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Abstract The 2015 Paris Agreement has initialed set a goal to pursue the global-mean temperature below 1.5 C, and well 

below 2 C above pre-industrial levels. As an important surface hydrology variable, the response of snow under different 

warming levels has not been well investigated. The community earth system model (CESM) project towards 1.5 °C and 2 °C 10 

warming targets, combined with CESM large Ensemble project (CESM-LE) brings an opportunity to address this issue. This 

study provides a comprehensive assessment of snow cover fraction (SCF) and snow area extent (SAE), and the associated 

Land Surface Air Temperature (LSAT) over North Hemisphere (NH) based on the Community Earth System Model Large 

Ensemble project (CESM-LE)CESM-LE, CESM 1.5 °C and 2 °C projects, as well as CMIP5 historical, RCP2.6 and RCP4.5 

products. Results show that the spatiotemporal variations of those modeled products are grossly consistent with the 15 

observation. The projected SAE magnitude change in RCP2.6 is comparable to that in 1.5 C, but lower than that in 2 C. 

The snow cover differences between 1.5 °C and 2 °C are prominent during the second half of 21st century. Changes in the 

LSAT and snow cover for 2071-2100 with respect to 1971-2000 exhibit the inconsistently spatial patterns.The Signal-Noise-

Ratio (SNRs) of both SAE and LSAT over the majority land areas are greater than one, and for the long-term period the 

dependence of the SAE on LSAT changes are comparable for different ensemble products.  The contribution of increase in 20 

LSAT on the reduction of snow cover differs across seasons with the greatest in boreal autumn (49-55%) and the lowest in 

boreal summer (10-16%). The snow cover uncertainties induced by the ensemble variability show time invariant across 

CESM members, but increase with the warming signal among CMIP5 models. This feature reveals that the model physical 

parameterization plays a predominant role on the long-term snow simulations, while they are less affect by the climate 

internal variability.  25 
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1. Introduction 

Snow mass over ground is one of the important surface hydrology elements. Due to the unique physical properties, such 

as high albedo, emissivity and absorptivity, low thermal conductivity, and roughness length, snow strongly affects the 

exchange in energy and water between land and atmosphere over cold regions (Robinson and Kukla, 1985; Zhang, 2005). 5 

The snowpack is a moisture reservoir, and it stores rainfall (or snowfall) in winter and recharges the surface runoff and 

ground water in spring (Zakharova et al., 2011; Belmecheri et al., 2016), and it is also an insulator for heat and radiation 

which blocks the solar radiation arriving at the soil surface, as well as protects the heat loss from ground to atmosphere in 

winter time. At the snow covered areas over high latitude, the ground temperature is usually higher than the air temperature 

(Stieglitz et al., 2003). Furthermore, snow on the ground influences the rainfall in remote regions through the large-scale 10 

atmospheric circulations (e. g., Liu and Yanai, 2002; Souma and Wang, 2010; Peings et al., 2013), and it was has been 

extensively used in the data assimilation to improve the climate prediction skill (e.g., Dawson et al. 2016).  

Snow ablation and accumulation are determined affected by many factors such as the land surface air temperature 

(LSAT) and surface radiation. In general, increase increasing in LSAT would enhances the ratio of rainfall to total 

precipitation over land as well as speed up the snow melting, as a result, shorten the snow retention time on the ground will 15 

be shorten (Smith et al., 2004). During past three decades, observation evidences have shown that the annual snow area 

extent over the Northern Hemisphere (NH) have reduced substantially ( Brown, 2000; Dye, 2002)(e.g., Dye, 2002), and such 

terrestrial changes partially attribute to the increase in air temperature (Mccabe and Wolock, 2010). Based on the 5th 

Coupled Model Intercomparison Project (CMIP5) (Taylor et al., 2012), researchers have found that the projected surface 

warming would lead to earlier snowmelt (Oki and Kanae, 2006) with a lower rate as compared to historical period due to the 20 

reduction of the snow cover area in the projected warmer 21st century (Musselman et al., 2017). The relationship between 

snow cover and surface air temperatureLSAT has been discussed in many literatures (Cohen and Entekhabi, 1999; Laternser 

and Schneebeli, 2003; Mote, 2003Brown and Robinson, 2011; Brutel-Vuilmet et al., 2013; Mudryk et al., 2017). For 

example, Brown and Robinson (2011) reported that LSAT explained about 50% change in spring NH mid-latitude snow area 
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during 1920-2010. Brutel-Vuilmet et al. (2013) also found that the spring LSAT is well linearly correlated with snow cover 

in boreal spring, and they further indicated that this relationship would persist from historical to future periods. However, 

comprehensive assessments of the snow cover response to different warming levels (e.g., 1.5 C and 2.0 C above pre-

industrial levels, hereafter referred as to 1.5 C and 2.0 C for short) have not been extensively performed. 

The impacts of global warming on terrestrial variables have been investigated in various studies, and most of them have 5 

focused on the risks avoiding 2 C warming (Meinshausen et al., 2009; May, 2012; Salzmann et al., 2012; Schaeffer and 

Hare, 2012). Recently, science communities have argued that 1.5 C warming would significantly reduce climate risk as 

compared to 2 C warming, and the 2015 Paris agreement initialed set a goal to pursue the Global Mean Air Temperature 

(GMAT) below 1.5 C, and well below 2 C above the pre-industrial levels (UNFCCC, 2015). The academic community has 

shown a great interest on this initiative ( e.g., Boucher et al., 2016; Hulme, 2016; Peters, 2016; Rogelj and Knutti, 2016; 10 

Schleussner et al., 2016; Mitchell et al., 2017). The Intergovernmental Panel on Climate Change (IPCC) has also scheduled 

to propose a special report on the impacts of 1.5 C in 2018 

(http://www.ipcc.ch/report/sr15/pdf/information_note_expert_review.pdf). However, present comparison studies regarding 

to the differences between 2 °C and 1.5 °C are all through analyzing CMIP5 outputs under the Representative Concentration 

