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Abstract 6 
Mixing of saline and fresh water is a process of energy dissipation. The fresh water flow that enters 7 
an estuary from the river contains potential energy with respect to the saline ocean water. This 8 
potential energy is able to perform work. Looking from the ocean to the river, there is a gradual 9 
transition from saline to fresh water and an associated rise of the water level in accordance with the 10 
increase of potential energy. Alluvial estuaries are systems that are free to adjust dissipation 11 
processes to the energy sources that drive them, primarily the kinetic energy of the tide and the 12 
potential energy of the river flow, and to a minor extent the energy in wind and waves. Mixing is 13 
the process that dissipates the potential energy of the fresh water. The Maximum Power (MP) 14 
concept assumes that this dissipation takes place at maximum power, whereby the different mixing 15 
mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with 16 
respect to the dispersion coefficient that reflects the combined mixing processes. The resulting 17 
equation is an additional differential equation that can be solved in combination with the advection-18 
dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The 19 
new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different 20 
parts of the world and performs very well.  21 
 22 
 23 
 24 
1. Introduction 25 
Mixing of fresh and saline water in estuaries is governed by the dispersion-advection equation, 26 
which results from the combination of the salt balance and the water balance under partial to well-27 
mixed conditions (see e.g., Savenije, 2005). The partially to well-mixed condition applies when the 28 
increase of the salinity over the estuarine depth is gradual. The salinity equation reads: 29 
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Here, S [psu] is the salinity of the water, Q [L3T-1] is the water flow in the estuary, A [L2] is the 31 
cross-sectional area of the flow (not necessarily equal to the storage cross section AS), x is the 32 
distance from the estuary mouth, and D [L2T-1] is the dispersion coefficient. The first term reflects 33 
the change of the salinity over time as a result of the balance between the advection by the water 34 
flow (second term) and the mixing of water with different salinity by dispersive exchange flows 35 
(third term). If there is no other source of salinity, then the sum of these terms is zero. If we average 36 
this equation over a tidal period, then the first term reflects the long term change of the salinity as a 37 
result of the balance between the advection of fresh water from the river and the tidal average 38 
exchange flows. In a steady state, where the first term is zero, the equation can be simply integrated 39 
with respect to x, yielding: 40 

Q S − S f( )− AD d Sd x = 0    (2) 41 

with the condition that at the upstream boundary d S / d x = 0  and S=Sf, the salinity of the fresh 42 
river water. In the steady state situation the discharge Q then equals the freshwater discharge 43 
coming from upstream, which has a negative value moving seaward; similarly the salinity gradient 44 

xSS /dd'=  is negative with the salinity decreasing in upstream direction. Assuming that in a given 45 
estuary the geometry A(x) is known, as well as the observed salinity and discharge of the fresh river 46 
water, then this differential equation has two unknowns D(x) and S(x). 47 
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 48 
In the steady state, the flushing out of salt by the fresh river discharge is balanced by the exchange 49 
of saline and fresh water resulting from a combination of mixing processes, which causes an upriver 50 
flux of salt. The sketch in Figure 1 presents the system description with a typical longitudinal 51 
salinity distribution (in red). It also shows the associated water level (in blue), which has an 52 
upstream gradient due to the decreasing salinity. Because of the density difference, the hydrostatic 53 
pressures on both sides (in yellow) are not equal. The water level at the toe of the salt intrusion 54 
curve is Δh higher, resulting in a seaward pressure difference near the surface and an inland 55 
pressure difference near the bottom. Although the hydrostatic forces (the integrals of the hydrostatic 56 
pressure distributions) are equal and opposed in steady state, they have different working lines, a 57 
distance Δh/3 apart. This triggers an angular momentum, which drives the gravitational circulation. 58 
 59 

