Dear Editor,

Thank you for your positive decision. After the constructive, and positive, remarks of the editors, we replied to their concerns in detail and clarified the points on which misunderstanding was raised in the discussion forum. We have made some corrections in the formulations and made some textual corrections. Also we clarified the descriptions of the figures. Finally, we added a table with notations of the parameters used. The marked-up version shows all the changed made to the original draft.

Thank you again for the review process. We hope that the final version is found in order.

Sincerely, Hubert Savenije Zhilin Zhang

Thermodynamics of Saline and Fresh Water Mixing in Estuaries

Zhilin Zhang and Hubert H.G. Savenije

Department of Water Management, Delft University of Technology, Delft, the Netherlands

Abstract

1

2 3

4 5 6

23

24

7 Mixing of saline and fresh water is a process of energy dissipation. The fresh water flow that enters 8 an estuary from the river contains potential energy with respect to the saline ocean water. This 9 potential energy is able to perform work. Looking from the ocean to the river, there is a gradual 10 transition from saline to fresh water and an associated rise of the water level in accordance with the 11 increase of potential energy. Alluvial estuaries are systems that are free to adjust dissipation 12 processes to the energy sources that drive them, primarily the kinetic energy of the tide and the 13 potential energy of the river flow, and to a minor extent the energy in wind and waves. Mixing is 14 the process that dissipates the potential energy of the fresh water. The Maximum Power (MP) concept assumes that this dissipation takes place at maximum power, whereby the different mixing 15 16 mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with 17 respect to the dispersion coefficient that reflects the combined mixing processes. The resulting 18 equation is an additional differential equation that can be solved in combination with the advection-19 dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different 20 21 parts of the world and performs very well. 22

25 1. Introduction

26 Mixing of fresh and saline water in estuaries is governed by the dispersion-advection equation, 27 which results from the combination of the salt balance and the water balance under partial to well-28 mixed conditions (see e.g., Savenije, 2005). The partially to well-mixed condition applies when the 29 increase of the salinity over the estuarine depth is gradual. The salinity equation reads:

(1)

30
$$A_s \frac{\partial S}{\partial t} + Q \frac{\partial S}{\partial x} - \frac{\partial}{\partial x} \left(AD \frac{\partial S}{\partial x} \right) = 0$$

31 Here, S [psu] is the salinity of the water, $Q [L^{3}T^{-1}]$ is the water flow in the estuary, $A [L^{2}]$ is the 32 cross-sectional area of the flow (not necessarily equal to the storage cross section A_S), x is the distance from the estuary mouth, and $D[L^2T^{-1}]$ is the dispersion coefficient. The first term reflects 33 34 the change of the salinity over time as a result of the balance between the advection by the water flow (second term) and the mixing of water with different salinity by dispersive exchange flows 35 (third term). If there is no other source of salinity, then the sum of these terms is zero. If we average 36 37 this equation over a tidal period, then the first term reflects the long term change of the salinity as a 38 result of the balance between the advection of fresh water from the river and the tidal average 39 exchange flows. In a steady state, where the first term is zero, the equation can be simply integrated 40 with respect to x, yielding:

41
$$Q(S-S_f) - AD\frac{dS}{dx} = 0$$
 (2)

42 with the condition that at the upstream boundary dS/dx = 0 and $S=S_6$ the salinity of the fresh

43 river water. In the steady state situation the discharge Q then equals the freshwater discharge

coming from upstream, which has a negative value moving seaward; similarly the salinity gradient 44 45

S' = dS/dx is negative with the salinity decreasing in upstream direction. Assuming that in a given

46 estuary the geometry A(x) is known, as well as the observed salinity and discharge of the fresh river

47 water, then this differential equation has two unknowns D(x) and S(x).

1

hsavenije 5/1/2018 Deleted: e hsavenije 5/1/2018 0 Deleted: d

Field Code Changed

In the steady state, the flushing out of salt by the fresh river discharge is balanced by the exchange
of saline and fresh water resulting from a combination of mixing processes, which causes an upriver
flux of salt. The sketch in Figure 1 presents the system description with a typical longitudinal
salinity distribution (in red). It also shows the associated water level (in blue), which has an

upstream gradient due to the decreasing salinity. Because of the density difference, the hydrostatic pressures on both sides (in yellow) are not equal. The water level at the toe of the salt intrusion

curve is Δh higher, resulting in a seaward pressure difference near the surface and an inland

pressure difference near the bottom. Although the hydrostatic forces (the integrals of the hydrostatic

pressure distributions) are equal and opposed in steady state, they have different working lines, a distance $\Delta h/3$ apart. This triggers an angular momentum, which drives the gravitational circulation.

