variables other than those tuned. Thus, for example, if a model is biased with respect to aerosol 

concentrations or humidity, then improved parameterization of cloud formation may worsen the performance of the model 

with regard to precipitation (Baumberger et al., 2017). This mismatch can be caused by model over-specification, or over-

tuning. 5 

 

The first step in evaluating the new parameterization is to compare the outputs with a control simulation to make sure the 

new addition does not negatively interact with the dynamical core or spoil the contributions of rest of the parameterizations. 

Figure 4 shows that this is not case with the POPEM parameterization, which does not negatively affect the outputs of 

precipitation and temperature. Rather, both variables are now closer to the observed data than they were in the control run, 10 

especially in terms of reducing the double ITCZ (Intertropical Convergence Zone), which artificially features in global 

models (Mechoso et al., 1995; for a recent analysis of double ITCZ in CMIP5 models see Oueslati and Bellon, 2015).  

 

Figure 4 about here 

 15 

Figure 4A shows that there is just a slight discrepancy in the absolute difference in rainfall between the GPCP and CESM 

simulations (The first and the third quartiles of the distribution remain between ± 0.4 mm/day). Grid point to grid point 

comparison between the model and GPCP indicates the ability of CESM to reproduce the spatial distribution of precipitation. 

In both simulations, the CESM exhibits a good correlation coefficient (0.72 R2) compared with the reference data (Figure 

4C). The results are even better for temperature (0.88 R2; Figure 4D). 20 

 

Direct comparison of aggregated data is a standard procedure for gauging model abilities. Figure 5 compares two latitude-

time graphs for precipitation (A) and surface temperature (B), both for the CONTROL case and for the new POPEM 

parameterization.  

 25 

Figure 5 about here 

 

It is clear from Figures 5A and 6A that POPEM does alter the spatial pattern of precipitation and exerts a definite effect on 

the climate pattern, as the module reduces the otherwise exaggerated ITCZ precipitation in the Southern Hemisphere 

reported by several authors (Hwang and Frierson, 2013; Lin and Xie 2014).  30 

 

Disparities in temperature between the CONTROL and POPEM runs are apparent at high latitudes. In this case, POPEM 

produces lower temperatures at both poles, a result which deserves further attention (Figures 5B and 6B). 
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Figure 6 about here 

 

There are also important differences in precipitation in the 30N-30S band. Here POPEM reduces model bias, especially in 

the Southern Hemisphere and on the Tibetan Plateau (see section 3.2 for more details). On the other hand, POPEM departs 

from the control simulation in the Asia-Pacific region between 10N-10S. This result reinforces the double ITCZ bias in this 5 

area. 

 

These results show that the POPEM parameterization generally agrees with historical data for population, and also compares 

well with the control simulation in the sense of addressing some of the known biases in precipitation and temperature, 

offering a more detailed version of CO2 emissions at a relatively cheap computational cost. As discussed above, the 10 

CONTROL run uses global concentration values to include CO2 on the assumption that it is well-mixed in the atmosphere 

(Neale et al., 2012). This assumption reduces the computational burden of the simulation but does not allow for precise 

emissions modeling in the future. This is an important aspect for regionalized emissions scenarios, since even if the new 

parameterization is not significantly better than the old approach (but no worse), it is desirable as it allows sensitivity 

analyses, such as evaluating the effects of the U.S. leaving the Paris agreement. 15 

 

Potential applications of POPEM include not only sensitivity analyses of local CO2 emissions policies, but also the added 

feature of performing tests for ‘what-if’ scenarios. One interesting example would be the climate response under the 

hypothesis that China and India –the most populated countries in the world- reach US CO2 per capita emissions rates. 

Another ‘what-if’ scenario would be the climate response of an increasingly urbanized world. In both cases, POPEM 20 

provides a flexible framework for testing the alternative hypotheses. 

 

The realism of the ESM will be enhanced with a fully-coupled system. Such a fully-fledged ESM will include bidirectional 

feedback between POPEM and CESM to evaluate the effects of climate change on population dynamics and emissions. 

 25 

3.2 Validation against observational data sets 

Once it has been verified that the new parameterization does not worsen the modeling, the next step in evaluating the 

performances is comparing the simulation outputs for both the CONTROL run and the POPEM module using actual 

observational data. Direct comparisons with historical data can help show whether or not a climate model correctly 

represents the climate of the past. However, although observational measurements are often considered the ground truth to 30 

validate models against, it is important to be aware that measurements have their own uncertainties (Tapiador et al. 2017). 
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Figure 7 shows a comparison of CESM precipitation simulations for the period 1980-2000 using the GPCP. It is apparent 

that there is an overall consensus, even though there are differences. Despite these known biases, the model agrees with the 

observations on the major features of global precipitation. 

