
Response	to	referee	#4.		
	
Referee	#4: The	authors	developed	a	novel	POPEM	parameterization	and	applied	it	to	
CESM	 to	 enhance	 the	 realism	 of	 global	 climate	 modeling	 by	 improving	 the	 direct	
representation	 of	 human	 activities	 and	 climate.	 They	 argued	 that	 modeling	 CO2	
emissions	and	pollutants	directly	at	model	grid	points	is	a	better	approach.	As	such,	their	
new	approach	will	help	understand	the	potential	effects	of	localized	pollutant	emissions	
on	long-term	global	climate	statistics,	thus	assisting	adaptation	and	mitigation	policies.		
The	topic	is	interesting	and	the	approach	is	provoking.	
	
Reply:	Thank	you	for	your	positive	feedback.		
	
Referee	 #4: 	 However,	 I	 am	 not	 quite	 convinced	 by	 the	 validation	 part	 (Part	 3.2).	 I	
therefore	recommend	major	revision.	
	
Reply:	We	followed	your	recommendations.	We	have	expanded	section	3.2	and	added	
a	new	subsection;	3.3	Validation	against	ESPI	and	ONI	indices.	Please,	see	following	
comments	for	a	detailed	revision	of	the	updates.	Hope	the	changes	can	solve	your	
concerns.		
	
	
Referee	#4: First,	I	cannot	find	a	remarkable	improvement	using	POPEM	based	on	the	
comparison	 of	 precipitation	 and	 temperature	 biases.	 There	 are	 some	 differences	
between	POPEM	and	CONTROL	but	these	differences	are	buried	 in	the	 large	biases	 in	
either	set.		
	
Reply:	We	have	made	clearer	in	the	paper	that	we	do	not	claim	to	solve	the	problem	of	
homogenous	 emissions	 versus	 point-wise	 estimates.	 We	 did	 not	 state	 that	 our	
contribution	produces	a	remarkable	improvement.	What	we	have	achieved	by	now	is	
far	more	modest:	we	have	shown	that	including	our	more-realistic	forcings	preserves	
the	model	ability	to	produce	realistic	fields.	Nonetheless,	some	improvements	can	be	
seen	 (we	have	 included	additional	 figures	 to	 illustrate	 the	 improvements).	We	agree	
that	the	improvements	are	limited,	but	given	the	small	model	sensitivity	to	this	forcing	
(the	logic	of	RCP85	is	to	somehow	‘exaggerate’	the	emissions	to	increase	the	signal),	one	
cannot	expect	major	changes.	In	other	words,	the	actual	signal	is	too	faint	to	be	affected	
by	a	more	realistic	emission	pattern.	Indeed,	the	reason	for	having	a	distributed	method	
is	to	be	able	to	evaluate	‘what-if’	scenarios	(i.e.	what	happens	if	China	cuts	off	emissions,	
or	the	like).	We	have	added	a	paragraph	at	the	end	of	the	section	3.1	to	explain	why	the	
approach	is	valuable	in	spite	of	the	marginal	improvements	compared	with	validation	
data.	
	
As	referee	#5	says,	we	also	believe	that	the	use	of	local	population	projections	to	project	
emissions	at	each	grid	point	is	novel,	and	is	advantageous	to	the	current	practice	of	using	
global	emissions	projections	to	drive	ESMs.	
	
	
The	added	paragraph	reads:	



Potential	applications	of	POPEM	include	not	only	sensitivity	analyses	of	local	CO2	
emissions	policies,	but	also	 the	added	feature	of	performing	tests	 for	 ‘what-if’	
scenarios.	 One	 interesting	 example	 would	 be	 the	 climate	 response	 under	 the	
hypothesis	 that	 China	 and	 India	 –the	most	 populated	 countries	 in	 the	world-	
reach	US	CO2	per	capita	emissions	rates.	Another	‘what-if’	scenario	would	be	the	
climate	 response	 of	 an	 increasingly	 urbanized	 world.	 In	 both	 cases,	 POPEM	
provides	a	flexible	framework	for	testing	the	alternative	hypotheses.	