Pathway (RCP) scenarios ( Vuuren et al., 2011; Schaeffer and Hare, 2012; Schleussner et al., 2016). For example, based on 15 

the CMIP5 model outputs, Schleussner et al. (2016) assessed the impacts of 1.5 °C and 2 °C warming levels on the extreme 

weather events, water availability, agricultural yields, sea-level rise and risk of coral reef loss, and concluded that substantial 

risk reductions with 1.5 °C compared to 2 °C warming, and further showing the regional differentiation in both climate risks 

and vulnerabilities. Indeed, the 1.5 C is a relatively low warming target to achieve with regard toas compared to the 

projections in RCPs. Jiang et al. (2016) showed that the probability of 2 C warming before 2100 is would be 26, 86, and 20 

100% for the RCP2.6, RCP4.5 and RCP8.5 respectively crossing all available CMIP5 model outputs. From these premise, 

there should be much higher probability for 1.5 °C occurrence. Actually,  Tthe RCPs were are not specifically designed for 

targeting the climate impacts and risks for different warming levels such as 1.5 °C and 2 °C. In RCPs, the projected surface 

air temperature rising and the greenhouse gas emission are near-linear relationship (IPCC, 2014). However, other variables in 

climate system do not always change linearly with the surface air temperature, thus it is difficult to quantify the changes of 25 
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some quantities (e.g, snow cover) under the specific warming level from the transient RCPs simulations, . Regarding to 

IPCC 1.5 °C special report, Peters (2016) raised seven existing knowledge gaps in current researches, of which he suggested 

“clearly specifying methods for temporal and spatial averaging of temperatures and the desired likelihood to stay below 

given temperature levels”. Therefore, it is necessary to design scenarios under the specified GMAT rising goals. leading to 

some research gaps for climate change (e.g., Boucher et al., 2016; Peters 2016).  5 

To reduce above gapsachieve 1.5C and 2.0 C goals in line with IPCC special report, the Community Earth System 

Model (CESM) research group at the National Center for Atmospheric Research (NCAR) has performed a set of ensemble 

modeling experiment under the emulated concentration pathway leading to the stable 1.5 °C and 2 °C warming targets by 

2100 (Sanderson et al., 2017). These experiments is are the first earth system model simulations project towards both 1.5 °C 

and 2 °C warming goals. Together with the CESM Large Ensemble (CESM-LE), above simulations provide the best 10 

available datasets to assess the potential impacts and risks with regard tounder 1.5 °C and 2 °C warming levels on both 

climatic and environmental elements.  

Based on above CESM simulations, CMIP5 model outputs, as well as the observed snow cover fraction datasets, this 

study extensively investigates the spatiotemporal change in snow cover over the NH land area for both historical (1920-

2005) and future (2006-2100) periods at under 1.5 °C and 2.0 °C warming levels, as well as under RCP2.6 and RCP4.5 15 

scenarios. The reproductions of CESM on snow cover are evaluated with both in-situ and satellite data. The contribution of 

LSAT change in the snow cover will be also quantified. Furthermore, a prominent advantage is that above CESM ensemble 

simulations facilitate to take insight into the impacts of the internal climate variability on those surface variables, which will 

also be addressed in this study.  

 20 

2. Models, Scenarios, and Data  

2.1 The CESM and snow cover  

The CESM consists of the Community Atmosphere Model version 5, the land surface model (CLM4), parallel ocean 

program version 2, and the Los Alamos sea ice model version 4(Hurrell et al., 2013). The fully coupled CESM has been used 

in many studies and also adopted in CMIP5 project (Taylor et al., 2012). The CESM and its performance have been well 25 
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reported in the special issue of the Journal of Climate (http://journals.ametsoc.org/topic/ccsm4-cesm1). The snow process in 

the CESM is described in the land component of CLM4, in which the snowpack on the ground is divided up to five layers 

according to snow depth. The life cycle of snow such as ageing, compaction, thawing, and sublimation, are parameterized, 

and the effects of black carbon, organic carbon, and mineral dust on snow are also considered in CLM4.0 (Oleson et al., 

2010).  5 

The SCF is defined as the fraction area of a land grid cell covered by snow. In the CESM, the SCF (fsno) is described as 

( Niu and Yang 2007; Oleson et al., 2010) 
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where Zsno is the snow depth over the ground, m = 1 is a parameter representing the snow melting rate, and it can be 

calibrated with the observation, Z0= 0.01 m is the momentum roughness length for soil, new = 100 kg m-3 is the density of 10 

new snow, and sno is the density of current snow, computed as the ratio of snow water equivalent and Zsno. Equation (1) is 

modified based on the satellite and in-situ observation data (Niu and Yang, 2007). In the CLM4.0, the SCF directly affects 

the surface hydrology and heat processes (Oleson et al., 2010). The snow products in offline CLM4.0 simulation have been 

well evaluated by both satellite and in-suit observation, and the general conclusion is that the model simulations have overall 

captured the temporal variations on both SCF and snow water equivalence, whereas the model presents too early but fast 15 

snow ablation process (Swenson and Lawrence, 2012; Toure et al., 2016; Wang et al., 2016; Rhoades et al., 2017). 

 

2.2 The CESM-LE project 

The CESM-LE is a 40-member ensemble project, employing the fully coupled CESM version 1.1. Under the CMIP5 

design protocol, all ensemble simulations have the same specified historical external forcing for 1920-2005 and future 20 

scenario with RCP8.5 for 2006-2100, respectively. The ensemble member No.1 was run continuously from 1850 to 2100, 

while the ensemble members No. 2 to 40 were restarted on January 1920 using the ensemble No.1 generated-initial condition 

with slightly perturbations in air temperature (Kay et al., 2015). The horizontal resolution of the CESM-LE products is 0.9 

 1.25. Those products have been used on various studies such as investigating the impacts of the internal climate 
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variability on global air temperature variations (Dai et al., 2015), and the meteorological drought in China (Wang and Zeng, 

2017). In this study, the monthly SCF and LSAT from the CESM-LE for 1920-2005 are treated as the historical simulations, 

and the simulations from the member No. 1 for 1850-1919 are regards as the pre-industrial periods. 

