

1 **Thermodynamics of Saline and Fresh Water Mixing in Estuaries**

2

3 Zhilin Zhang and Hubert H.G. Savenije

4 Department of Water Management, Delft University of Technology, Delft, the Netherlands

5

6 **Abstract**

7 Mixing of saline and fresh water is a process of energy dissipation. The fresh water flow that enters
8 an estuary from the river contains potential energy with respect to the saline ocean water. This
9 potential energy is able to perform work. Looking from the ocean to the river, there is a gradual
10 transition from saline to fresh water and an associated rise of the water level in accordance with the
11 increase of potential energy. Alluvial estuaries are systems that are free to adjust dissipation
12 processes to the energy sources that drive them, primarily the kinetic energy of the tide and the
13 potential energy of the river flow, and to a minor extent the energy in wind and waves. Mixing is
14 the process that dissipates the potential energy of the fresh water. The Maximum Power (MP)
15 concept assumes that this dissipation takes place at maximum power, whereby the different mixing
16 mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with
17 respect to the dispersion coefficient that reflects the combined mixing processes. The resulting
18 equation is an additional differential equation that can be solved in combination with the advection-
19 dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The
20 new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different
21 parts of the world and performs very well.

22

23

24

25 **1. Introduction**

26 Mixing of fresh and saline water in estuaries is governed by the dispersion-advection equation,
27 which results from the combination of the salt balance and the water balance under partial to well-
28 mixed conditions (see e.g., Savenije, 2005). The partially to well-mixed condition applies when the
29 increase of the salinity over the estuarine depth is gradual. The salinity equation reads:

30
$$A_S \frac{\partial S}{\partial t} + Q \frac{\partial S}{\partial x} - \frac{\partial}{\partial x} \left(AD \frac{\partial S}{\partial x} \right) = 0 \quad (1)$$

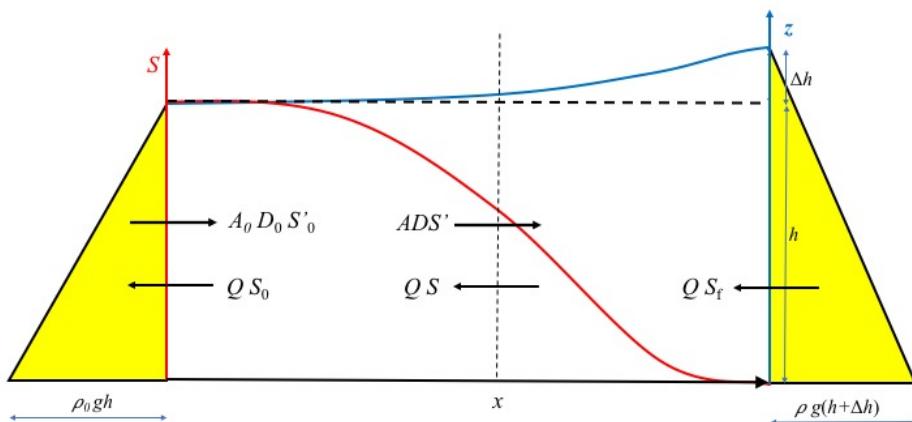
31 Here, S [psu] is the salinity of the water, Q [$L^3 T^{-1}$] is the water flow in the estuary, A [L^2] is the
32 cross-sectional area of the flow (not necessarily equal to the storage cross section A_S), x is the
33 distance from the estuary mouth, and D [$L^2 T^{-1}$] is the dispersion coefficient. The first term reflects
34 the change of the salinity over time as a result of the balance between the advection by the water
35 flow (second term) and the mixing of water with different salinity by dispersive exchange flows
36 (third term). If there is no other source of salinity, then the sum of these terms is zero. If we average
37 this equation over a tidal period, then the first term reflects the long term change of the salinity as a
38 result of the balance between the advection of fresh water from the river and the tidal average
39 exchange flows. In a steady state, where the first term is zero, the equation can be simply integrated
40 with respect to x , yielding:

41
$$Q(S - S_f) - AD \frac{dS}{dx} = 0 \quad (2)$$

42 with the condition that at the upstream boundary $dS/dx = 0$ and $S = S_f$, the salinity of the fresh
43 river water. In the steady state situation the discharge Q then equals the freshwater discharge
44 coming from upstream, which has a negative value moving seaward; similarly the salinity gradient
45 $S' = dS/dx$ is negative with the salinity decreasing in upstream direction. Assuming that in a given
46 estuary the geometry $A(x)$ is known, as well as the observed salinity and discharge of the fresh river
47 water, then this differential equation has two unknowns $D(x)$ and $S(x)$.