	
	
Referee	#4: It	is	true	that	observations	have	uncertainties	and	a	new	parameterization	
does	not	have	to	improve	the	model	performance	in	every	aspect.	Nevertheless,	could	
the	authors	show	some	improvements	more	robust	than	the	current	ones	(precipitation	
and	temperature)	for	validation?	Maybe	TOA	radiation	balance,	ENSO	index,	Arctic	sea	
ice,	etc?		
	
Reply:	We	agree	that	the	analysis	of	Artic	sea	ice	response	would	be	a	good	addition.	
Unfortunately,	sea	ice	was	not	a	focus	of	our	research	when	we	ran	the	simulations	and	
now	 it	 is	 too	 late	 to	 do	 so.	 Same	 about	 TOA.	 However,	 in	 order	 to	 satisfy	 this	
requirement,	 we	 have	 included	 two	 additional	 validation	 metrics	 using	 two	 ENSO	
indices:	namely	the	ENSO	Precipitation	Index	(ESPI)	and	the	Oceanic	el	Niño	Index	(ONI).		
	
We	have	chosen	the	ESPI	index,	which	estimates	the	gradient	of	the	anomalies	across	
the	Pacific	basin	(Curtis	and	Adler,	2000).	It	compares	well	with	SST-and	pressure-based	
indices	and	is	widely	used	by	the	scientific	community	(Figure	13	now).	The	Oceanic	el	
Niño	 Index	 is	a	SST	 index	developed	by	NOAA	as	a	principal	measure	for	monitoring,	
assessing	and	predicting	ENSO	(Kouski	and	Higgins,	2007).	
	
We	have	made	two	new	figures	and	added	a	table:	Figure	13	for	ESPI	index,	El	Niño	(EI)	
and	La	Niña	(LI),	and	Table	1	and	Figure	14	for	ONI.	
	
	
The	new	section	reads	as	follows:	
	

3.3	Validation	against	ESPI	and	ONI	indices	
	
The	 El	 Niño-Southern	 Oscillation	 (ENSO)	 is	 the	 most	 dominant	 inter-annual	
climate	variation	in	the	tropics.	It	occurs	when	seasonally	averaged	sea	surface	
temperature	anomalies	in	the	eastern	Pacific	Ocean	exceed	a	given	threshold	and	
cause	a	 shift	 in	 the	atmospheric	 circulation	 (Trenberth	 1997).	Historically,	 the	
definition	of	ENSO	does	not	 include	precipitation	because	of	 the	 limitations	of	
stations	 (Ropelewski	 and	 Halpert,	 1987),	 but	 recent	 work	 with	 satellites	 has	
confirmed	 that	 this	 phenomenon	 is	 a	 major	 driver	 of	 global	 precipitation	
variability	(Haddad	et	al.,	2004).		
	
A	 major	 advantage	 of	 satellite-derived	 precipitation	 indices	 over	 more	
conventional	ones	is	the	description	of	the	strength	and	position	of	the	Walker	
circulation	 (Curtis	 and	 Adler,	 2000).	 Under	 that	 assumption,	 Curtis	 and	 Adler	



(2000)	derived	three	satellite-based	precipitation	indices:	the	ENSO	precipitation	
index	(ESPI);	El	Niño	index	(EI);	and	La	Niña	index	(LI).	Precipitation	anomalies	are	
averaged	over	areas	of	the	Equatorial	Pacific	and	Maritime	Continent	-where	the	
strongest	precipitation	anomalies	associated	with	ENSO	are	found-	to	construct	
differences	or	basin-wide	gradients	(Curtis,	2008).	
	
Figure	13	shows	a	comparison	of	GPCP,	CONTROL,	and	POPEM	for	the	ESPI,	EI	
and	LI	indices.	

