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Abstract. We apply a computational framework for specifying and solving sequential decision problems to study the impact of

three kinds of uncertainties on optimal emission policies in a stylized sequential emission problem. We find that uncertainties

about the implementability of decisions on emission reductions (or increases) have a greater impact on optimal policies than

uncertainties about the availability of effective emission reduction technologies and uncertainties about the implications of

trespassing critical cumulated emission thresholds. The results show that uncertainties about the implementability of decisions5

on emission reductions (or increases) call for more precautionary policies. In other words, delaying emission reductions to

the point in time when effective technologies will become available is sub-optimal when these uncertainties are accounted for

rigorously. By contrast, uncertainties about the implications of exceeding critical cumulated emission thresholds tend to make

early emission reductions less rewarding.

1 Introduction10

1.1 About this work

In this article we apply the framework for specifying and solving sequential decision problems (SDPs) presented in Botta et al.

(2017b) to understand the impact of uncertainty on optimal greenhouse gas (GHG) emission policies. Specifically, we study

the impact of

1. Uncertainty about the implementability of decisions on GHG emission reductions,15

2. uncertainty about the availability of efficient technologies for reducing GHG emissions,

3. uncertainty about the implications of exceeding a critical threshold of cumulated GHG emissions.

The work is also an application of the computational theory of policy advice and avoidability proposed in Botta et al. (2017a).

The theory supports a seamless approach towards accounting for different kinds of uncertainties and makes it possible to

rigorously assess the logical consequences, among others, the risks, entailed by the implementation of optimal policies. We20

explain what policies are and what it means for a policy sequence to be optimal in section 2.3.
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1.2 Sequential decision problems and climate change

In many decision problems in the context of climate change, decisions have to be taken sequentially: emission rights are issued

year after year, emission reduction plans and measures are iteratively revised and updated at certain (perhaps irregular) points

in time, etc.

In its fourth Assessment Report on Climate Change (2007), the Intergovernmental Panel on Climate Change (IPCC) has5

pointed out that responding to climate change involves “an iterative risk management process that includes both mitigation and

adaptation, taking into account actual and avoided climate change damages, co-benefits, sustainability, equity and attitudes to

risk.”

The paradigmatic example of iterative SDPs in the context of climate change is that of controlling GHG emissions. In GHG

emission control problems, a decision maker or a finite number of decision makers (countries) have to select an emission10

level or, equivalently, a level of emission abatement (reduction) with respect to some reference emissions. The idea is that the

selected abatement level is then implemented, perhaps with some deviations, over a certain period of time. After that period

another decision is taken for the next time period.

Implementing abatements implies both costs and benefits. These are typically affected by different kinds of uncertainties

but the idea is that, for a specific decision maker, a significant part of the benefits come from avoided damages from climate15

change. Avoided damages essentially depend on the overall abatements: higher global abatements lead to less damages and

thus higher benefits. In contrast, costs are very much dependent on the abatement level implemented by the specific decision

maker. Here, higher emission reductions cost more than moderate emission reductions.

It turns out that, when considering a single decision step and for fairly general and realistic assumptions on how costs and

benefits depend on abatement levels, the highest global benefits are obtained if all decision makers reduce emissions by certain20

“optimal” amounts Finus et al. (2003); Helm (2003); Heitzig et al. (2011).

In this situation, however, many (if not all) decision makers typically face a free-ride option: they could do even better if

they themselves would not implement any emission reduction (or, perhaps, if they would implement less reductions) but all the

others would still comply with their quotas. It goes without saying that if all players fail to comply with their optimal emission

reduction quotas, the overall outcome will be unsatisfactory for all or most players.25

This situation is often referred to as an instance of the “Tragedy of the Commons” Hardin (1968) and has motivated a

large body of research, among others, on coalition formation and on the design of mechanisms to deter free-riding. These

studies are naturally informed by game-theoretical approaches and focus on the non-parametric nature of decision making.

The sequentiality of the underlying decision process and the temporal dimension of decision making are traded for analytic

tractability. For a survey, see Heitzig et al. (2011).30

Another avenue of research focuses on the investigation of optimal global emission paths or, as we shall see in section 2.3,

of optimal sequences of global emission policies. Here, the core question is how uncertain future developments, typically, the

introduction of new technologies or the crossing of climate stability thresholds, shall inform current decisions. In a nutshell,
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the problems here are when global emissions should be reduced and by how much given the uncertainties that affect both our

understanding of the earth system and the socio-economic consequences of implementing emission reductions.

In these kinds of studies, the presence of multiple decision makers with possibly conflicting interests and the question of how

emission reductions can actually be implemented is neglected. This makes it possible to apply control theoretical approaches

and to fully account for the temporal dimension of sequential emission games. This is also the approach followed in this work.5

To the best of our knowledge, no theory is currently available for tackling the problem of computing optimal emission policies

for individual countries as a (mixed sequential and simultaneous) coordination game with a finite number of decision makers,

over a finite (but not necessarily known) number of decision steps and under different sources of uncertainty. For a survey of

SDPs under uncertainty in climate change see A. and Darshan (2011); Sonja (2006) and references therein.

1.3 Stylized sequential emission problems10

One can try to understand the impact of uncertainties on optimal emission policies for a specific, real (or, more likely, realistic)

emission problem. This requires, among others, specifying an integrated climate-economy assessment model or, as done in

Webster (2008), some tabulated version of the model underlying the problem. The approach supports drawing conclusions

which are specific for the problem under investigation and is what is typically done in applied policy advice. On the other

hand, studying a specific, realistic problem makes it difficult to draw general conclusions and is well beyond the scope of this15

work.

An alternative approach towards understanding the impacts of uncertainties on optimal policies is to study a “stylized”

emission problem. A stylized emission problem does not attempt at being realistic. Instead, it tries to capture the essential

features of a whole class of problems and supports general instead of specific conclusions. This is the approach followed in

this paper.20

1.4 Notation

In section 5 we apply the theory for specifying and solving SDPs from Botta et al. (2017b, a) to the stylized emission problem

from section 4. The theory is based on the notion of monadic dynamical systems originally introduced in Ionescu (2009). In

this context, monads allows one to treat deterministic, non-deterministic, stochastic, fuzzy, etc. uncertainty with a seamless

approach: the differences are captured by a single problem parameter and all computations are generic with respect to this25

parameter. In a nutshell, the theory is a dependently typed formalization of dynamic programming Bellman (1957). The for-

malization language is Idris, see Brady (2013). For a discussion on why functional, dependently typed languages are the first

choice for implementing such formalizations, see Botta et al. (2017a).

Because the theory is dependently typed, some familiarity with a functional, dependently typed notation is mandatory to

apply it to a specific decision problem. In this paper, we do not assume that our readership is familiar with dependent types and30

functional languages. Thus, in sections 2 to 6 , we have restricted the formalism to the barely minimum. A simplified summary

of the Botta et al. (2017a) theory is provided in appendix A.
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Still, a number of formulas appear in sections 2 to 6. In the rest of this section we introduce the notation used in these

formulas. This is a blend of standard mathematical notation and of standard (Haskell, Idris, Agda, etc.) functional programming

notation.

Thus, for instance, in section 2, we write Technology = {Available,Unavailable} to posit that Technology is a set

that consists of two elements: Avaialable and Unavailable. This is plain set comprehension as in Bool = {False,True},5

A= {7,4,2} or Even= {2 ∗n | n ∈ N}.
Further, in section 2, we write State : (t : N) → Type to posit that “State t denotes the set of states the decision maker

can observe at the t-th decision step”. This is now standard Idris notation. Idris (and Haskell, Agda) follows the usual meaning

of parentheses in mathematics: to enclose a sub-expression to resolve operator precedence. The special notation f(a) for the

value of a function f :A→B at a ∈A (very much used in physics and engineering) uses parentheses in a non-standard way.10

Another possible source of confusion is the signature (type) of the function State . Its domain are values of type N that is,

natural numbers. But its codomain are values of type Type! Thus, for instance a legal definition of State could be

State t = Bool

which posits that State is the constant function that returns the type Bool for every t . Being able to implement functions

that return types is a key feature of dependently typed languages. Among others, it allows one to encode first-order logic15

propositions as types. Thus, for instance

BoundedBy : N → List N → Type

BoundedBy n ms = All (λm⇒m v n) ms

is a legal function definition and a value of type BoundedBy 5 xs is equivalent to a logical proof that all elements of xs are

smaller or equal to 5. Being able to encode logical propositions as types is crucial for implementing programs that can be20

machine checked to be correct. It is also the key for expressing (e.g. modeling) assumptions, conjectures, requirements or

for formalizing domain-specific notions precisely. In sections 2 to 6 we will not make explicit usage of propositional types.