48
49
50
51
52
53
54
55
56
57
58
59

In the steady state, the flushing out of salt by the fresh river discharge is balanced by the exchange of saline and fresh water resulting from a combination of mixing processes, which causes an upriver flux of salt. The sketch in Figure 1 presents the system description with a typical longitudinal salinity distribution (in red). It also shows the associated water level (in blue), which has an upstream gradient due to the decreasing salinity. Because of the density difference, the hydrostatic pressures on both sides (in yellow) are not equal. The water level at the toe of the salt intrusion curve is Δh higher, resulting in a seaward pressure difference near the surface and an inland pressure difference near the bottom. Although the hydrostatic forces (the integrals of the hydrostatic pressure distributions) are equal and opposed in steady state, they have different working lines, a distance $\Delta h/3$ apart. This triggers an angular momentum, which drives the gravitational circulation.



60
61
62
63
64

Figure 1. System description of the salt and fresh water mixing in an estuary, with the seaside on the left and the riverside on the right. The water level (blue line) has a slope as a result of the salinity distribution (red line). In yellow are the hydrostatic pressure distributions on both sides. The black arrows show the fluxes. Subscript '0' represents the downstream boundary condition.

65
66
67
68
69
70
71
72
73

The dispersion coefficient of Eq. (2) is generally determined by calibration on observations of $S(x)$, or predicted by (semi-)empirical methods. Providing a theoretical basis for the dispersion coefficient is not trivial. A fundamental question is what this dispersion actually is. Is it a physical parameter, or merely a parameter that follows from averaging the complex turbulent flow patterns in a natural watercourse? MacCready (2004), for instance, was able to derive an analytical expression for the dispersion as a function of the salinity gradient in addition to geometric, hydraulic, and turbulence parameters. But also this derivation required simplifying assumptions.

74
75
76
77
78
79
80

The complication is that there are many different mixing processes at work. One can distinguish: tidal shear, tidal pumping, tidal trapping, gravitation circulation (e.g., Fischer et al., 1979) and residual circulation due to the interaction between ebb and flood channels (Nguyen and Savenije, 2008; Zhang and Savenije, 2017). And these different processes can be split up in many subcomponents. Park and James (1990), for instance, distinguished 66 components, grouped into 11 terms. This reductionist approach, unfortunately, did not lead to more insight.

81
82
83
84

2. Applying thermodynamics to salt and freshwater mixing

Here we take a system's approach, where the assumption is that the different mechanisms are not independent but are jointly at work to reduce the salinity gradient that drives the exchange flows. We use the concept of Maximum Power, as described by Kleidon (2016). Kleidon defines Earth

85 system processes as dissipative systems that do conserve mass and energy, but export entropy.
86 These systems tend to function at maximum power, whereby the power of the system can be
87 defined as the product of a process flux and the gradient driving the flux. The ability to maintain
88 this power (i.e., work through time) in steady state results from the exchange fluxes at the system
89 boundary, and when work is performed at the maximum possible rate within the system
90 (“Maximum Power”), this equilibrium state reflects the conditions at the system boundary. The key
91 parameter describing the process can then be found by maximizing the power.
92

93 From an energy perspective, we see that the freshwater flux, which has a lower density than saline
94 water and, without a counteracting process would float on top of the saline water, adds potential
95 energy to the system; while the tide, which flows in and out of the estuary at a regular pace, creates
96 turbulence, mixes the fresh and saline water and hence works at reducing this potential energy. This
97 is why dispersion predictors are generally linked to the estuarine Richardson number, which
98 represents the ratio of the potential energy of the fresh water entering the estuary to the kinetic
99 energy of the tidal flow.
100

101 In thermodynamic terms, the freshwater flux maintains a potential energy gradient, which triggers
102 mixing processes that work at depleting this gradient. Because the strength of the mixing of fresh
103 and saline water in turn depends on this gradient, there is an optimum where the mixing process
104 performs at maximum power. From a system point of view, it is not really relevant which particular
105 mixing process is dominant, or how these different processes jointly reduce the salinity gradient.
106 What is relevant is how the optimum flux associated with this mixing process, yielding maximum
107 power, depends on the dispersion.
108