59 60 61

57

58

50

Figure 1. System description of the salt and fresh water mixing in an estuary, with the seaside on the left and the riverside on the right. The water level (blue line) has a slope as a result of the salinity distribution (red line). In yellow are the hydrostatic pressure distributions on both sides. The black arrows show the fluxes. <u>Subscript '0' represents the downstream boundary condition</u>.

The dispersion coefficient of Eq. (2) is generally determined by calibration on observations of S(x), or predicted by (semi-)empirical methods. Providing a theoretical basis for the dispersion coefficient is not trivial. A fundamental question is what this dispersion actually is. Is it a physical parameter, or merely a parameter that follows from averaging the complex turbulent flow patterns in a natural watercourse? MacCready (2004), for instance, was able to derive an analytical expression for the dispersion as a function of the salinity gradient in addition to geometric, hydraulic, and turbulence parameters. But also this derivation required simplifying assumptions.

The complication is that there are many different mixing processes at work. One can distinguish: tidal shear, tidal pumping, tidal trapping, gravitation circulation (e.g., Fischer et al., 1979) and

8 residual circulation due to the interaction between ebb and flood channels (Nguyen and Savenije,

9 2008; Zhang and Savenije, 2017). And these different processes can be split up in many

subcomponents. Park and James (1990), for instance, distinguished 66 components, grouped into 11 terms. This reductionist approach, unfortunately, did not lead to more insight.

83 2. Applying thermodynamics to salt and freshwater mixing

Here we take a system's approach, where the assumption is that the different mechanisms are not

independent but are jointly at work to reduce the salinity gradient that drives the exchange flows.
 We use the concept of Maximum Power, as described by Kleidon (2016). Kleidon defines Earth

2

hsavenije 5/1/2018 08:44 Deleted: that

88 system processes as dissipative systems that do conserve mass and energy, but export entropy. 89 These systems tend to function at maximum power, whereby the power of the system can be 90 defined as the product of a process flux and the gradient driving the flux. The ability to maintain 91 this power (i.e., work through time) in steady state results from the exchange fluxes at the system 92 boundary, and when work is performed at the maximum possible rate within the system 93 ("Maximum Power"), this equilibrium state reflects the conditions at the system boundary. The key 94 parameter describing the process can then be found by maximizing the power. 95 96 From an energy perspective, we see that the freshwater flux, which has a lower density than saline 97 water and, without a counteracting process would float on top of the saline water, adds potential 98 energy to the system; while the tide, which flows in and out of the estuary at a regular pace, creates 99 turbulence, mixes the fresh and saline water and hence works at reducing this potential energy. This 100 is why dispersion predictors are generally linked to the estuarine Richardson number, which 101 represents the ratio of the potential energy of the fresh water entering the estuary to the kinetic 102 energy of the tidal flow. 103 104 In thermodynamic terms, the freshwater flux maintains a potential energy gradient, which triggers 105 mixing processes that work at depleting this gradient. Because the strength of the mixing of fresh 106 and saline water in turn depends on this gradient, there is an optimum where the mixing process 107 performs at maximum power. From a system point of view, it is not really relevant which particular mixing process is dominant, or how these different processes jointly reduce the salinity gradient. 108 109 What is relevant is how the optimum flux associated with this mixing process, yielding maximum 110 power, depends on the dispersion. 111

In our case, the power derived from the potential energy of the freshwater flux is described by the
 product of the upstream dispersive water flux and the gradient in geopotential height driving this
 flux, or alternatively, the product of the dispersive exchange flux and the water level gradient. The
 optimum situation is achieved when the system is in equilibrium state.

117The water level gradient follows from the balance between the hydrostatic pressures of fresh and118saline water (see e.g., Savenije, 2005), resulting in:

119
$$\frac{\partial z}{\partial x} = -\frac{h}{2\rho} \frac{\partial \rho}{\partial x}$$
 (3)

120 where $z_{\underline{(=h+\Delta h)}}[L]$ is the tidal average water level (blue line in Figure 1), h[L] is the tidal 121 average water depth (horizontal dash line in Figure 1) and $\rho [ML^{-3}]$ is the depth average density of 122 the saline water. The depth gradient is essential for the density driven mixing, but Δh is small

123 compared to h (typically 1.2 % of h). Note that this equation applies to the case where the river flow

velocity is small, which is the case when estuaries are well mixed. Otherwise a backwater effect should be included, but this only applies to a situation of high river discharge when the salt intrudes by means of a salt wedge with a sharp interface.