 

Figure 7 about here 5 

 

The improvements in parameterizing emissions become clearer if we focus on specific regions. For the El Niño-4 area, there 

are statistically-significant differences (at the 0.05 significance level) between both the CONTROL run and the POPEM 

modeling when compared with the reference data. This observation illustrates the limitations of the modeling and the need of 

advances in the parameterizations. However, for this area the correlation (R2) between POPEM and GPCP is slightly better 10 

than CONTROL and GPCP (0.706 R2 versus 0.692 R2).  

 

The real added value, however, is not in a better estimation of the totals but in the ability of POPEM to better capture the 

structure of the precipitation. Figure 8 shows the histograms of mean precipitation in the El Niño-4 area using the POPEM 

parameterization (top), the standard forcing approach (CONTROL, middle), and the reference GPCP estimates (bottom). 15 

While the CONTROL simulation severely overestimates the low end of the distribution, POPEM gives a more realistic 

value. This result is not apparent in the otherwise improved correlation of POPEM, and is also buried in the box plots. 

 

El Niño-4 is important because it presents a lower variance in the SST (sea surface temperature) than any other of the El 

Niño areas, playing a key role in identifying El Niño Modoki events (Ashok et al., 2007; Ashok and Yamagata, 2009; Yeh et 20 

al., 2009). The consequences of such events are severe disruptions in human activities due to the increased risk of droughts, 

heat waves, poor air quality and wildfires (McPhaden et al., 2006). Thus, precise modeling of the processes in this sector of 

the Pacific is extremely important. 

 

Figure 8 about here 25 

 

Another important benefit of POPEM is the reduction of the double ITCZ bias in the Southern Hemisphere. Although a 

small change can be inferred from Figure 7A-B, the improvement is buried in the annual mean precipitation maps. Figure 9A 

shows that the POPEM results are closer to observations of the intra-annual variability of precipitation, especially for the 

driest months (June-October). 30 

 

Figure 9 about here 
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The figure also shows slight improvements for another two typical biases seen in CESM, namely the excess precipitation in 

the Tibetan Plateau (Chen and Frauenfeld, 2014; Su et al., 2013; Figure 9C) and the bias in some areas affected by the 

Asian-Australian monsoon (AAM), such as the Australia Top End (Meehl and Arblaster, 1998; Meehl et al. 2012; Figure 

9B). 

 5 

The results for the El Niño-4 area show that detailed, grid-point emissions of GHG improves the quantification of 

precipitation in dry areas, in agreement with our hypothesis about the benefits of locally-distributed versus global mean 

forcings. Also, the double ITCZ example shows that the transient effects of regionalized GHG emissions may even translate 

into (long) 50-yr climatologies, meaning there is room for improvement in the 'rapidly mixing, well-mixed gases' forcing 

approach. 10 

 

Figure 10 compares the annual mean temperatures for the period 1950-2000. CESM simulations show a significant bias in 

high latitudes of the Northern Hemisphere (cfr. Figures 10A and 10B). In these areas, the model produces colder 

temperatures than those registered in the CRUTS reference data but this is also an issue in the CONTROL run. This 

deviation is also apparent in Figure 4B, where negative values lie away from the idealized regression line, and indicate 15 

further improvement of the CESM. 

 

Figure 10 about here 

 

The bias is also reproduced when compared with temperature anomalies for a specific region. Thus, for instance, CESM 20 

gives poor scores in the Barents Sea area (Figure 11; top) while POPEM obtains better results for the Bering Sea, especially 

in the Russian part (Figure 11; middle). Here, POPEM gives more realistic values for the period 1970-1998 but, even with 

the improvement, the model still overestimates the temperature anomaly. 

 

Figure 11 about here 25 

 

If we focus on global temperature anomalies, CESM simulations are able to reproduce the progressive increase in the 

temperature anomaly (Figure 12; top). However, the CONTROL case simulates a sharp drop at the end of the period (1990-

1999), while POPEM portrays this change as smooth, in agreement with the observations. 

 30 

 

Figure 12 about here 
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The differences between CONTROL and POPEM are better demonstrated when comparing land and ocean separately 

(Figure 12; middle and bottom). While the temperature anomalies for land are quite similar in both cases, POPEM provides a 

better representation of the ocean tendency from 1992 onwards, and that translates to an overall improvement (Figure 12, 

top). 