But propositional types are at the core of the theory presented in Botta et al. (2017b, a) and are extensively used there and in

appendix Botta et al. (2017b, a).

Another perhaps unfamiliar aspect of functional notations is currying. In mathematics, a function of n > 1 arguments is25

often implicitly converted to a function that takes as a single argument one n−tuple. In Idris we instead use nested function

application. Thus, if g has type X → (Y → Z ) or simply X → Y → Z we write (g x ) y (or simply g x y because function

application is left-associative) to denote the value (of type Z ) of g x (a function of type Y → Z ) at y : Y 1.

Notice that even though we do not use propositional types in 2 to 6, most functions there are dependently typed. Thus, for

instance, in the signature of Control at page 5, the type of the second argument, State t , depends on the value of the first30

argument, t . We say that Control is dependently typed Norell (2007); Brady (2013, 2017).

1The idea that functions of more than one variable can always be written as functions of just one variable (that return functions as result) was originally

proposed by Schönfinkel in 1924 Schönfinkel (1924) and popularized by Haskell B. Curry in Curry (1958). The operation is since the referred to as currying.

Its inverse is called uncurrying.
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Finally, the Botta et al. (2017b, a) theory applied in this paper is available in the SequentialDecisionProblems

component of Botta (2016–2017). This is a git repository and it is publicly available.

1.5 Outline

In the next section we introduce sequential emission problems and explain what it means for sequences of emission policies

to be optimal. We discuss the most important differences between deterministic (certain) problems and emission problems5

under uncertainty. In section 3 we discuss some important traits of decision making under uncertainty. The discussion is meant

to prepare the specification of the stylized emission problem presented in section 4. In section 5 we study the impact of the

uncertainties (1)–(3) on optimal policy sequences for our stylized problem. We draw preliminary conclusions and outline future

work in section 6.

2 Sequential emission problems10

As anticipated in the introduction, in this work we study the impact of uncertainties on optimal emission polices from a

control theoretical (as opposed to a game theoretical) perspective. Thus, the focus is on a single decision maker and on how

uncertainties affect the questions of when global emissions shall be reduced and by how much as opposed to the question of

how emission reductions can actually be implemented in a situation of mutual competition.

2.1 Sequential emission processes15

If we focus the attention on a single decision maker and on global emissions, sequential emission problems can be described

quite straightforwardly. At the core of any such problems one has a sequential emission process (SEP). Informally, a sequential

emission process can be described in terms of three notions.

The first notion is that of a state. A state represents the information available to the decision maker at a given decision

step. Typically, the state of a decision process consists of a number of aggregated measures. For instance, economic growth20

measures, GHG concentration measures, current emission level, etc.

Often, the information available to the decision maker is imperfect. For instance, for a given measure, the decision maker

might only be able to know a probability distribution instead of a precise value. Another possibility is that the decision maker

only knows that, e.g., a GDP measure lies within certain bounds.

In the stylized sequential emission problem discussed in section 4, for example, the state consists of a tuple of four values.25

These represent an amount of cumulated GHG emissions, an implemented emission level, a level of availability of efficient

technologies for reducing GHG emissions and a state of the world. In that problem, we will assume that the decision maker

can only distinguish between low and high emissions

EmissionLevel = {Low ,High }

and available or unavailable efficient GHG emission reduction technologies30
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Technology = {Available,Unavailable }

Similarly, the state of the world will be just good or bad:

World = {Good ,Bad }

In realistic SEPs, decision makers typically have to select between more than two emission levels, efficient technologies for

reducing GHG emission are available to certain degrees and the state of the world is slightly more multifaceted than just good5

or bad.

The second notion that characterizes a sequential emission process are the controls available to the decision maker. In the

context of climate change studies, controls are often referred to as options, actions or policies. To avoid confusion with the

notion of policy from section 2.3 below, we will call them controls.

In GHG emission problems, controls are often phrased in terms of abatement levels or, equivalently, in terms of maximum10

GHG emissions growth rates. Thus, for instance, in Webster (2000) and over the first decision step (for the time interval

between 2010 and 2019) controls can be one of eight values: 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4. Here, a value of 0.4

represents a maximal emissions growth rate of 0.4%. In the emission problem of section 4, we will further oversimplify this

picture and only consider low and high GHG emissions.

Notice that, in general, not all controls are available in every state and at every decision step. In other words, the abatement15

levels that can be selected in a given state can depend on that specific state. Thus, in our problem from section 4, we allow the

probability of implementing low (high) emissions in the next period to depend on the current emission level. As discussed in

Webster (2008), the probability of implementing low (high) emission levels in the next period is higher if the current emission

are already low (high) than if the current emissions are high (low). This kind of uncertainty account for, among others, the

inertia of legislation and, of course, political instabilities. Thus, one can fully describe the states and the controls of a sequential20

decision process by defining two functions:

State : (t : N) → Type

Control : (t : N) → (x : State t) → Type

The interpretation is as follows: State t denotes the set of states the decision maker can observe at the t-th decision step.

Similarly, Control t x are the controls that are available to the decision maker at decision step t and in state x . Remember that,25

as explained in section 1.4, we denote function application by juxtaposition.

The third notion that characterizes a sequential emission process is that of a transition function. Informally, transition func-

tions describe how states change, at each decision step, as a consequence of the controls selected by the decision maker. Thus,

in a deterministic decision process the transition function has the type

next : (t : N) → (x : State t) → (y : Control t x ) → State (t + 1)30

Again, the interpretation is that for every t : N, x : State t and y : Control t x , next t x y is the new state at decision step

t+1. Notice that the time between two successive decisions does not need to be constant. In a time-dependent decision process,

for instance, there could be a function
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time : (t : N) → Real

with time (t +2)− time (t +1) 6= time (t +1)− time t for all (or, perhaps, only for certain) values of t . In Webster (2000),

for instance, the author investigates two-steps decision problems in which the first period extends over 10 years and the second

period extends over 80 years.

2.2 Sequential emission problems5

A decision process becomes a decision problem when we fully specify the costs and the benefits that are associated with each

transition. This can be done by defining a reward function. A reward function is a function that associates a value, at each

decision step, to every current state, selected control and next state:

reward : (t : N) → (x : State t) → (y : Control t x ) → (x ′ : State (t + 1)) → Val

As usual, we write reward in curried form and reward t x y x ′ : Val denotes the reward of selecting the control y in x at step10

t and ending up in x ′. Typically, Val is R. An obvious question is: Why shall reward explicitly depend on x ′? If x ′ is the next

state

x ′ = next t x y

it seems that (t : N) → (x : State t) → (y : Control t x ) → Val would be a more appropriate signature for reward . The

reason for including a new state x ′ in the signature of reward is uncertainty, as we explain in the following paragraphs. We15

have seen that, in deterministic decision processes, transition functions have the type

(t : N) → (x : State t) → (y : Control t x ) → State (t + 1)

What if the decision process is affected by uncertainties? If selecting an abatement level in a given state has uncertain out-

comes (perhaps because of externalities or because the consequences of implementing certain emission reductions are not fully

understood), it would be unsuitable to describe the decision process in terms of a transition function that returns a single next20

state. In this case, the transition function should return a set of possible next states or a probability distribution of next states.

As detailed in Botta et al. (2017b, a), we can account for different kinds of uncertainties in decision processes with transition

functions of the form

next : (t : N) → (x : State t) → (y : Control t x ) → M (State (t + 1))

where M is a functor. It represents the type of uncertainties underlying the decision process. For deterministic processes, M is25

just the identity functor: M = Id . For stochastic processes, M represents probability distributions. This is the case considered in

this work. Thus, we take M = Prob where Prob X is the type of simple probability distributions2 on X . Therefore, next t x y

is a probability distribution on next states that is, a value of type Prob (State (t +1)). The states in next t x y are those that

can be obtained after decision step t by selecting y in state x . Thus, in a stochastic decision process, selecting a control does

2In a nutshell, simple probability distributions are probability distributions with finite support, see Botta et al. (2017a).
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not yield a unique next state but a whole set of possible next states with their probabilities. Therefore, the reward function has

to explicitly depend on x ′ because this cannot be computed from the current state x and the selected control y unambiguously.

This justifies the signature of reward as given above.

We can summarize the results obtained so far in the observation that stochastic sequential emission problems can be specified

in terms of four functions:5

State : (t : N) → Type

Control : (t : N) → (x : State t) → Type

next : (t : N) → (x : State t) → (y : Control t x ) → Prob (State (t + 1))

reward : (t : N) → (x : State t) → (y : Control t x ) → (x ′ : State (t + 1)) → Val

We define these functions for our stylized emission problem in section 4. For the time being, we need to better understand10

the decision problem that four such functions specify. This is crucial for understanding the notions of policy and of policy

sequence introduced in the next section.