 

2.3 CESM 1.5C and 2.0C projects 5 

The CESM 1.5 C and 2.0 C projects are specifically design for achieving the goal of the Paris Agreement of 2015 

(Sanderson et al., 2017). The scenarios employ an emulator to simulate both the GMAT and emission concentration 

evolution in earth system, and then the parameters in emulator were calibrated by the CESM simulations (Sanderson et al., 

2017). Based on the methodology established in Sanderson et al. (2016), three idealized emission pathways, including 1.5 C 

never-exceed (hereafter referred as to 1.5 C), 1.5 C overshoot (1.5 degOS), 2.0 C never-exceed (hereafter referred as to 10 

2.0 C), were defined to limit the GMAT increasing within 1.5 C and 2.0 C by 2100 (Sanderson et al., 2017). In those 

pathways, before 2017 the carbon emission follows RCP8.5, then the combined fossil fuel and land carbon emissions rapidly 

decline to net-zero; finally, the emission fluxes are reduced even to negative which ensures the GMAT to achieve 1.5 C and 

2.0 C warming targets by 2100. The difference between 1.5 degOS and 1.5 C is that after 2017 the carbon and combined 

fossil fuel emission declines have different evolutionsrates. In 1.5degOS, the GMAT rising can over 1.5C before 2100, and 15 

the emission declines slightly less than that in 1.5C after 2017. For example, the emission reduces to zero in 2046 for 

1.5degOS, while it is in 2038 for 1.5 scenario. The detail of emulator establishment and scenarios design were was 

described in Sanderson et al. (2017). 

To “provide comprehensive resource for studying climate change in the presence of internal climate variability”, a set of 

multi-member projected simulations have has been produced under three new scenarios, branching from the corresponding 20 

historical simulations of CESM-LE in 2006 (Kay et al., 2015; Sanderson et al., 2017). There are 11 simulations (visited in 

May 2017) available for both 1.5 C and 2.0 C scenarios, and the products can be downloaded from the earth system grid 

website 

(https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.lowwarming/). In the study, the monthly SCF and LSAT from 

above ensemble simulations at under1.5 C and 2.0 C scenarios are analyzed.  25 
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2.4 CMIP5 data 

The monthly SCF and LSAT from 12 models in CMIP5 for both the historical simulations (1850-2005) and future 

projections (2006-2100) under RCP2.6 and RCP4.5 are used in this study (Taylor et al., 2012). The selection of models is 

according to the data availability and the spatial resolution of each product, and only the first ensemble run (i.e. r1i1p1) in 5 

each model is used. The models used in this study are BCC-CSM1.1, BNU-ESM, CanESM2, CCSM4, CNRM-CM5, 

FGOALS-g2, FIO-ESM, GISS-E2-H, MIROC-ESM, MPI-ESM-MR, MRI-CGCM3, and NorESM1-M. The general 

information of those models is summarized in Table S1. Those modeled SCF has been evaluated with the satellite 

observation, and the results indicated that the model products overall were able to capture the spatial patterns, seasonal 

change, and annual variation, but also showed the apparent disparities among different models ( Zhu and Dong, 2013; Xia 10 

and Wang, 2015). The simulations from both RCP2.6 and RCP4.5 scenarios are chosen because the surface warming rates in 

these two scenarios could can be comparable to the 2.0 C warming target to some extent (IPCC, 2013; Jiang et al., 2016). 

The general information of 12 models can also be seen in Xia and Wang (2015). To facilitate the comparison, the monthly 

SCF from 12 models are rescaled to 0.9  1.25 to match the resolution of CESM outputs.  

 15 

2.5 Validation data 

To validate the simulated SCF, the 0.05 MODIS Climate-Modeling Grid (CMG) version 6 daily snow cover products 

are used (Hall and Riggs, 2016). It is well known that the satellite-based SCF has obvious biases when cloud presents. To 

reduce the impacts of cloud cover, the daily confidence index (CI), defined as the percentage of clear-sky within a grid cell 

from CMG product is applied to filter the CMG SCF products. Similar as the method used in Toure et al. (2016), we firstly 20 

filter out the daily SCF data with CI less than 20 %, and then the daily filtered CMG SCF is averaged to monthly, and finally 

they are aggregated in line with CSME-LE resolution (i.e., 0.9  1.25). 

Besides of MODIS SCF product, the monthly snow area extent (SAE) time series from the National Oceanic and 

Atmospheric Administration Climate Data Record (NOAA-CDR) are also adopted to compare with the modeled products 

(Robinson et al., 2012). The NOAA-CDR SAE is computed from the gridded monthly snow cover databases, deriving from 25 
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the NOAA weekly snow charts for 1966-1999 (Robinson, 1993) and the Interactive Multi-Sensor (IMS) daily snow product 

for 1999 afterwards (Ramsay, 1998;Helfrich et al., 2007). The NOAA CDR SAE monthly time series averaged over NH are 

obtained from the Rutgers University (http://climate.rutgers.edu/snowcover/).  

 

3. Methods  5 

In this study, the pre-industrial periods are taken as the 1850-1919 mean in each modeled product, consistent with that 

used in Sanderson et al. (2017). The SAE for each modeled product is computed as that the SCF multiplied the land area of 

each grid cell. The monthly SAE and LSAT averaged over NH land area for 1920-2100 are then derived from all products. 

