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Dear Editor,  

 

Please find enclosed our revised manuscript. We have addressed the reviewers’ comments as outlined in the responses to the 

reviewers uploaded earlier. 

 5 

Overall, we have clarified some points in the text, extended the results section, added new figures and provided 

supplementary material. All those changes are consistent with referees’ suggestions. 

 

The title of the manuscript and some of subsection titles were slightly modified following the suggestions of referee #3. 

 10 

In the result section, we extended subsections 3.1 and 3.2 and added a new one: 3.3 Validation against ESPI and ONI 

indices.  

In the new section, we compared two of the most widely used ENSO indices with CESM outputs. In section 3.2, we also 

added new figures and comments from a new observational data set –GISTEMP- as suggested by referee #4. These new 

figures highlight the added value of POPEM as suggested by referee 2#. In section 3.1, we clarified the order of the figures 15 

and provided more information about the potential applications of POPEM’ approach as suggested by referees #1 and #3. 

 

Moreover, the paper was improved with additional references such as those proposed by referee #5. 

 

The revised version of the manuscript also includes other minor changes: updated figure numbers and definition of 20 

acronyms. 

 

Attached to this letter you will find a marked-up manuscript version showing all changes to the text. In addition to the text 

changes, we have also updated and added five new figures and one table. We also included three new figures as 

supplementary material. 25 

 

We consider that the manuscript has improved substantially thanks to the work done by the five referees, and hope that it is 

now acceptable for publication in ESD.  

 

We look forward to your reply. 30 

 

 

Andrés Navarro, 
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Response to referee #1 
 

 

Referee #1: The paper is very interesting, novel and merits immediate publication. The approach is that of a ‘proof of 

concept’, but the idea behind the research is extremely interesting and worth of attention by the community.  5 

 

Reply: Thank you very much. We really appreciate your comments and suggestions. 

 

 

Referee #1:  10 

However, I believe the authors must touch upon several topics in order to improve the paper. Specifically:  

Last part of section 3.1 needs further explanation. Please expand the section and provide more information about potential 

applications. I think that is an important part of the paper (probably the most important part), and it is a pity that the 

authors give just such a swift account of the topic.  

 15 

Reply: Thanks indeed. This is an important point that we didn’t explain in full in the first version of the manuscript. We 

added two paragraphs now explaining the potential applications.  
 

The text now reads:  

 20 

Potential applications of POPEM include not only sensitivity analyses of local CO2 emissions policies, but also the 

added feature of performing tests for ‘what-if’ scenarios. One interesting example would be the climate response 

under the hypothesis that China and India –the most populated countries in the world- reach US CO2 per capita 

emissions rates. Another ‘what-if’ scenario would be the climate response of an increasingly urbanized world. In 

both cases, POPEM provides a flexible framework for testing the alternative hypotheses. 25 

 

The realism of the ESM will be enhanced with a fully-coupled system. Such a fully-fledged ESM will include 

bidirectional feedback between POPEM and CESM to evaluate the effects of climate change on population 

dynamics and emissions.  

 30 

 

Referee #1: -Given the large number of papers using CESM I think more attention should be devoted to previous work using 

this model. Please add several references to show how CESM has been used, including merits, shortcomings and the like.  
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Reply: We added two paragraphs in section 2.1. They include references from different topics.  

 

The new paragraphs read: 

 5 

CESM –formerly the Community Climate System Model (CCSM)- was conceived as a coupled atmospheric-oceanic 

circulation model (Boville and Gent, 1998; Collins et al., 2006; Gent et al., 2011; Hurrell et al., 2013; Williamson, 

1983). Since the release of the first version, CESM has evolved into a complex Earth System Model now used in 

different fields. This includes research into atmospheric (Bacmeister et al., 2014; Liu et al., 2012; Yuan et al., 

2013), biogeochemical (Lehner et al., 2015; Nevison et al., 2016; Val Martin et al., 2014), and human-induced 10 

processes (Huang and Ullrich, 2016; Levis et al., 2012; Oleson et al., 2011), as well as others. The core code of 

CESM has also been utilized by various research centers for developing their own models (norESM, Bentsen, 2013; 

CMCC–CESM–NEMO, Fogli and Iovino, 2014; MIT IGSM-CAM, Monier et al., 2013). CESM has been used in 

many hundreds of peer-reviewed studies to better understand climate variability and climate change (Hurrell et al., 

2013; Kay et al., 2015; Sanderson et al., 2017). Simulations performed with CESM have made a significant 15 

contribution to international assessments of climate, including those of the Intergovernmental Panel on Climate 

Change (IPCC) and the CMIP5/6 project (Coupled Model Intercomparison Project Phase 5/6) (Eyring et al., 2016; 

IPCC, 2014b; Taylor et al., 2012). 

 

A major advantage of CESM over other ESMs is its availability. Some climate models are developed by scientific 20 

groups and access to the source code is limited. The CESM source code is free and available to download from the 

NCAR website. This approach helps improve the model by setting up a framework for collaborative research and 

makes the model fully auditable. CESM is a good example of a ‘full confidence level’ model, after Tapiador et al. 

(2017), where many ‘avatars’ of the code are routinely run in several independent research centers, and there is an 

entire community improving the model and reporting on issues and results. However, the model is not immune to 25 

bias. One important shortcoming is the poor representation of precipitation in terms of spatial structure, intensity, 

duration, and frequency (Dai, 2006; Tapiador et al., 2018; Trenberth et al., 2017, Trenberth et al., 2015). Another 

major bias is the anomalous warm surface temperature in coastal upwelling regions (Davey et al., 2001; Justin 

Small, 2015; Richter, 2015). 

 30 

 

Referee #1: -The	double	ITCZ	issue	needs	referencing.	Who	did	first	mention	that?	Without	such	reference	it	seems	that	that	

feature	is	a	novel	observation	from	the	authors,	which	I	think	it	is	not.		
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Reply: Sorry about that. We have added a citation. 

 

The paragraph now reads: 

 5 

The first step in evaluating the new parameterization is to compare the outputs with a control simulation to make 

sure the new addition does not negatively interact with the dynamical core or spoil the contributions of rest of the 

parameterizations. Figure 4 shows that this is not case with the POPEM parameterization, which does not 

negatively affect the outputs of precipitation and temperature. Rather, both variables are now closer to the observed 

data than they were in the control run, especially in terms of reducing the double ITCZ (Intertropical Convergence 10 

Zone), which artificially features in global models (Mechoso et al., 1995; for a recent analysis of double ITCZ in 

CMIP5 models see Oueslati and Bellon, 2015).  

 

 

Referee #1: -The following sentence is confusing to me. ̆The improvements of POPEM for the El Niño-4 area show that 15 

detailed, dynamical modeling of GHG emissions is important for more precisely quantifying precipitation in dry areas, 

which validates the main hypothesis of the paper. Please explain what do you mean by that.  

 

 

Reply: What we meant was that precipitation in dry areas is extremely important, since human activities and biota are highly 20 

dependent of it. Improving the representation of precipitation in models is thus crucial. The main hypothesis of the paper, 

namely that point-wise emissions can improve the modeling, is validated for the El Niño-4 area where we show that our 

model improves the representation of precipitation in the left tail of the distribution (cf. Figure 8). We have reworded the 

paragraph: 

 25 

“The results for the El Niño-4 area show that detailed, grid-point emissions of GHG improves the quantification of 

precipitation in dry areas, in agreement with our hypothesis about the benefits of locally-distributed versus global 

mean forcings.” 

 

 30 

Referee #1: - Please, check the references to the figures in the text (Figs. 4 and 5)  

 

Reply: Amended now, thanks.  
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Referee #1: - Please, check the place where you put the definition of some acronyms (e. g. ITCZ -you use it on page 7 and is 

defined in page 10-, SST -similar-).  

 5 

Reply: Sorry about that. Amended now. 
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Response to referee #2 
 

Referee #2: 

General Comments:  

This paper highlights the importance of grid point scale modeling of anthropogenic pollutants, especially CO2, and the 5 

integration of such modeling through a new module called “Population Parameterization for Earth Models” (POPEM). The 

module is integrated into a highly distributed climate model like Community Earth System Model (CESM). The authors 

present clearly and adequately the added value of their contribution (POPEM) to the model simulations and underline its 

impact to the climate predictions of both precipitation and temperature.  

 10 

Reply: Thanks for your positive feedback.  

 

Referee #2:  

Minor comments: 

Figures 6B and 8B do not illustrate clearly any differences between GPCP – CONTROL, GPCP – POPEM and CRU – 15 

CONTROL, CRU – POPEM respectively. Maybe the authors should consider an alternative way to show the differences.  

 

Reply: Thanks for your suggestion. We added new more detailed figures (Figures 9, 11, 12, 13 and 14) to highlight the 

added value of our approach.  

 20 
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Response to referee #3. Svetla Hristova-Veleva 

 
 

Referee #3: 

Overview and recommendations:  5 

The	 paper	 addresses	 important	 questions	 regarding	 improving	 the	 performance	 of	 Earth	 System	 Models	 (ESM)	 –	 the	

important	tools	to	study	and	understand	the	complexity	of	the	Earth’s	climate.	Improving	these	models	is	a	major	goal	of	

the	science	community	as	they	can	be	a	very	valuable	tool	in	studying	the	response	of	the	Earth’s	system	to	anthropogenic	

forcing,	providing	guidance	to	policy	makers.		

	10 

Reply: Thanks. 

 

Referee #3: 

In	particular,	the	paper	investigates	the	impact	of	a	new	parameterization	of	CO2	emissions	that	the	authors	have	recently	

developed,	 called	 the	 POPEM	 module	 (POpulation	 Parameterization	 for	 Earth	 Models).	 POPEM	 presents	 an	 important	15 

advancement	in	the	way	CO2	emissions	are	modeled,	as	it	accounts	dynamically	for	the	changing	emissions.	Like	previous	

research,	POPEM	uses	population	data	as	proxies	for	emission.	What	is	unique	to	this	new	parameterization,	though,	is	that	

it	models	the	evolution	of	the	population	while	previous	research	has	relied	on	historical	data,	hence	not	being	dynamical,	

preventing	them	from	making	reliable	predictions	for	the	future	emissions	and	the	response	of	the	climate	system.		

Using	this	new	parameterization	(POPEM)	presents	an	important	advancement	and	this	makes	the	described	research	very	20 

valuable.	

	

Reply: Thanks. 	

	

	However,	before	going	forward	one	have	to	evaluate	the	performance	and	assess	the	impact	of	the	new	parameterization.	25 

Indeed,	this	is	the	goal	of	this	paper.		

The	paper	begins	by	describing	what	is	unique	about	POPEM.		

It	then	validates	the	stand-alone	performance	of	POPEM	by	comparing	its	predication	over	a	past	63	(and	70)	-year	period	

to	 existing	 data.	 The	 comparison	 is	 done	 globally	 but	 also	 by	 several	 regions.	 This	 validation	 is	 done	 in	 two	 ways:	 by	

comparing	forecasted	to	observed	population	growth	rates;	and	by	comparing	the	forecasted	to	observed	emission	rates.	30 

The	 results	 show	 that	 despite	 the	 difficulty	 of	 predicting	 non-linear	 trends	 in	 the	 growth	 of	 population	 and	 emissions,	
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POPEM	 preforms	 quite	well.	 These	 comparisons	 give	 credibility	 to	 the	 POPEM	 forecasts,	 hence	 to	 its	 use	 in	 forecasting	

future	scenarios.		

	

Next,	the	paper	uses	a	coupled	ESM,	the	Community	ESM	(CESM)	to	evaluate	the	impact	of	POPEM.	The	evaluation	focusses	

on	the	impact	of	POPEM	on	two	very	important,	and	difficult	to	predict,	parameters	of	the	Earth’s	system	-	the	precipitation	5 

and	the	sea	surface	temperature	(SST).	The	evaluation	is	done	in	two	ways:		

-	 	by	 comparing	 the	 results	 from	 a	 control	 run	 (using	 global	 CO2	 concentration	 parameters	 that	 I	 believe	 are	

homogeneous	–	this	needs	clarification)	to	those	from	POPEM.	This	choice	of	model	setups	highlights	the	value	of	

POPEM	 as	 it	 predicts	 the	 population	 (and	 the	 emissions)	 in	 every	 grid	 point,	 showing	 the	 impact	 and	 the	

importance	of	the	spatial	variability.	 	10 

-	By	comparing	both	control	and	POPEM	forecasts	to	actual	observations	(over	a	20-year	period	for	precipitation	

and	50-year	period	for	SST).		

	

The	paper	finds	that:	 	

-	The	global	predictions	for	both	parameters	compare	to	the	observations	in	a	very	similar	 way	for	the	CONTROL	15 

and	 the	 POPEM	 simulations.	 Hence,	 the	 more	 realistic	 POPEM	 parameterization	 “does	 no	 harm”.	 This	 is	 an	

important	 test	and	conclusion	because	 it	 is	occasionally	 the	case	 that	 including	more	 realistic	parameterizations	

might	 degrade	 the	 performance	 of	 the	 forecasts	 for	 certain	 parameters.	 This	 is	 because	 often	 the	 models	 are	

“tuned”	 to	 predicting	 some	 of	 the	 parameters,	 giving	 the	 right	 answer	 for	 the	 wrong	 reason,	 and	 impacting	

negatively	the	forecasting	of	the	non-tuned	parameters	when	the	more	realistic	parameterizations	are	employed.		20 

-	More	importantly,	the	paper	finds	that	using	POPEM	results	in	regional	differences	between	its	forecasts	and	that	

of	the	control	run.	Comparison	to	observations	seems	to	suggest	the	POPEM	produces	better	regional	distribution	

of	the	precipitation.	This	is	a	very	important	conclusion,	in	my	view.	It	does	not	seem	to	be	well	highlighted	in	the	

paper	summary.	 	