The idea is that, for a fixed number of decision steps, the decision maker seeks controls (emission levels) that maximize a

sum of the rewards obtained over those steps. The emphasis here is on “a sum”: depending on the specific problem at stake,

future rewards might need to be discounted and the way values of type Val are added up might not be completely trivial. As15

explained in detail in Botta et al. (2017a), fully specifying stochastic SDPs requires defining State , Control , next , reward

and choosing a measure for weighting uncertain outcomes. Formally, a measure is just a function that reduces probability

distribution on values to values

meas : Prob Val → Val

The expected value function is probably the most widely used measure in the study of stochastic SDPs. But other measures20

are possible. Depending on the specific problem and on the kind of uncertainties, other measures might be more suitable than

the expected value. Thus, for instance, a risk-averse decision maker might adopt a worst measure rather than relying on the

expected value. It is also conceivable, that a decision maker adopts different measures of uncertainty at different decision steps.

The theory summarized in appendix A can be easily extended to cope with this situation. In section 4, we walk the reader

through the full specification of our stylized emission problem, included uncertainty measures.25

Solving SDPs is not trivial. For this, we instantiate the generic backward induction algorithms presented in Botta et al.

(2017b, a). We do not need to discuss these methods in detail here but, before we move to section 4, it is important to achieve

a good understanding of what it means to solve a stochastic SDP and of what it means for sequences of policies to be optimal.

In the rest of this section, we informally discuss the notions of policy, policy sequence and optimality of policy sequences.

We do so in the context of sequential emission problems but the ideas apply to SDPs in general. In section 3, we discuss a30

number of basic facts about sequential emission problems. These, too, apply to sequential decision problems without loss of

generality.
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2.3 Emission policies

We have pointed out that, in stochastic sequential emission problems, selecting an emission (abatement) level at a given decision

step and in a given state does not usually yield a unique next state. Instead, we obtain a probability distribution on next states.

The distribution encodes the uncertainties associated with the decision process at study. Thus, for instance, the decision maker

might select to reduce emissions by 2% but what actually gets implemented is a smaller reduction, perhaps because of political5

inertia or as a consequence of an increased economic activity.

One consequence of uncertainties is that, even if the decision maker could fix a priori an emission schedule or path3, she

would not know the state obtained after a fixed number of decision steps. This is, again, because each single step yields a

probability distribution on next states, not a single next state.

Thus, the best a decision maker can hope to obtain as a solution of a stochastic sequential emission problem is a sequence10

of rules that tell her which control (abatement level) to select for each decision step and, at that step, for each possible state.

In control theory, such “rules of action” are called policies. This is also the sense in which the word policy has been used in

Botta et al. (2017b, a). The control theoretical notion matches quite well the notion of strategy in game theory Fudenberg and

Tirole (1991), but notice that, in plain English, the term policy is ambiguous: sometimes it is used to denote a plan (course) of

action, sometimes a rule of action, see www.merriam-webster.com/dictionary/policy.15

Here we follow the control theory standard and policy sequences are just sequences of functions, one for each decision step.

A sequence of policies for n+1 decision steps consists of a policy p for the t-th decision step and of a policy sequence ps for

further n steps. Formally we write

(p :: ps) : PolicySeq t (n + 1)

with p : Policy t (n +1) and ps : PolicySeq (t +1) n . Here, :: is the operator that prepends a policy to a (possibly empty)20

policy sequence, see appendix A and sections 3.5, 3.7 and 3.9 of Botta et al. (2017a). More formally, if ps = [p1 ,p2 ,p3 ] then

p :: ps = [p,p1 ,p2 ,p3 ] for all p : Policy t (n +1), ps : PolicySeq (t +1) n .

But what does it mean for a sequence of emission policies to be optimal? The decision maker aims at maximizing the sum

of rewards over a fixed number of steps. Thus, (p :: ps) is an optimal policy sequence for n +1 decision steps iff no other

sequence attains a higher sum of rewards (over n +1 steps) for any given x : State t .25

While fairly intuitive, formalizing this notion of optimality is not completely trivial. This is because, in a stochastic emission

problem, a selected abatement level does not entail a unique next state, as explained above. Thus, for any possible next state

(and, therefore, for any possible value of taking n further decision steps taken with the policies of ps and starting from that

state) we have a corresponding reward and a probability. Such a probability distribution of rewards has to be measured with

meas in order to obtain the value of making n +1 decision steps according to the policy p and to the policy sequence ps .30

In appendix A, we discuss the computation of the value of policy sequences in detail. In order to get an intuition of the

notion of optimality for policy sequences, it is sufficient to recognize that one can precisely define a function

val : (x : State t) → PolicySeq t n → Val

3Strictly speaking, this is impossible because, as we have seen, what are feasible emissions in a given state may depend on that state.

9
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In the theory of SDPs, val is called the value function. As one would expect, val x ps is the value, in terms of the measured

sum of possible rewards, of performing n decision steps with the policy sequence ps and starting in state x . Crucially, val x ps

only depends on State , Ctrl , next , reward , meas and on the rule for adding up rewards.

The value function allows us to give a precise meaning to the intuitive notion of optimality of policy sequences discussed

above. More importantly, it allows us to actually compute optimal sequences of policies, at least for decision problems that5

fulfill certain natural conditions.

Again, a comprehensive discussion of the notion of optimality and of the conditions under which optimal policy sequences

can be computed goes well beyond the scope of this work. We refer the interested reader to appendix A and to Botta et al.

(2017a) and close this section by recalling an often neglected fact on decision making under uncertainty.

A fundamental difference between decision making under deterministic transition functions and decision making under10

uncertainty is that, in the latter case, regret cannot, in general, be avoided. Here, by regret we mean a judgment in hindsight,

often triggered by an unlucky sequence of transitions. Thus, for instance, a system for optimal routing may recommend a

driver to leave a highway in order to avoid an upcoming traffic jam. On the alternative road, the driver may get involved in

a car accident and finally regret having left the highway. Of course, the driver’s regret does not change the fact that leaving

the highway was a best choice (under the problem’s reward function, measure of possible rewards, etc.) at the point in time in15

which she had to make her choice.

In both the deterministic and in the uncertain case, the notion of “best decision” is the same: at, say, decision step t and in

x : State t , a best decision y∗ : Ctrl t x is a decision that cannot be bettered (in terms of sum of possible rewards) given the

decision problem (that is, the functions State , Ctrl , next , reward , the measure meas , and the rule for adding rewards) and a

sequence of policies (optimal or not) for taking n further decisions.20

But when the outcome of a decision step is a probability distribution on next states, we will have many possible trajectories

of length n +1 starting in x instead of just one. In general, there is nothing preventing some of these trajectories to contain

states that make any best decision in x regrettable. This is true even for trajectories of length 1 that is, for n = 0.

3 Logical consequences of SEPs

In this section we discuss some logical consequences of the notions introduced in 2. A first consequence of the notion of25

optimal policy sequence is that optimal decisions may vary over time: a best control at a given step does not need to be a best

control at a subsequent (or previous) step even if the decision maker observes the same state at both decision steps. There is

nothing worrying with this fact: time-inconsistency of optimal policies and Bellman’s principle of optimality Bellman (1957)

are perfectly consistent!

Another consequence of the notions introduced in section 2 is that exploiting available information is crucial in decision30

making under uncertainty. We have seen that, under uncertainty, regret cannot in general be avoided. In spite of this fact,

the notion of optimal policy sequence and of “best” decision are both clear and compelling: optimal policy sequences for
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SEPs provide decision makers with rules for selecting emission levels that, at any decision step, cannot be bettered given the

information available to the decision maker at that step.

The crucial point is exploiting the information available at a given decision step. As seen in section 2, this information is

coded in the notion of State and the mechanism for exploiting such information are policies or action rules. Taking decisions

on the basis of optimal policies is in most cases better than selecting controls according to fixed (ex-ante) action plans. This5

is because, in contrast to fixed action plans, policies provide an action for every possible state that can eventually be reached

(ex-post) at a given decision step. They account for all the information available to the decision maker at that step. Further,

optimal policies entail actions that cannot be bettered.

In section 5, we discuss optimal policies for the emission problem of section 4. Because these policies are computed using

the verified framework presented in Botta et al. (2017b, a), we know (in spite of the uncertainties affecting emission problems,10

for certain!) that the conclusions that we draw for our uncertain emission problem are logical consequences of the problem

specification. Computing optimal policies with a verified implementation is crucial because, in contrast to other properties of

solutions of computational problems, optimality cannot in general be established by testing. This is a well know case in which

proving is (albeit difficult, still) easier than testing, see Ionescu and Jansson (2013).