The annual anomaly of each variable with its corresponding 1850-1919 mean denotes the change with respect to the pre-

industrial periods. The linear trend is derived from the least-square-fit method. The period of 1971-2000 is used as the 10 

common baseline period. To qualify the change in the future, the mean value of each product for 2071-2100 is compared 

with that in the baseline period. The standard derivation (STD) across CESM ensemble members or CMIP5 multi models 

represents the spread of simulations due to ensemble variability. To address the contribution of change in SCF due to LSAT 

warming, both the pattern correlation coefficient and the coefficient of determination between them for different seasons and 

different products are also computed. The linear regression method is adopted to analyze the dependence of SAE on the 15 

LSAT anomaly for different periods and different products in four seasons and annual. The four seasons represent as the 

boreal winter (December-February, DJF), spring (March-May, MAM), summer (June-August, JJA), and autumn (September-

November, SON), respectively.  

 

4. Validation of modeled SCF  20 

Figure 1 shows the mean (2001-2005) SCF from MODIS, CESM-LE ensemble mean, and CMIP5 ensemble mean. The 

SCF differences biases of two ensemble means departed from MODIS and the STDs of their differences biases are also 

plotted. Overall, the spatial patterns from three products are similar, with the greatest over the high latitudes and then reduce 

low at over the middle and low latitudes. The annual mean SCF averaged over entire NH land area is 17.97% for MODIS, 

22.3  0.26% (STD) for CESM-LE, and 16.24  7.87% (STD) for CMIP5 for 2001-2005. Compared with the MODIS, the 25 
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CESM-LE ensemble mean overestimates the SCF over most land areas with an exception at a small portion in west Eurasia 

(Fig. 1d), while the CMIP5 ensemble mean is comparable to that in MODIS with slight underestimation over Eurasian 

continent, North America, and Greenland (Fig. 1e). Toure et al. (2016) evaluated the MODIS SCF with offline CLM4.0 

simulations driven by the observation-based atmospheric forcing data set, and they found that the model overall 

underestimated the mean SCF average, in particular during melting season. They attributed the modeled SCF biases to the 5 

snow process parameterization, sub-grid effect in CLM4.0, as well as the forest coverage and cloud cover induced 

uncertainties in MODIS. Those issues still exist in the CESM-LE. The overestimation SCF in CESM-LE in contrast with the 

underestimation by offline CLM4.0 is partially attributed to the biases in surface atmospheric forcing variables (e.g., 

precipitation, air temperature, humidity etc.), which are produced by the atmospheric model in CESM-LE (Wang and Zeng 

2017), and the biases due to rainfall and snowfall separation are also responsible for the above SCF biases in CESM-LE 10 

(Wang et al., 2016). For example, during 1979-2005, CESM-LE ensemble mean average over NH land area has an annual 

precipitation of 2.13 mm/day, while the Global Precipitation Climatology Project (GPCP) product has a smaller value of 2.08 

mm/day (Huffman et al., 2009). The GPCP product has been used to bias-correct the precipitation in the atmospheric forcing 

dataset in both Toure et al. (2016) and Wang et al. (2016).   

The STDs of SCF differences from CESM-LE is generally less than 5% with the greatest locating at the western United 15 

States, part of Eurasian middle latitude continent and the Tibetan Plateau (Fig. 1f). In contrast, the STDs from CMIP5 are 

above 10% over majority snow regions (Fig. 1g), which are greatly larger than the magnitude of their ensemble mean 

differences (Fig. 1e). In fact, the spread from CESM-LE is induced by the internal climate variability due to the interaction 

of intrinsic dynamical processes within the earth system, in which the slight perturbation of the initial condition in CESM-

LE experiment would will lead to different climate variability (Kay et al., 2015). The STD from CMIP5 is from the inter-20 

model variability, which is mainly caused by the model structure and physical parameterization, in particular, the 

representation of snow process in different models because all models used the same external forcing (Taylor et al., 2012). 

Therefore, these results indicate that the SCF heavily relays on the physical process representation in the model, while the 

internal climate variability might play a relatively minor role. 

Figure 2 shows the 12-month moving averaged SAE anomalies over NH from NOAA-CDR, CMIP5, and CESM-LE 25 
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ensemble mean during the period of 1967-2005. The full spread of CMIP5 12 models and CESM-LE 40 ensemble members 

are also shown. The SAE from NOAA-CDR exhibits apparently annual variations with the anomaly varying within  2106 

km2, while SAE from both CMIP5 and CESM-LE ensemble mean show less temporal variations. The spreads from both 

products are remarkable and their envelops cover most NOAA-CDR curves, implying that SAE from both modeled products 

are reasonable.  5 

To further investigate the SAE temporal variations, we compute the R between modeled products and NOAA-CDR, and 

the linear trends of three products for the period of 1976-2005 (Table 1). For CESM-LE, the R varies between -0.41 and 0.55 

with the mean 0.18  0.17 (STD), and there are 35 of 40 members with the positive R, while for CMIP5 the R varies from 

0.10 to 0.50 with mean 0.24  0.12 (STD). The linear trends of SAE from all three products exhibit the reduction with the 

values being of -3.98  104 km2/year, -2.36  0.76(STD)  104 km2/year, and -2.62  1.33 104 km2/ year for NOAA-CDR, 10 

CSEM-LE, and CMIP5, respectively. The trend spreads from -4.35  104 km2/year to -0.22  104 km2/year across CESM-LE 

ensemble members, and from -5.22  104 km2/year to -1.02  104 km2/year for CMIP5 models, respectively. The ensemble 

mean of both modeled products underestimates the magnitude of SAE reduction. However, accounting for the model spreads 

in two products, both modeled SAE reductions are roughly comparable to that in NOAA-CDR. On the other hand, the 

majority members with positive R and the consistency in the reduction of SAE imply that both CMIP5 and CESM-LE 15 

products can be used to represent the variations temporal evolution of SAE. It should be noted that the deficiencies of 

climate model in reproduction of snow are beyond this work, therefore there are not discussed in this study.  