 60 
Figure 1. System description of the salt and fresh water mixing in an estuary, with the seaside on the left and the riverside on 61 
the right. The water level (blue line) has a slope as a result of the salinity distribution (red line). In yellow are the hydrostatic 62 
pressure distributions on both sides. The black arrows show the fluxes. Subscript ‘0’  represents the downstream boundary 63 
condition.  64 

 65 
The dispersion coefficient of Eq. (2) is generally determined by calibration on observations of S(x), 66 
or predicted by (semi-)empirical methods. Providing a theoretical basis for the dispersion 67 
coefficient is not trivial. A fundamental question is what this dispersion actually is. Is it a physical 68 
parameter, or merely a parameter that follows from averaging the complex turbulent flow patterns 69 
in a natural watercourse? MacCready (2004), for instance, was able to derive an analytical 70 
expression for the dispersion as a function of the salinity gradient in addition  to geometric, 71 
hydraulic, and turbulence parameters. But also this derivation required simplifying assumptions. 72 
 73 
The complication is that there are many different mixing processes at work. One can distinguish: 74 
tidal shear, tidal pumping, tidal trapping, gravitation circulation (e.g., Fischer et al., 1979) and 75 
residual circulation due to the interaction between ebb and flood channels (Nguyen and Savenije, 76 
2008; Zhang and Savenije, 2017). And these different processes can be split up in many 77 
subcomponents. Park and James (1990), for instance, distinguished 66 components, grouped into 11 78 
terms. This reductionist approach, unfortunately, did not lead to more insight. 79 
 80 
2. Applying thermodynamics to salt and freshwater mixing 81 
Here we take a system's approach, where the assumption is that the different mechanisms are not 82 
independent but are jointly at work to reduce the salinity gradient that drives the exchange flows. 83 
We use the concept of Maximum Power, as described by Kleidon (2016). Kleidon defines Earth 84 
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system processes as dissipative systems that do conserve mass and energy, but export entropy. 85 
These systems tend to function at maximum power, whereby the power of the system can be 86 
defined as the product of a process flux and the gradient driving the flux. The ability to maintain 87 
this power (i.e., work through time) in steady state results from the exchange fluxes at the system 88 
boundary, and when work is performed at the maximum possible rate within the system 89 
(“Maximum Power”), this equilibrium state reflects the conditions at the system boundary. The key 90 
parameter describing the process can then be found by maximizing the power. 91 
 92 
From an energy perspective, we see that the freshwater flux, which has a lower density than saline 93 
water and, without a counteracting process would float on top of the saline water, adds potential 94 
energy to the system; while the tide, which flows in and out of the estuary at a regular pace, creates 95 
turbulence, mixes the fresh and saline water and hence works at reducing this potential energy. This 96 
is why dispersion predictors are generally linked to the estuarine Richardson number, which 97 
represents the ratio of the potential energy of the fresh water entering the estuary to the kinetic 98 
energy of the tidal flow. 99 
 100 
In thermodynamic terms, the freshwater flux maintains a potential energy gradient, which triggers 101 
mixing processes that work at depleting this gradient. Because the strength of the mixing of fresh 102 
and saline water in turn depends on this gradient, there is an optimum where the mixing process 103 
performs at maximum power. From a system point of view, it is not really relevant which particular 104 
mixing process is dominant, or how these different processes jointly reduce the salinity gradient. 105 
What is relevant is how the optimum flux associated with this mixing process, yielding maximum 106 
power, depends on the dispersion. 107 
 108 
In our case, the power derived from the potential energy of the freshwater flux is described by the 109 
product of the upstream dispersive water flux and the gradient in geopotential height driving this 110 
flux, or alternatively, the product of the dispersive exchange flux and the water level gradient. The 111 
optimum situation is achieved when the system is in equilibrium state. 112 
 113 
The water level gradient follows from the balance between the hydrostatic pressures of fresh and 114 
saline water (see e.g., Savenije, 2005), resulting in:  115 
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where z (=h+Δh) [L] is the tidal average water level (blue line in Figure 1), h [L] is the tidal 117 
average water depth (horizontal dash line in Figure 1) and ρ[ML-3] is the depth average density of 118 
the saline water. The depth gradient is essential for the density driven mixing, but Δh is small 119 
compared to h (typically 1.2 % of h). Note that this equation applies to the case where the river flow 120 
velocity is small, which is the case when estuaries are well mixed. Otherwise a backwater effect 121 
should be included, but this only applies to a situation of high river discharge when the salt intrudes 122 
by means of a salt wedge with a sharp interface. 123 
 124 
One can express the density of saline water as a function of the salinity: S11000 αρ +=   where α1  125 
is a constant with a value of about 25/35, because seawater with a salinity of 35 psu has a density of 126 
about 1025 kg/m3. As a result, eq. (3) can be written as: 127 
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The upstream dispersive flux is implicit in the salt balance equation (2), which in steady state can 129 
be written as: 130 