	
Figure	13:	Time-series	of	precipitation	anomalies	for	the	ENSO	region	after	Curtis	and	Adler	(2000).	(Top)	
ENSO	Precipitation	Index	(ESPI);	(Middle)	El	Niño	Index	(EI);	and	(Bottom)	La	Niña	Index	(LI).	The	Black	line	
shows	GPCP	data,	the	blue	line	is	the	CONTROL	case,	and	the	red	line	is	the	POPEM	case.	Orange	shading	
denotes	El	Niño	years	defined	as	consecutive	months	(minimum	3)	with	NIÑO3.4	sea	surface	temperature	
anomalies	(5N–5S,	170–120W)	greater	than	+0.5o	C.	
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Unfortunately,	 CONTROL	 and	 POPEM	 cases	 have	 difficulty	 simulating	 the	
precipitation	patterns	associated	with	ENSO.	Figure	13	shows	that	bias	increases	
in	82-83	and	97-98	El	Niño	years.	The	same	bias	emerges	when	comparing	the	EI	
and	LI	indices.	In	that	case,	the	CESM	model	produces	stronger	El	Niño/La	Niña	
events	 than	 the	 observed	 data.	 Consequently,	 we	 can	 consider	 that	 CESM	 is	
unable	 to	 obtain	 a	 precise	 estimate	 of	 precipitation	 patterns,	 suggesting	 that	
current	 climate	 models	 are	 far	 from	 generating	 realistic	 simulations	 of	 the	
precipitation	field	(Dai,	2006).	
	
Another	widely	used	ENSO	index	is	the	Oceanic	Niño	Index	(hereafter	ONI).	ONI	
was	 developed	 by	 the	 NOAA	 Climate	 Prediction	 Center	 (CPC)	 as	 the	 principal	
means	 for	 monitoring,	 assessing	 and	 predicting	 ENSO	 (Kousky	 and	 Higgins,	
2007).	This	index	is	defined	as	3-month	running-mean	values	of	SST	departures	
from	 the	 average	 in	 the	 Niño-3.4	 region.	 It	 is	 computed	 from	 a	 set	 of	
homogeneous	 historical	 SST	 analyses	 (Kousky	 and	 Higgins,	 2007,	 Smith	 et	 al.	
2002).	
	



	
Figure	14:	Comparison	of	the	Oceanic	el	Niño	Index	(ONI)	for	CPC	(top),	POPEM	(middle),	and	CONTROL	
(bottom)	cases.	El	Niño	and	La	Niña	are	defined	according	to	Kousky	and	Higgins	(2007):	3-month	running	
mean	with	anomalies	greater	than	+0.5oC	(or-0.5oC)	for	at	least	five	consecutive	months	in	NIÑO3.4	region.	
The	base	period	for	computing	SST	departures	is	1971–1999.	
	
	
Figure	14	compares	the	ONI	index	for	CPC,	POPEM	and	CONTROL	cases.	It	is	clear	
from	 the	 figure,	 that	 POPEM	 produces	 a	more	 realistic	 representation	 of	 the	
ENSO,	especially	if	we	focus	on	the	1992-1999	period.	POPEM	also	obtains	better	
results	than	CONTROL	in	the	number	of	simulated	el	Niño	events	(see	Table	1).	
The	improvement	is	also	noticeable	in	the	intensity.	The	CONTROL	case	exhibits	
an	overly	strong	ENSO	-a	common	bias	in	CESM	(Tang	et	al.,	2016)-	but	POPEM	
reduces	this	bias	(0.22o	C	versus	0.59	o	C).	
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Another	 important	 indicator	 is	 the	mean	 duration	 of	 El	 Niño	 events.	 Table	 1	
shows	that	POPEM	obtains	better	results	according	to	observations	(11	months	
in	CPC,	10	months	in	POPEM,	and	19	months	in	CONTROL).		
	