 5 

3.3 Validation against ESPI and ONI indices 

The El Niño-Southern Oscillation (ENSO) is the most dominant inter-annual climate variation in the tropics. It occurs when 

seasonally averaged sea surface temperature anomalies in the eastern Pacific Ocean exceed a given threshold and cause a 

shift in the atmospheric circulation (Trenberth 1997). Historically, the definition of ENSO does not include precipitation 

because of the limitations of stations (Ropelewski and Halpert, 1987), but recent work with satellites has confirmed that this 10 

phenomenon is a major driver of global precipitation variability (Haddad et al., 2004). 

 

A major advantage of satellite-derived precipitation indices over more conventional ones is the description of the strength 

and position of the Walker circulation (Curtis and Adler, 2000). Under that assumption, Curtis and Adler (2000) derived 

three satellite-based precipitation indices: the ENSO precipitation index (ESPI); El Niño index (EI); and La Niña index (LI). 15 

Precipitation anomalies are averaged over areas of the Equatorial Pacific and Maritime Continent -where the strongest 

precipitation anomalies associated with ENSO are found- to construct differences or basin-wide gradients (Curtis, 2008). 

 

Figure 13 shows a comparison of GPCP, CONTROL, and POPEM for the ESPI, EI and LI indices. 

 20 

Figure 13 about here 

 

Unfortunately, CONTROL and POPEM cases have difficulty simulating the precipitation patterns associated with ENSO. 

Figure 13 shows that bias increases in 82-83 and 97-98 El Niño years. The same bias emerges when comparing the EI and LI 

indices. In that case, the CESM model produces stronger El Niño/La Niña events than the observed data. Consequently, we 25 

can consider that CESM is unable to obtain a precise estimate of precipitation patterns, suggesting that current climate 

models are far from generating realistic simulations of the precipitation field (Dai, 2006). 

 

Another widely used ENSO index is the Oceanic Niño Index (hereafter ONI). ONI was developed by the NOAA Climate 

Prediction Center (CPC) as the principal means for monitoring, assessing and predicting ENSO (Kousky and Higgins, 2007). 30 

This index is defined as 3-month running-mean values of SST departures from the average in the Niño-3.4 region. It is 

computed from a set of homogeneous historical SST analyses (Kousky and Higgins, 2007, Smith et al. 2002). 
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Figure 14 about here 

 

Figure 14 compares the ONI index for CPC, POPEM and CONTROL cases. It is clear from the figure, that POPEM 

produces a more realistic representation of the ENSO, especially if we focus on the 1992-1999 period. POPEM also obtains 5 

better results than CONTROL in the number of simulated el Niño events (see Table 1). The improvement is also noticeable 

in the intensity. The CONTROL case exhibits an overly strong ENSO -a common bias in CESM (Tang et al., 2016)- but 

POPEM reduces this bias (0.22o C versus 0.59 o C).  

 

Table 1 about here 10 

 

Another important indicator is the mean duration of El Niño events. Table 1 shows that POPEM obtains better results 

according to observations (11 months in CPC, 10 months in POPEM, and 19 months in CONTROL). 

4. Conclusions and future work 

Like all models, climate models are simplified versions of the real world and therefore do not include the full complexity of 15 

the Earth system. Due to certain limitations, e.g. computational resources, or spatial and temporal resolution, climate models 

have to make assumptions and resort to parameterizations. 

 

One important simplification is to use prescribed forcings instead of dynamically modeling GHG emissions. However, 

precise modeling of anthropogenic CO2 emissions is important for climate change research as it allows sensitivity analyses to 20 

be performed. 

 

Here we present a new module of gridded CO2 emissions that is coupled with CESM. The module, denominated POPEM, 

computes anthropogenic CO2 emissions by using population estimates as a proxy for disaggregating emissions beyond the 

national level. POPEM makes CESM use dynamical emissions data instead of fixed concentration parameters. 25 

 

In terms of population and emissions, the module compares well when validated with data. Thus, POPEM’s estimates for the 

1950-2000 period are in general agreement with population and emission inventories from the recent past. In spite of the 

more realistic depiction of the actual emissions (Figure 3), issues persist. The performance of the model can be further 

improved in places where population projections are difficult to model. For instance, POPEM tends to underestimate 30 

emissions on the West Coast of the United States and the Anatolian Plateau, and overestimates emissions in China and 

Japan. 
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When the POPEM module is coupled with CESM to generate climatologies, the ability to successfully model precipitation 

and surface temperature is preserved. Moreover, the results of 50-year simulations show that the dynamical modeling of 

emissions produced by POPEM results in slight but noticeable differences in the resultant precipitation regime and surface 

temperature. Thus, dynamically modeling the emissions alters the ITCZ by reducing precipitation in the Southern 5 

Hemisphere and increasing it in the Northern Hemisphere. For particularly interesting areas, such as the El Niño-4 region, 

the POPEM outperforms the traditional approach. 