128 One can express the density of saline water as a function of the salinity: $\rho = 1000 + \alpha_1 S$ where α_1 129 is a constant with a value of about 25/35, because seawater with a salinity of 35 psu has a density of 130 about 1025 kg/m³. As a result, eq. (3) can be written as:

131
$$\frac{\partial z}{\partial x} = -\alpha_1 \frac{h}{2\rho} S'$$

132 The upstream dispersive flux is implicit in the salt balance equation (2), which in steady state can
133 be written as:

(4)

 $134 \qquad Q(S-S_f) = ADS' \tag{5}$

3

hsavenije 5/1/2018 08:57 Formatted: Font:Not Italic hsavenije 5/1/2018 08:57 Formatted: Font:Not Italic hsavenije 5/1/2018 09:00 Formatted: Font:Italic

151 The left hand term is the shift have due to the fresh water of the river that pushes back the salt,
whereas the right hand side is the vater exchange flux, which is the flux that depletes the gradient. As eq.
(6) shows, in steady state this exchange flux, which is the flux that depletes the gradient. As eq.
(6) shows, in steady state this exchange flux, which is the flux that depletes the gradient. As eq.
(6) shows, in steady state this exchange flux, which is the flux that depletes the gradient. As eq.
(6) shows, in steady state this exchange flux, which is the flux that depletes the gradient. As eq.
(7) Applying the theory of maximum power to the dispersive process, we need to maximize the power
is the main unknown in salt intrusion prediction:
(4)
$$\frac{dT}{dD} = 0$$
 (8)
(4) $\frac{dT}{dD} = 0$ (8)
(4) $\frac{dT}{dD} = 0$ (9)
(10)
(10) $\frac{dS'}{dD} = \frac{dS'}{dx} \frac{dx}{dD} = \frac{Q}{dD} \left[\frac{S'}{D'} - \frac{A(S-S_f)}{dD'} - \frac{(S-S_f)}{D} \right]$ (10)
(10)
(11) $\frac{dS'}{dD} = \frac{dS'}{dx} \frac{dx}{dD} = \frac{Q}{dD} \left[\frac{S'}{D'} - \frac{A(S-S_f)}{dD'} - \frac{(S-S_f)}{D} \right]$ (10)
(12) $\frac{dS'}{(dD)} = \frac{dT}{dDD} \frac{dT}{dD} + 1$ (11)
(13) Where the prime means the gradient of the parameters with respect to x. Application of eq. (9) there
is a constant, but and save youth x. It can be shown that the proportion of $q_{-}(9)$ there
(14) $\frac{dS'}{dD} = \frac{dS'}{dx} \frac{dT}{dD} = \frac{d}{dD} \frac{S'}{D'} - \frac{A(S-S_f)}{dD'} - \frac{(S-S_f)/S'}{D} and d = -D/D'$, where a is
the convergence length of an exponentially varying estuary cross section which tends towards the
result section occurs has a much larger cross section that the proportion of $q_{-}(9)$ their
(16) Gode Changed
(16) Gode Changed
(16) Code Changed

176
$$d = \frac{as}{a - s\varepsilon}$$
 (12b)

177 where in estuaries with a pronounced funnel shape $\varepsilon \approx 1$. Equation (12) is an additional equation to the salt balance, which in terms of the length scales reads: $s = -\overline{AD/Q}$. As a result, we have two 178 179 differential equations with two unknowns: S(x) and D(x). Adding two boundary conditions at a 180 given point: S_0 and D_0 would solve the system. The first boundary condition is simply the sea 181 salinity if the boundary is chosen at the estuary mouth. Then the only unknown parameter left is the value for the dispersion at the boundary. For this boundary value empirical predictive equations 182 183 have been developed which relate the D_0 to the estuarine Richardson number (e.g., by Gisen et al., 2015), which goes beyond this paper. If observations of salinity distributions are available, then the 184 185 value of D_0 is obtained by calibration. 186

What the maximum power equation has contributed is that it provides an additional equation. In the 187 188 past, a solution could only be found if an empirical equation was added describing D(x), containing 189 an additional calibration parameter. In the approach by Savenije (2005) this was the empirical Van 190 der Burgh equation containing the constant Van der Burgh coefficient K. However, with the new 191 equation (12), which in fact represents a spatially varying Van der Burgh coefficient, this additional 192 calibration parameter is no longer required. So this thermodynamic approach replaces the empirical 193 equation by a new physically based equation and removes a calibration parameter, leaving only one 194 unknown: the dispersion at a well-chosen boundary condition. 195

196 3. Application

197 The two equations (2) and (12) together can be solved numerically by a simple linear integration 198 scheme. As boundary condition it requires values for S_0 and D_0 at a well-chosen location. In alluvial 199 estuaries the cross-sectional area A(x) generally varies according to an exponential function which 200 often has an inflection point (see for example Figure 2 describing the Maputo Estuary in 201 Mozambique). The boundary condition is best taken at this inflection point ($x=x_1$) if the estuary has 202 one. If the estuary has no inflection point, as is the case in the Limpopo estuary (see Figure 3), then

203 the boundary condition is taken at the estuary mouth (x=0).