 

5. Impacts of the LSAT on snow cover  

5.1 Long-term SAE variations 20 

To qualify the long-term SAE variations, Figure 3 shows the annual anomalies of both SAE and LSAT average over NH 

land area for the period of 1920-2100. All anomalies are respected to the mean value for the pre-industrial periods. Both the 

ensemble mean and full spread of ensemble members are displayed. There are distinctly temporal variations in the longterm 

evolution and the magnitude diversity among different products from both SAE (Fig.3a) and LSAT (Fig.3b). During the 

period of 1920-2005, the ensemble SAE anomaly from both CESM-LE and CMIP5 shows similar annual variations with the 25 
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correlation coefficient 0.86, but the actually values from CESM-LE are consistently larger than that from CMIP5. Before 

early 1960s, the time temporal variability of SAE is relatively small, and afterwards it shows apparently decreasing tendency. 

Overall, SAE reduction from CMIP5 ensemble is much larger than that from CESM-LE ensemble mean. For example, from 

1920 to 2005, the annual SAE ensemble mean reduces about 0.75  106 km2 from for CESM-LE, while this value is 1.32  

106 km2 for CMIP5. For the future period, during the period of 2005-2050 the linear trends of SAE are all negative, varying 5 

between -4.92  104 km2 /year (2.0 C) and -2.37  104 km2/year (RCP 2.6), while after 2050 the trends from both RCP 2.6 

(0.32  104 km2/year) and 1.5 C (0.26  104 km2/year) turn to positive. Moreover, before 2050 the ensemble mean SAE 

anomaly from CMIP5 is below those from CESM-based simulations, but after-2050 they are comparable to each other from 

both RCP 2.6 and 1.5 C. Nevertheless, although the ensemble mean SAE shows overall downtrend for future period, the 

upper envelop of the spread from RCP 2.6 gives positive SAE anomalies in a few years, with the maximum value about 1.0 10 

 106 km2. This feature implies that the projected SAE under RCP2.6 in some models would be above the pre-industrial 

levels. 

In contrast, the LSAT anomaly exhibits the continuously overall increasing tendency (Fig. 3b). The linear trends of 

LSAT from ensemble mean are 0.022, 0.026, 0.034, and 0.043 C/year for RCP 2.6, 1.5 C, RCP 4.5, and 2.0 C for 2006-

2050, respectively. Similar as the SAE variations, since 2050 the LSAT trends turns to negative in both RCP2.6 (-0.03 15 

C/decade) and 1.5 C (-0.02 C/decade), and the magnitudes of trends from both RCP 4.5 and 2.0 C also become smaller 

as compared with those in early period. Furthermore, Fig.3 also shows that the spread of the ensemble members displays 

different variability for different products.  

To examine the evolution of SAE anomaly spread among different ensemble members, we have computed the STDs of 

SAE across all members in each year and shown in Fig. 4. The STDs from both CESM and CMIP5 show apparently annual 20 

variations. From For the entire period of 1920-2100, the annual STDs from CESM changes slightly with time, varying 

between 0.3  106 km2 and 0.7  106 km2, while the STDs from CMIP5 increases with time distinctly, with the increase in 

magnitude up to 1.4  106 km2. Correspondingly, the Similar results can also be derived from spread of LSAT is also 

computed (Fig. S1). The temporal evolution of annual STDs of LSAT from different products are similar as those of SAE. 

The STDs of LSAT anomaly also represents the warming rate spread among different ensemble members. To further 25 
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investigate the dependence of SAE change on LSAT increase, we have linearly regressed the annual SAE anomaly onto 

LSAT anomaly from each CESM and CMIP5 ensemble member for historical and future periods, respectively. We then 

compute the ensemble mean of regression coefficients and their STDs of each products. For the period of 2006-2100, the 

regression coefficient (unit: 106km2/C) is -1.370.56 (1.5C), -1.120.07 (2.0C), -1.180.19 (RCP2.6), and -0.970.44 

(RCP4.5), respectively, while for the period of 1920-2005, the magnitude of the regression coefficient becomes smaller, with 5 

the value of -0.790.42 (CESM-LE), and -0.840.22 (CMIP5). The results do not show obviously that the dependence of 

SAE loss on the warming rate in CMIP5 is greater than that from the simulations in CESM. However, based on both Fig. 4 

and Fig. S1, we argue that the inter-model diversity of CMIP5 is probably responsible for the increasing in the spread of both 

SAE and LSAT with the time. This Above results suggest that s the uncertainty induced by the climate internal variability is 

an inherent property in the climate system and it is almost stationary, while their uncertainty (or the inter-model spread) from 10 

CMIP5 multi model simulations increases with warming signals. Therefore, caution should be taken when the CMIP5 

outputs from multi model ensemble are used to address the long term change of surface variables.  

 

5.2 Future SCF and LSAT changes in both 1.5 C and 2.0 C 

Figure 5 shows the 30-year annual mean SCF differences between 2071-2100 and 1971-2000 from both 1.5 C and 2.0 15 

C scenarios, respectively. Both products show consensus change the reduction of SCF for 2071-2100, and the NH average 

SAE change is -1.69 106 km2 in 1.5 C, and -2.36106 km2 in 2.0 C. The annual mean ensemble differences changes of 

SFC are not uniformly distributed. The largest magnitude change could be above 10%, appearing at the mountain ranges in 

the middle latitudes, such as the Iran Plateau, north Canada, west America along the Rocket Mountain, and west Tibetan 

Plateau. In comparison of the ensemble mean SCF between 1.5 C and 2.0 C for 2071-2100 (Fig. 5c), the differences are 20 

generally below 4% over majority snow areas (and corresponding to the SAE difference is 0.67  106 km2) with the largest 

difference appearing at the same locations as the largest SCF reduction with regard respect to pre-industrial levelsbase period 

(Figs. 5a and 5b). In contrast, the ensemble mean LSAT exhibits the largest warming over polar region in the future and the 

warming magnitude reduces over middle and low latitudes (Figs.5d and 5e). The increase in LSAT for 2071-2100 exceeds 4 

C along the coastline of the Arctic Ocean. The prominent warming over polar region represents the polar amplification 25 
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effect, which might be related to the sea ice change (Screen and Simmonds, 2010). The inconsistent spatial variations of 

LAST LSAT and SCF suggest that the LSAT is not the only factor to determine the SCF change.The contribution of LSAT 

warming on the SCF reduction would be further addressed later.   