')( ADSSSQ f =−    (5) 131 
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The left hand term is the salt flux due to the fresh water of the river that pushes back the salt, 132 
whereas the right hand term is the dispersive intrusion of salt due to the exchange flux of the 133 
combined mixing processes  (see Figure 1). Writing both sides as water fluxes results in: 134 
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The right hand side is the water exchange flux, which is the flux that depletes the gradient. As eq. 136 
(6) shows, in steady state this exchange flux is equal to the fresh water discharge. Combination of 137 
the flux and the gradient leads to the power of the mixing system per unit length (defined as a 138 
positive quantity): 139 
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Applying the theory of maximum power to the dispersive process, we need to maximize the power 141 
with regard to the dispersion coefficient, which is the parameter representing the mixing and which 142 
is the main unknown in salt intrusion prediction: 143 
dP
dD

= 0    (8) 144 

Applying eq. (8) with constant river discharge Q and constant depth h -- the property of an ideal 145 
alluvial estuary, according to Savenije (2005) -- leads to: 146 
d S '
dD

= 0    (9) 147 

Using the salt balance equation, where )/()(' ADSSQS f−= , differentiation leads to: 148 
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where the prime means the gradient of the parameters with respect to x. Application of eq. (9) then 150 
yields:  151 
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We introduce three length scales: '/)( AAAa f−−= , '/)( SSSs f−−=  and '/DDd −= , where a is 153 
the convergence length of an exponentially varying estuary cross section which tends towards the 154 
cross section of the river Af, s is length scale of the longitudinal salinity variation, and d is length 155 
scale of the longitudinal variation of dispersion. In macro-tidal estuaries, the part of the estuary 156 
where the salt intrusion occurs has a much larger cross section than the upstream river, such that 157 
Af<<A and a≈-A/A'. In riverine estuaries, where this is not the case, a factor ε=(1-Af /A) should be 158 
included. All length scales have the dimension of [L]. In an exponentially shaped estuary, the 159 
convergence length a is a constant, but d and s vary with x. It can be shown that the proportion s/d 160 
equals the Van der Burgh coefficient K ( QAD /'= ) (Van der Burgh, 1972), which in this approach 161 
varies as a function of x, although generally assumed constant (e.g., Savenije, 2005; Zhang and 162 
Savenije, 2017). Using these length scales, eq. (11) can be written as: 163 
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where in estuaries with a pronounced funnel shape ε≈1. Equation (12) is an additional equation to 169 
the salt balance, which in terms of the length scales reads: QADs /−= . As a result, we have two 170 
differential equations with two unknowns: S(x) and D(x). Adding two boundary conditions at a 171 
given point: S0 and D0 would solve the system. The first boundary condition is simply the sea 172 
salinity if the boundary is chosen at the estuary mouth. Then the only unknown parameter left is the 173 
value for the dispersion at the boundary. For this boundary value empirical predictive equations 174 
have been developed which relate the D0 to the estuarine Richardson number (e.g., by Gisen et al., 175 
2015), which goes beyond this paper. If observations of salinity distributions are available, then the 176 
value of D0 is obtained by calibration. 177 
 178 
What the maximum power equation has contributed is that it provides an additional equation. In the 179 
past, a solution could only be found if an empirical equation was added describing D(x), containing 180 