A third obvious logical consequence of the notions introduced in the previous section is that best controls and optimal15

policies are not, in general, unique. In section 5 we discuss a problem setup in which both increasing and decreasing emissions

is optimal. When applying optimal control to inform policy advice and decision making is important to keep in mind that

optimal policies are not necessarily unique: different optimal emission sequences can yield different sets of possible emission

paths. Decision makers might not be able to distinguish them in terms of measures of possible sums of rewards, but they still

might have reasons to prefer certain optimal emission policies to others. For instance, precautionary approaches might lead20

decision makers to prefer optimal policies that entail low risk levels to high risk optimal policies.

Another logical consequence of decision making under uncertainty is that the value of policies depends not only on the

problem-specific reward function and on the way rewards are added (e.g. via discounting) but also on how the decision maker

weighs uncertain outcomes. This is captured by the measure function meas . Different measures reflect different attitudes or

dispositions, e.g., towards risk.25

As explained in Ionescu (2009), decision makers are free to choose whatever measure they like as far as it fulfills a mono-

tonicity condition. Informally, this condition says that if one increases the Val -values of a probability distribution by any

arbitrary amount (by letting their probabilities unchanged), its measure shall not decrease, see appendix A. The expected value

in much the same way as worst and best case measures fulfill this condition. But notice that, as discovered by Ionescu (2009)

in the context of vulnerability studies, measures that pick up the most (least) probable Val -value of a probability distribution30

do violate the monotonicity condition. It is a responsibility of scientific advisors to make sure that decision making is informed

by meaningful, monotonic measures.
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4 A stylized sequential emission problem

In this and in the next section, we study how optimal sequences of GHG emission policies are affected by:

1. Uncertainty about the implementability of decisions on GHG emission reductions.

2. Uncertainty about the availability of efficient technologies for reducing GHG emissions.

3. Uncertainty about the implications of exceeding a critical threshold of cumulated GHG emissions.5

As anticipated in the introduction, we first specify a stylized sequential emission problem that accounts for all three sources

of uncertainty and yet is simple enough to support investigating the logical consequences of different assumptions on such

uncertainties. In section 5 we discuss the optimal policies obtained for our stylized problem under different assumptions.

We specify our stylized emission problem by instantiating the theory for SDPs summarized in appendix A. Technically, this

is done by defining all the undefined variables in the modules that implement the theory. For the implementation provided10

in the SequentialDecisionProblems component of Botta (2016–2017), these are the undefined variables (holes) in

CoreTheory, FullTheory and in the ancillary modules Utils, CoreTheoryOptDefaults,

FullTheoryOptDefaults, FastStochasticDefaults, TabBackwardsInduction and

TabBackwardsInductionOptDefaults. For a detailed discussion on how to specify a SDP, see Botta et al. (2017a).

In the rest of this section, we skip most technical details and focus on the specification of the emission problem from an ap-15

plicational perspective. A complete implementation of our specification is available in applications/EmissionGame2.

This is a subcomponent of SequentialDecisionProblems in Botta (2016–2017).

As anticipated in the introduction, we specify our stylized emission problem as a stochastic SDP. Thus, M = Prob. We have

to define the four functions State , Control , next and reward introduced in section 2. We start by defining the controls, that is

the options available to the decision maker.20

4.1 Controls

In our stylized emission problem, at each decision step, the decision maker can only select between low and high GHG

emissions. Thus,

Control t x = LowHigh

where LowHigh is a type inhabited by only two values: Low and High . The idea is that low emissions, if actually implemented,25

increase the cumulated GHG emissions less than high emissions.

4.2 States

At each decision step, the decision maker has to choose between low and high emission levels on the basis of four data:

a measure of cumulated GHG emissions, the current emission level (itself either low or high), the availability of effective
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technologies for reducing GHG emissions and a “state of the world”. Effective technologies for reducing GHG emissions can

be either available or unavailable. The state of the world can be either good or bad:

State t = (CumulatedEmissions t ,LowHigh,AvailableUnavailable,GoodBad)

The idea is that the decision process starts with zero cumulated emissions, high emission levels, unavailable GHG technologies

and with the world in a good state. In these conditions, the probability for the world to turn to the bad state is low. But if the5

cumulated emissions increase beyond a fixed critical threshold, the probability that the world becomes bad increases. If the

world is in the bad state, there is no chance to come back to the good state. Similarly, the probability that effective technologies

for reducing GHG emissions become available increases after a fixed number of decision steps. Once available, effective

technologies stay available for ever.

In a realistic problem, the capability of actually implementing a decision on a given GHG emission level typically depends10

on a variety of factors. In our stylized problem, we follow Webster (2000, 2008) and focus on the uncertainties about the

implementability of decisions on GHG emission reductions that come from inertia: implementing low emissions is easier

when low emission measures are already in place than when the current emissions are high. Similarly, implementing high

emission measures is easier if the current emissions are high than under low emissions regulations.

4.3 Transition function15

We have defined State t to be a tuple of values representing cumulated GHG emissions, the current emission level, the avail-

ability of effective technologies for reducing GHG emissions and the state of the world at decision step t . As our stylized

emission problem is stochastic, its transition function at decision step t yields a probability distribution on values of type

State (t +1).

The idea is that low emission levels leave the cumulated emissions unchanged and high emissions increase the cumulated20

emissions. Without loss of generality, we can take such increase to be one. We have mentioned that the probability of the state

of the world to become bad depends on a critical cumulated emissions threshold. Let’s call this threshold crE

crE : Double

and let pS1 and pS2 the probabilities of staying in a good world when the cumulated emissions are smaller or equal to crE

and greater than crE , respectively:25

pS1 : NonNegDouble

pS2 : NonNegDouble

Thus, the probabilities of getting into a bad world below and above the threshold are 1− pS1 and 1− pS2 , respectively. As a

sanity check, we require pS2 to be less or equal to pS1 .

Next, we have to specify the uncertainties about the availability of efficient technologies for reducing GHG emissions. This,30

too, can be done in terms of a critical number of decision steps
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crN : N

and of two probabilities: the probability of effective technologies for reducing GHG emissions becoming available when the

number of decision steps is below or at crN and the probability for the case in which t is above crN :

pA1 : NonNegDouble

pA2 : NonNegDouble5

Also for these probabilities we need a sanity check: pA1 shall be at most equal to pA2 . Finally, we have to specify the

uncertainties about the implementability of decisions on GHG emission reductions. Following the discussion in the previous

section, we do so in terms of four conditional probabilities. These are the probability of implementing low emission measures

when the current emissions measures are low and low emissions are selected pLL, the probability of implementing low emission

measures when the current emissions measures are high and low emissions are selected pLH and their counterparts for high10

emissions:

pLL : NonNegDouble

pLH : NonNegDouble

pHL : NonNegDouble

pHH : NonNegDouble15

Also for these probabilities, we require two sanity checks to be fulfilled: pLH shall not exceed pLL and pHL shall not exceed

pHH . With these parameters in place, the transition function next can be implemented by cases. For a full implementation, we

refer the reader to applications/EmissionGame2. As an example we discuss here the case in which the current state is

x = (e,High,Unavailable,Good)

the decision maker has opted for low emissions, e is smaller or equal to crE and t is smaller or equal to crN . In this case, the20

result of next t x Low is a probability distribution with the following assignments:

(e, Low ,Unavailable,Good)⇒ pLH ∗ (one − pA1 ) ∗ pS1

(e + 1,High,Unavailable,Good)⇒ (one − pLH ) ∗ (one − pA1 ) ∗ pS1

(e, Low , Available, Good)⇒ pLH ∗ pA1 ∗ pS1

(e + 1,High, Available, Good)⇒ (one − pLH ) ∗ pA1 ∗ pS125

(e, Low ,Unavailable, Bad) ⇒ pLH ∗ (one − pA1 ) ∗ (one − pS1 )

(e + 1,High,Unavailable, Bad) ⇒ (one − pLH ) ∗ (one − pA1 ) ∗ (one − pS1 )

(e, Low , Available, Bad) ⇒ pLH ∗ pA1 ∗ (one − pS1 )

(e + 1,High, Available, Bad) ⇒ (one − pLH ) ∗ pA1 ∗ (one − pS1 )

Similarly for the other cases. Notice that the marginal probability of the new state to enter a bad world is one − pS1 , as one30

would expect. Similarly, the probability of effective technologies for reducing GHG emissions becoming available is pA1 (we

are considering the case t 6 crN ) and the probability of implementing low emission measures is pLH as the current emission

levels are high.
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4.4 Reward function

To complete the specification of our stylized emission problem, we have to define the reward function and the measure

meas : Prob Val → Val

according to which the decision maker weights uncertain outcomes. Unless stated otherwise, we will take Val to be NonNegDouble

(non-negative double precision floating point numbers) and meas to be the expected value function. In this section we focus5

the attention on the reward function

reward : (t : N) → (x : State t) → (y : Control t x ) → (x ′ : State (t + 1)) → Val

The idea is that being in a good world yields one unit of benefits per step and being in a bad world yields less benefits. We can

formalize this idea by introducing a dimensionless number

badOverGood : NonNegDouble10

which represents the ratio between the step benefits in a bad world and the step benefits in a good world. It goes without saying

that a constant ratio is a very crude approximation that can only be justified in a stylized problem. In sequential emission

problems aiming at informing decision making under realistic conditions, the costs and the benefits of not transgressing global

emission thresholds are likely to be time dependent and have to be carefully estimated, e.g., by running global climate models

coupled with economic models and perhaps energy models. Unless otherwise stated, we will take badOverGood to be equal15

to 0.5. Of course, we require the badOverGood ratio to be smaller or equal to one.