204

205 The downstream part of estuaries with an inflection point has a much shorter convergence length, 206 giving the estuary a typical trumped shape. This wider part is generally not longer than about 10 207 km, which is the distance over which ocean waves dissipate their energy. Beyond the inflection 208 point, the shape is determined by the combination of kinetic energy of the tide and the potential 209 energy of the river flow. If the tidal energy is dominant over the potential energy of the river, then the convergence is short, leading to a pronounced funnel shape; if the potential energy of the river is 210 211 large due to regular and substantial flood flows, then the convergence is large, typical for deltas. 212 Hence, the topography can be described by two branches:

213
$$A = A_f + (A_0 - A_f) \exp(-x/a_0) \text{ if } 0 < x < x_1$$

$$A = A_f + (A_1 - A_f) \exp(-(x - x_1)/a_1) \text{ if } x \ge x_1$$

214 where A_0 and A_1 are the cross-sectional areas at x=0 and $x=x_1$, respectively, and a_0 and a_1 are the

(13)

215 convergence lengths of the lower and upper segments. In some cases, where ocean waves don't 216 penetrate the estuary, there is no inflection point and $x_1=0$. The Maputo (see Figure 2) has two

216 penetrate the estuary, there is no inflection point and $x_1=0$. The Maputo (see Figure 2) has two 217 segments, whereas the Limpopo Estuary (see Figure 3), an estuary in Mozambique 200 km north of

the Maputo, is semi-closed by a sand bar and has a single branch. It can also be seen that in the

Limpopo the size of the river cross-section is not negligible and that $\varepsilon < 1$ showing a slight curve in

- the exponential functions.
- 221

5

Zhilin Zhang 8/1/2018 16:06 Deleted:

hsavenije 5/1/2018 09:15
Deleted: new
Zhilin Zhang 7/12/2017 14:35
Deleted: and
hsavenije 5/1/2018 09:15
Deleted: for
hsavenije 5/1/2018 09:18
Deleted: reduces the number of
hsavenije 5/1/2018 09:18
Deleted: s
hsavenije 5/1/2018 09:17
Deleted: to one: the

- 229 Subsequently we have integrated the equations (2) and (12) conjunctively by a simple explicit
- 230 numerical scheme in a spreadsheet and confronted the solution with observations. The solutions are
- 231 fitted to the data by selecting values for S and D at the boundary condition $x=x_1$ (or at x=0 for the
- Limpopo). Figures 4 and 5 show applications of the solution to selected observations in the Maputo and Limpopo estuaries. In the supplementary material more applications are shown, also for other

estuaries in different parts of the world.

Figure 3. Geometry of the Limpopo Estuary, showing the cross-sectional area A (blue diamonds), the width B (red dots) and the depth h (green triangles) on a logarithmic scale, as a function of the distance from the mouth. There is no inflection point, but the estuary converges exponentially towards the river cross section $A_f = 800 \text{ m}^2$, with a convergence length of 20 km.

Figure 2._Geometry of the Maputo Estuary, showing the cross-sectional area A (blue diamonds), the width B (red dots) and the depth h (green triangles) on a logarithmic scale, as a function of the distance from the mouth. The inflection point at x_i =5000 m separates the lower segment with a convergence length of a_0 =2300 m from the upper segment with a_1 =16000 m.

Unknown Field Code Changed

Unknown Field Code Changed

Figure 4. Application of the numerical solution to observations in the Maputo Estuary for high water slack (HWS) and low water slack (LWS). The green line shows the tidal average (TA) condition. The red diamonds reflect the observations at HWS and the blue dots the observations at LWS on 29 May 1984.

Figure 5. Application of the numerical solution to observations in the Limpopo Estuary for high water slack (HWS) and low water slack (LWS). The green line shows the tidal average (TA) condition. The red diamonds reflect the observations at HWS and the blue dots the observations at LWS on 10 August 1994.