	25 

Overall,	 the	 paper	 addresses	 a	 very	 important	 topic.	 The	approach	 is	 sound	and	uses	 a	 very	 good	modeling	 framework.	

There	 is	a	very	extensive	set	of	 references.	The	paper	 is	presented	 in	a	 fluent	and	precise	 language.	 However,	 there	are	

several	places	where	the	paper	could	be	improved,	as	detailed	below.	 	

	

Because	of	all	that,	I	propose	the	paper	be	accepted	with	minor	revisions.	 	30 
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Reply: Thanks for highlighting the main findings of the manuscript and for your detailed revision of the paper. Also, thanks 

for your suggestions and comments. We consider that they improve the global quality of the paper. 

 

 5 

Referee #3:  

Title:	 The	 current	 title	 is:	 “Improving	 the	 representation	 of	 anthropogenic	 CO2	 emissions	 in	 climate	 models:	 a	 new	

parameterization	for	the	Community	Earth	System	Model	(CESM)”	 	

	

I	would	suggest	a	modification	to	read	“Improving	the	representation	of	anthropogenic	CO2	emissions	 in	climate	models:	10 

Impact	of	a	new	parameterization	for	the	Community	Earth	System	Model	(CESM)”		

	

The reason is that main goal of the paper is not to describe the new parameterization but to evaluate its performance and 

impact. 

 15 

 

Reply: Indeed, the suggested title describes more precisely the aim of the paper. Thanks. The title now reads: 

	

Improving	 the	 representation	 of	 anthropogenic	 CO2	 emissions	 in	 climate	 models:	 impact	 of	 a	 new	

parameterization	for	the	Community	Earth	System	Model	(CESM). 20 

 

 

Referee #3: Abstract 

“The results show that it is indeed advantageous to model CO2 emissions and pollutants directly at model grid points rather 

than using the forcing approach”. Please, reword as it is not clear (at this point) what is this forcing approach.  25 

 

Reply: We rewrote the sentence to make the point clearer.  

 

The text reads: 

	30 

The	results	show	that	it	is	indeed	advantageous	to	model	CO2	emissions	and	pollutants	directly	at	model	grid	points	

rather	than	using	the	same	mean	value	globally. 
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Referee #3: 

Introduction: 

The reader would benefit from a more detailed description of the existing approaches to modeling CO2 emissions. What I 

gather from the paper is the following: there are two basic approaches that models use to account for CO2 forcing:  

. a)  using globally homogenous forcing;   5 

. b)  using non-homogenous, grid-point specific forcing. This one can be applied in  several ways:  
 1.  using Representative Concentration Pathways (RCPs) that “are not fully-  integrated socioeconomic 
parameterizations, but rather estimates for describing plausible trajectories of human climate change drivers .... They 
provide simplified accounts of human activities and processes, including population density and economic development, 
from non-coupled Integrated Assessment Models (IAMs;)” Question: are these parameters location- specific? This is what I 10 
am understanding.  
 2.  the proposed here POPEM model being integrated into a fully coupled model. This is similar to RCPs but: uses 
a coupled model; uses a dynamic model for the prediction of population and emissions.   

. c)  Is my understanding correct???   
 15 

Reply: Our apologies. We did not make the point clear. It is the other way around: RCPs are used as a surrogate for point-

wise estimates. We have clarified that in the revision of the paper [see next comments for more details] 

 

 

Referee #3: 20 

. d)  If so, I would suggest two possible modifications:  
 1.  Use some wording or structure as what I’ve described above   
 2.  Space-permitting, create either a small table or a flow diagram that shows  these different levels of 
sophistication   
 25 

 

Reply: We have rewritten the two paragraphs to clarify the differences between RCPs and POPEM approaches. Thanks.  

 

The amended paragraphs now read: 

 30 

One of the fields most in need of development is the inclusion of co-evolutionary dynamical interactions of the 

socioeconomic dimension into global models with other Earth system components (Nobre et al., 2010; Robinson et 

al., 2017; Sarofim and Reilly, 2011). Human activity was a major driver of change in the Earth System in the recent 

past (Alter et al., 2017; Barnett et al., 2008; Crutzen, 2002), and it now dominates the natural system (Ruth, et al. 

2011). However, most global models use basic socioeconomic assumptions about the behavior of societies and are 35 

only unidirectionally linked to the biogeophysical part of the Earth system (Müller-Hansen et al., 2017; Smith et al., 

2014). The standard way of introducing anthropogenic climate change into ESMs is through Representative 

Concentration Pathways (RCPs). These are consistent sets of projections involving only radiative forcing 



11 
 

components (van Vuuren et al., 2011), but which represent a step forward from the scenario approach of the last 

decade (Moss et al., 2010; van Vuuren et al., 2014; van Vuuren and Carter, 2014). However, RCPs are not fully-

integrated socioeconomic parameterizations but rather estimates for describing plausible trajectories of human 

climate change drivers (Moss et al., 2010; Vuuren et al., 2012). They provide simplified accounts of human 

activities and processes from one-way coupled Integrated Assessment Models (IAMs, Müller-Hansen et al., 2017).  5 

 

The use of RCPs is advantageous because they provide a set of pathways that serve to initialize climate models. 

However, two major problems remain within this approach. Firstly, human activities are not intrinsically embedded 

into the ESM, impeding sensitivity studies. Secondly, because of the weak coupling of IAMs, they cannot capture the 

sometimes counterintuitive bidirectional feedback and nonlinearity between the socioeconomic and natural 10 

subsystems (Motesharrei et al. 2016; Ruth et al. 2011). Good examples that illustrate the importance of including 

such bidirectional feedbacks feature in the HANDY model (Motesharrei et al. 2014) which has been used to analyze 

the key mechanisms behind societal collapses using the predator-prey model. 

 

The RCP approach has been used in climate models because of its low computational cost. However, advances in 15 

computational resources now allow to parameterize human-Earth processes in a more detailed way, including the 

inclusion of population dynamics into the modeling, as in the POPEM (POpulation Parameterization for Earth 

Models) module (Navarro et al., 2017). 

 

 20 

 

Referee #3: P. 2, lines 25-30 – It says: “Given the highly non-linear character of the processes involved, it is not 

unreasonable to assume that location is significant, and the spatial and time distribution of these emissions may affect global 

climate” – a bit unclear. Might be better to say “, it is not unreasonable to assume that specifying (or accounting for) 

geographical variability is significant”   25 

 

Reply: We modified the expression following your suggestion. The text now reads: 

 

Given the highly non-linear character of the processes involved, it is not unreasonable to assume that accounting 

for geographical variability is significant, and the spatial and time distribution of these emissions may affect global 30 

climate (Alter et al., 2017; Grandey et al., 2016; Guo et al., 2013). 
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Referee #3:	 P.	 3,	 lines	 2-4:	 “The	 aim	 of	 this	 paper	 is	 to	 show	 that	 this	 grid	 point	 scale	modeling	 of	 anthropogenic	 CO2	

emissions	(and	other	pollutants)	represents	an	improvement,	and	that	two	important	variables,	namely	global	precipitation	

distribution	 and	 surface	 temperature,	 are	 not	 negatively	 affected	 by	 this	 more-detailed	 approach.”	 While	 this	 is	 true	 I	

believe	 this	 is	 a	 rather	 weak	 statement	 regarding	 the	 benefits	 of	 using	 POPEM-type	 parameterization	 of	 emissions	

forecasting.	I	believe	the	authors	are	in	a	position	to	make	a	stronger	statement,	 	5 

namely:	including	the	POPEM	dynamical	forecasting	approach	that	accounts	for	the	spatial	and	temporal	variability	of	the	

emission	sources,	leads	to	better	representation	of	the	geographical	variability	of	the	precipitation.		

 

Reply: We rewrote the las part of the paragraph to include your suggestion. 

 10 

The text now reads: 

 

The aim of this paper is to show that this grid point scale modeling of anthropogenic CO2 emissions (and other 

pollutants) represents an improvement over simpler approaches, and leads to better representation of the 

geographical variability of precipitation. 15 

 

 

Referee #3:	 Space-permitting, I would suggest that the Introduction ends with a short description of the outline for the 

following presentation. Something like: “ the following sections outline: the unique features of POPEM; the validation of the 

POPEM stand-alone performance; the framework for evaluating the impact of POPEM – incorporation into CESM and 20 

framework for testing; the comparison between a control run and a POPEM-specific one: evaluating the differences between 

the two; evaluating how each compares to observations; discussions; summary and conclusions;” This would give the 

reader a clear structure of the paper to follow and will make it easier to highlight the contributions of the paper.  

 

 25 

Reply: Thanks for the suggestion. We added a new paragraph with a short description of the outline. 

 

The new paragraph reads: 

 

The paper is organized as follows: in section 2, we present the validation of the POPEM standalone mode and set 30 

the framework for evaluating the impact of POPEM parameterization –its incorporation into the CESM and the 

testing framework; in section 3, we compare the outputs of CONTROL and POPEM runs and see how they compare 

with observations. In the conclusion and future work section, we highlight the importance of the dynamical 
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modeling of anthropogenic emissions at grid point scale to better represent the socioeconomic parameters in the 

CESM model and improve precipitation estimates. 

 

 

Referee #3: 5 

Section 2.2  

currently there are sections 2.2 and 2.2.1 but not 2.2.2 or more. It seems that there is no need for 2.2.1. If there is no 2.2.2. I 

would suggest the following: “2.2 POPEM specifics and validation”, followed by “2.2.1 POPEM parameterization model 

overview: Unique features” and “2.2.2 POPEM trend verification”. Of course, this is just a suggestion.   

 10 

Reply: Thanks for the suggestion. We rewrite subsection titles and numbers to have a clearer structure. 

 

Now, subsections titles are: 

2.2 POPEM specifics and standalone validation 

2.2.1 POPEM parameterization model overview 15 

2.2.2 POPEM trend verification 

 

 

Referee #3: P. 6, lines 8-9 – “Our control case used global CO2 concentration parameters (standard procedure in ESMs), 

while the POPEM case used geographically-distributed CO2 emissions data” - is the control using homogeneous CO2 20 

concentrations? I am pretty sure this is the case but it might be better to say it this way.   

 

 

Reply: [already discussed above] We have replaced the word ‘global’ with the word ‘homogeneous’ to make it clearer. 

 25 

Text now reads: 

Our control case used homogeneous CO2 concentration parameters (standard procedure in ESMs), while the 

POPEM case used geographically-distributed CO2 emissions data. 

 

 30 

Referee #3:  

Section 3.1 
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P.7, line 23 – it appears that figures 6C, 6D, 8C and 8D are referenced before figures 4 and 5 (and the figure 8 is referenced 

before Fig.7). This should not be the case. The figures should be referenced in order. However, it seems that this is because 

the current order of the discussions here might need to be modified. Below is what I mean.  

 a)  Maybe the order should be: 1. Test for “no harm” – figures 6C-6D and 8C-8D show that. 2. Compare the 
CONTROL to the POPEM simulations to see where exactly  they differ. 3. Compare both the CONTROL and the POPEM 5 
CESM simulations to the  observations, looking at regional distributions. The comparison in steps 2 and 3 brings up the 
impact of the POPEM geographically-aware CO2 emissions on the geographical distribution of the precipitation, 
highlighting the positive impact POPEM has (especially in step3).   
 b)  Steps 2 and 3 could be switched – depending on what the authors think.   
 c)  I want to point out that the proposed change in the order of the presentation is just a  suggestion for the authors 10 
to consider.   
 

Reply: Thanks for the suggestion. We have restructured the order of the figures to make it clear. 

 

 15 

Referee #3: P.8, lines 2-3: “It is clear from the figure that POPEM does alter the spatial pattern of precipitation and exerts 

a definite effect on the climate pattern, as the module reduces the otherwise exaggerated ITCZ precipitation in the Southern 

Hemisphere (South East Asia and Australia).” Do you have a reference that it was exaggerated?? If so, then this is a very 

strong point that needs to be emphasized. Also, do you mean Fig. 4 or Fig. 5? Please, specify. 

 20 

Reply: The double ITCZ bias is a persistent problem in most climate models. It has been reported by several authors 

(Mechoso, 1995; Terray, 1997; Lin 2007) and the causes of this bias are still unclear (Li and Xie, 2014). In the Southern 

Hemisphere, climate models produce an excess of precipitation in the band 10S-15S when compared with satellite 

observations (Hwang and Frierson, 2012). We have added a few citations to highlight the importance of this issue. 

 25 

Additionally, we made a new figure (Figure 9) to clarify the improvements of POPEM in the double ITCZ bias [see the next 

reply]. 