an additional calibration parameter. In the approach by Savenije (2005) this was the empirical Van 181 
der Burgh equation containing the constant Van der Burgh coefficient K. However, with the new 182 
equation (12), which in fact represents a spatially varying Van der Burgh coefficient, this additional 183 
calibration parameter is no longer required. So this thermodynamic approach replaces the empirical 184 
equation by a new physically based equation and removes a calibration parameter, leaving only one 185 
unknown: the dispersion at a well-chosen boundary condition. 186 
 187 
3. Application 188 
The two equations (2) and (12) together can be solved numerically by a simple linear integration 189 
scheme. As boundary condition it requires values for S0 and D0 at a well-chosen location. In alluvial 190 
estuaries the cross-sectional area A(x) generally varies according to an exponential function which 191 
often has an inflection point (see for example Figure 2 describing the Maputo Estuary in 192 
Mozambique). The boundary condition is best taken at this inflection point (x=x1) if the estuary has 193 
one. If the estuary has no inflection point, as is the case in the Limpopo estuary (see Figure 3), then 194 
the boundary condition is taken at the estuary mouth (x=0). 195 
 196 
The downstream part of estuaries with an inflection point has a much shorter convergence length, 197 
giving the estuary a typical trumped shape. This wider part is generally not longer than about 10 198 
km, which is the distance over which ocean waves dissipate their energy. Beyond the inflection 199 
point, the shape is determined by the combination of kinetic energy of the tide and the potential 200 
energy of the river flow. If the tidal energy is dominant over the potential energy of the river, then 201 
the convergence is short, leading to a pronounced funnel shape; if the potential energy of the river is 202 
large due to regular and substantial flood flows, then the convergence is large, typical for deltas. 203 
Hence, the topography can be described by two branches: 204 
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where A0 and A1 are the cross-sectional areas at x=0 and x=x1, respectively, and a0 and a1 are the 206 
convergence lengths of the lower and upper segments. In some cases, where ocean waves don't 207 
penetrate the estuary, there is no inflection point and x1=0. The Maputo (see Figure 2) has two 208 
segments, whereas the Limpopo Estuary (see Figure 3), an estuary in Mozambique 200 km north of 209 
the Maputo, is semi-closed by a sand bar and has a single branch. It can also be seen that in the 210 
Limpopo the size of the river cross-section is not negligible and that ε<1 showing a slight curve in 211 
the exponential functions. 212 
 213 
Subsequently we have integrated the equations (2) and (12) conjunctively by a simple explicit 214 
numerical scheme in a spreadsheet and confronted the solution with observations. The solutions are 215 
fitted to the data by selecting values for S and D at the boundary condition x=x1 (or at x=0 for the 216 
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Limpopo). Figures 4 and 5 show applications of the solution to selected observations in the Maputo 217 
and Limpopo estuaries. In the supplementary material more applications are shown, also for other 218 
estuaries in different parts of the world. 219 
 220 
  221 
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 222 
Figure 2. Geometry of the Maputo Estuary, showing the cross-sectional area A (blue diamonds), the width B (red dots) and 223 
the depth h (green triangles) on a logarithmic scale, as a function of the distance from the mouth. The inflection point at 224 
x1=5000 m separates the lower segment with a convergence length of a0=2300 m from the upper segment with a1=16000 m. 225 