Emitting GHGs also brings step benefits, e.g. by supporting economic growth. These can be represented as a fraction of

the step benefits of being in a good world. Moreover, low emissions bring less benefits (higher costs) than high emissions and

reducing emissions when effective technologies are unavailable costs more than reducing emissions when such technologies

are available. We can summarize this state of affairs in terms of three dimensionless numbers. A first number represents the20

ratio between the step benefits of low emissions and the step benefits in a good world when effective technologies for reducing

GHG emissions are unavailable

lowOverGoodUnavailable : NonNegDouble

A second number represents the same ratio when effective technologies are available

lowOverGoodAvailable : NonNegDouble25

and, finally, the ratio between the step benefits obtained through high emissions and the step benefits in good worlds

highOverGood : NonNegDouble

We require both lowOverGoodUnavailable, lowOverGoodAvailable and highOverGood to be smaller or equal to one,

lowOverGoodUnavailable to be smaller or equal to lowOverGoodAvailable and the latter to be smaller or equal to

15



highOverGood . With these notions in place, we can easily implement the reward function of our stylized emission prob-

lem. The idea is that the rewards only depend on the next state (the state during the period starting with the current decision)

not on the current state or on the selected control. We have 8 cases with the following assignments

(e,High,Unavailable,Good)⇒ one + one ∗ highOverGood

(e,High,Unavailable, Bad) ⇒ one ∗ badOverGood + one ∗ highOverGood5

(e,High, Available, Good)⇒ one + one ∗ highOverGood

(e,High, Available, Bad) ⇒ one ∗ badOverGood + one ∗ highOverGood

(e, Low ,Unavailable,Good)⇒ one + one ∗ lowOverGoodUnavailable

(e, Low ,Unavailable, Bad) ⇒ one ∗ badOverGood + one ∗ lowOverGoodUnavailable

(e, Low , Available, Good)⇒ one + one ∗ lowOverGoodAvailable10

(e, Low , Available, Bad) ⇒ one ∗ badOverGood + one ∗ lowOverGoodAvailable

In summary, the parameters that define the reward function of our stylized emission problem, their default values and sanity

constraints are:

parameter value constraints

badOverGood 0.5 badOverGood 6 1

highOverGood 0.3 highOverGood 6 1

lowOverGoodAvailable 0.2 lowOverGoodAvailable 6 highOverGood

lowOverGoodUnavailable 0.1 lowOverGoodUnavailable 6 lowOverGoodAvailable

Table 1. Reward function: parameters, default values and sanity constraints.

Completing the specification of our problem and computing optimal sequences of emission policies requires filling in some

more details. These are annotated and discussed in applications/EmissionGame2. They are pertinent to the notions15

of reachability, viability, finiteness and decidability. These notions are crucial for understanding the problem of computing

optimal policies under uncertainty but their discussion would go well beyond the scope of this work. We refer the interested

reader to Botta et al. (2017a).

5 Optimal policies

In this section we discuss optimal emission policies for the stylized emission problem of section 4 and study the impact of20

the uncertainties (1)–(3) on such policies. As explained in section 3, the computed policies have been machine-checked to be

optimal. Thus, they only depend on our problem specification. This is simple enough to allow deducing some general properties

that optimal decisions — decisions taken according to optimal policy sequences — have to fulfill.

A first one is that no optimal policy sequence can require selecting low emissions when the state of the world is bad. This is

because, as posited in section 4, there is no way to make a transition from a bad world to a good world and, in a bad world in25
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much the same way as in a good world, higher emissions bring more emission benefits. In other words, reducing emissions can

only pay off if it makes it possible (albeit not certain) to avoid transitions to a bad world, if perhaps only for a limited number

of steps. Once such a transition has taken place, reducing emissions is pointless. A consequence of this matter of facts is that in

the last step it is always optimal to select high emissions. In a realistic emission problem, one could easily prevent this situation

by introducing a suitable “unsustainability” penalty in the reward function at the last decision step.5

We do not need to deal with such complications here but it is perhaps useful to point out that very often, seemingly natural

and innocuous assumptions (in this case, that the number of decision steps is finite and known to the decision maker) can

have non-trivial consequences on “best” decisions. Thus, for instance, the rate at which rewards are discounted in integrated

assessment models of climate change typically has a severe impact on optimal emission policies. Thus, in policy advice, it is

crucial to apply theories that require all assumptions to be made explicitly. This was one of the guiding criteria in developing10

the theory of policy advice and avoidability discussed in Botta et al. (2017a).

Unless specified, we consider 9 decision steps with crE = 4 and crN = 2. Thus, it takes at least 5 decision steps (and 5

periods with high emissions) to achieve states in which the sum of the cumulated emissions exceeds crE and, therefore, the

probability of a transition to a bad world increases from pS1 to pS2 . Similarly, with crN = 2, it takes 3 decision steps to

achieve states in which the probability that effective technologies for reducing GHG emissions become available increases15

from pA1 to pA2 .

In other worlds, if pS1 = pA1 = 0 and pS2 = pA2 = 1, effective technologies will be available (with certainty) after 4

decision steps. And after 5 periods of high emissions, a transition to a bad world will occur. This is the deterministic base case

studied in the next section.

5.1 The deterministic base case20

Before studying the impact of uncertainties on optimal policies, we consider the certain case. Beside pS1 = pA1 = 0 and

pS2 = pA2 = 1 we also have pLL= pLH = pHL= pHH = 1. Thus, there is no uncertainty about the implementability of

emission measures: decisions of reducing or increasing emissions are implemented with probability one.

Notice that the absence of whatsoever uncertainties implies that, for any initial state and policy sequence (optimal or not)

there is exactly one possible state-control trajectory. Namely that determined by that policy sequence. Thus, for instance, if25

we start in (0,H,U,G) (zero cumulated emissions, high emissions, unavailable efficient technologies and a good world) and

adopt the policy of constantly increasing emissions, we obtain the state-control trajectory

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H),

((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B), )]

with probability one. The sum of rewards associated to this “certain” trajectory is 9.7: these result from five periods in a good

world (step benefits equal to one), 4 periods in a bad world (step benefits 0.5) and 9 periods of high emissions (emission

benefits per step of 0.3). As expected, efficient technologies for reducing GHG emissions become available at decision step 430

(after 4 decisions) and the transition to a bad world takes place after 5 periods of high emissions and 6 decisions. We can do a

little bit better by selecting low emissions at every step. In this case the state-control trajectory is
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[((0,H,U,G),L), ((0,L,U,G),L), ((0,L,U,G),L), ((0,L,U,G),L), ((0,L,A,G),L),

((0,L,A,G),L), ((0,L,A,G),L), ((0,L,A,G),L), ((0,L,A,G),L), ((0,L,A,G), )]

What are optimal policy sequences like in the certain case? The intuition is that, in at least 4 decision steps, emissions should

be high. This yields higher rewards at no risk of getting into a bad world. One would also expect that lower emissions are

selected (and implemented with certainty) in states in which efficient technologies for reducing GHG emissions are available.

The trajectory associated with an optimal sequence of policies

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),L),

((4,L,A,G),L), ((4,L,A,G),L), ((4,L,A,G),L), ((4,L,A,G),H), ((5,H,A,G) )]

shows that such intuition is correct. The sum of rewards associated to this trajectory is 11.3. By selecting low emission starting5

from the fifth decision step, the optimal policy guarantees that the world stays in the good state. At the last decision step, high

emissions are selected, as anticipated.

The computation supports the intuition that, in a world without uncertainties, it is best delaying emission reductions until

efficient technologies become available. Of course, this requires knowing the critical number of decision steps crN .

5.2 The impact of uncertainties about the implementability of decisions on emission reductions.10

What happens to optimal policies if we factor in uncertainties about the implementability of decisions on emission reductions

or increases?