 

The paragraph now reads: 

 30 

It is clear from Figures 5A and 6A that POPEM does alter the spatial pattern of precipitation and exerts a definite 

effect on the climate pattern, as the module reduces the otherwise exaggerated ITCZ precipitation in the Southern 

Hemisphere reported by several authors (Hwang and Frierson, 2013; Lin and Xie 2014). 

 

 35 
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Referee #3:	 P. 8, lines 7-8: “There are also important differences in precipitation in the 30N-30S band. Here POPEM 

reduces model bias, especially in the Southern Hemisphere and on the Tibetan Plateau.” How do we know that the model 

bias is reduced?   

 

Reply: We have now explained this point in full in the section 3.2 and also made a new figure to clarify the point (Figure 9).  5 

 

Figure 9A shows monthly precipitation for the area affected by the double ITCZ bias in the Southern Hemisphere (20S-0, 

80E-100W). It is clear from this figure that POPEM yields more realistic representation of precipitation especially in the 

driest months (June-October). Figures 9B and 9C show the annual cycle of rainfall over the Australia Top End region and 

over the Tibetan Plateau, respectively. In both instances there is a usual bias in the original CESM. We have noted that 10 

despite POPEM obtaining slightly better results, both CONTROL and POPEM still have difficulties to estimate the 

precipitation of the rainiest months. 

 

 

The paragraph now reads: 15 

 

Another important benefit of POPEM is the reduction of the double ITCZ bias in the Southern Hemisphere. 

Although a small change can be inferred from Figure 7A-B, the improvement is buried in the annual mean 

precipitation maps. Figure 9A shows that the POPEM results are closer to observations of the intra-annual 

variability of precipitation, especially for the driest months (June-October). 20 

 

 
Figure 9: Monthly precipitation (1980-1999) based on GPCP, CONTROL and POPEM for three of the regions with important 

biases in CESM. (A) shows precipitation for the area affected by the double-ITCZ bias in the Southern Hemisphere (20S-0, 80E-

100W); (B) for Australia Top End (30S-10S, 128E-140E); and (C) for the Tibetan Plateau (22N-32N, 78W-92W). The black line 25 
represents observations (GPCP), the blue line is the CONTROL case, and the red line is the POPEM case. Units are in mm/day. 

The arrow indicates the improvement of the POPEM model. 
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The figure also shows slight improvements for another two typical biases seen in CESM, namely the excess 

precipitation in the Tibetan Plateau (Chen and Frauenfeld, 2014; Su et al., 2013; Figure 9C) and the bias in some 

areas affected by the Asian-Australian monsoon (AAM), such as the Australia Top End (Meehl and Arblaster, 1998; 5 

Meehl et al. 2012; Figure 9B). 

 

 

Referee #3:	 P. 8, line 9-10: “On the other hand, POPEM departs from the control simulation in the Asia-Pacific region 

between 10N-10S.” Is that good or bad? How do we know? 10 

 

Reply: If we zoom-in on figure 6A (map: CONTROL minus POPEM) it can be seen that POPEM produces more 

precipitation than CONTROL. That means that the model reinforces the double ITCZ bias in this area, which is not good. 

We have noted that in the paper.  

 15 

The text reads now: 

On the other hand, POPEM departs from the control simulation in the Asia-Pacific region between 10N-10S. This 

result reinforces the double ITCZ bias in this area. 

 

 20 

Referee #3:	P. 8, line 31 – “(Q1 and Q3 remain between ± 0.4 mm/day).” Please, define Q1 and Q3. 

 

Reply: Q1 and Q3 mean Quartile 1 and Quartile 3. We now write down the word in full to avoid possible confusion. 

 

The line now reads: 25 

(The first and the third quartiles of the distribution remain between ±0.4 mm/day) 

 

 

References 
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Circulation Model, J. Clim., 11(7), 1633–1658, doi:10.1175/1520-0442(1998)011<1633:SOCDTA>2.0.CO;2, 1998. 

  



18 
 

Response to referee #4.  
 

Referee #4: The	authors	developed	a	novel	POPEM	parameterization	and	applied	it	to	CESM	to	enhance	the	realism	of	

global	climate	modeling	by	improving	the	direct	representation	of	human	activities	and	climate.	They	argued	that	modeling	

CO2	 emissions	 and	 pollutants	 directly	 at	model	 grid	 points	 is	 a	 better	 approach.	 As	 such,	 their	 new	 approach	will	 help	5 

understand	 the	 potential	 effects	 of	 localized	 pollutant	 emissions	 on	 long-term	 global	 climate	 statistics,	 thus	 assisting	

adaptation	and	mitigation	policies.		

The	topic	is	interesting	and	the	approach	is	provoking.	

	

Reply: Thank you for your positive feedback.  10 

	

Referee #4: 	However,	I	am	not	quite	convinced	by	the	validation	part	(Part	3.2).	I	therefore	recommend	major	revision.	

 

Reply: We followed your recommendations. We have expanded section 3.2 and added a new subsection; 3.3 Validation 

against ESPI and ONI indices. Please, see following comments for a detailed revision of the updates. Hope the changes can 15 

solve your concerns.  

 

 

Referee #4: First, I cannot find a remarkable improvement using POPEM based on the comparison of precipitation and 

temperature biases. There are some differences between POPEM and CONTROL but these differences are buried in the 20 

large biases in either set.  

 

Reply: We have made clearer in the paper that we do not claim to solve the problem of homogenous emissions versus point-

wise estimates. We did not state that our contribution produces a remarkable improvement. What we have achieved by now 

is far more modest: we have shown that including our more-realistic forcings preserves the model ability to produce realistic 25 

fields. Nonetheless, some improvements can be seen (we have included additional figures to illustrate the improvements). 

We agree that the improvements are limited, but given the small model sensitivity to this forcing (the logic of RCP85 is to 

somehow ‘exaggerate’ the emissions to increase the signal), one cannot expect major changes. In other words, the actual 

signal is too faint to be affected by a more realistic emission pattern. Indeed, the reason for having a distributed method is to 

be able to evaluate ‘what-if’ scenarios (i.e. what happens if China cuts off emissions, or the like). We have added a 30 

paragraph at the end of the section 3.1 to explain why the approach is valuable in spite of the marginal improvements 

compared with validation data. 
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As referee #5 says, we also believe that the use of local population projections to project emissions at each grid point is 

novel, and is advantageous to the current practice of using global emissions projections to drive ESMs. 

 

 5 

The added paragraph reads: 

Potential applications of POPEM include not only sensitivity analyses of local CO2 emissions policies, but also the 

added feature of performing tests for ‘what-if’ scenarios. One interesting example would be the climate response 

under the hypothesis that China and India –the most populated countries in the world- reach US CO2 per capita 

emissions rates. Another ‘what-if’ scenario would be the climate response of an increasingly urbanized world. In 10 

both cases, POPEM provides a flexible framework for testing the alternative hypotheses. 

 

 

Referee #4: It is true that observations have uncertainties and a new parameterization does not have to improve the model 

performance in every aspect. Nevertheless, could the authors show some improvements more robust than the current ones 15 

(precipitation and temperature) for validation? Maybe TOA radiation balance, ENSO index, Arctic sea ice, etc?  

 

Reply: We agree that the analysis of Artic sea ice response would be a good addition. Unfortunately, sea ice was not a focus 

of our research when we ran the simulations and now it is too late to do so. Same about TOA. However, in order to satisfy 

this requirement, we have included two additional validation metrics using two ENSO indices: namely the ENSO 20 

Precipitation Index (ESPI) and the Oceanic el Niño Index (ONI).  

 

We have chosen the ESPI index, which estimates the gradient of the anomalies across the Pacific basin (Curtis and Adler, 

2000). It compares well with SST-and pressure-based indices and is widely used by the scientific community (Figure 13 

now). The Oceanic el Niño Index is a SST index developed by NOAA as a principal measure for monitoring, assessing and 25 

predicting ENSO (Kouski and Higgins, 2007). 

 

We have made two new figures and added a table: Figure 13 for ESPI index, El Niño (EI) and La Niña (LI), and Table 1 and 

Figure 14 for ONI. 

 30 

 

The new section reads as follows: 
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3.3 Validation against ESPI and ONI indices 

 

The El Niño-Southern Oscillation (ENSO) is the most dominant inter-annual climate variation in the tropics. It 

occurs when seasonally averaged sea surface temperature anomalies in the eastern Pacific Ocean exceed a given 

threshold and cause a shift in the atmospheric circulation (Trenberth 1997). Historically, the definition of ENSO 5 

does not include precipitation because of the limitations of stations (Ropelewski and Halpert, 1987), but recent 

work with satellites has confirmed that this phenomenon is a major driver of global precipitation variability 

(Haddad et al., 2004).  

 

A major advantage of satellite-derived precipitation indices over more conventional ones is the description of the 10 

strength and position of the Walker circulation (Curtis and Adler, 2000). Under that assumption, Curtis and Adler 

(2000) derived three satellite-based precipitation indices: the ENSO precipitation index (ESPI); El Niño index (EI); 

and La Niña index (LI). Precipitation anomalies are averaged over areas of the Equatorial Pacific and Maritime 

Continent -where the strongest precipitation anomalies associated with ENSO are found- to construct differences or 

basin-wide gradients (Curtis, 2008). 15 

 

Figure 13 shows a comparison of GPCP, CONTROL, and POPEM for the ESPI, EI and LI indices. 
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Figure 13: Time-series of precipitation anomalies for the ENSO region after Curtis and Adler (2000). (Top) ENSO Precipitation 

Index (ESPI); (Middle) El Niño Index (EI); and (Bottom) La Niña Index (LI). The Black line shows GPCP data, the blue line is 

the CONTROL case, and the red line is the POPEM case. Orange shading denotes El Niño years defined as consecutive months 

(minimum 3) with NIÑO3.4 sea surface temperature anomalies (5N–5S, 170–120W) greater than +0.5o C. 5 

 

Unfortunately, CONTROL and POPEM cases have difficulty simulating the precipitation patterns associated with 

ENSO. Figure 13 shows that bias increases in 82-83 and 97-98 El Niño years. The same bias emerges when 

comparing the EI and LI indices. In that case, the CESM model produces stronger El Niño/La Niña events than the 

observed data. Consequently, we can consider that CESM is unable to obtain a precise estimate of precipitation 10 

patterns, suggesting that current climate models are far from generating realistic simulations of the precipitation 

field (Dai, 2006). 
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Another widely used ENSO index is the Oceanic Niño Index (hereafter ONI). ONI was developed by the NOAA 

Climate Prediction Center (CPC) as the principal means for monitoring, assessing and predicting ENSO (Kousky 

and Higgins, 2007). This index is defined as 3-month running-mean values of SST departures from the average in 

the Niño-3.4 region. It is computed from a set of homogeneous historical SST analyses (Kousky and Higgins, 2007, 

Smith et al. 2002). 5 

 

 
Figure 14: Comparison of the Oceanic el Niño Index (ONI) for CPC (top), POPEM (middle), and CONTROL (bottom) cases. El 

Niño and La Niña are defined according to Kousky and Higgins (2007): 3-month running mean with anomalies greater than 

+0.5oC (or-0.5oC) for at least five consecutive months in NIÑO3.4 region. The base period for computing SST departures is 10 

1971–1999. 
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Figure 14 compares the ONI index for CPC, POPEM and CONTROL cases. It is clear from the figure, that 

POPEM produces a more realistic representation of the ENSO, especially if we focus on the 1992-1999 period. 

POPEM also obtains better results than CONTROL in the number of simulated el Niño events (see Table 1). The 5 

improvement is also noticeable in the intensity. The CONTROL case exhibits an overly strong ENSO -a common 

bias in CESM (Tang et al., 2016)- but POPEM reduces this bias (0.22o C versus 0.59 o C). 

 

 
 10 

Another important indicator is the mean duration of El Niño events. Table 1 shows that POPEM obtains better 

results according to observations (11 months in CPC, 10 months in POPEM, and 19 months in CONTROL).  

 

 

 15 

Referee #4: Actually, I am somewhat interested in the Arctic sea change. It is known that climate models (like CESM 

CONTRL) cannot capture a rapid observed decline of Arctic sea ice during recent decades. In Fig. 5(B), POPEM is colder 

than CONTROL over the Barents Sea area. Will this mean that Arctic sea ice decline in POPEM is even slower than that in 

CONTROL?  

 20 

Reply: It’s true that the POPEM parameterization produces colder temperatures in that area and that might reinforce the bias 

of a slower Artic sea ice decline. Unfortunately, we can’t contrast this hypothesis because we did not keep the sea ice outputs 

for our simulations. Sorry about that.  

 

The bias is less evident when confronted with GISTEMP annual mean anomalies for that area. It is seen from the Figure 11 25 

(top) that CONTROL and POPEM cases have a similar margin error. In other words, the original CESM model is not really 

good in capturing this feature. Our approach slightly improves the situation in some cases (Bering Sea from 1975 to 1990, 

Figure 11 (middle)) but we cannot expect a major overall improvement. 
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We have added a paragraph and a figure to clarify this point. 

