
We would like to thank referee #1 for his insightful comments and the positive feedback, which we 

have received. Below we reply to the comments in detail.  

1. About the maximization or minimization of the power.  

It is a very relevant question whether 𝑑𝑃/𝑑𝐷 maximizes or minimizes the power. Within the 

community that tries to apply thermodynamic principles to the Earth system there is also 

debate whether some sub-systems operate at maximum or minimum dissipation. Moreover, 

in this case, it is not so easy to determine whether the extreme is a maximum or a minimum. 

The second derivative of the power (i.e., salinity gradient, as in equation (9)) with regard to 

the dispersion coefficient  
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appears to equal zero when 
𝑑𝑃

𝑑𝐷
= 0, and this is the same for the third and fourth derivative. 

So it is a pity that we can't reply to the comment by a mathematic approach.  

 

However, it is believed that whether a sub-system tunes to maximum or minimum power 

depends on the degree of freedom in the system. It is assumed that when the degrees of 

freedom are limited, a sub-system operates at minimum dissipation, but when the system 

has a large degree of freedom, such as the mixing in estuaries where a myriad of different 

mixing mechanisms are at play, the power is maximized. Whether this is correct is not certain, 

but intuitively it appears reasonable. Mixing of fresh and saline water increases the entropy 

of a system. In an estuary there are many degrees of freedom to that effect. The salinity 

gradient can be depleted by gravitational circulation, tidal trapping, tidal pumping, tidal 

shear, and ebb and flood channel shear. These mechanisms are dominant in different parts 

of the estuary and at different times, but also overlap. Surprisingly, the constellation of these 

different mechanisms appears to function as if there was only one mechanism at work. It 

would not be logical that the combination of different mechanisms, all contributing to mixing, 

would minimize the mixing of salt and fresh water. If there is an extreme, then it should be 

the maximum. 

 

2. About the kinetic energy of the river water.  

The kinetic energy of the river water lies outside the saline domain. In alluvial estuaries, the 

contribution of the river flow to the tidal dynamics is minor, particularly in the saline region 

during low flows, when well-mixed salt intrusion occurs. In the domain of interest, the kinetic 

energy of the river is minor. Further upstream, where the estuary becomes riverine, there 

can be a residual backwater, where kinetic energy is absorbed by friction, but in the saline 

area, this contribution is negligible compared to the kinetic energy of the tide. The kinetic 

energy of the tide, in turn, is dissipated by bottom friction. The exponential shape of alluvial 

estuaries is a manifestation of this. In the so-called ideal estuary (with exponential width and 

no bottom slope), the tidal amplitude is constant along the estuary axis and there is a 

balance between amplification due to convergence and dissipation due to friction. As a result, 

the kinetic energy per unit area and the dissipation of kinetic energy per unit area are equally 

distributed over the estuary. 

 

3. About the step from equation (9) to (10).  



The parameters (i.e. 𝐴, 𝐷, and 𝑆) in this research are all tidal-averaged, and they are a 

function of 𝑥 only. The chain rule then implies that 
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About the suggestions made. In the salinity intrusion area (see the supplement of the compilation of 

the geometry), the depth may increase or decrease slightly, but is constant in most cases. So we 

think it is proper to use a flat bottom.   

Below we present the comparison between the new thermodynamic model and the previous Van der 

Burgh model (Zhang and Savenije, 2017) including the longitudinal variation of 𝐷(𝑥) for the Maputo 

and Limpopo estuaries. In the Maputo the boundary condition lies at 𝑥1 = 5000 (m) and in the 

Limpopo at 𝑥1 = 0. 
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The values of R square after the regression between the simulated salinity and observations are: 

Estuary Thermodynamic Van der Burgh 

Maputo 0.98896 0.98978 
Limpopo 0.99331 0.99145 

 

As we can see, the thermodynamic equation works equally well, or even a bit better, than the 

previous model with a constant Van der Burgh coefficient. 

 