To further examine the SAE change in the future, we compute the percentage change of SAE between 2071-2100 and 

1971-2000 from 1.5C, 2.0C, RCP2.6, and RCP4.5 scenarios (Table 2). The percentage change is calculated as the mean 5 

difference of two periods divided by the mean of 1971-2000 in annual and each season. The STDs are computed from 12 

models (RCP2.6 and RCP4.5) and 11 CESM simulations (1.5C and 2.0C), respectively. The contribution of LSAT 

warming on the SCF reduction would be further addressed later. Across four scenarios in annual time scale, the ensemble 

mean magnitude change of SAE is largest in RCP4.5 (-14.47%), followed by 2.0 C (-10.92%), RCP2.6 (-8.50%) and the 

smallest in 1.5C (-8.02%). For specific scenario in different season, the most SAE loss is in JJA, followed by OSN, and the 10 

least is in DJF. The largest percentage loss in JJA is mainly caused by the smallest SAE in 1971-2000, which is the 

denominator in computation. During 1971-2000, the SAE is 4.56(3.50)  106 km2 from CESM-LE (CMIP5) ensemble mean 

in JJA, while this value is 43.23 (35.99)  106 km2 in DJF, respectively. Table 2 also shows that the STDs of SAE loss due to 

ensemble variability is much larger in CMIP5 models than those in the CESM ensemble. For example, the STDs of annul 

mean percentage is 5.71%, 5.58%, 0.52%, and 0.78% in RCP4.5, RCP2.6, 2.0C, and 1.5C scenarios, respectively. This 15 

further implies the inter-model variability will induce relatively greater SAE uncertainty than those due to internal climate 

variability.   

Figure 6 illustrates the signalSignal-toNoise -ratio Ratio (referred as to SNR), defined as the ratio of the ensemble mean 

change to the STDs of change across the ensemble members. This metric represents the relative importance of external 

forcing and the climate internal variability on the variable change (Kay et al., 2015;Wang and Zeng, 2017). Under 1.5C 20 

scenario, the SNR of SAE change exceeds 1 over 65% snow areas (with respect to the base period), while under 2.0 C 

scenario, it is over 70% snow areas in the NH. For the difference of 1.5 C and 2.0 C during 2071-2100, the percentage 

snow areas with SNR exceeding 1 is about 31% (Fig. 6c). For the LSAT, the SNR over the almost entire NH land areas 

exceeds 1 under both scenarios. The SNR exceeds 2 over majority areas for both variables (Fig. 6). This feature implies that 

both LSAT and SCF changes are dominantly affected by the external (or anthropogenic) forcing, with slightly triggered by 25 
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the climate internal climate variability. The spatial pattern of SNR for both SCF and LSAT are broadly consistent with each 

other over snow regions, but their magnitude for SCF is much smaller than that for LSAT. The SNRs of both SCF and LSAT 

are relatively small over Eurasian middle-to-high latitudes compared to other regions, but great over East of 90W in the 

North America, as well as along the margin of Rocket mountain. Over snow free regions in low latitude, the greater 

magnitude of SNR of LSAT is caused by the smaller STD compared to high latitude region. Moreover, Figure 6 also shows 5 

that the SNR in 2 Cof LSAT is generally overall larger than that of SCF for a specific scenario. from 1.5 C. This further 

reflects that with increase in warming levels,  the external forcing plays is more predominant role evidently  onimpacted 

on the change in of LSAT and than that on SCF. This result is consistent with the changes in the meteorological drought in 

Wang and Zeng (2017). 

 10 

5.3 Contribution of LSAT on snow cover reduction  

Under the climate change background, the increasing in surface air temperature in recent decades is one of the most 

prominent features. In the CESM, the surface air temperature with a 0 C threshold is used to separate the rainfall and 

snowfall. Therefore, the increase in surface air temperature would reduce the chance of snowfall, but enhance the rainfall 

occurrence. An outstanding question is: to what degree the increase in local LSAT is responsible for the snow cover 15 

reduction by 2100? 

To address above question, we compute the pattern-correlation (R) between SCF and LAST change for 2071-2100 

versus 1971-2100 over NH from 1.5 C, 2 C, RCP 2.6, and RCP 4.5 scenarios (Fig. 7a). The R is separately derived from 

both annual and four seasons, i.e., boreal winter (December-February, DJF), spring (March-May, MAM), summer (June-

August, JJA), and autumn (September-November, SON). As discussed previous in section 5.1, the analyses have also shown 20 

that for the long-term being the regression coefficient of SAE anomaly onto LSAT change are all negative in both historical 

and future periods, and the ensemble mean magnitude of those coefficient from four scenarios during 2006-2100 are 

comparable. Therefore, the increase in LSAT will reduce the local snow fraction, therefore and it is undoubtedly that R 

should be negative. For all four seasons and annual R, the ensemble mean R is smaller than -0.3 with all passing the 

significant test at the 95% confidence level. The magnitude of R shows clearly seasonal variations, with the highest in boreal 25 
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autumn and lowest in boreal summer. For example, R varies from -0.70 (RCP 2.6, RCP 4.5) to -0.75(1.5 C and 2.0 C) in 

boreal autumnOSN, and from -0.30 (RCP 4.5) to -0.40 (1.5 C) in boreal summerJJA. Furthermore, we seeit shows clearly 

that the ensemble variability (denoted as STDs of R in Fig. 7a) from CESM-based products are relatively small when it is 

compared to the ensemble mean R, as well as compared to those from CMIP5. This further illustrates that external forcingthe 

inter-model differences have greatly influenced is the predominant factor for above relationship. To quantify of the 5 

contribution of LSAT warming on the snow reduction, we adopt an index, correlation of coefficient determination (CD), 

defined as the percentage of squared pattern correlation (CD = 100%•R2) for four seasons and annually in different scenarios 