 

The text now reads: 

 5 

 

The bias is also reproduced when compared with temperature anomalies for a specific region. Thus, for instance, 

CESM gives poor scores in the Barents Sea area (Figure 11; top) while POPEM obtains better results for the 

Bering Sea, especially in the Russian part (Figure 11; middle). Here, POPEM gives more realistic values for the 

period 1970-1998 but, even with the improvement, the model still overestimates the temperature anomaly. 10 

 
Figure 11: A comparison of the annual mean surface temperature anomaly between GISTEMP, CONTROL and POPEM from 1950 to 1999. 

(Top) represents the Barents Sea (68N-80N, 19E-68E); (middle) Russian part of the Bering Sea (50N-65N, 150E-180E); and (bottom) American 

part of the Bering Sea (50N-75N, 140W-180W). The black line represents observational data (GISTEMP), the blue line is the CONTROL case, 

and the red is the POPEM case. Anomaly was referenced to 1951-1980 period. 15 
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We also calculated the temperature anomalies with monthly data (attached as a supplementary material). However, the noise 

is high and it is difficult to distinguish any clear pattern other than the consistency between the series. Only in Figure 

EXT2(top) we see that POPEM more frequently yields extreme values.  

 5 

 
Figure EXT2: The same as Figure 11 but using monthly means. 
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Referee #4: Besides, to be consistent with GPCP, the authors may want to use a globally (land+ocean) covered temperature 

dataset GISTEMP 

 (https://data.giss.nasa.gov/gistemp/) to examine temperature bias.  

 

Reply: Thanks for the suggestion. As you seen in the previous comment we included GISTEMP in several figures and also 5 

made a brief description of the source in section 2.4.3. 

 

The new subsection reads: 

 

2.4.3 GISTEMP data set  10 

NASA’s GISTEMP (GISS Surface Temperature Analysis) is a global surface temperature change dataset (Hansen 

and Lebedeff, 1987; see Hansen et al. 2010 for an updated version). It combines land and ocean surface 

temperatures to create monthly temperature anomalies at 2o x 2o degrees of spatial resolution. The use of anomalies 

reduces the estimation error in those places with incomplete spatial and temporal coverage (Hansen and Lebedeff, 

1987). The anomalies are calculated over a fixed base period (1951-1980) that makes the anomalies consistent over 15 

long periods of time. 

The first version was originally conceived only for land areas (Hansen and Lebedeff, 1987) but in 1996 marine 

surface temperatures were added (Hansen et al., 1996). The updated version of GISTEMP includes satellite-

observed nightlights to identify stations located in extreme darkness and adjust temperature trends of urban stations 

for non-climatic factors (Hansen et al. 2010). Just like CRUTS, GISTEMP is commonly used to validate climate 20 

models because of its coverage and confidence levels (Baker and Taylor, 2016; Brown et al., 2015; Neely et al., 

2016, Peng et al., 2015). 

 

 

Additionally, we used GISTEMP to analyze temperature anomalies for regional (previous comment; Figure 11) and global 25 

scales (Figure 12). 

 

The results of Figure 12 were discussed in the section 3.2 of the manuscript: 

 

The new paragraph reads as follows: 30 

 

If we focus on global temperature anomalies, CESM simulations are able to reproduce the progressive increase in 

the temperature anomaly (Figure 12; top). However, the CONTROL case simulates a sharp drop at the end of the 

period (1990-1999), while POPEM portrays this change as smooth, in agreement with the observations. 
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Figure 12: A comparison of the global annual mean surface temperature anomaly between GISTEMP, CONTROL, and POPEM from 1950 to 

1999. (Top) global; (middle) land; and (bottom) ocean. The black line represents observational data (GISTEMP), the blue line is the CONTROL 

case, and the red is the POPEM case. Anomaly was referenced to 1951-1980 period. 

 5 

 

The differences between CONTROL and POPEM are better demonstrated when comparing land and ocean 

separately (Figure 12; middle and bottom). While the temperature anomalies for land are quite similar in both 

cases, POPEM provides a better representation of the ocean tendency from 1992 onwards, and that translates to an 

overall improvement (Figure 12, top). 10 
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We also computed monthly mean temperature anomalies. However, is difficult to appreciate the differences between models, 

especially for cases A and B. The figure is therefore included as a supplementary material. 

 

 
Figure EXT3: Same as Figure 12 but for monthly mean temperature anomaly. The main tendency is consistent albeit differences exists. Thus for 5 
instance the POPEM model clearly improves over CONTROL from 1992 onwards. 
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Response to referee #5. S. Motesharrei  

 
Referee #5:  

Review of the manuscript “Improving the representation of anthropogenic CO2 emissions in climate models: a new 

parameterization for the Community Earth System Model (CESM)” by Andrés Navarro, Raúl Moreno, and Francisco J. 5 

Tapiador, submitted to the Journal Earth System Dynamics, European Geosciences Union (EGU).  
Decision:  

Because of the importance of the topic, I would recommend the publication of this manuscript after major revisions in the 

presentation of the work as described below.  

 10 

Reply: Many thanks for your positive feedback. Please, see following comments for a detailed revision of the updates.  

 

Referee #5:  

General comments: 

The authors acknowledge (but not completely clearly) a major shortcoming of the Earth System Models (ESMs) and 15 

Integrated Assessment Models (IAMs). 

Even though the Human System has become the dominant driver of most components of the Earth System since about 1750, 

and especially since about 1950, IAMs use independent, exogenous projections of the Human System (HS) variables in order 

to drive ESMs to create future projections. Not including essential bidirectional feedbacks between ES and HS can lead to 

missing important dynamics that is critical to the sustainably of our planet and people. This problem is discussed in detail in 20 

the “Modeling Sustainability” paper by Motesharrei et al. [2016]:  

 

Motesharrei, Safa, Jorge Rivas, Eugenia Kalnay, Ghassem R. Asrar, Antonio J. Busalacchi, Robert F. Cahalan, Mark A. 

Cane, et al. “Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and 

Human Systems.” National Science Review 3, no. 4 (December 11, 2016): 470–494. https://doi.org/10.1093/nsr/nww081.  25 

 

 

Reply: Many thanks for giving us the opportunity to expand this point in the paper. Also, thanks for the reference, which 

reinforce our point. We have used it to expand the issue in the revised version of the manuscript. 

 30 

We extended the third paragraph of the introduction section to explain the point in details. The text now reads: 
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One of the fields most in need of development is the inclusion of co-evolutionary dynamical interactions of the 

socioeconomic dimension into global models with other Earth system components (Nobre et al., 2010; Robinson et 

al., 2017; Sarofim and Reilly, 2011). Human activity was a major driver of change in the Earth System in the recent 

past (Alter et al., 2017; Barnett et al., 2008; Crutzen, 2002), and it now dominates the natural system (Ruth, et al. 

2011). However, most global models use basic socioeconomic assumptions about the behavior of societies and are 5 

only unidirectionally linked to the biogeophysical part of the Earth system (Müller-Hansen et al., 2017; Smith et al., 

2014). The standard way of introducing anthropogenic climate change into ESMs is through Representative 

Concentration Pathways (RCPs). These are consistent sets of projections involving only radiative forcing 

components (van Vuuren et al., 2011), but which represent a step forward from the scenario approach of the last 

decade (Moss et al., 2010; van Vuuren et al., 2014; van Vuuren and Carter, 2014). However, RCPs are not fully-10 

integrated socioeconomic parameterizations but rather estimates for describing plausible trajectories of human 

climate change drivers (Moss et al., 2010; Vuuren et al., 2012). They provide simplified accounts of human 

activities and processes from one-way coupled Integrated Assessment Models (IAMs, Müller-Hansen et al., 2017).  

 

The use of RCPs is advantageous because they provide a set of pathways that serve to initialize climate models. 15 

However, two major problems remain within this approach. Firstly, human activities are not intrinsically embedded 

into the ESM, impeding sensitivity studies. Secondly, because of the weak coupling of IAMs, they cannot capture the 

sometimes counterintuitive bidirectional feedback and nonlinearity between the socioeconomic and natural 

subsystems (Motesharrei et al. 2016; Ruth et al. 2011). Good examples that illustrate the importance of including 

such bidirectional feedbacks feature in the HANDY model (Motesharrei et al. 2014) which has been used to analyze 20 

the key mechanisms behind societal collapses using the predator-prey model. 

 

The RCP approach has been used in climate models because of its low computational cost. However, advances in 

computational resources now allow to parameterize human-Earth processes in a more detailed way, including the 

inclusion of population dynamics into the modeling, as in the POPEM (POpulation Parameterization for Earth 25 

Models) module (Navarro et al., 2017). 

 

Referee #5: The manuscript is closely related to a recently published paper by the same team of authors (and, unfortunately, 

there is much overlap with that already published work):  

Navarro, Andrés, Raúl Moreno, Alfonso Jiménez-Alcázar, and Francisco J. Tapiador. “Coupling Population Dynamics with 30 

Earth System Models: The POPEM Model.” Environmental Science and Pollution Research, September 16, 2017, 1–12. 

https://doi.org/10.1007/s11356-017-0127-7.  
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Reply: Actually, there are major differences with that paper. Navarro et al. (2017) described in detail the demographic part 

of POPEM. In that paper, we were focused on the explanation and validation of the demographic and emission parts at 

global scale. In contrast, the current paper deals with the coupling of that demographic model with an Earth System Model, 

and compare the model outputs with observational data. That is a completely different history. 

 5 

Also, the original emissions modeling module has been improved. We included a new figure (EXT1) in the supplementary 

material to show that. It looks: 

 
EXT1: Comparison of the historical global CO2 emission estimates for the years 1950–2012. The black line shows the estimates given using 

POPEM v1, red indicates POPEM v2, and purple indicates CDIAC estimates. Values are given in million of metric tonnes. 10 
 

 

We have now limited the potential overlaps to the minimum required for the paper to be self-contained. We have rewritten 

parts of that section and added a new paragraph in the 2.2.1 POPEM parameterization model overview subsection to clarify 

the novelties between successive POPEM versions and how the changes affect the emission estimates and the coupling with 15 

the model. 

 

The new paragraph reads: 
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The demographic/emissions module presented here is an updated version of the demographic module explained in 

Navarro et. al (2017). The differences between the versions are minimal. They involve better approximation of 

emissions in highly polluting regions with poor population data, such as China; a better estimate for coastal zones 

and country limits; and a change in the model time step for more efficient coupling with CESM. The inclusion of 

these changes results in more accurate emissions estimates when compared with inventories than the previous 5 

version did. However, the model is not immune to bias. The most important limit is the degradation of the model 

outputs when there is increased spatial resolution –resolution of 0.25o and higher–. 

 

 

Referee #5: These two papers take a step toward including at least parts of the Human System (human population and 10 

emissions) explicitly in the ESMs, however, the somewhat in- accurate presentation of the work (and occasional over-

statements) may lead to readers’ confusion about the extent and novelty of this work. During my initial reading of the 

manuscript, I was very impressed by the model and thought that it is a bidirectionally coupled Human System + Earth 

System Model. (It seems Anonymous Referee 3 has this same impression.) But upon further reading of the manuscript as well 

as Navarro et al. [2017], I realized that POPEM is essentially a demographic projection model (although it uses dynamic 15 

variables for age cohorts) that is used to drive CESM.  

 

Reply: Sorry if the description of POPEM in the first version of the manuscript was unclear. We have now amended the 

explanation to avoid the confusion [cf. reply to section (A)]. 

 20 

 

Referee #5: By contrast, I believe the use of local population projections to project emissions at each grid point is novel, and 

is advantageous to the current practice of using global emissions projections to drive ESMs. 

 

Reply: Thank you for noting this. We believe that this is the central idea of the paper.  25 

 

 

Referee #5:  

Suggested Revisions:  

The other three referees already provide many helpful, important suggestions to improve the manuscript. Here, I outline 30 

some additional suggestions to help accurately present the model, its value for the Earth System modeling community, and 

possible future steps that needs to be taken by the modeling community to make the projections of the “Earth–Human System 

Models” more realistic. 
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Reply: Many thanks for your valuable comments to improve the model. 

 

 

Referee #5: I do not ask for any changes to model, since such changes would require major effort and could be implemented 

in future versions.  5 

 

Reply: Thanks for your understanding and consideration; really appreciate it.  

 

Referee #5: (A) Clarify that POPEM is, after all, a demographic projection model. It is true that its 18 age cohorts are 

dynamic variables, however, they still change based on exogenous fertility and mortality rates  10 

 

Reply: Sorry if that was not clear in the first version of the manuscript. We have now extended the first paragraph of 2.2.1 

POPEM parameterization model overview to make it clear. We also redesigned Figure 1 highlighting now the external 

parameters. 

 15 

The paragraph now reads: 

 

The POPEM module is a demographic projection model coded in FORTRAN that is intended to estimate monthly 

fossil fuel CO2 emissions at model grid point scale using population as the input. Due to a lack of actual GHG 

measurements at appropriate spatial and temporal scales, it is necessary to use a proxy. For this, POPEM employs 20 

population, the evolution of which is modeled using external parameters that feed the module. 