 226 
 227 

 228 
Figure 3. Geometry of the Limpopo Estuary, showing the cross-sectional area A (blue diamonds), the width B (red dots) and 229 
the depth h (green triangles) on a logarithmic scale, as a function of the distance from the mouth. There is no inflection point, 230 
but the estuary converges exponentially towards the river cross section Af= 800 m2, with a convergence length of 20 km.  231 
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 232 
Figure 4. Application of the numerical solution to observations in the Maputo Estuary for high water slack (HWS) and low 233 
water slack (LWS). The green line shows the tidal average (TA) condition. The red diamonds reflect the observations at HWS 234 
and the blue dots the observations at LWS on 29 May 1984.235 

 236 
Figure 5. Application of the numerical solution to observations in the Limpopo Estuary for high water slack (HWS) and low 237 
water slack (LWS). The green line shows the tidal average (TA) condition. The red diamonds reflect the observations at HWS 238 
and the blue dots the observations at LWS on 10 August 1994. 239 

 240 
  241 
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4. Discussion and conclusion 242 
Making use of the Maximum Power (MP) concept, it was possible to derive an additional equation 243 
to describe the mixing of salt and fresh water in estuaries. Together with the salt balance equation 244 
these two first order and linear differential equations only require two boundary conditions (the 245 
salinity and the dispersion at some well-chosen boundary) to be solved. If the estuary has an 246 
inflection point in the geometry, then the preferred boundary condition lies there, otherwise the 247 
boundary condition is chosen at the ocean boundary.  248 
 This new equation can replace previous empirical equations, such as the Van der Burgh 249 
equation, and does not require any calibration coefficients (besides the boundary conditions). The 250 
new equation appears to fit very well to observations, which adds credibility to the correctness of 251 
applying the MP concept to fresh and salt water mixing. 252 
 The method presented here is based on a system's perspective, which is holistic rather than 253 
reductionist. Reductionist theoretical methods have tried to break down the total dispersion in a 254 
myriad of smaller mixing processes, some of which are difficult to identify or to connect to 255 
conditions that make them more or less prominent. The idea here is that in a freely adjustable 256 
system, such as an alluvial estuary, individual mixing processes are not independent of each other, 257 
but rather influence each other and jointly work at reducing the salinity gradient at maximum 258 
dissipation. The resulting level of maximum power and dissipation is set by the boundary 259 
conditions of the system. It then is less important which mechanism is dominant, as long as the 260 
combined performance is correct. The maximum power limit is a way to derive this joint 261 
performance of mixing processes. The fact that the relationship derived from maximum power 262 
works so well in a wide range of estuaries, is an indication that natural systems evolve towards 263 
maximum power, much like a machine that approaches the maximum performance of the Carnot 264 
limit. 265 
 266 
Appendix A: Notation 267 
 268 
Symbol	 Meaning	

Dimension	 Symbol	 Meaning	 Dimension	
𝑎	

cross-sectional	convergence	
length	

(L)	
𝑄	

fresh	water	discharge	 (L3T-1)	

𝐴	
cross-sectional	area	 (L2)	

𝑠	
length	scale	of	the	salinity	
variation	

(L)	

𝐴!	 cross-sectional	area	of	the	
river	 (L2)	

𝑆	
salinity	 (ML-3)	

𝐴!	 storage	cross-sectional	area	
(L2)	

𝑆!	 freshwater	salinity	
(ML-3)	

𝐵	
width	 (L)	

𝑡	
time	 (T)	

𝑑	
length	scale	of	the	dispersion	
variation	

(L)	
𝑥	

distance	 (L)	

𝐷	
dispersion	coefficient	 (L2T-1)	

𝑧	
water	level	 (L)	

𝑔	
gravity	acceleration	 (LT-2)	

𝛼!	 constant	
(-)	

ℎ	
water	depth	 (L)	

𝜀	
factor	 (-)	

𝐾	
Van	der	Burgh’s	coefficient	 (-)	

𝜌	
density	of	water	 (ML-3)	

𝑃	
power	per	unit	length	 (MLT-3)	

𝜌!	 density	of	sea	water	 (ML-3)	

 269 
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