(Fig. 7bure not shown). The CD denotes the percentage of SCF reduction explained by the LSAT increase. Similar as R, the 

CD shows clearly seasonal variations with the greatest in boreal autumnOSN (49% ~ 55%) and lowest in summer JJA (10% 

~16%), and the STDs of CD are also larger in CMIP5 than in CESM-based simulations. Although the CDs from CMIP5 10 

ensemble mean are slightly smaller than that from CESM-based simulations, overall the two from the specific season are 

comparable. For example, the CDs of ensemble annual mean difference are about 50% for all products. This means that the 

LSAT change could explain approximately half of SCF reduction annually, and the change in SCF would also be affected by 

other factors. For example, researches have been shown that the Arctic sea ice has greatly impacted on the snow cover over 

NH high  (Kapnick and Hall, 2012), and the human activities induce the black carbon reducing the snow surface albedo and 15 

enhance the solar radiation absorbed by the snow, as a result, acceleration of snow reduction (Flanner et al., 2007). 

 

6. Conclusions 

This study investigates the long-term change in the SCF and SAE associated with LSAT over NH during the period of 

1920-2100. We have analyzed the simulations from CESM-LE, CESM 1.5 C and 2.0 C projects (Sanderson et al., 2017), 20 

as well as simulations from historical, RCP2.6 and RCP4.5 from CMIP5 12 models (Taylor et al., 2012). The model 

simulated snow cover products are evaluated with the MODIS and NOAA-CDR observation. We emphasize on the 

responses of both SCF and SAE under different warming levels. The reduction of snow cover due to increase in LSAT is 

quantified. The relative importance of climate internal variability and external forcing on the change in both SCF and LSAT 

and their relationship are also addressed.  25 
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We find that the ensemble annual mean SCF from both CMIP5 and CESM-LE simulations can broadly capture the 

spatial pattern of MODIS, with slightly underestimation in CMIP5, but overestimation in CESM-LE. Annual SAE from 

ensemble mean of CMIP5 and CESM-LE, and NOAA-CDR all display significant reduction trends for the period of 1967-

2005. Compared to the pre-industrial periods, the SAE anomalies from CMIP5 and CESM simulations show gross 

similarities in the annual variations. Overall, the annual ensemble mean SAE displays downtrend, but the LSAT exhibits 5 

uptrend for the long-term period of 1920-2100. However, the actual variability differs in different products for different time 

periods. The trends of projected SAE (LSAT) from all products are negative (positive) for the period of 2006-2100, but they 

become positive (negative) during the second half of 21st century in both RCP 2.6 and 1.5 C. The magnitude of SAE 

anomaly in RCP 2.6 is comparable to that in 1.5 C, while it is smaller than that in 2.0 C. Furthermore, the STDs of SAE 

induced by the ensemble member variability show time invariant across CESM ensemble members, but increases with 10 

warming signal among CMIP5 models. Therefore, cautions should be taken when the multi models projected surface 

variables are analyzed. 

For 30-year mean change between 2071-2100 and 1971-2000, the ensemble mean magnitude change of SAE varies 

from -14.47% (RCP4.5) to -8.02%(1.5C) from four scenarios averaged over NH land areas. For seasonal time scale in 

specific scenario, the percentage magnitude of SAE loss is largest in JJA and smallest in DJF. We also find that the spread 15 

(STDs) of SAE loss due to ensemble variability is much larger in two RCPs than those in both 1.5C and 2.0C, implying 

that the inter-model variability will induce the larger SAE uncertainty than the internal climate variability.the variable (SCF 

or LSAT) show similarly consensus spatial variations in both 1.5 C and 2 C. However, the spatial patterns of SCF change 

are not consistent with those of LSAT change. That is, regions with the largest SCF differences do not show the greatest 

LSAT warming. In comparison with the ensemble mean SCF between 1.5 C and 2 C for 2071-2100, the SCF differences 20 

are less than 4% over most snow grid cells and SAE difference is 0.67  106 km2. Moreover, analyzing the SNR of SAE 

change, we find that SNRs exceed 1 over majority land areas in both 1.5C and 2.0C, and the percentage area with SNR 

exceeding 1 in 2.0C is slightly more than that in 1.5C. The spatial pattern of SNR for both SCF and LSAT are broadly 

consistent with each other over snow regions, but the SNR magnitude for SCF is much smaller than that for LSAT. The 

significant negative R between projected LSAT and SCF change for 2071-2100 versus the baseline period of 1971-2000 25 
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denotes that the SCF reduction strongly relies on the LSAT warming.  For 2006-2100, the regression coefficient of SAE 

anomaly on the LSAT anomaly is -1.370.56106 km2/C (1.5C), -1.120.07106 km2/C (2.0C), -1.180.19106 km2/C 

(RCP2.6), and -0.970.44106 km2/C (RCP4.5), respectively. Through analyzing the CDs, we We also find that more than 

50% of boreal autumnOSN and annual reduction of projected SCF over NH is attributed to the increase in LSAT, whereas 

this value is less than 16% in boreal summerJJA. Furthermore, STDs of CDs are much larger from CMIP5 than in CESM-5 

based simulations. This feature implies that the SAE uncertainties mainly come from the physical structure and the 

representation of snow process in different CMIP5 models, while they are less affected by the climate internal variability 

from CESM ensemble. From above results, we may conclude that the external forcing plays the predominant role on the 

changes in future in both SFC and LSAT, and with the increasing in warming signal, the effects of external forcing on the 

surface variables would be more evidently. 10 

Finally, we provide a comprehensively analysis of both SCF and SAE from the CESM and CMIP5 simulations for both 

historical and future periods in different warming or emission scenarios. Under different scenarios (e.g., RCP2.6, RCP4.5, 2 