 

 

Referee #5: (POPEM does not model Migration, which has become a major driver of population change, especially 

recently.) 25 

 

Reply: Modeling migration flows is an important point that we have taken into account since the very beginning of this 

project because it is a key element of population change –present and future-. However, there are several restrictions to 

accuracy estimate migration flows for historical populations at grid cell scale. Firstly, there are two different types of fluxes 

–short and long distance migrations- that have to be modeled in different ways (Lenormand et al. 2016). Secondly, we must 30 

quantify the entering and the exiting population for each cell using a probability rate of migration that is difficult to estimate 

with the limited migration data (Navarro et al. 2017). Thirdly, it is difficult –but not impossible- to validate a highly-detailed 

migration model with limited availability of migration data. Fourthly, the computational cost rises dramatically (e.g. 4 types 

of migration fluxes x number of cells x age-group x number of timesteps). 
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Consequently, these sources of uncertainties are greater than the benefits for the period of time and the spatial resolution 

used in this work. 

 

 

Referee #5: These rates are projected into the future using statistical methods such as in the UN Population Projections. 5 

Therefore, the projections using POPEM could not be much different from traditional demographic projections, as can be 

seen from comparisons of POPEM to UN projections in Navarro et al. [2017]. I believe indeed POPEM cannot properly 

capture demographic change details for some regions and for certain age cohorts. Therefore, the value-added from this 

‘dynamic’ population model is limited, at least from a demographic perspective.  

 10 

 

Reply: We assume that there is room for improvement in the demographic part of the model and it is an important point that 

we have to develop in the future versions of POPEM. However, the time period that we used here (1950-2000) and the actual 

spatial resolution offered by POPEM (1o x 1o) make model outputs less sensible to the referred biases. We have nonetheless 

clarified the limitations of the approach in the revised version. [see above the reworked text] 15 

 

 

Referee #5: (B) Because ES and other components of the HS do not feedback onto the demographic variables in POPEM, 

POPEM will not be able to capture non-trivial dynamics that can arise due to such bidirectional feedbacks [Motesharrei et 

al., 2016]. For basic examples of how these bidirectional feedbacks (in a minimal model) can lead to surprising behavior, 20 

see:  

Motesharrei, Safa, Jorge Rivas, and Eugenia Kalnay. “Human and Nature Dynamics (HANDY): Modeling Inequality and 

Use of Resources in the Collapse or Sustainability of Societies.” Ecological Economics 101 (May 2014): 90–102. 

https://doi.org/10.1016/j.ecolecon.2014.02.014.  

 25 

Reply: Firstly, thank you for this crucial reference. We considered that the citation of this work in the first part of the 

manuscript clarifies how important are the Human-Earth interactions and their feedbacks for models.  

 

Secondly, we agree with you that bidirectional feedbacks between ES and HS are essential to make ESMs more accurate and 

realistic. The work presented here is just the first step in that direction. 30 

 

[See the second comment in the discussion to check how we have expanded this point in the revised version of the 

manuscript.] 
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Referee #5: (C) I strongly recommend adding a schematic diagram at the begging of the paper to show how POPEM 

interacts with CESM (e.g., variables, parameters, input/output, couplings).  

 

Reply: Thanks. We have reworked Figure 1 following your recommendations. 5 

 

Figure 1 now looks: 

 

 
 10 

Figure 1: Conceptual schema of the POPEM module coupled with the CAM5 atmosphere module. POPEM requires three input data sets to 

compute emissions (black dashed rectangles): initial population distribution; demographic parameters (age structure, death, and birth rates); and 

per capita emission rates by country. POPEM provides a 3D array (time, latitude, longitude) with emissions that are read by the CO2_cycle 

module and passed to the atm_comp_mct module which computes the total amount of CO2 in the atmosphere. 
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Referee #5: (D) If POPEM + CESM is indeed the first model that calculates emissions at a local scale, as opposed to using 

global emissions projections, please emphasize that as the novel accomplishment of this research  

 

Reply: Thanks for the suggestion. We added two sentences in the las part of the first paragraph (section 2.2.1). 5 

 

The extended version now reads: 

 

[...]The idea of using population as proxy is not new, and population density has previously been used to downscale 

national CO2 emissions (Andres et al., 1996, 2016). However, these inventories were not dynamical, but instead tied 10 

to historical data so it is not possible to use them either to estimate future changes in emissions, or coupled with 

other components of the model. This change represents an important advance in the way emissions are computed. 

Thus, POPEM uses a bottom-up approach, where emissions are calculated at cell level on the basis of population 

dynamics, while global inventories use a top-down approach, which is less flexible when coupled with other 

components of the ESM. 15 

 

 

Referee #5: (E) Remove any parts of the manuscript that overlaps with Navarro et al. [2017], and instead refer to specific 

parts of that publication.  

 20 

Reply: We have removed some overlapping text and referred to Navarro et al. 2017. However, there are some elements that 

it is important to keep in the manuscript for the reasons mentioned at the beginning of this discussion (see reply to third 

comment). Hope you find the reasons compelling enough to justify our choice. 

 

 25 

Referee #5: (F) Be more careful with the definitions of, and distinctions between, ESMs and IAMs. Navarro et al. [2017] 

write, for example: “[RCPs] provide simplified versions of human activities and processes, such as population density and 

economic development, from non-coupled Integrated Assessment Models (IAMs).” It is not true that IAMs are ‘non- 

coupled’; they are indeed one-way coupled.  

 30 

Reply: Sorry about that. What we wanted to say here was ‘one-way coupled’.  
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Referee #5: Then the authors write “researchers in the iESM Project (Collins et al. 2015) developed a global integrated 

assessment model, the GCAM, to address human impact on climate dynamics, with special emphasis on the representation of 

the human earth system.” GCAM was not developed in the iESM project, but has been in development since 1990s and is 

one of the leading IAMs. The rest of the description of the sentence is also incorrect. iESM couples land use and agriculture 

to ES via bidirectional feedbacks.  5 

 

 

Reply: Sorry about that. Perhaps we should have described more precisely that GCAM is the IAM used by the iESM model 

in that paper. We take note of that for the future.  

 10 

 

Referee #5: (G) In the last section of the manuscript (4), emphasize that dynamic models of various Human System 

components need to be developed and coupled to ESMs via bidirectional feedbacks in order to produce realistic projections 

and to capture counterintuitive and unexpected dynamics. 

 15 

Reply: Thanks for the suggestion. We added a concluding paragraph in the manuscript. 

 

The new paragraph reads: 

 

Although the version of POPEM presented here is already functional, this work is intended to be just the first step in 20 

fully coupling socioeconomic dynamics with ESMs. This will include bidirectional feedback between Human and 

Earth systems and the simulation of societal processes based on the internal dynamics of the model instead of using 

external sources to make the projections. Only within a coupled global Human-Earth system framework can we 

produce more realistic representations of the Earth system capturing much of the counterintuitive feedback that is 

missing from current models (Motesharrei et al. 2016). The success of this approach will depend on the ability of 25 

scientists from different research fields to work in an interdisciplinary framework of continuous collaboration. 

 

 

 

Referee #5: (H) Please go over your citations carefully and make sure that they appear at proper places. Also, the 30 

manuscript can benefit from additional important, relevant references. (The bibliography of Motesharrei et al. [2016] could 

be helpful for this manuscript.)  
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Reply: Thank you for the advice and the reference. That excellent review helped us to find new relevant references, such as 

the previous work done by Matthias Ruth, Eugenia Kalnay and Jorge Rivas. We revised and extended the introduction 

section and added new citations from the bibliography of Motesharrei et al. (2016). (see the second comment for details on 

changes in the introduction section). 

 5 
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Abstract. ESMs (Earth System Models) are important tools that help scientists understand the complexities of the Earth’s 

climate. Advances in computing power have permitted the development of increasingly complex ESMs and the introduction 

of better, more accurate parameterizations of processes that are too complex to be described in detail. One of the least well-10 

controlled parameterizations involves human activities and their direct impact at local and regional scales. In order to 

improve the direct representation of human activities and climate, we have developed a simple, scalable approach that we 

have named the POPEM module (POpulation Parameterization for Earth Models). This module computes monthly fossil fuel 

emissions at grid point scale using the modeled population projections. This paper shows how integrating POPEM 

parameterization into the CESM (Community Earth System Model) enhances the realism of global climate modeling, 15 

improving this beyond simpler approaches. The results show that it is indeed advantageous to model CO2 emissions and 

pollutants directly at model grid points rather than using the same mean value globallyforcing approach. A major bonus of 

this approach is the increased capacity to understand the potential effects of localized pollutant emissions on long-term 

global climate statistics, thus assisting adaptation and mitigation policies. 

 20 

1 Introduction 

The Earth system is a complex interplay of physical, chemical and biological processes that interact in non-linear ways 

(Ladyman et al., 2013; Lorenz, 1963; Rind, 1999; Williams, 2005). Much effort has been devoted to understanding these 

complex interactions, and several improvements have been made since the end of the last century.  

One of the most important advances in this field has been the use of coupled numerical climate models, dubbed Earth 25 

System Models, or ESMs (Edwards, 2011; Flato, 2011; Schellnhuber, 1999). These models aim to simulate the complex 

interactions of the atmosphere, ocean, land surface, and cryosphere, together with the carbon and nitrogen cycles (Giorgetta 

et al., 2013; Hurrell et al., 2013; Martin et al., 2011; Schmidt et al., 2014). 
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However powerful, climate models are far from being perfect (Hargreaves, 2010; Hargreaves and Annan, 2014). Unresolved 

processes (Williams, 2005), limited computational resources (Shukla et al., 2010; Washington et al., 2009), and model 

uncertainties (Baumberger et al., 2017; Lahsen, 2005; Steven and Bony, 2013) are ongoing issues that still require attention 

and further improvement.  

 5 

One of the fields most in need of development is the inclusion of co-evolutionary dynamical interactions of the 

socioeconomic dimension into global models with other Earth system components (Nobre et al., 2010; Robinson et al., 2017; 

Sarofim and Reilly, 2011). Human activity was a major driver of change in the Earth System in the recent past (Alter et al., 

2017; Barnett et al., 2008; Crutzen, 2002), and it now dominates the natural system (Ruth, et al. 2011). However, most 

global models use basic socioeconomic assumptions about the behavior of societies and are only unidirectionally linked to 10 

the biogeophysical part of the Earth system (Müller-Hansen et al., 2017; Smith et al., 2014). The standard way of introducing 

anthropogenic climate change into ESMs is through Representative Concentration Pathways (RCPs). These are consistent 

sets of projections involving only radiative forcing components (van Vuuren et al., 2011), but which represent a step forward 

from the scenario approach of the last decade (Moss et al., 2010; van Vuuren et al., 2014; van Vuuren and Carter, 2014). 

However, RCPs are not fully-integrated socioeconomic parameterizations but rather estimates for describing plausible 15 

trajectories of human climate change drivers (Moss et al., 2010; Vuuren et al., 2012). They provide simplified accounts of 

human activities and processes from one-way coupled Integrated Assessment Models (IAMs, Müller-Hansen et al., 2017).  

 

The use of RCPs is advantageous because they provide a set of pathways that serve to initialize climate models. However, 

two major problems remain within this approach. Firstly, human activities are not intrinsically embedded into the ESM, 20 

impeding sensitivity studies. Secondly, because of the weak coupling of IAMs, they cannot capture the sometimes 

counterintuitive bidirectional feedback and nonlinearity between the socioeconomic and natural subsystems (Motesharrei et 

al. 2016; Ruth et al. 2011). Good examples that illustrate the importance of including such bidirectional feedbacks feature in 

the HANDY model (Motesharrei et al. 2014) which has been used to analyze the key mechanisms behind societal collapses 

using the predator-prey model. 25 

 

The RCP approach has been used in climate models because of its low computational cost. However, advances in 

computational resources now allow to parameterize human-Earth processes in a more detailed way, including the inclusion 

of population dynamics into the modeling, as in the POPEM (POpulation Parameterization for Earth Models) module 

(Navarro et al., 2017). 30 

One of the fields most in need of development, is the inclusion of co-evolutionary dynamical interactions of the 

socioeconomic dimension in global models with other Earth system components (Robinson et al., 2017; Sarofim and Reilly, 

2011). To date, most global models have used basic socioeconomic assumptions about the behavior of societies and are only 

unidirectionally linked to the biogeophysical part of the Earth system (Müller-Hansen et al., 2017; Smith et al., 2014). The 
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standard way of introducing anthropogenic climate change into ESMs is through Representative Concentration Pathways 

(RCPs). These are consistent sets of projections involving only radiative forcing components (van Vuuren et al., 2011) that 

represent a step forward from the scenario approach of the last decade (Moss et al., 2010; van Vuuren et al., 2014; van 

Vuuren and Carter, 2014). However, RCPs are not fully-integrated socioeconomic parameterizations, but rather estimates for 

describing plausible trajectories of human climate change drivers (Moss et al., 2010; Vuuren et al., 2012). They provide 5 

simplified accounts of human activities and processes, including population density and economic development, from non-

coupled Integrated Assessment Models (IAMs; (Müller-Hansen et al., 2017)).  

 

This general approach is used in climate models because it has a low computational cost. However, advances in 

computational resources allow us to parameterize human-Earth processes in a more detailed way. This is the main aim of the 10 

POPEM (POpulation Parameterization for Earth Models) module (Navarro et al., 2017). Nevertheless, the enormity of this 

issue means that we have initially restricted the module’s integration into ESMs to an exploration of anthropogenic 

perturbation of the carbon cycle.  