109 In our case, the power derived from the potential energy of the freshwater flux is described by the
110 product of the upstream dispersive water flux and the gradient in geopotential height driving this
111 flux, or alternatively, the product of the dispersive exchange flux and the water level gradient. The
112 optimum situation is achieved when the system is in equilibrium state.
113

114 The water level gradient follows from the balance between the hydrostatic pressures of fresh and
115 saline water (see e.g., Savenije, 2005), resulting in:

$$\frac{\partial z}{\partial x} = -\frac{h}{2\rho} \frac{\partial \rho}{\partial x} \quad (3)$$

116 where $z (=h+\Delta h)$ [L] is the tidal average water level (blue line in Figure 1), h [L] is the tidal
117 average water depth (horizontal dash line in Figure 1) and ρ [ML⁻³] is the depth average density of
118 the saline water. The depth gradient is essential for the density driven mixing, but Δh is small
119 compared to h (typically 1.2 % of h). Note that this equation applies to the case where the river flow
120 velocity is small, which is the case when estuaries are well mixed. Otherwise a backwater effect
121 should be included, but this only applies to a situation of high river discharge when the salt intrudes
122 by means of a salt wedge with a sharp interface.
123

124 One can express the density of saline water as a function of the salinity: $\rho = 1000 + \alpha_1 S$ where α_1
125 is a constant with a value of about 25/35, because seawater with a salinity of 35 psu has a density of
126 about 1025 kg/m³. As a result, eq. (3) can be written as:

$$\frac{\partial z}{\partial x} = -\alpha_1 \frac{h}{2\rho} S' \quad (4)$$

127 The upstream dispersive flux is implicit in the salt balance equation (2), which in steady state can
128 be written as:

$$Q(S - S_f) = ADS' \quad (5)$$

132 The left hand term is the salt flux due to the fresh water of the river that pushes back the salt,
 133 whereas the right hand term is the dispersive intrusion of salt due to the exchange flux of the
 134 combined mixing processes (see Figure 1). Writing both sides as water fluxes results in:

135
$$Q = \frac{ADS'}{(S - S_f)} \quad (6)$$

136 The right hand side is the water exchange flux, which is the flux that depletes the gradient. As eq.
 137 (6) shows, in steady state this exchange flux is equal to the fresh water discharge. Combination of
 138 the flux and the gradient leads to the power of the mixing system per unit length (defined as a
 139 positive quantity):

140
$$P = -\rho g Q \frac{\partial z}{\partial x} = \alpha_l Q \frac{gh}{2} S' \quad (7)$$

141 Applying the theory of maximum power to the dispersive process, we need to maximize the power
 142 with regard to the dispersion coefficient, which is the parameter representing the mixing and which
 143 is the main unknown in salt intrusion prediction:

144
$$\frac{dP}{dD} = 0 \quad (8)$$

145 Applying eq. (8) with constant river discharge Q and constant depth h -- the property of an ideal
 146 alluvial estuary, according to Savenije (2005) -- leads to:

147
$$\frac{dS'}{dD} = 0 \quad (9)$$

148 Using the salt balance equation, where $S' = Q(S - S_f)/(AD)$, differentiation leads to:

149
$$\frac{dS'}{dD} = \frac{dS'}{dx} \frac{dx}{dD} = \frac{Q}{AD} \left\{ \frac{S'}{D'} - \frac{A'(S - S_f)}{AD'} - \frac{(S - S_f)}{D} \right\} \quad (10)$$

150 where the prime means the gradient of the parameters with respect to x . Application of eq. (9) then
 151 yields:

152
$$\frac{DS'}{(S - S_f)D'} = \frac{A'D}{AD'} + 1 \quad (11)$$

153 We introduce three length scales: $a = -(A - A_f)/A'$, $s = -(S - S_f)/S'$ and $d = -D/D'$, where a is
 154 the convergence length of an exponentially varying estuary cross section which tends towards the
 155 cross section of the river A_f , s is length scale of the longitudinal salinity variation, and d is length
 156 scale of the longitudinal variation of dispersion. In macro-tidal estuaries, the part of the estuary
 157 where the salt intrusion occurs has a much larger cross section than the upstream river, such that
 158 $A_f \ll A$ and $a \approx -A/A'$. In riverine estuaries, where this is not the case, a factor $\varepsilon = (1 - A_f/A)$ should be
 159 included. All length scales have the dimension of [L]. In an exponentially shaped estuary, the
 160 convergence length a is a constant, but d and s vary with x . It can be shown that the proportion s/d
 161 equals the Van der Burgh coefficient K ($= AD'/Q$) (Van der Burgh, 1972), which in this approach
 162 varies as a function of x , although generally assumed constant (e.g., Savenije, 2005; Zhang and
 163 Savenije, 2017). Using these length scales, eq. (11) can be written as:

164
$$\frac{s}{d} = \frac{a}{a + d\varepsilon} \quad (12)$$

165 or:

166
$$s = \frac{ad}{a + d\varepsilon} \quad (12a)$$

167 or:

168
$$d = \frac{as}{a - s\varepsilon} \quad (12b)$$

169 where in estuaries with a pronounced funnel shape $\varepsilon \approx 1$. Equation (12) is an additional equation to
 170 the salt balance, which in terms of the length scales reads: $s = -AD/Q$. As a result, we have two
 171 differential equations with two unknowns: $S(x)$ and $D(x)$. Adding two boundary conditions at a
 172 given point: S_0 and D_0 would solve the system. The first boundary condition is simply the sea
 173 salinity if the boundary is chosen at the estuary mouth. Then the only unknown parameter left is the
 174 value for the dispersion at the boundary. For this boundary value empirical predictive equations
 175 have been developed which relate the D_0 to the estuarine Richardson number (e.g., by Gisen et al.,
 176 2015), which goes beyond this paper. If observations of salinity distributions are available, then the
 177 value of D_0 is obtained by calibration.

178
 179 What the maximum power equation has contributed is that it provides an additional equation. In the
 180 past, a solution could only be found if an empirical equation was added describing $D(x)$, containing
 181 an additional calibration parameter. In the approach by Savenije (2005) this was the empirical Van
 182 der Burgh equation containing the constant Van der Burgh coefficient K . However, with the new
 183 equation (12), which in fact represents a spatially varying Van der Burgh coefficient, this additional
 184 calibration parameter is no longer required. So this thermodynamic approach replaces the empirical
 185 equation by a new physically based equation and removes a calibration parameter, leaving only one
 186 unknown: the dispersion at a well-chosen boundary condition.

187
 188 **3. Application**

189 The two equations (2) and (12) together can be solved numerically by a simple linear integration
 190 scheme. As boundary condition it requires values for S_0 and D_0 at a well-chosen location. In alluvial
 191 estuaries the cross-sectional area $A(x)$ generally varies according to an exponential function which
 192 often has an inflection point (see for example Figure 2 describing the Maputo Estuary in
 193 Mozambique). The boundary condition is best taken at this inflection point ($x=x_1$) if the estuary has
 194 one. If the estuary has no inflection point, as is the case in the Limpopo estuary (see Figure 3), then
 195 the boundary condition is taken at the estuary mouth ($x=0$).

196 The downstream part of estuaries with an inflection point has a much shorter convergence length,
 197 giving the estuary a typical trumped shape. This wider part is generally not longer than about 10
 198 km, which is the distance over which ocean waves dissipate their energy. Beyond the inflection
 199 point, the shape is determined by the combination of kinetic energy of the tide and the potential
 200 energy of the river flow. If the tidal energy is dominant over the potential energy of the river, then
 201 the convergence is short, leading to a pronounced funnel shape; if the potential energy of the river is
 202 large due to regular and substantial flood flows, then the convergence is large, typical for deltas.
 203 Hence, the topography can be described by two branches:

204
 205
$$A = A_f + (A_0 - A_f) \exp(-x/a_0) \text{ if } 0 < x < x_1 \quad (13)$$