Unknown Field Code Changed

Unknown Field Code Changed

255

257 4. Discussion and conclusion

Making use of the Maximum Power (MP) concept, it was possible to derive an additional equation to describe the mixing of salt and fresh water in estuaries. Together with the salt balance equation these two first order and linear differential equations only require two boundary conditions (the salinity and the dispersion at some well-chosen boundary) to be solved. If the estuary has an inflection point in the geometry, then the preferred boundary condition lies there, otherwise the boundary condition is chosen at the ocean boundary.

This new equation can replace previous empirical equations, such as the Van der Burgh equation, and does not require any calibration coefficients (besides the boundary conditions). The new equation appears to fit very well to observations, which adds credibility to the correctness of applying the MP concept to fresh and salt water mixing.

268 The method presented here is based on a system's perspective, which is holistic rather than 269 reductionist. Reductionist theoretical methods have tried to break down the total dispersion in a 270 myriad of smaller mixing processes, some of which are difficult to identify or to connect to 271 conditions that make them more or less prominent. The idea here is that in a freely adjustable system, such as an alluvial estuary, individual mixing processes are not independent of each other, 272 273 but rather influence each other and jointly work at reducing the salinity gradient at maximum 274 dissipation. The resulting level of maximum power and dissipation is set by the boundary 275 conditions of the system. It then is less important which mechanism is dominant, as long as the 276 combined performance is correct. The maximum power limit is a way to derive this joint performance of mixing processes. The fact that the relationship derived from maximum power 277 278 works so well in a wide range of estuaries, is an indication that natural systems evolve towards 279 maximum power, much like a machine that approaches the maximum performance of the Carnot 280 limit. 281

Appendix A: Notation

<u>Symbol</u>	Meaning	Dimension	Symbol	Meaning	Dimension
а	cross-sectional convergence	<u>(L)</u>	Q	fresh water discharge	<u>(L³T⁻¹)</u>
Α	cross-sectional area	<u>(L²)</u>	S	length scale of the salinity	<u>(L)</u>
A_f	<u>cross-sectional area of the</u> <u>river</u>	<u>(L²)</u>	S	salinity	<u>(ML-3)</u>
A_S	storage cross-sectional area	(L ²)	S _f	freshwater salinity	(ML-3)
В	width	<u> </u>	t	time	(TT)
d	length scale of the dispersion	(L)	x	distance	(L)
D	dispersion coefficient	<u>(L²T⁻¹)</u>	Ζ	water level	<u>(L)</u>
g	gravity acceleration	<u>(LT-2)</u>	α ₁	<u>constant</u>	(-)
h	water depth	<u>(L)</u>	3	factor	(-)
K	Van der Burgh's coefficient	(-)	ρ	density of water	<u>(ML-3)</u>
Р	<u>power per unit length</u>	<u>(MLT-3)</u>	$ ho_s$	density of sea water	<u>(ML-3)</u>

284

282

283

285 <u>Acknowledgements:</u>

- 286 The authors would like to thank the two reviewers for their valuable comments and two colleagues
- 287 Xin Tian and Sha Lu for specifying the mathematic concepts. The first author is financially
- 288 supported for her PhD research by the China Scholarship Council.289

290 References:291

319 320

Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J. and Brooks, N. H. (1979) Mixing in Inland
and Coastal Waters, Academic Press.

Gisen, J. I. A., Savenije, H. H. G., and Nijzink, R. C. (2015) Revised predictive equations for salt
intrusion modelling in estuaries, *Hydrology and Earth System Sciences*, 19, 2791-2803.

298 Kleidon, A. (2016). Thermodynamic foundations of the Earth system. Cambridge University Press.

MacCready, P. (2004). Toward a unified theory of tidally-averaged estuarine salinity structure.
 Estuaries, 27(4), 561-570.

Nguyen, A. D., Savenije, H. H. G., van der Wegen, M., and Roelvink, D. (2008) New analytical
equation for dispersion in estuaries with a distinct ebb-flood channel system. *Estuarine, coastal and shelf science*, 79(1), 7-16.

Park, J. K. and James, A. (1990) Mass flux estimation and mass transport mechanism in estuaries.
 Limnology and Oceanography, 35(6), 1301-1313.

310 Savenije, H. H. G. (2005) Salinity and tides in alluvial estuaries_Elsevier.

312 Van der Burgh, P. (1972) Ontwikkeling van een methode voor het voorspellen van zoutverdelingen
 313 in estuaria, kanalen en zeeen, *Rijkswaterstaat Rapport*, 10-72.

Zhang, Z. and Savenije, H.H.G. (2017) The physics behind Van der Burgh's empirical equation,
providing a new predictive equation for salinity intrusion in estuaries, *Hydrology and Earth System Sciences*, 21, 3287-3305.

Zhilin Zhang 5/1/2018 10:20 Formatted: English (US)