 

One important, but sometimes overlooked process is the direct, regional effect of anthropogenic greenhouse gas (GHG) 15 

emissions. Although some GHGs quickly mix in the atmosphere (IPCC, 2014a), their mixing times and lifetimes vary 

(Archer et al., 2009; Prather, 2007), and localized emissions may produce a transient response in the atmosphere. Given the 

highly non-linear character of the processes involved, it is not unreasonable to assume that accounting for geographical 

variability is significant, and the spatial and time distribution of these emissions may affect global climate (Alter et al., 2017; 

Grandey et al., 2016; Guo et al., 2013).Given the highly non-linear character of the processes involved, it is not unreasonable 20 

to assume that location is significant, and the spatial and time distribution of these emissions may affect global climate (Alter 

et al., 2017; Grandey et al., 2016; Guo et al., 2013). This hypothesis has seldom been investigated, as most current models 

treat certain GHG emissions as a homogeneously distributed forcing. Thus, for instance, the most typical CESM 

(Community Earth System Model) simulations prescribe a CO2 concentration on the assumption that it is well-mixed in the 

atmosphere (Neale et al., 2012).  25 

 

 

This paper describes the results of a 50-year simulation with a simple parameterization of fossil fuel CO2 emissions at model 

grid point scale, integrating the POPEM module into the CESM. The aim of this paper is to show that this grid point scale 

modeling of anthropogenic CO2 emissions (and other pollutants) represents an improvement, over simpler approaches, and 30 

leads to better representation of the geographical variability of precipitation.and that two important variables, namely global 

precipitation distribution and surface temperature, are not negatively affected by this more-detailed approach.  
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The purpose of the new modeling is not only to improve precipitation and temperature estimates, but also help understand 

the carbon cycle feedback, and evaluate the climate sensitivity of the Earth under alternative GHG emission scenarios. While 

our focus here is anthropogenic CO2 emissions, the POPEM parameterization can accommodate other GHGs and human-

dependent processes in order to advance CESMs towards a comprehensive, fully-coupled modeling of anthropogenic 

dynamics in the global climate. 5 

 

The paper is organized as follows: in section 2, we present the validation of the POPEM standalone mode and set the 

framework for evaluating the impact of POPEM parameterization –its incorporation into the CESM and the testing 

framework; in section 3, we compare the outputs of CONTROL and POPEM runs and see how they compare with 

observations. In the conclusion and future work section, we highlight the importance of the dynamical modeling of 10 

anthropogenic emissions at grid point scale to better represent the socioeconomic parameters in the CESM model and 

improve precipitation estimates. 

2. Material and methods 

2.1 The CESM model 

The Community Earth System Model (CESM) is a state-of-the-art ESM and probably the most widely used climate model. It 15 

was developed and is maintained by the National Center for Atmospheric Research (NCAR), with contributions from 

external researchers funded by the U.S. Department of Energy (DOE), the National Aeronautics and Space Administration 

(NASA), and the National Science Foundation (NSF) (Hurrell et al., 2013). CESM is an ESM comprising a system of multi-

geophysical components, which periodically exchange two-dimensional boundary data in the coupler (Craig et al., 2012). It 

consists of five component models and one central coupler component: the atmosphere model CAM (Community 20 

Atmosphere Model; (Tilmes et al., 2015), the ocean model POP (Parallel Ocean Program; (Kerbyson and Jones, 2005); the 

land model CLM (Community Land Model; (Lawrence et al., 2011); the sea ice model CICE (Community Ice Code; (Hunke 

and Lipscomb, 2008); and the ice sheet model CISM (Community Ice Sheet Model; (Lipscomb et al., 2013).  

 

CESM –formerly the Community Climate System Model (CCSM)- was conceived as a coupled atmospheric-oceanic 25 

circulation model (Boville and Gent, 1998; Collins et al., 2006; Gent et al., 2011; Hurrell et al., 2013; Williamson, 1983). 

Since the release of the first version, CESM has evolved into a complex Earth System Model now used in different fields. 

This includes research into atmospheric (Bacmeister et al., 2014; Liu et al., 2012; Yuan et al., 2013), biogeochemical 

(Lehner et al., 2015; Nevison et al., 2016; Val Martin et al., 2014), and human-induced processes (Huang and Ullrich, 2016; 

Levis et al., 2012; Oleson et al., 2011), as well as others. The core code of CESM has also been utilized by various research 30 

centers for developing their own models (norESM, Bentsen, 2013; CMCC–CESM–NEMO, Fogli and Iovino, 2014; MIT 

IGSM-CAM, Monier et al., 2013). CESM has been used in many hundreds of peer-reviewed studies to better understand 
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climate variability and climate change (Hurrell et al., 2013; Kay et al., 2015; Sanderson et al., 2017). Simulations performed 

with CESM have made a significant contribution to international assessments of climate, including those of the 

Intergovernmental Panel on Climate Change (IPCC) and the CMIP5/6 project (Coupled Model Intercomparison Project 

Phase 5/6) (Eyring et al., 2016; IPCC, 2014b; Taylor et al., 2012). 

 5 

A major advantage of CESM over other ESMs is its availability. Some climate models are developed by scientific groups 

and access to the source code is limited. The CESM source code is free and available to download from the NCAR website. 

This approach helps improve the model by setting up a framework for collaborative research and makes the model fully 

auditable. CESM is a good example of a ‘full confidence level’ model, after Tapiador et al. (2017), where many ‘avatars’ of 

the code are routinely run in several independent research centers, and there is an entire community improving the model and 10 

reporting on issues and results. However, the model is not immune to bias. One important shortcoming is the poor 

representation of precipitation in terms of spatial structure, intensity, duration, and frequency (Dai, 2006; Tapiador et al., 

2018; Trenberth et al., 2017, Trenberth et al., 2015). Another major bias is the anomalous warm surface temperature in 

coastal upwelling regions (Davey et al., 2001; Justin Small, 2015; Richter, 2015). 

 15 

The CESM has been used in many hundreds of peer-reviewed studies to better understand climate variability and climate 

change (Hurrell et al., 2013; Kay et al., 2015; Sanderson et al., 2017). Simulations performed with CESM have made a 

significant contribution to international assessments of climate, including those of the Intergovernmental Panel on Climate 

Change (IPCC) and the CMIP5/6 project (Coupled Model Intercomparison Project Phase 5/6) (Eyring et al., 2016; IPCC, 

2014b; Taylor et al., 2012).  20 

 

2.2 POPEM specifics and standalone validationThe POPEM parameterization module 

2.2.1 POPEM parameterization model overview 

 

The POPEM module is a demographic projection model coded in FORTRAN that is intended to estimate monthly fossil fuel 25 

CO2 emissions at model grid point scale using population as the input. Due to a lack of actual GHG measurements at 

appropriate spatial and temporal scales, it is necessary to use a proxy. For this, POPEM employs population, the evolution of 

which is modeled using external parameters that feed the moduleThe POPEM module is a set of FORTRAN routines that are 

intended to estimate monthly fossil fuel CO2 emissions at model grid point scale using population as the input. Due to a lack 

of actual GHG measurements at appropriate spatial and temporal scales, it is necessary to use some sort of proxy. For this, 30 

POPEM uses a population, whose evolution is modeled. The idea of using population as proxy is not new, and population 

density has previously been used to downscale national CO2 emissions (Andres et al., 1996, 2016). However, these 

inventories were not dynamical, but instead tied to historical data so it is not possible to use them either to estimate future 
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changes in emissions, or coupled with other components of the model. This change represents an important advance in the 

way emissions are computed. Thus, POPEM uses a bottom-up approach, where emissions are calculated at cell level on the 

basis of population dynamics, while global inventories use a top-down approach, which is less flexible when coupled with 

other components of the ESM. 

 5 

The demographic/emissions module presented here is an updated version of the demographic module explained in Navarro 

et. al (2017). The differences between the versions are minimal. They involve better approximation of emissions in highly 

polluting regions with poor population data, such as China; a better estimate for coastal zones and country limits; and a 

change in the model time step for more efficient coupling with CESM. The inclusion of these changes results in more 

accurate emissions estimates when compared with inventories than the previous version did. However, the model is not 10 

immune to bias. The most important limit is the degradation of the model outputs when there is increased spatial resolution –

resolution of 0.25o and higher–. 

 

Detailed information on POPEM and its validation in the demographic realm can be found in (Navarro et al., 2017). In short, 

from an initial condition, the routine computes the population for each model grid point in a 2D matrix and then calculates 15 

fossil fuel CO2 emissions using per capita emission rates by nations. The process is repeated for each time step (e.g. 

annually) throughout the simulation period.  

 

Figure 1 about here 

 20 

 

As seen in Figure 1, POPEM stores gridded emission data in a 3D array (time, latitude and longitude) to be used by the 

modified version of the co2_cycle module. This module reads emissions data and passes this to the atm_comp_mct, which 

calculates the total amount of CO2 emissions from different sources (land, ocean and fossil fuel). 

 25 

2.2.21 POPEM trend verification Population trend verification 

Prior to coupling POPEM with CESM we performed several tests to evaluate its ability to reproduce historical population 

trends and CO2 emissions. To do this, we ran the module in standalone mode. In a first test, we ran a short simulation (1950-

2013) and compared the emissions data with a standard emissions inventory (CDIAC). In a second test, POPEM was run for 

70 years (1950-2020) and population estimates were validated against the UN (United Nations) population statistics database 30 

for those years when data was available. 

 

Figure 2 about here 
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As shown in Figure 2, POPEM is capable of satisfactorily simulating the dynamics of the population. Comparison with UN 

data shows good agreement. However, POPEM presents slight differences from the reference data in some regions. Several 

of these discrepancies can be explained by the initial model conditions; POPEM uses the same age distribution inside each 

grid cell to initiate the model (only for the first time-step). This distribution is based on the global average age structure. 5 

Consequently, the model overestimates the population in those regions with a more elderly age structure, i.e., Europe and 

North America, and underestimates areas with younger populations, i.e., Latin America and Asia.  

 

These disparities in population counts have a diverse effect on the outputs in terms of GHG emissions. Thus, for example, 

the bias in Europe seems to be more important than the bias in Latin America and Oceania. Two principal reasons could 10 

explain this: population size, as Europe has a larger population than Oceania, so there is greater bias in the CO2 emissions 

estimation; and the per capita emissions rate, as Latin American countries have lower per capita emissions rates than 

European nations. 

 

It is worth noting here that the POPEM outputs in Figure 2 are clearly non-linear and thus not trivially derived from simply 15 

extrapolating population. The North American estimate of CO2 emissions (second row from the bottom) clearly shows the 

added value introduced by the model.  

 

Figure 3 shows how POPEM distributes CO2 emissions for different years in the recent past. In 1950, the majority of 

emissions tended to be concentrated in the USA and Europe, while in 2000, China, the USA and India were the most 20 

polluting countries. This is consistent with the literature: POPEM’s estimates generally agree with the emissions maps for 

the recent past (Andres et al., 1996; Boden et al., 2017; Oda et al., 2018; Rayner et al., 2010), as well as with regional studies 

on CO2 emissions (Gately et al., 2013; Gurney et al., 2009). 

 

Figure 3 about here 25 

 

The regionalized distribution of emissions depicted in Figure 3 represents a vast improvement over the standard procedure of 

using globally-averaged emissions. Even accounting for rapid mixing of GHGs gases, transient effects are likely to appear 

given the hemispheric contrast and regional differences in the emissions. The differences in Asia are illustrative of the 

economic changes in the recent past and the exponential pace of industrialization in that region. 30 
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2.3 CESM experimental setup 

The CESM used in this work is based on version 1.2.2 (http://www.cesm.ucar.edu/models/). This set includes active 

components for the atmosphere, land, ocean, and sea ice, all coupled by a flux coupler. The latest atmospheric module 

CAM5 (Neale et al., 2012) is used to introduce more accurate modeling of atmospheric physics. Additionally, the carbon 

cycle module is included in CESM’s atmosphere, land, and ocean components (Lindsay et al., 2014). 5 

 

We ran an experiment at 1.9o degrees of spatial resolution for the period 1950-2000. Two simulations were performed to 

analyze the effects of the regionalized emissions (Figure 3) on the CESM. Our control case used global CO2 concentration 

parameters (standard procedure in ESMs), while the POPEM case used geographically-distributed CO2 emissions data. In the 

latter, the POPEM module was coupled with the atmospheric CO2 flux routine to provide monthly gridded CO2 emissions. 10 

The gridded data was used at each time step by the atmospheric routine. Apart from this change, both simulations were 

identical in order to identify the effects (if any) of the POPEM parameterization. 

 

2.4 Validation data 

2.4.1 GPCP data set 15 

Precipitation is one of the key elements for balancing the energy budget, and one of the most challenging aspects of climate 

modeling. Hence, high quality estimates of precipitation distribution, amount and intensity are essential (Hou et al., 2014; 

Kidd et al., 2017; Xie and Arkin, 1997). While there are many sources of precipitation data to be used as a reference (see 

(Tapiador et al., 2012) for a review), only a few qualify as ‘full confidence level validation data’ (Tapiador et al., 2017). 