	
	
Referee	#4: Actually,	I	am	somewhat	interested	in	the	Arctic	sea	change.	It	is	known	that	
climate	models	(like	CESM	CONTRL)	cannot	capture	a	rapid	observed	decline	of	Arctic	
sea	 ice	 during	 recent	 decades.	 In	 Fig.	 5(B),	 POPEM	 is	 colder	 than	CONTROL	over	 the	
Barents	Sea	area.	Will	this	mean	that	Arctic	sea	ice	decline	in	POPEM	is	even	slower	than	
that	in	CONTROL?		
	
Reply:	It’s	true	that	the	POPEM	parameterization	produces	colder	temperatures	in	that	
area	and	that	might	reinforce	the	bias	of	a	slower	Artic	sea	ice	decline.	Unfortunately,	
we	can’t	contrast	this	hypothesis	because	we	did	not	keep	the	sea	ice	outputs	for	our	
simulations.	Sorry	about	that.		
	
The	bias	is	less	evident	when	confronted	with	GISTEMP	annual	mean	anomalies	for	that	
area.	It	is	seen	from	the	Figure	11	(top)	that	CONTROL	and	POPEM	cases	have	a	similar	
margin	error.	In	other	words,	the	original	CESM	model	is	not	really	good	in	capturing	
this	feature.	Our	approach	slightly	improves	the	situation	in	some	cases	(Bering	Sea	from	
1975	to	1990,	Figure	11	(middle))	but	we	cannot	expect	a	major	overall	improvement.	
	
We	have	added	a	paragraph	and	a	figure	to	clarify	this	point.	
	
The	text	now	reads:	
	
	

The	bias	is	also	reproduced	when	compared	with	temperature	anomalies	for	a	
specific	region.	Thus,	for	instance,	CESM	gives	poor	scores	in	the	Barents	Sea	area	
(Figure	11;	top)	while	POPEM	obtains	better	results	for	the	Bering	Sea,	especially	
in	the	Russian	part	(Figure	11;	middle).	Here,	POPEM	gives	more	realistic	values	
for	 the	 period	 1970-1998	 but,	 even	 with	 the	 improvement,	 the	 model	 still	
overestimates	the	temperature	anomaly.	



	
Figure	11:	A	comparison	of	the	annual	mean	surface	temperature	anomaly	between	GISTEMP,	CONTROL	and	POPEM	
from	1950	to	1999.	(Top)	represents	the	Barents	Sea	(68N-80N,	19E-68E);	(middle)	Russian	part	of	the	Bering	Sea	(50N-
65N,	 150E-180E);	 and	 (bottom)	 American	 part	 of	 the	 Bering	 Sea	 (50N-75N,	 140W-180W).	 The	 black	 line	 represents	
observational	data	(GISTEMP),	the	blue	line	is	the	CONTROL	case,	and	the	red	is	the	POPEM	case.	Anomaly	was	referenced	
to	1951-1980	period.	

	
	
We	 also	 calculated	 the	 temperature	 anomalies	 with	 monthly	 data	 (attached	 as	 a	
supplementary	material).	However,	the	noise	is	high	and	it	is	difficult	to	distinguish	any	
clear	pattern	other	than	the	consistency	between	the	series.	Only	in	Figure	EXT2(top)	
we	see	that	POPEM	more	frequently	yields	extreme	values.		
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Figure	EXT2:	The	same	as	Figure	11	but	using	monthly	means.	

	
	
Referee	#4: Besides,	to	be	consistent	with	GPCP,	the	authors	may	want	to	use	a	globally	
(land+ocean)	covered	temperature	dataset	GISTEMP	
	(https://data.giss.nasa.gov/gistemp/)	to	examine	temperature	bias.		
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Reply:	Thanks	 for	 the	suggestion.	As	you	seen	 in	the	previous	comment	we	 included	
GISTEMP	in	several	figures	and	also	made	a	brief	description	of	the	source	in	section	
2.4.3.	
	