C, and 1.5 C warming above pre-industrial levels), the snow cover response to LSAT warming varies with season and 

differs in products. In conclusion, surface warming is partially responsible for the surface snow change. Those factors on 

snow reduction are beyond this topic. More works would be carried out in the future.Furthermore, it should be noted that 15 

there are some caveats in this study. In the analyses, we only use model simulated SFC and LSAT to investigate the change 

of two. In the model, the SCF largely depends on the parameterization schemes. Many studies have focused on the validation 

of the modeled SFC according on satellite in situ or observations (e.g., Xia and Wang 2015), and others have tried to 

improve the snow schemes in the model (e.g., Wang and Zeng, 2009). However, it is still difficult to conclude which model 

has better snow scheme than others overall. Therefore, we suggest examining relationship of SFC and LSAT (or other 20 

surface meteorology quantities) based on the observation, and then use this relationship to evaluate the model simulations. 

To do this, we can firstly choose the models with the better representation of relationship, and then based on the selected 

model to investigate the future changes.  
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Tables 

 

Table 1: Correlation coefficient (R) of snow area extent (SAE) between CESM-LE and NOAA-CDR, between CMIP5 and 

NOAA-CDR, and annually linear trend of SAE from above three products for the period of 1976-2005, respectively. The 

mean, standard deviation, maximum, and minimum of the corresponding statistics from CESM-LE multi-member and 5 

CMIP5 multi-model are also displayed. The value in the last column is the annually linear trend of SAE from NOAA-CDR. 

The values with superscript star denote the R or Trend passing 95% significant level test. 
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 R  

(CESM-LE, 

NOAA-CDR) 

R 

(CMIP5, 

NOAA-CDR) 

Trend 

CESM-LE 

104km2/year 

Trend 

CMIP5 

104km2/year 

Trend 

NOAA-CDR 

104km2/year 

Mean 0.18 0.24 -2.36* -2.62* -3.98* 

Standard 

deviation 

0.17 0.12 0.76 1.33 --- 

Maximum 0.55* 0.50* -0.22 -1.02 --- 

Minimum  -0.41* 0.1 -4.35* -5.22* --- 
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Table 2: Percentage change of snow area extent (SAE) and its standard deviation (STD) between the period of 1971-2000 

and 2071-2100 from 1.5C, 2.0C, RCP2.6, RCP4.5 scenarios. The percentage changes are computed as the difference of 

two periods divided by the mean of 1971-2000 in each season and annually. The STD is computed from 12 models (RCP2.6 

and RCP4.5) and 11 CESM simulations (1.5C and 2.0C), respectively. 

 5 

   1.5C 2.0C RCP2.6 RCP4.5 

Annual -8.020.78% -10.920.52% -8.55.58% -14.475.71% 

DJF -5.410.99% -7.410.61% -5.623.2% -9.73.48% 

MAM -6.740.78% -9.590.73% -9.037.1% -15.777.39% 

JJA -

19.421.19% 

-26.381.36% -

16.5613.81% 

-

25.0815.53

% 

OSN -

13.331.20% 

-17.390.79% -12.859.05% -21.758.62% 
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Figures:  

 

 

Figure 1 Averaged annual snow cover fraction over Northern Hemisphere land area from a) MODIS, b) 

CESM-LE ensemble, c) CMIP5 ensemble, the difference between d) CESM-LE ensemble and MODIS, 5 

e) CMIP5 ensemble and MODIS, f) and g) are the standard deviation of c) and d), respectively. The 

average was taken for period of 2001-2005. 
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Figure 2 Time series of snow area extent (SAE) anomalies from NOAA-CDR, CMIP5 12 models, and 

CESM-LE 40 ensemble members over Northern Hemisphere land area for the period of 1967-2005. The 

spreads of CMIP5 12 models and from CESM-LE 40 ensemble members are shaded. 5 
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Figure 3 Annual time series of a) snow area extent (SAE) anomalies, and b) land surface air temperature 

(LSAT) anomalies over Northern Hemisphere for 1920-2100. The different colors represent the 

simulations from different projects with different scenarios. The shaded represents full spread from 

simulations in both CMIP5 models and CESM ensemble members. Note that “1.5 deg” and “2.0 deg” 5 

represent simulations from 1.5C and 2.0C scenarios, respectively. 
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Figure 4 The annual standard deviation of snow area extent anomaly due to the ensemble variability for 

1920-2100. Results from CESM-LE, CMIP5 historical, RCP2.6, RCP4.5, 1.5C and 2.0C scenarios are 5 

shown.  

  



31 
 

 

 

 

Figure 5 Snow cover fraction (top) and land surface air temperature (bottom) differences between 2071-

2100 and 1971-2000 over Northern Hemisphere land area from a) 1.5deg, b) 2.0 deg, and c) 2.0deg 5 

minus 1.5deg. d)-f) are the land surface air temperature differences correspondingly for a)-c) 

respectively. “hist” is the ensemble mean for 1971-2000 from CESM-LE.   
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Figure 6 Similar as Figure 5, but for the signal-to-ratio (SNR) of snow cover fraction (a-c) and land 

surface air temperature differences (d-f) between 2071-2100 and 1971-2000 over Northern Hemisphere 5 

land area. The SNR was computed as the ratio of change in ensemble mean to the standard deviation 

due to the ensemble variability 
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Figure 7 Pattern correlation a) and the coefficient of determination b) between surface air temperature 

change and snow cover fraction change from 1.5C, 2.0C, RCP2.6, RCP4.5 scenarios. The changes are 5 

computed as the difference between 2071-2100 and 1971-2000. The bar represents the ensemble mean, 

and the vertical line is the standard deviation from 12 models (RCP2.6 and RCP4.5) or 11 CESM 

simulations (1.5C and 2.0C). 