 20 

The Global Precipitation Climatology Project GPCP (Adler et al., 2016) has several products suitable for validating climate 

models. GPCP-Monthly is one of the most popular precipitation data sets for climate variability studies. It combines data 

from rain gauge stations and satellite observations to estimate monthly rainfall on a 2.5-degree global grid from 1979 to the 

present. The careful combination of satellite-based rainfall estimates results in the most complete analysis of rainfall 

available to date over the global oceans, and adds necessary spatial detail to rainfall analyses over land. Due to its relevance 25 

and global coverage, it has been widely used for validating precipitation in climate models (Li and Xie, 2014; Pincus et al., 

2008; Stanfield et al., 2016; Tapiador, 2010). 

 

2.4.2 CRU data set 

Global surface temperature data sets are an essential resource for monitoring and understanding climate variability and 30 

climate change. One of the most commonly used data sets is produced by The Climate Research Unit at the University of 
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East Anglia (CRU). This group produces a high-resolution gridded climate dataset for land-only areas, the Climate Research 

Unit Timeseries (CRUTS) (Harris et al., 2014). CRUTS contains monthly time series of ten climate variables, including 

surface temperature. The data set is derived from monthly observations at meteorological stations. Station anomalies are 

interpolated into 0.5º latitude/longitude grid cells covering the global land surface and combined with existing climatology 

data to obtain absolute monthly values (New et al., 1999, 2000). It is commonly used in the validation of climate models 5 

because of its confidence levels, together with temporal and spatial coverage, and the fact it compiles station data from 

multiple variables from numerous data sources into a consistent format (Christensen and Boberg, 2012; Hao et al., 2013; Liu 

et al., 2014; Nasrollahi et al., 2015). 

 

2.4.3 GISTEMP data set  10 

NASA’s GISTEMP (GISS Surface Temperature Analysis) is a global surface temperature change dataset (Hansen and 

Lebedeff, 1987; see Hansen et al. 2010 for an updated version). It combines land and ocean surface temperatures to create 

monthly temperature anomalies at 2o x 2o degrees of spatial resolution. The use of anomalies reduces the estimation error in 

those places with incomplete spatial and temporal coverage (Hansen and Lebedeff, 1987). The anomalies are calculated over 

a fixed base period (1951-1980) that makes the anomalies consistent over long periods of time. 15 

The first version was originally conceived only for land areas (Hansen and Lebedeff, 1987) but in 1996 marine surface 

temperatures were added (Hansen et al., 1996). The updated version of GISTEMP includes satellite-observed nightlights to 

identify stations located in extreme darkness and adjust temperature trends of urban stations for non-climatic factors (Hansen 

et al. 2010). Just like CRUTS, GISTEMP is commonly used to validate climate models because of its coverage and 

confidence levels (Baker and Taylor, 2016; Brown et al., 2015; Neely et al., 2016, Peng et al., 2015). 20 

 

3. Results and discussion 

3.1 Comparisons between the CONTROL and POPEM runs 

It is worth stressing that a parameterization which performs well when tested for the variable it models does not necessarily 

translate into an overall improvement of the other variables in the model. An accepted practice in climate modeling is to tune 25 

ESMs by adjusting some parameters to achieve a better agreement with observations (Hourdin et al., 2017; Mauritsen et al., 

2012). These adjustments to specific targets may, however, decrease the model’s overall performance (Hourdin et al., 2017), 

and give poor scores for variables other than those tuned. Thus, for example, if a model is biased with respect to aerosol 

concentrations or humidity, then improved parameterization of cloud formation may worsen the performance of the model 

with regard to precipitation (Baumberger et al., 2017). This mismatch can be caused by model over-specification, or over-30 

tuning.  

 



48 
 

The first step in evaluating the new parameterization is to compare the outputs with a control simulation to make sure the 

new addition does not negatively interact with the dynamical core or spoil the contributions of rest of the parameterizations. 

Figure 4 shows that this is not case with the POPEM parameterizationFigures 6C-6D and 8C-8D show that this is not case 

with the POPEM parameterization, which does not negatively affect the outputs of precipitation and temperature. Rather, 

both variables are now closer to the observed data than they were in the control run, especially in terms of reducing the 5 

double ITCZ, which artificially features in global models (Mechoso et al., 1995; for a recent analysis of double ITCZ in 

CMIP5 models see Oueslati and Bellon, 2015).. 

 

Figure 4 about here 

 10 

Figure 4A shows that there is just a slight discrepancy in the absolute difference in rainfall between the GPCP and CESM 

simulations (The first and the third quartiles of the distribution remain between ± 0.4 mm/day). Grid point to grid point 

comparison between the model and GPCP indicates the ability of CESM to reproduce the spatial distribution of precipitation. 

In both simulations, the CESM exhibits a good correlation coefficient (0.72 R2) compared with the reference data (Figure 

4C). The results are even better for temperature (0.88 R2; Figure 4D). 15 

 

Direct comparison of aggregated data is a standard procedure for gauging model abilities. Figure 4Figure 5 compares two 

latitude-time graphs for precipitation (A) and surface temperature (B), both for the CONTROL case and for the new POPEM 

parameterization.  

 20 

Figure 5 about here Figure 4 about here 

 

It is clear from Figures 5A and 6A that POPEM does alter the spatial pattern of precipitation and exerts a definite effect on 

the climate pattern, as the module reduces the otherwise exaggerated ITCZ precipitation in the Southern Hemisphere 

reported by several authors (Hwang and Frierson, 2013; Lin and Xie 2014).It is clear from the figure that POPEM does alter 25 

the spatial pattern of precipitation and exerts a definite effect on the climate pattern, as the module reduces the otherwise 

exaggerated ITCZ precipitation in the Southern Hemisphere (South East Asia and Australia). Disparities in temperature 

between the CONTROL and POPEM runs are apparent at high latitudes. In this case, POPEM produces lower temperatures 

at both poles, a result which deserves further attention. 

 30 

Figure 5 about here 

Disparities in temperature between the CONTROL and POPEM runs are apparent at high latitudes. In this case, POPEM 

produces lower temperatures at both poles, a result which deserves further attention (Figures 5B and 6B). 
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There are also important differences in precipitation in the 30N-30S band. Here POPEM reduces model bias, especially in 

the Southern Hemisphere and on the Tibetan Plateau. (see section 3.2 for more details). On the other hand, POPEM departs 

from the control simulation in the Asia-Pacific region between 10N-10S. This result reinforces the double ITCZ bias in this 

area.On the other hand, POPEM departs from the control simulation in the Asia-Pacific region between 10N-10S.  

 5 

These results show that the POPEM parameterization generally agrees with historical data for population, and also compares 

well with the control simulation in the sense of addressing some of the known biases in precipitation and temperature, 

offering a more detailed version of CO2 emissions at a relatively cheap computational cost. As discussed above, the 

CONTROL run uses global concentration values to include CO2 on the assumption that it is well-mixed in the atmosphere 

(Neale et al., 2012). This assumption reduces the computational burden of the simulation but does not allow for precise 10 

emissions modeling in the future. This is an important aspect for regionalized emissions scenarios, since even if the new 

parameterization is not significantly better than the old approach (but no worse), it is desirable as it allows sensitivity 

analyses, such as evaluating the effects of the U.S. leaving the Paris agreement.  

 

Potential applications of POPEM include not only sensitivity analyses of local CO2 emissions policies, but also the added 15 

feature of performing tests for ‘what-if’ scenarios. One interesting example would be the climate response under the 

hypothesis that China and India –the most populated countries in the world- reach US CO2 per capita emissions rates. 

Another ‘what-if’ scenario would be the climate response of an increasingly urbanized world. In both cases, POPEM 

provides a flexible framework for testing the alternative hypotheses. 

 20 

The realism of the ESM will be enhanced with a fully-coupled system. Such a fully-fledged ESM will include bidirectional 

feedback between POPEM and CESM to evaluate the effects of climate change on population dynamics and emissions. 

 

3.2 Validation against observational data sets 

Once it has been verified that the new parameterization does not worsen the modeling, the next step in evaluating the 25 

performances is comparing the simulation outputs for both the CONTROL run and the POPEM module using actual 

observational data. Direct comparisons with historical data can help show whether or not a climate model correctly 

represents the climate of the past. However, although observational measurements are often considered the ground truth to 

validate models against, it is important to be aware that measurements have their own uncertainties (Tapiador et al. 2017). 

  30 

Figure 7Figure 6 shows a comparison of CESM precipitation simulations for the period 1980-2000 using the GPCP. It is 

apparent that there is an overall consensus, even though there are differences. Despite these known biases, the model agrees 

with the observations on the major features of global precipitation. In Figure 6C, there is just a slight discrepancy in the 
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absolute difference in rainfall between the GPCP and CESM simulations (Q1 and Q3 remain between ± 0.4 mm/day). Grid 

point to grid point comparison between the model and GPCP (a stringent comparison; Figure 6D) indicates the ability of 

CESM to reproduce the spatial distribution of precipitation. In both simulations, the CESM exhibits a good correlation 

coefficient (0.72 R2) compared with the reference data. 

 5 

Figure 7 about here Figure 6 about here 

 

The improvements in parameterizing emissions become clearer if we focus on specific regions. For the El Niño-4 area, there 

are statistically-significant differences (at the 0.05 significance level) between both the CONTROL run and the POPEM 

modeling when compared with the reference data. This observation illustrates the limitations of the modeling and the need of 10 

advances in the parameterizations. However, for this area the correlation (R2) between POPEM and GPCP is slightly better 

than CONTROL and GPCP (0.706 R2 versus 0.692 R2).  

 

The real added value, however, is not in a better estimation of the totals but in the ability of POPEM to better capture the 

structure of the precipitation. Figure 7 shows the histograms of mean precipitation in the El Niño-4 area using the POPEM 15 

parameterization (top), the standard forcing approach (CONTROL, middle), and the reference GPCP estimates (bottom). 

While the CONTROL simulation severely overestimates the low end of the distribution, POPEM gives a more realistic 

value. This result is not apparent in the otherwise improved correlation of POPEM, and is also buried in the box plots. 

 

El Niño-4 is important because it presents a lower variance in the SST than any other of the El Niño areas, playing a key role 20 

in identifying El Niño Modoki events (Ashok et al., 2007; Ashok and Yamagata, 2009; Yeh et al., 2009). The consequences 

of such events are severe disruptions in human activities due to the increased risk of droughts, heat waves, poor air quality 

and wildfires (McPhaden et al., 2006). Thus, precise modeling of the processes in this sector of the Pacific is extremely 

important. 

 25 

Figure 8 about here 

 

Another important benefit of POPEM is the reduction of the double ITCZ bias in the Southern Hemisphere. Although a 

small change can be inferred from Figure 7A-B, the improvement is buried in the annual mean precipitation maps. Figure 9A 

shows that the POPEM results are closer to observations of the intra-annual variability of precipitation, especially for the 30 

driest months (June-October). 

 

Figure 9 about here 
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The figure also shows slight improvements for another two typical biases seen in CESM, namely the excess precipitation in 

the Tibetan Plateau (Chen and Frauenfeld, 2014; Su et al., 2013; Figure 9C) and the bias in some areas affected by the 

Asian-Australian monsoon (AAM), such as the Australia Top End (Meehl and Arblaster, 1998; Meehl et al. 2012; Figure 

9B). 

 5 

The results for the El Niño-4 area show that detailed, grid-point emissions of GHG improves the quantification of 

precipitation in dry areas, in agreement with our hypothesis about the benefits of locally-distributed versus global mean 

forcings.The improvements of POPEM for the El Niño-4 area show that detailed, dynamical modeling of GHG emissions is 

important for more precisely quantifying precipitation in dry areas, which validates the main hypothesis of the paper. Also, 

the double ITCZ example, this example shows that the transient effects of regionalized GHG emissions may even translate 10 

into (long) 50-yr climatologies, meaning there is room for improvement in the 'rapidly mixing, well-mixed gases' forcing 

approach. 

 

Figure 7 about here 

 15 

Figure 8 compares the annual mean temperatures for the period 1950-2000. CESM simulations show a significant bias in 

high latitudes of the Northern Hemisphere (cfr. Figures 10A and 10Bcfr. Figures 8A and 8B). In these areas, the model 

produces colder temperatures than those registered in the CRUTS reference data but this is also an issue in the CONTROL 

run. This deviation is also apparent in Figure 4B, where negative values lie away from the idealized regression line, and 

indicate further improvement of the CESM.This deviation is apparent in Figure 8D, where negative values lie away from the 20 

idealized regression line, and indicate further improvement of the CESM. 

 

Figure 10 about hereFigure 8 about here 

 

The bias is also reproduced when compared with temperature anomalies for a specific region. Thus, for instance, CESM 25 

gives poor scores in the Barents Sea area (Figure 11; top) while POPEM obtains better results for the Bering Sea, especially 

in the Russian part (Figure 11; middle). Here, POPEM gives more realistic values for the period 1970-1998 but, even with 

the improvement, the model still overestimates the temperature anomaly. 

 

Figure 11 about here 30 

 

If we focus on global temperature anomalies, CESM simulations are able to reproduce the progressive increase in the 

temperature anomaly (Figure 12; top). However, the CONTROL case simulates a sharp drop at the end of the period (1990-

1999), while POPEM portrays this change as smooth, in agreement with the observations. 
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Figure 12 about here 

 

The differences between CONTROL and POPEM are better demonstrated when comparing land and ocean separately 5 

(Figure 12; middle and bottom). While the temperature anomalies for land are quite similar in both cases, POPEM provides a 

better representation of the ocean tendency from 1992 onwards, and that translates to an overall improvement (Figure 12, 

top). 