The	new	subsection	reads:	
	

2.4.3	GISTEMP	data	set		
NASA’s	 GISTEMP	 (GISS	 Surface	 Temperature	 Analysis)	 is	 a	 global	 surface	
temperature	change	dataset	(Hansen	and	Lebedeff,	1987;	see	Hansen	et	al.	2010	
for	 an	 updated	 version).	 It	 combines	 land	and	ocean	 surface	 temperatures	 to	
create	monthly	temperature	anomalies	at	2o	x	2o	degrees	of	spatial	resolution.	
The	 use	 of	 anomalies	 reduces	 the	 estimation	 error	 in	 those	 places	 with	
incomplete	 spatial	 and	 temporal	 coverage	 (Hansen	 and	 Lebedeff,	 1987).	 The	
anomalies	are	calculated	over	a	fixed	base	period	(1951-1980)	that	makes	the	
anomalies	consistent	over	long	periods	of	time.	
The	 first	 version	 was	 originally	 conceived	 only	 for	 land	 areas	 (Hansen	 and	
Lebedeff,	1987)	but	in	1996	marine	surface	temperatures	were	added	(Hansen	et	
al.,	1996).	The	updated	version	of	GISTEMP	includes	satellite-observed	nightlights	
to	identify	stations	located	in	extreme	darkness	and	adjust	temperature	trends	
of	urban	stations	for	non-climatic	factors	(Hansen	et	al.	2010).	Just	like	CRUTS,	
GISTEMP	is	commonly	used	to	validate	climate	models	because	of	its	coverage	
and	confidence	levels	(Baker	and	Taylor,	2016;	Brown	et	al.,	2015;	Neely	et	al.,	
2016,	Peng	et	al.,	2015).	

	
	
Additionally,	we	used	GISTEMP	to	analyze	temperature	anomalies	for	regional	(previous	
comment;	Figure	11)	and	global	scales	(Figure	12).	
	
The	results	of	Figure	12	were	discussed	in	the	section	3.2	of	the	manuscript:	
	
The	new	paragraph	reads	as	follows:	
	

If	 we	 focus	 on	 global	 temperature	 anomalies,	 CESM	 simulations	 are	 able	 to	
reproduce	the	progressive	increase	in	the	temperature	anomaly	(Figure	12;	top).	
However,	 the	CONTROL	 case	 simulates	 a	 sharp	drop	at	 the	 end	of	 the	 period	
(1990-1999),	while	POPEM	portrays	this	change	as	smooth,	in	agreement	with	
the	observations.	

	
	



	
Figure	12:	A	comparison	of	 the	global	annual	mean	surface	temperature	anomaly	between	GISTEMP,	CONTROL,	and	
POPEM	from	1950	to	1999.	(Top)	global;	(middle)	land;	and	(bottom)	ocean.	The	black	line	represents	observational	data	
(GISTEMP),	the	blue	line	is	the	CONTROL	case,	and	the	red	is	the	POPEM	case.	Anomaly	was	referenced	to	1951-1980	
period.	

	
	

The	differences	between	CONTROL	and	POPEM	are	better	demonstrated	when	
comparing	land	and	ocean	separately	(Figure	12;	middle	and	bottom).	While	the	
temperature	anomalies	for	land	are	quite	similar	in	both	cases,	POPEM	provides	
a	 better	 representation	 of	 the	 ocean	 tendency	 from	 1992	 onwards,	 and	 that	
translates	to	an	overall	improvement	(Figure	12,	top).	
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We	 also	 computed	 monthly	 mean	 temperature	 anomalies.	 However,	 is	 difficult	 to	
appreciate	the	differences	between	models,	especially	for	cases	A	and	B.	The	figure	is	
therefore	included	as	a	supplementary	material.	
	

	
Figure	EXT3:	Same	as	Figure	12	but	for	monthly	mean	temperature	anomaly.	The	main	tendency	is	consistent	albeit	
differences	exists.	Thus	for	instance	the	POPEM	model	clearly	improves	over	CONTROL	from	1992	onwards.	
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