 

Further work will be devoted to improving the modeling of those areas and hopefully minimizing some of the original biases 

of the CESM model. These include the emergence of a double ITCZ in CESM simulations, which is a common bias for most 10 

climate models (Oueslati and Bellon, 2015), as well as SST simulated by climate models, which are generally too low in the 

Northern Hemisphere and too high in the Southern Hemisphere (Wang et al., 2014).  

 

Current applications of the parameterization include evaluating the effects of changes on regional policies, and a better 

understanding of the carbon cycle (Friedlingstein et al., 2006). Future work will be devoted to evaluating the climate 15 

response to alternative anthropogenic CO2 emissions; to fully coupling Human-Earth subsystems; to increasing the spatial 

resolution of the simulations; and to refining the spatial and temporal distribution of emission estimates. 

 

Although the version of POPEM presented here is already functional, this work is intended to be just the first step in fully 

coupling socioeconomic dynamics with ESMs. This will include bidirectional feedback between Human and Earth systems 20 

and the simulation of societal processes based on the internal dynamics of the model instead of using external sources to 

make the projections. Only within a coupled global Human-Earth system framework can we produce more realistic 

representations of the Earth system capturing much of the counterintuitive feedback that is missing from current models 

(Motesharrei et al. 2016). The success of this approach will depend on the ability of scientists from different research fields 

to work in an interdisciplinary framework of continuous collaboration. 25 
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Figure 1: Conceptual schema of the POPEM module coupled with the CAM5 atmosphere module. POPEM requires three input 

data sets to compute emissions (black dashed rectangles): initial population distribution; demographic parameters (age structure, 5 
death, and birth rates); and per capita emission rates by country. POPEM provides a 3D array (time, latitude, longitude) with 

emissions that are read by the CO2_cycle module and passed to the atm_comp_mct module which computes the total amount of 

CO2 in the atmosphere. 
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Figure 2: Comparison of the population estimates for the years 1950-2020 (left column) and the historical CO2 emissions estimates 

for the years 1950-2012 (right column). The first row compares global data, the second to seventh compare regional data (Africa, 

Europe, Latin America, North America and Oceania). In the left-hand column, the red line shows the estimates given using 

POPEM and blue indicates UN estimates. Values are given in thousand millions of people. On the right, the red line shows the 5 
estimates given using POPEM and the black indicates CDIAC estimates. Units are given in million metric tons. 

 

1950

7000

2100

O
ce

an
ia

1990

1.4

1.0

0.6

0.2

POPEM

8.0

6.0

4.0

2.0

5.0
4.0

2.0
1.0

3.0

0.76

0.68

0.60

0.52
0.7

0.5

0.4

0.1

0.30
0.25
0.20

0.40
0.35

0.02

0.01

0.04

0.03

1950 1970 2010

Year
POPEM

N
. A

m
er

ic
a

L.
 A

m
er

ic
a

Eu
ro

pe
A

si
a

A
fri

ca
W

or
ld

Year

30000

20000

10000

40000

15000

9000

3000

21000

6000

4000

8000

2000

1500

900

300

5000

3000

300

100

19901970 2010

500

900

300

1500

O
ce

an
ia

N
. A

m
er

ic
a

L.
 A

m
er

ic
a

Eu
ro

pe
A

si
a

A
fri

ca
W

or
ld

CO2 emissionsPopulation

UN CDIAC



29 
 

 
Figure 3: POPEM CO2 emissions estimates for 1950, 1980 and 2000. POPEM produces a gridded representation of anthropogenic 

CO2 emissions using population dynamics and country per capita emissions derived from the CDIAC database. Values are given 

in millions of metric tons per year. 
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Figure 4: Boxplots of CESM simulation bias for precipitation (A) and temperature (C). (B) Scatter plots comparing the annual 

mean precipitation (1980-2000) at every grid point for GPCP and CESM simulations (POPEM and CONTROL). (D) Scatter plots 

comparing the annual mean temperature at every grid point for CRU and CESM simulations (POPEM and CONTROL). Units 

are in mm/day (precipitation) and in degrees Celsius (temperature). 5 
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Figure 5: Latitude vs time plots for precipitation (A) and surface temperature (B). For absolute difference graphs, blue represents 

higher values in POPEM and red represents higher values in the CONTROL. Units are in mm/day for precipitation and in Celsius 

for temperature. 5 
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Figure 6: A comparison of global annual mean precipitation (1950-2000) for the CONTROL and POPEM (A). (B) is a comparison 

of annual mean surface temperatures. The maps in the right-hand column show the absolute differences between the simulations 