 

3.3 Validation against ESPI and ONI indices 10 

The El Niño-Southern Oscillation (ENSO) is the most dominant inter-annual climate variation in the tropics. It occurs when 

seasonally averaged sea surface temperature anomalies in the eastern Pacific Ocean exceed a given threshold and cause a 

shift in the atmospheric circulation (Trenberth 1997). Historically, the definition of ENSO does not include precipitation 

because of the limitations of stations (Ropelewski and Halpert, 1987), but recent work with satellites has confirmed that this 

phenomenon is a major driver of global precipitation variability (Haddad et al., 2004). 15 

 

A major advantage of satellite-derived precipitation indices over more conventional ones is the description of the strength 

and position of the Walker circulation (Curtis and Adler, 2000). Under that assumption, Curtis and Adler (2000) derived 

three satellite-based precipitation indices: the ENSO precipitation index (ESPI); El Niño index (EI); and La Niña index (LI). 

Precipitation anomalies are averaged over areas of the Equatorial Pacific and Maritime Continent -where the strongest 20 

precipitation anomalies associated with ENSO are found- to construct differences or basin-wide gradients (Curtis, 2008). 

 

Figure 13 shows a comparison of GPCP, CONTROL, and POPEM for the ESPI, EI and LI indices. 

 

Figure 13 about here 25 

 

Unfortunately, CONTROL and POPEM cases have difficulty simulating the precipitation patterns associated with ENSO. 

Figure 13 shows that bias increases in 82-83 and 97-98 El Niño years. The same bias emerges when comparing the EI and LI 

indices. In that case, the CESM model produces stronger El Niño/La Niña events than the observed data. Consequently, we 

can consider that CESM is unable to obtain a precise estimate of precipitation patterns, suggesting that current climate 30 

models are far from generating realistic simulations of the precipitation field (Dai, 2006). 

 

Another widely used ENSO index is the Oceanic Niño Index (hereafter ONI). ONI was developed by the NOAA Climate 

Prediction Center (CPC) as the principal means for monitoring, assessing and predicting ENSO (Kousky and Higgins, 2007). 
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This index is defined as 3-month running-mean values of SST departures from the average in the Niño-3.4 region. It is 

computed from a set of homogeneous historical SST analyses (Kousky and Higgins, 2007, Smith et al. 2002). 

 

 

Figure 14 about here 5 

 

Figure 14 compares the ONI index for CPC, POPEM and CONTROL cases. It is clear from the figure, that POPEM 

produces a more realistic representation of the ENSO, especially if we focus on the 1992-1999 period. POPEM also obtains 

better results than CONTROL in the number of simulated el Niño events (see Table 1). The improvement is also noticeable 

in the intensity. The CONTROL case exhibits an overly strong ENSO -a common bias in CESM (Tang et al., 2016)- but 10 

POPEM reduces this bias (0.22o C versus 0.59 o C).  

 

Table 1 about here 

 

Another important indicator is the mean duration of El Niño events. Table 1 shows that POPEM obtains better results 15 

according to observations (11 months in CPC, 10 months in POPEM, and 19 months in CONTROL). 

4. Conclusions and future work 

Like all models, climate models are simplified versions of the real world and therefore do not include the full complexity of 

the Earth system. Due to certain limitations, e.g. computational resources, or spatial and temporal resolution, climate models 

have to make assumptions and resort to parameterizations.  20 

 

One important simplification is to use prescribed forcings instead of dynamically modeling GHG emissions. However, 

precise modeling of anthropogenic CO2 emissions is important for climate change research as it allows sensitivity analyses to 

be performed.  

 25 

Here we present a new module of gridded CO2 emissions that is coupled with CESM. The module, denominated POPEM, 

computes anthropogenic CO2 emissions by using population estimates as a proxy for disaggregating emissions beyond the 

national level. POPEM makes CESM use dynamical emissions data instead of fixed concentration parameters. 

 

In terms of population and emissions, the module compares well when validated with data. Thus, POPEM’s estimates for the 30 

1950-2000 period are in general agreement with population and emission inventories from the recent past. In spite of the 

more realistic depiction of the actual emissions (Figure 3), issues persist. The performance of the model can be further 



54 
 

improved in places where population projections are difficult to model. For instance, POPEM tends to underestimate 

emissions on the West Coast of the United States and the Anatolian Plateau, and overestimates emissions in China and 

Japan. 

 

When the POPEM module is coupled with CESM to generate climatologies, the ability to successfully model precipitation 5 

and surface temperature is preserved. Moreover, the results of 50-year simulations show that the dynamical modeling of 

emissions produced by POPEM results in slight but noticeable differences in the resultant precipitation regime and surface 

temperature. Thus, dynamically modeling the emissions alters the ITCZ by reducing precipitation in the Southern 

Hemisphere and increasing it in the Northern Hemisphere. For particularly interesting areas, such as the El Niño-4 region, 

the POPEM outperforms the traditional approach. 10 

 

Further work will be devoted to improving the modeling of those areas and hopefully minimizing some of the original biases 

of the CESM model. These include the emergence of a double ITCZ (Intertropical Convergence Zone) in CESM 

simulations, which is a common bias for most climate models (Oueslati and Bellon, 2015), as well as sea surface 

temperatures (SST) simulated by climate models, which are generally too low in the Northern Hemisphere and too high in 15 

the Southern Hemisphere (Wang et al., 2014). 

 

Current applications of the parameterization include evaluating the effects of changes on regional policies, and a better 

understanding of the carbon cycle (Friedlingstein et al., 2006). Future work will be devoted to evaluating the climate 

response to alternative anthropogenic CO2 emissions; to fully coupling Human-Earth subsystems; to increasing the spatial 20 

resolution of the simulations; and to refining the spatial and temporal distribution of emission estimates. 

 

Although the version of POPEM presented here is already functional, this work is intended to be just the first step in fully 

coupling socioeconomic dynamics with ESMs. This will include bidirectional feedback between Human and Earth systems 

and the simulation of societal processes based on the internal dynamics of the model instead of using external sources to 25 

make the projections. Only within a coupled global Human-Earth system framework can we produce more realistic 

representations of the Earth system capturing much of the counterintuitive feedback that is missing from current models 

(Motesharrei et al. 2016). The success of this approach will depend on the ability of scientists from different research fields 

to work in an interdisciplinary framework of continuous collaboration. 

Although the version of POPEM presented here is already functional, this work is intended to be just the first step in fully 30 

coupling socioeconomic dynamics with ESMs. Current applications of the parameterization include evaluating the effects of 

changes in regional policies, and a better understanding of the carbon cycle (Friedlingstein et al., 2006). Future work will be 

devoted to evaluating climate response to alternative anthropogenic CO2 emissions; to increasing the spatial resolution of the 

simulations; and to refining the spatial and temporal distribution of emission estimates. It is envisioned that CESM 
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simulations employing an enhanced representation of societal processes will provide a more realistic depiction of the Earth 

System, improving the modeling of temperature, precipitation and other variables of interest.  
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Figure 1: Conceptual schema of the POPEM module coupled with the CAM5 atmosphere module. POPEM requires three input 

data sets to compute emissions (black dashed rectangles): initial population distribution; demographic parameters (age structure, 

death, and birth rates); and per capita emission rates by country. POPEM provides a 3D array (time, latitude, longitude) with 5 
emissions that are read by the CO2_cycle module and passed to the atm_comp_mct module which computes the total amount of 

CO2 in the atmosphere. 
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Figure 2: Comparison of the population estimates for the years 1950-2020 (left column) and the historical CO2 emissions estimates 

for the years 1950-2012 (right column). The first row compares global data, the second to seventh compare regional data (Africa, 

Europe, Latin America, North America and Oceania). In the left-hand column, the red line shows the estimates given using 

POPEM and blue indicates UN estimates. Values are given in thousand millions of people. On the right, the red line shows the 5 
estimates given using POPEM and the black indicates CDIAC estimates. Units are given in million metric tons. 
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Figure 3: POPEM CO2 emissions estimates for 1950, 1980 and 2000. POPEM produces a gridded representation of anthropogenic 

CO2 emissions using population dynamics and country per capita emissions derived from the CDIAC database. Values are given 

in millions of metric tons per year. 
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Figure 4: Boxplots of CESM simulation bias for precipitation (A) and temperature (C). (B) Scatter plots comparing the annual 

mean precipitation (1980-2000) at every grid point for GPCP and CESM simulations (POPEM and CONTROL). (D) Scatter plots 

comparing the annual mean temperature at every grid point for CRU and CESM simulations (POPEM and CONTROL). Units 

are in mm/day (precipitation) and in degrees Celsius (temperature). 5 
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Figure 5: Latitude vs time plots for precipitation (A) and surface temperature (B). For absolute difference graphs, blue represents 

higher values in POPEM and red represents higher values in the CONTROL. Units are in mm/day for precipitation and in Celsius 

for temperature. 5 
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Figure 6: A comparison of global annual mean precipitation (1950-2000) for the CONTROL and POPEM (A). (B) is a comparison 

of annual mean surface temperatures. The maps in the right-hand column show the absolute differences between the simulations 

(CONTROL minus POPEM). In these, blues represent higher values in POPEM and reds represent higher values in the 

CONTROL. 5 
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Figure 7: A comparison of the global annual mean precipitation (1980-2000) as simulated by the CESM (POPEM and CONTROL) 

model and GPCP observational database. (A) Global annual mean precipitation maps for GPCP, POPEM and Control. (B) 

Absolute difference maps. Units are in mm/day. 
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Figure 8: Histograms of the mean precipitation in the El Niño-4 area (5N-5S, 160E-150W) using the POPEM parameterization 

(top), the standard forcing approach (CONTROL, middle), and the reference GPCP estimates (bottom). 
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Figure 9: Monthly precipitation (1980-1999) based on GPCP, CONTROL and POPEM for three of the regions with important 

biases in CESM. (A) shows precipitation for the area affected by the double-ITCZ bias in the Southern Hemisphere (20S-0, 80E-

100W); (B) for Australia Top End (30S-10S, 128E-140E); and (C) for the Tibetan Plateau (22N-32N, 78W-92W). The black line 

represents observations (GPCP), the blue line is the CONTROL case, and the red line is the POPEM case. Units are in mm/day. 5 
The arrow indicates the improvement of the POPEM model. 
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Figure 10: A comparison of the annual mean temperature (1950-2000) as simulated by the CESM model (POPEM and 

CONTROL) and CRU observational database. (A) Global annual mean temperature maps for CRU, POPEM and CONTROL. (B) 5 
Absolute difference maps. Units are in degrees Celsius. 
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Figure 11: A comparison of the annual mean surface temperature anomaly between GISTEMP, CONTROL and POPEM from 

1950 to 1999. (Top) represents the Barents Sea (68N-80N, 19E-68E); (middle) Russian part of the Bering Sea (50N-65N, 150E-

180E); and (bottom) American part of the Bering Sea (50N-75N, 140W-180W). The black line represents observational data 

(GISTEMP), the blue line is the CONTROL case, and the red is the POPEM case. Anomaly was referenced to 1951-1980 period. 5 
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Figure 12: A comparison of the global annual mean surface temperature anomaly between GISTEMP, CONTROL, and POPEM 

from 1950 to 1999. (Top) global; (middle) land; and (bottom) ocean. The black line represents observational data (GISTEMP), the 

blue line is the CONTROL case, and the red is the POPEM case. Anomaly was referenced to 1951-1980 period. 
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Figure 13: Time-series of precipitation anomalies for the ENSO region after Curtis and Adler (2000). (Top) ENSO Precipitation 

Index (ESPI); (Middle) El Niño Index (EI); and (Bottom) La Niña Index (LI). The Black line shows GPCP data, the blue line is the 

CONTROL case, and the red line is the POPEM case. Orange shading denotes El Niño years defined as consecutive months 5 
(minimum 3) with NIÑO3.4 sea surface temperature anomalies (5N–5S, 170–120W) greater than +0.5°C. 
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Figure 14: Comparison of the Oceanic el Niño Index (ONI) for CPC (top), POPEM (middle), and CONTROL (bottom) cases. El 

Niño and La Niña are defined according to Kousky and Higgins (2007): 3-month running mean with anomalies greater than 5 
+0.5oC (or-0.5oC) for at least five consecutive months in NIÑO3.4 region. The base period for computing SST departures is 1971–

1999. 
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Table 1. Comparison of the ONI index for the period 1950-1999. The table compares the ability of the models to reproduce the 
number, strength, and duration of el Niño events. 

Source Number of events Agreement 1 Disagreement 2 Intensity Bias avg 3 Duration avg
4 

CPC 14    10.3 
CONTROL 7 33 121 0.59 o C 19.4 
POPEM 10 37 121 0.22o C 11.4 

1 The number of months that CPC and CESM agree on El Niño.2 Disagreement defined as the number of months where 
CPC and CESM obtain opposite results. 3 Intensity: (|CESM ONI| – |CPC ONI|)/number of cases (units in degrees 
Celsius). 4 Mean duration of El Niño event (in months). 5 

 