$$A = A_f + (A_1 - A_f) \exp(-(x-x_1)/a_1) \text{ if } x \geq x_1$$

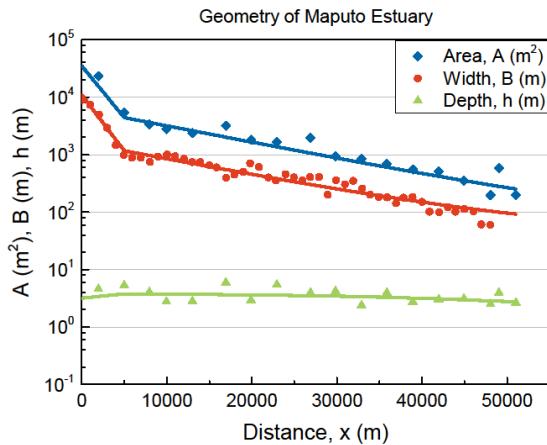
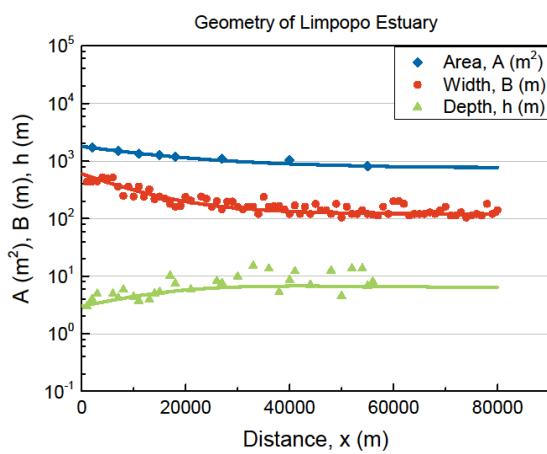
206 where A_0 and A_1 are the cross-sectional areas at $x=0$ and $x=x_1$, respectively, and a_0 and a_1 are the
 207 convergence lengths of the lower and upper segments. In some cases, where ocean waves don't
 208 penetrate the estuary, there is no inflection point and $x_1=0$. The Maputo (see Figure 2) has two
 209 segments, whereas the Limpopo Estuary (see Figure 3), an estuary in Mozambique 200 km north of
 210 the Maputo, is semi-closed by a sand bar and has a single branch. It can also be seen that in the
 211 Limpopo the size of the river cross-section is not negligible and that $\varepsilon < 1$ showing a slight curve in
 212 the exponential functions.

213
 214 Subsequently we have integrated the equations (2) and (12) conjunctively by a simple explicit
 215 numerical scheme in a spreadsheet and confronted the solution with observations. The solutions are
 216 fitted to the data by selecting values for S and D at the boundary condition $x=x_1$ (or at $x=0$ for the

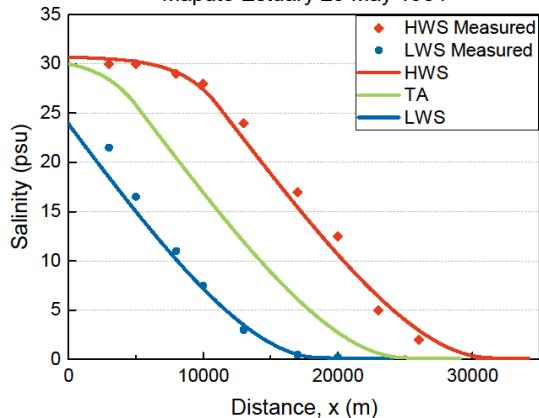
217 Limpopo). Figures 4 and 5 show applications of the solution to selected observations in the Maputo
218 and Limpopo estuaries. In the supplementary material more applications are shown, also for other
219 estuaries in different parts of the world.

220

221



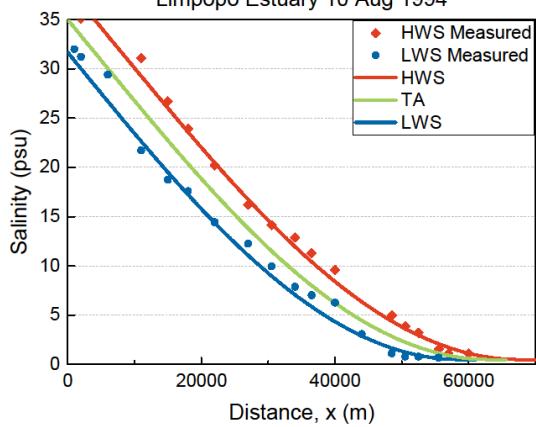
Maputo Estuary 29 May 1984



232

233 **Figure 4. Application of the numerical solution to observations in the Maputo Estuary for high water slack (HWS) and low**
 234 **water slack (LWS). The green line shows the tidal average (TA) condition. The red diamonds reflect the observations at HWS**
 235 **and the blue dots the observations at LWS on 29 May 1984.**

Limpopo Estuary 10 Aug 1994



236

237 **Figure 5. Application of the numerical solution to observations in the Limpopo Estuary for high water slack (HWS) and low**
 238 **water slack (LWS). The green line shows the tidal average (TA) condition. The red diamonds reflect the observations at HWS**
 239 **and the blue dots the observations at LWS on 10 August 1994.**

240
241

242 **4. Discussion and conclusion**
 243 Making use of the Maximum Power (MP) concept, it was possible to derive an additional equation
 244 to describe the mixing of salt and fresh water in estuaries. Together with the salt balance equation
 245 these two first order and linear differential equations only require two boundary conditions (the
 246 salinity and the dispersion at some well-chosen boundary) to be solved. If the estuary has an
 247 inflection point in the geometry, then the preferred boundary condition lies there, otherwise the
 248 boundary condition is chosen at the ocean boundary.