Let’s consider the case in which the probability of implementing low emission measures in the next period is higher if the

current emissions are already low than in the case in which the current emissions are high. Conversely, the probability of

implementing high emission in the next period is higher if the current emissions are high. In other words, we have pLH <15

pLL and pHL< pHH instead of pLL= pLH = pHL= pHH = 1. Specifically, consider optimal policies for the case pLL=

pHH = 0.9 and pLH = pHL= 0.7.

Our decision problem is now not anymore deterministic. Thus, a policy (optimal or not) entails a whole set of possible future

state-control trajectories. More precisely, we have 29 = 512 possible trajectories: we take 9 decision step and, at every decision

step and no matter whether we select low or high emissions, we have two possible outcomes. Now, the “business as usual”20

policy of always selecting high emissions yields the trajectory

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H),

((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B), )]

with probability 0.99 ≈ 0.387. The two next most likely trajectories are

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H),

((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((8,L,A,B) )]

and

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H),

((4,L,A,G),H), ((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B), )]
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with probabilities of 0.043 and 0.033. The expected sum of rewards (remember that meas is the expected value function) is

9.904. The computed optimal policies for the same problem yield the trajectory

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),L), ((2,L,U,G),L), ((2,L,A,G),L),

((2,L,A,G),L), ((2,L,A,G),H), ((3,H,A,G),H), ((4,H,A,G),H), ((5,H,A,G), )]

with probability 0.234. The two next most likely trajectories are

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),L), ((3,H,U,G),L), ((3,L,A,G),L),

((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),H), ((4,H,A,G),H), ((5,H,A,G), )]

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),L), ((2,L,U,G),L), ((2,L,A,G),L),

((2,L,A,G),L), ((2,L,A,G),H), ((2,L,A,G),H), ((3,H,A,G),H), ((4,H,A,G), )]

both with probability 0.078. The expected sum of rewards (remember that meas is the expected value function) is 11.085.

Notice that, under uncertainties about the implementability of decisions on emission reductions or increases, optimal policies5

dictate more precautious best decisions: instead of waiting for efficient technologies for reducing GHG emissions to become

available, optimal decision making requires starting to reduce emissions after only two decision steps.

The fact that higher uncertainties about the implementability of decisions on emission reductions or increases lead to more

precautionary optimal policies is confirmed by computing optimal policies for the case pLL= pHH = 0.7 and pLH = pHL=

0.5. In this case optimal policies dictate low emissions in the first decision steps for the three most likely possible trajectories.10

This is still true in the limit pLL= pHH = 0.5+ ε for ε> 0, ε −→ 0 although the advantage of optimal policies against non-

optimal policies (e.g. business as usual policies) in terms of expected rewards tends to zero as ε goes to zero.

In the limit case in which the decision maker has no power to enforce its emission decisions for the next period and pLL=

pHH = pLH = pHL= 0.5, any policy sequence is optimal, as one would expect. As discussed in section 3, this is an example

of non-uniqueness of optimal policies.15

5.3 The impact of uncertainties about the availability of efficient technologies for reducing GHG emissions

What if the probability of efficient technologies becoming available after 3 decision steps is less than one and there is a small

but not zero probability that such technologies become available before 3 decision steps?

With the same uncertainties as in 5.2 (pLL= pHH = 0.9 and pLH = pHL= 0.7) and pA1 , pA2 equal to 0.1 and 0.9 instead

of 0 and 1, we have now 2n ∗ (n+1) possible trajectories4 for n decision steps. Thus, for n = 9, we have 5120 trajectories20

instead of just 512. The “business as usual” policy of always selecting high emissions yields the same most likely trajectory

4At each decision step, a possible state in which efficient technologies are not available, say a U-state, entails 4 possible next states: two in which efficient

technologies are available and two in which they are not. A possible state in which efficient technologies are available (an A-state) only entails 2 possible

next states because once technologies become available they stay available in all possible future states. Thus, after one decision step, we have two possible

U-states and two possible A-states. After two decision steps, we have four possible U-states and eight possible A-states. After three decision steps we have

eight possible U-states and twenty-four possible A-states. And so on.

19



and a slightly higher expected sum of rewards: 9.91. The computed optimal policies also yield the same most likely trajectories

as in 5.2 although with lower probabilities, of course. The expected sum of rewards is 11.102.

Thus, perhaps surprisingly, uncertainties on the availability of efficient technologies for reducing GHG emissions have little

impact on optimal decisions, at least when compared to the impact of uncertainties about the implementability of decisions on

emission reductions.5

5.4 The impact of uncertainties about the implications of exceeding a critical threshold of cumulated GHG emissions.

So far we have assumed that, if the critical cumulated GHG emissions threshold crE was exceeded, the world would turn to a

bad state with probability one. Conversely, for cumulated emissions below the crE , the probability of a transition into a bad

world was zero.

What if we assume a 10% probability of turning to a bad world for cumulated emissions below the crE and a 10% chance10

of staying in a good world above the critical threshold?

Adding these uncertainties to the certain “base” case yield 10 possible trajectories. These correspond to transitions to a bad

world in the first, second, . . . and ninth decision step. In this scenario, always selecting high emissions yields the trajectory of

the certain case

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H),

((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B), )]

with probability 0.531. The expected sum of possible rewards is lower than in the certain case: 9.076. Similarly, optimal policies15

under uncertainty about the implications of exceeding crE yield the possible trajectory

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),L),

((4,L,A,G),L), ((4,L,A,G),L), ((4,L,A,G),L), ((4,L,A,G),H), ((5,H,A,G), )]

with probability 0.387. In the certain case, this was also “the” (certain) optimal trajectory. The expected sum of possible rewards

is 9.731: much lower than in the certain case but still better than for the “business as usual” policies.

These results suggest that, as for the case of uncertainties about the availability of efficient technologies, uncertainties about

the implications of exceeding crE do not affect optimal policies substantially: the intuition that lower emissions should be20

selected (and implemented with certainty) in states in which efficient technologies for reducing GHG emissions are available

still holds.

Adding uncertainties about the implications of exceeding crE on the top of uncertainties about the implementability of de-

cisions and of uncertainties about the availability of efficient technologies also does not change substantially the understanding

obtained in section 5.2 and 5.3. But it brings some new unexpected results.25

With pLL= pHH = 0.9, pLH = pHL= 0.7, pA1 = 0.1, pA2 = 0.9 and pS1 = 0.9, pS2 = 0.1 one obtains 51200 possible

trajectories. For “business as usual” policies, the most likely is the usual

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H),

((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B), )]
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with probability 0.135. Remember that, in absence of uncertainty about the implications of exceeding crE the three most likely

trajectories were

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),L), ((2,L,U,G),L), ((2,L,A,G),L),

((2,L,A,G),L), ((2,L,A,G),H), ((3,H,A,G),H), ((4,H,A,G),H), ((5,H,A,G), )]

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),L), ((3,H,U,G),L), ((3,L,A,G),L),

((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),H), ((4,H,A,G),H), ((5,H,A,G), )]

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),L), ((2,L,U,G),L), ((2,L,A,G),L),

((2,L,A,G),L), ((2,L,A,G),H), ((2,L,A,G),H), ((3,H,A,G),H), ((4,H,A,G), )]

with associated rewards 11.2, 11.3, 11.1 and probabilities 0.154, 0.051 and 0.051. The expected sum of possible rewards was

11.102. Adding 10% of uncertainty about the implications of exceeding crE yields

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),L), ((3,L,A,G),L),

((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),H), ((4,H,A,G),H), ((5,H,A,G),)]

[((0,H,U,G),H), ((1,H,U,B),H), ((2,H,U,B),H), ((3,H,U,B),H), ((4,H,A,B),H),

((5,H,A,B),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B), )]

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,B),H), ((3,H,U,B),H), ((4,H,A,B),H),

((5,H,A,B),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B), )]

with expected rewards 11.3, 7.2, 7.7 and probabilities 0.059, 0.025 and 0.023, respectively. The expected sum of possible5

rewards is 9.543. Now, optimal policies for the most likely trajectory require postponing emission reductions by one step: low

emission are selected starting from t = 3 instead of t = 2.

Notice that the optimal policies require constant high emissions both for the second and for the third most likely trajectories!

This is because, in these trajectories, the world enters a bad state right after the first decision step (second trajectory) or after

the second decision step (third trajectory). Indeed, the rewards associated to the second and to the third trajectories (7.2 and10

7.7, respectively) are significantly lower than the rewards associated to the most likely trajectory (11.3).

Notice also that, even though the probability of transitions into a bad world is only 0.1 for cumulated emissions below crE ,

the trajectory that entails such a transition immediately after the first decision step (the second one) is more likely to occur than

the trajectory in which the world stays in the good state for the first period (third one).