(CONTROL minus POPEM). In these, blues represent higher values in POPEM and reds represent higher values in the 

CONTROL. 5 
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Figure 7: A comparison of the global annual mean precipitation (1980-2000) as simulated by the CESM (POPEM and CONTROL) 

model and GPCP observational database. (A) Global annual mean precipitation maps for GPCP, POPEM and Control. (B) 

Absolute difference maps. Units are in mm/day. 
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Figure 8: Histograms of the mean precipitation in the El Niño-4 area (5N-5S, 160E-150W) using the POPEM parameterization 

(top), the standard forcing approach (CONTROL, middle), and the reference GPCP estimates (bottom). 
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Figure 9: Monthly precipitation (1980-1999) based on GPCP, CONTROL and POPEM for three of the regions with important 

biases in CESM. (A) shows precipitation for the area affected by the double-ITCZ bias in the Southern Hemisphere (20S-0, 80E-

100W); (B) for Australia Top End (30S-10S, 128E-140E); and (C) for the Tibetan Plateau (22N-32N, 78W-92W). The black line 

represents observations (GPCP), the blue line is the CONTROL case, and the red line is the POPEM case. Units are in mm/day. 5 
The arrow indicates the improvement of the POPEM model. 
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Figure 10: A comparison of the annual mean temperature (1950-2000) as simulated by the CESM model (POPEM and 

CONTROL) and CRU observational database. (A) Global annual mean temperature maps for CRU, POPEM and CONTROL. (B) 5 
Absolute difference maps. Units are in degrees Celsius. 
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Figure 11: A comparison of the annual mean surface temperature anomaly between GISTEMP, CONTROL and POPEM from 

1950 to 1999. (Top) represents the Barents Sea (68N-80N, 19E-68E); (middle) Russian part of the Bering Sea (50N-65N, 150E-

180E); and (bottom) American part of the Bering Sea (50N-75N, 140W-180W). The black line represents observational data 

(GISTEMP), the blue line is the CONTROL case, and the red is the POPEM case. Anomaly was referenced to 1951-1980 period. 5 
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Figure 12: A comparison of the global annual mean surface temperature anomaly between GISTEMP, CONTROL, and POPEM 

from 1950 to 1999. (Top) global; (middle) land; and (bottom) ocean. The black line represents observational data (GISTEMP), the 

blue line is the CONTROL case, and the red is the POPEM case. Anomaly was referenced to 1951-1980 period. 
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Figure 13: Time-series of precipitation anomalies for the ENSO region after Curtis and Adler (2000). (Top) ENSO Precipitation 

Index (ESPI); (Middle) El Niño Index (EI); and (Bottom) La Niña Index (LI). The Black line shows GPCP data, the blue line is the 5 
CONTROL case, and the red line is the POPEM case. Orange shading denotes El Niño years defined as consecutive months 

(minimum 3) with NIÑO3.4 sea surface temperature anomalies (5N–5S, 170–120W) greater than +0.5°C. 
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Figure 14: Comparison of the Oceanic el Niño Index (ONI) for CPC (top), POPEM (middle), and CONTROL (bottom) cases. El 

Niño and La Niña are defined according to Kousky and Higgins (2007): 3-month running mean with anomalies greater than 5 
+0.5oC (or-0.5oC) for at least five consecutive months in NIÑO3.4 region. The base period for computing SST departures is 1971–

1999. 
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Table 1. Comparison of the ONI index for the period 1950-1999. The table compares the ability of the models to reproduce the 
number, strength, and duration of el Niño events. 

Source Number of events Agreement 1 Disagreement 2 Intensity Bias avg 3 Duration avg
4 

CPC 14    10.3 
CONTROL 7 33 121 0.59 o C 19.4 
POPEM 10 37 121 0.22o C 11.4 

1 The number of months that CPC and CESM agree on El Niño.2 Disagreement defined as the number of months where 
CPC and CESM obtain opposite results. 3 Intensity: (|CESM ONI| – |CPC ONI|)/number of cases (units in degrees 
Celsius). 4 Mean duration of El Niño event (in months). 5 

 

 

 

 