249 This new equation can replace previous empirical equations, such as the Van der Burgh
 250 equation, and does not require any calibration coefficients (besides the boundary conditions). The
 251 new equation appears to fit very well to observations, which adds credibility to the correctness of
 252 applying the MP concept to fresh and salt water mixing.

253 The method presented here is based on a system's perspective, which is holistic rather than
 254 reductionist. Reductionist theoretical methods have tried to break down the total dispersion in a
 255 myriad of smaller mixing processes, some of which are difficult to identify or to connect to
 256 conditions that make them more or less prominent. The idea here is that in a freely adjustable
 257 system, such as an alluvial estuary, individual mixing processes are not independent of each other,
 258 but rather influence each other and jointly work at reducing the salinity gradient at maximum
 259 dissipation. The resulting level of maximum power and dissipation is set by the boundary
 260 conditions of the system. It then is less important which mechanism is dominant, as long as the
 261 combined performance is correct. The maximum power limit is a way to derive this joint
 262 performance of mixing processes. The fact that the relationship derived from maximum power
 263 works so well in a wide range of estuaries, is an indication that natural systems evolve towards
 264 maximum power, much like a machine that approaches the maximum performance of the Carnot
 265 limit.

266
 267 **Appendix A: Notation**
 268

Symbol	Meaning	Dimension	Symbol	Meaning	Dimension
a	cross-sectional convergence length	(L)	Q	fresh water discharge	(L^3T^{-1})
A	cross-sectional area	(L^2)	s	length scale of the salinity variation	(L)
A_f	cross-sectional area of the river	(L^2)	S	salinity	(ML^{-3})
A_s	storage cross-sectional area	(L^2)	S_f	freshwater salinity	(ML^{-3})
B	width	(L)	t	time	(T)
d	length scale of the dispersion variation	(L)	x	distance	(L)
D	dispersion coefficient	(L^2T^{-1})	z	water level	(L)
g	gravity acceleration	(LT^{-2})	α_1	constant	(-)
h	water depth	(L)	ε	factor	(-)
K	Van der Burgh's coefficient	(-)	ρ	density of water	(ML^{-3})
P	power per unit length	(MLT^{-3})	ρ_s	density of sea water	(ML^{-3})

270 Acknowledgements:
271 The authors would like to thank the two reviewers for their valuable comments and two colleagues
272 Xin Tian and Sha Lu for specifying the mathematic concepts. The first author is financially
273 supported for her PhD research by the China Scholarship Council.

274

275 **References:**

276

277 Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J. and Brooks, N. H. (1979) Mixing in Inland
278 and Coastal Waters, Academic Press.

279

280 Gisen, J. I. A., Savenije, H. H. G., and Nijzink, R. C. (2015) Revised predictive equations for salt
281 intrusion modelling in estuaries, *Hydrology and Earth System Sciences*, 19, 2791-2803.

282

283 Kleidon, A. (2016). Thermodynamic foundations of the Earth system, Cambridge University Press.

284

285 MacCready, P. (2004). Toward a unified theory of tidally-averaged estuarine salinity structure.
286 *Estuaries*, 27(4), 561-570.

287

288 Nguyen, A. D., Savenije, H. H. G., van der Wegen, M., and Roelvink, D. (2008) New analytical
289 equation for dispersion in estuaries with a distinct ebb-flood channel system. *Estuarine, coastal and*
290 *shelf science*, 79(1), 7-16.

291

292 Park, J. K. and James, A. (1990) Mass flux estimation and mass transport mechanism in estuaries.
293 *Limnology and Oceanography*, 35(6), 1301-1313.

294

295 Savenije, H. H. G. (2005) Salinity and tides in alluvial estuaries, Elsevier.

296

297 Van der Burgh, P. (1972) Ontwikkeling van een methode voor het voorspellen van zoutverdelingen
298 in estuaria, kanalen en zeeën, *Rijkswaterstaat Rapport*, 10-72.

299

300 Zhang, Z. and Savenije, H.H.G. (2017) The physics behind Van der Burgh's empirical equation,
301 providing a new predictive equation for salinity intrusion in estuaries, *Hydrology and Earth System*
302 *Sciences*, 21, 3287-3305.

303

304

305