This seems at the first sight counter-intuitive. But it can easily be verified by inspection5 and is in fact easily explained: the15

crucial point is that the probability of entering a bad world at the first decision step (and then, necessarily, staying in a bad

5Given the probabilities pS1 , pS2 , pA1 , pA2 , pLL, pLH , pHL and pHH as above, the probability of a given trajectory is just the product of the

probabilities of the corresponding transitions.
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world) is 0.1. By contrast, the probability of staying in a good world for one period and then getting into a bad world is, ceteris

paribus, 0.9 * 0.1. This difference makes the second trajectory more likely than the third one. Of course, both trajectories are

much less likely than the first one as in the cases discussed in 5.2 and 5.3.

6 Conclusions

We have studied the impact of uncertainties about 1) the implementability of decisions on emission reductions, 2) the avail-5

ability of technologies for reducing emissions and 3) the implications of exceeding a critical threshold of cumulated emissions

on optimal emission policies in a stylized sequential emission problem.

In a nutshell, the results presented in section 5 support the conclusion that uncertainties about the implementability of

decisions on emission reductions (or increases) call for more precautionary policies. By contrast, uncertainties about the im-

plications of exceeding critical cumulated emission thresholds tend to make precautionary policies sub-optimal.10

More specifically, the results of section 5 suggest that uncertainties about the implementability of decisions on emission

reductions and, up to a more limited extent, uncertainties about the implications of exceeding critical cumulated emission

thresholds have a grater impact on optimal emissions policies than uncertainties on the availability of effective technologies

for reducing GHG emissions.

This is at the first glance perhaps a bit surprising but actually quite understandable: if decisions on emission (no matter15

whether reductions or increases) can be implemented with certainty, it is obviously better to delay necessary but costly reduc-

tions until available technologies make abatements cheaper. This holds as far as delays do not lead global emissions to exceed

the critical threshold crE .

But if we cannot be sure that future decisions will be implemented with certainty – for instance, because of inertia in

legislation or political instability – than starting implementing emission reductions (or trying doing so) sooner yields higher20

rewards. This is a typical case in which precautionary policies are optimal.

How earlier is it optimal to undertake costly abatement steps (rather than waiting for technological innovation to make

emission reductions cheaper) very much depends on the rewards structure and on the uncertainties of the specific emission

problem at stake.

Perhaps more surprisingly, the results of section 5.4 suggest that the optimal time for starting reducing emissions also25

depends on the level of uncertainty about the implications of trespassing critical thresholds of cumulated emissions. As these

uncertainties increase, precautionary policies become sub-optimal. In other words: the better we can estimate the consequences

of exceeding critical thresholds, the more does it pay off adopting precautionary policies.

Two caveats are in order here. First, while the results presented in section 5 are rigorous (the optimal emission policies

our conclusions rely upon have been machine checked), the stylized emission problem for which we have computed such30

policies is defined in terms of a small but not empty set of parameters. In particular, the value of policy sequences (optimal

or not) crucially depend on the problem rewards that is, on the values of the four parameters badOverGood , highOverGood ,
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lowOverGoodAvailable and lowOverGoodUnavailable, see Table 1 at the end of section 4. Are our conclusions only valid

for these specific values?

Apart from substantiating our findings with a careful (but, necessarily, prohibitively expensive) sensitivity analysis, we can

try to achieve a better analytical understanding of the role of the above parameters on optimal policy sequences.

From the definition of the reward function given at the end of section 4, we can immediately deduce that, at each decision5

step, the costs of selecting low emissions are greater or equal to

highOverGood − lowOverGoodAvailable

Remember that lowOverGoodUnavailable is the ratio between the benefits of low emissions and the benefits of being in a good

world when effective technologies for reducing GHG emissions are unavailable. Similarly, lowOverGoodAvailable is the ratio

between the benefits of low emissions and the benefits of being in a good world when effective technologies are available.10

As summarized in Table 1, we require lowOverGoodUnavailable to be smaller or equal to lowOverGoodAvailable (effective

technologies for reducing GHG emissions diminish the costs of low emissions) and lowOverGoodAvailable to be smaller

or equal to highOverGood (low emissions cost more than high emissions). Thus, the difference between highOverGood and

lowOverGoodAvailable represents the minimal costs (e.g., due to missed growth, higher GHG filtering and sequestration costs,

taxes, etc.) implied by low emission measures. By contrast, the costs (damages) that can be avoided by keeping the world in a15

good state are expressed, in our stylized decision problem by the difference

1− badOverGood

Thus, if 1−badOverGood is smaller or equal to highOverGood−lowOverGoodAvailable , selecting low emissions never pays

off. Therefore,

crBadOverGood = 1− (highOverGood − lowOverGoodAvailable)20

is an important threshold in the parameters space of our emission problem: for values of badOverGood between crBadOverGood

and one, selecting low emissions cannot be optimal: in this interval, optimal policies will recommend high GHG emissions. Are

there other important thresholds in the problem’s parameter space? At this point, we do not know. We have computed optimal

policy sequences for a few values of badOverGood between 0.8 and 0.91. These results confirm the analysis and support the

conclusion presented above.25

The second caveat is that the results presented in section 5.4 offer a rather limited view on the impacts of uncertainties

about the implications of exceeding critical thresholds of cumulated GHG emissions on optimal policies. It is true that we have

performed more assessments (with probabilities of 5% and 20% of turning to a bad world for cumulated emissions below crE ,

not reported section 5.4) and that these support the conclusions drawn above.

However, our statistics on the set of possible trajectories associated with a given policy sequence (optimal or not) has been30

throughout section 5 very rudimentary: we have only assessed the three most likely trajectories, their values and probabilities

and the expected sum of rewards.
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In studying the impacts of uncertainties about the implications of exceeding critical thresholds, we have to do with 51200

possible trajectories for every single policy sequence. In this case, a more comprehensive statistics would probably be at place.

This is computationally challenging, see section 7.

Thus, the conclusions that we can draw from the results of section 5 are necessarily preliminary. Notice, however, that they

are consistent with the analysis reported in Webster (2008) for a two-step decision problem. We are not aware of studies in5

which the impact of uncertainties on optimal emission policies have been studied systematically for more than two decision

steps.

It is probably fair to also point out that, as uncertainties on the implementability of emissions decisions increase and (there-

fore) optimal policies require more and more precautionary approaches, the advantages (in terms of rewards) of earlier emission

reductions against delays do vanish: in the limit case in which political decisions have no bearing on the measures actually10

implemented, all policies are optimal.

It should also be remembered that, in our idealized problem, we have kept the cumulated emission threshold crE and the

critical number of decision steps for technological innovation crN fixed. In increasing the uncertainty about the availability

of technologies for reducing emissions and about the implications of exceeding crE , we have modified the probability dis-

tributions below and above crN and crE symmetrically. Thus, taking as reference the certain case, we have increased the15

probability that efficient technologies become available before crN steps from zero to 0.1 and at the same time decreased the

probability after crN from one to 0.9. Similarly for uncertainties on the consequences of exceeding crE . It goes without saying

that shifting crN and crE does indeed have a strong impact on optimal policies.

Thus, the results presented in section 5 do not imply that improving the accuracy of crN and crE estimates is not worth

the efforts. But they suggests that obtaining more realistic estimates for the probability of effective technologies for reducing20

GHG becoming available before and after a critical date is perhaps not as crucial (for computing optimal emission policies for

realistic decision problems) as improving our understanding of the implementability of decisions on emission reductions or

increases.

Obtaining plausible estimates for the probabilities of being able to implement decisions on emissions reductions or increases

naturally brings a political perspective into the problem of computing plausible optimal emission policies.25

7 Future work

Realistic GHG emission problems involve more than one decision maker (countries) in a competitive situation rather than a

single decision maker.

As explained in the introduction, a generic computational theory for SDPs under uncertainty, multiple players and a finite

but unknown number of decision steps is, to the best of our knowledge, still missing. Developing such a theory is a chal-30

lenging research program. The theory would have to span the border between control and game theory and likely require the

introduction of new equilibrium notions. One promising approach towards developing a general theory of optimal decision

making is to extend the formalization of SDPs presented in Botta et al. (2017b) using the notions of quantifier and of selection
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function (together with their respective products) introduced in Escardo and Oliva (2010); Hedges (2017) for infinite horizon

open games.

From a more applicational point of view, there are two obvious ways in which the work presented in this paper could be

extended to provide more useful insights into the problem of making optimal decisions on emission paths under uncertainty.

One would be to compute optimal emission policies for a realistic emission problem. Beside extending the notions of5

state and control spaces and, e.g., allow the decision maker to pick up a few intermediate emission levels between Low

and High , this would require assessing the costs and the benefits of implementing a given emission level using a realis-

tic integrated assessment model. Such an enterprise would require an interdisciplinary effort on the border between cli-

mate science and computing science. Technically, it would require extending the framework for the specification of SDPs

SequentialDecisionProblems6 with a small domain specific language for emission problems.10

Another way of extending the work presented in this paper would be to keep the focus on stylized emission problems like the

one of section 4 but improve the statistical study of the logical consequences of taking decisions according to optimal policy

sequences. This could yield to tools that support accountable decision making in real-time situations, for instance, during

negotiations. Technically, this would imply, among others, extending SequentialDecisionProblems with algorithms

for computing all optimal policies for a given decision problem or perhaps just a certain number of optimal policies.15

As we have seen at the end of section 5, computing optimal policies and parsing large collections of possible trajectories or

“decision networks” can be computationally challenging even for idealized problems.

Thus, extending SequentialDecisionProblems for computing more optimal policy sequences and more compre-

hensive statistical analyses of decision networks would benefit from exploiting the concurrency inherent in many of the al-

gorithms presented in Botta et al. (2017b). This is also an interdisciplinary enterprise involving formal methods (concurrent20

implementations should preserve the machine checkable optimality proofs that come with the sequential implementation),

high-performance computing and climate science.

Appendix A: a summary of Botta et al. (2017a)

The theory presented in Botta et al. (2017a) allows the specification of SDPs with uncertain outcomes and, for a specific

problem, the computation of provably optimal policy sequences and of the possible consequences of taking decisions according25

to an arbitrary policy sequence.

As explained in the introduction, the theory is dependently typed and the formalization language is Idris, see Brady (2013).

Here, we summarize the main requirements and the main results of the theory in a simplified form. For a more detailed

discussion of the notion of decision process, decision problem, monadic decision problem, uncertainty, reachability, viability,

policy, policy sequence, possible trajectories and avoidability, we refer the reader to Botta et al. (2017a). In a nutshell, a30

monadic SDP can be specified in terms of the four functions already introduced in section 2:

6 In https://gitlab.pik-potsdam.de/botta/IdrisLibs
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State : (t : N) → Type

Ctrl : (t : N) → (x : State t) → Type

next : (t : N) → (x : State t) → (y : Ctrl t x ) → M (State (t + 1))

reward : (t : N) → (x : State t) → (y : Ctrl t x ) → (x ′ : State (S t)) → Val

M here is a monad and represents the problem’s uncertainties. For deterministic problems (no uncertainties), M is equal to5

Id and next associates to a state-control pair a unique next state. For non-deterministic problems M = List and for stochastic

problems M = Prob. Since M is a monad and therefore a functor, it is equipped with a function

fmap : (a → b) → M a → M b

that maps functions of type a → b for arbitrary a,b : Type to functions of type M a → M b and preserves identity and

function composition. The type of the values returned by the reward function, Val , is required to be equipped with a zero10

value zero : Val , with an addition (⊕) : Val → Val → Val and with a total preorder (v). Moreover, ⊕ is required to be

monotonic with respect to (v):

monotonePlusLTE : a v b → c v d → (a ⊕ c)v (b⊕ d)

As mentioned in section 2, a decision maker has also to specify a monotonous measure for weighting uncertain outcomes

meas : M Val → Val15

measMon : {A : Type } → (f : A → Val) → (g : A → Val) → ((a : A) → (f a)v (g a)) → (ma : Prob A) →

meas (fmap f ma)vmeas (fmap g ma)

The functions monotonePlusLTE and measMon are examples of specifications: their types formulate properties that ⊕, (v)
and meas have to fulfill for the Botta et al. (2017a) theory to be applicable. In this appendix, we will see further examples of

propositional types that encode notions, e.g., of optimality or, as in the case of Bellman , theorems of the Botta et al. (2017a)20

theory. With the notions of states and controls in place, one can formalize the notions of policy and policy sequence:

Policy : (t : N) → Type

Policy t = (x : State t) → Ctrl t x

data PolicySeq : (t : N) → (n : N) → Type where

Nil : PolicySeq t Z25

(::) : Policy t → PolicySeq (S t) m → PolicySeq t (S m)

As discussed in section 2, policies are functions that associate controls to states. They are dependently typed because the

domain of Policy t depends on the decision step index t . Moreover, its codomain, Ctrl t x , depends on t and on x .

Policy sequences are just sequences of policies. Since policies are dependently typed functions, we cannot simply collect

them in a list or in a vector. The data declaration PolicySeq completely defines the set of all possible policy sequences. In30

particular, a sequence can only be empty (Nil , for n = 0) or consist of a head (a policy for taking a decision step at an arbitrary
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decision step t) consed (in functional languages, the data constructor (::) is called Cons , and p ::ps is spelled p “consed” with

ps) together with a policy sequence for (for n = S m =m +1) steps.

For a consistent theory of sequential decision making under uncertainty, the notions of policy and that of policy sequence

actually have to be made more precise. This requires introducing the notions of reachability and viability. In this summary, we

omit these important but rather technical aspects, see Botta et al. (2017a). As explained in section 2, the notion of optimality5

for policy sequences is defined in terms of the measured sum of possible rewards. This is given by a value function

val : (x : State t) → PolicySeq t n → Val

val {t } {n = Z } x ps = zero

val {t } {n = S m } x (p :: ps) = meas (fmap f mx ′) where

y : Ctrl t x10

y = p x

f : State (S t) → Val

f x ′ = reward t x y x ′⊕ val x ′ ps

mx ′ : M (State (S t))

mx ′ = next t x y15

Notice that when the policy sequence is not empty, the measure meas has to be applied to the result obtained by adding

reward t x y x ′ (the reward obtained by selecting the control y in x and for the next state x ′) to val x ′ ps (the value of making

m decisions according to the policy sequence ps) for every x ′ in next t x y . It is this recursive call of val for every x ′ in

next t x y that makes the problem of evaluating policy sequences computationally intractable. For the case in which State t is

finite, one can recover linear complexity in n via tabulation.20

The value of policy sequences is the key for formalizing the notion of optimality for policy sequences: a policy sequence for

n decision steps is optimal iff no other sequence (also for n decisions) attains a higher sum of possible rewards for any state:

OptPolicySeq : PolicySeq t n → Type

OptPolicySeq {t } {n } ps = (ps ′ : PolicySeq t n) → (x : State t) → val x ps ′ v val x ps

The main result of the theory presented in Botta et al. (2017a) is a verified, generic implementation of backwards induction:25

bi : (t : N) → (n : N) → PolicySeq t n

bi t Z = Nil

bi t (S n) = optExt ps :: ps where

ps : PolicySeq (S t) n

ps = bi (S t) n30

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

The implementation of biLemma relies on the notion of optimal extension of a policy sequence

OptExt : PolicySeq (S t) m → Policy t → Type

OptExt {t } {m } ps p = (x : State t) → (p′ : Policy t) → val x (p′ :: ps)v val x (p :: ps)
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and on a formal proof (that is, a total implementation) of Bellman’s principle of optimality Bellman (1957):

Bellman : (ps : PolicySeq (S t) m) → OptPolicySeq ps → (p : Policy t (S m)) → OptExt ps p → OptPolicySeq (p :: ps)

As usual when encoding propositions through types we read Bellman as the first-order logic proposition: for every policy

sequence ps and every policy p, if ps is optimal and p is an optimal extension of ps , then p ::ps is optimal. The implementation

of bi relies on optExt : this is a function that takes a policy sequence and computes one of its optimal extensions:5

optExt : PolicySeq (S t) n → Policy t (S n)

optExtLemma : (ps : PolicySeq (S t) n) → OptExt ps (optExt ps)

Thus, computing the optimal extension of a policy sequence of type PolicySeq (S t) n implies solving an optimization prob-

lem for every state in State t . If the set of control Ctrl t x is finite for a given x : State t , this problem can be solved by

linear search. A further result of the theory presented in Botta et al. (2017a) is a generic algorithm for computing all possible10

trajectories that can be obtained by applying a policy sequence (optimal or not) starting from a given state or, if the decision

maker takes decisions under imperfect information, from an M -structure of states. In both cases, the result is an M -structure

of state-control sequences:

data StateCtrlSeq : (t : N) → (n : N) → Type where

Nil : (x : State t) → StateCtrlSeq t Z15

(::) : Σ (State t) (Ctrl t) → StateCtrlSeq (S t) n → StateCtrlSeq t (S n)

possibleStateCtrlSeqs : (x : State t) → (ps : PolicySeq t n) → M (StateCtrlSeq t n)

morePossibleStateCtrlSeqs : (mx : M (State t)) → (ps : PolicySeq t n) → M (StateCtrlSeq t n)

For the implementations of biLemma , Bellman , possibleStateCtrlSeqs and morePossibleStateCtrlSeqs we refer the reader

to Botta et al. (2017a). In section 5 we make extensive usage of, among others, bi and of possibleStateCtrlSeqs for computing20

optimal emission policies and possible state-control sequences.
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