Author’s response

We have resubmitted a revised version of the original manuscript.

Point-by-point replies to the comments RC1 (21 Nov. 2017), EC1 (08 Dec. 2017) and RC2 (22 Dec. 2017) have been
already provided in AC3 (06 Dec. 2017), AC5 (14 Dec. 2017) and AC6 (27 Dec. 2017), respectively, see discussion.
For completeness, we have included these replies in the “Point-by-point replies to ...” sections below.

The revised version accounts for the recommendations and for the corrections pointed out by the reviewers. In
particular, we have implemented the obligations 01 to 10 from our AC5 “Answers to the editorial review” from 14
Dec. 2017. The major modifications w.r.t. the original submission are reported in section “Major revisions”.

We have uploaded a marked-up diff between the original and the revised manuscript as a supplement to our
submission, see ESD-2017.submission.diff. RO1.R02.pdf.

Point-by-point replies to RC1, see also AC3 on discussion.

Thank you for the detailed review and suggestions. In the following, we provide point-to-point answers to the general
comments 0 to 4 and to the specific comments 0 to 2.

Generic comments 0 and 1:

We have failed to make the point clear in the introduction: one would of course like to tackle the problem of
computing optimal emission policies for individual countries as a (mixed sequential and simultaneous) sequential
coordination game with a finite number of decision makers over a finite (but not necessarily known) number of
decision steps and under different sources of uncertainty.

To the best of our knowledge, no theory (let apart a computational theory) is available for such problems today. A
very common approach is that of slicing the problem into two main questions:

a) When and by how much global GHG emissions should be reduced to avoid unmanageable future states?

b) How to make sure that (fair, optimal, etc.) emission reduction quotas consistent with given optimal global
reduction are actually implemented by individual countries or regions?

Answers to a) can be sought, among others, by extending standard control-theory approaches (one decision maker)
to sequential decision problems with uncertain (non-deterministic, stochastic, fuzzy) outcomes.

Answers to b) can be sought, among others, by extending standard game-theory approaches (multiple decision
makers) to decision games under mechanisms for incentivating the emergence of trust, coalitions and binding
agreements.

From this perspective, “solving the GHG emission problem” requires an iterative solution of a) and b). Again, to
the best of our knowledge, no attempts have been done so far at coupling a) and b) and solving the full problem. In
our contribution, we focus the attention on a).

In revising our manuscript, we will expand the introduction and make the context of our contribution more clear.

Generic comment 2:

Using a verified computational method for computing optimal policies is crucial simply because optimality (e.g.,
of supposedly optimal policies) cannot, in general, be tested. This is one of the most prominent examples where
“proving” is easier than “testing”. From an applicational perspective, computing verified policies allows us to study
the impact of different assumptions (e.g. about uncertainties) in a rigorous fashion. In revising our manuscript, we
will discuss this point in more detail in section 3.
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Generic comment 3:

In revising our manuscript, we will make the context of our contribution more clear and compare our results to,
among others, those presented in the works of works of M. Webster.

Generic comment 4:

We are going to summarize the results of Botta et al. (2017a,b) in an appendix of our revised manuscript.

Specific comment 0:

The theory presented in Botta et al. (2017a,b) is based on the notion of monadic dynamical systems originally
introduced by Ionescu in his PhD thesis. This allows us to treat deterministic, non-deterministic, stochastic, fuzzy,
etc. problems with a seamless approach: the differences are captured by a single problem parameter and all
computations (e.g. of optimal policies, possible trajectories, rewards, etc.) are generic with respect to this parameter.
In revising our manuscript, we will make this point more clear.

Specific comment 1:

A sequential decision problem cannot be described as a sequence of payoffs: one has to give a function that returns
one payoff for every suitable combination of current state, selected control and next possible state. We will summarize
the results of Botta et al. (2017a,b) in an appendix of our revised manuscript and make this point more clear.

Specific comment 2:

This is a very important criticism that we have tried to anticipate with a “On a legitimate criticism to our contribution”
comment posted on Oct. 13 on the ESD discussion site. Is there something specific that you find unconvincing in
our comment? If the comment helps dissipating some of your concerns about the robustness of the results presented
in section 5, we would be pleased to add a revised version of the comment to section 5 of our revised manuscript.

Point-by-point replies to EC1, see also AC5 on discussion.

Thank you for the review and for the detailed comments and corrections of the supplementary document!

We are going to prepare a major revision of the original manuscript and implement your recommendations and those
of Referee 1. In the following, we have listed a number of TODOs. The idea is to provide you with an account of our
revision plans. We will use the list as a guideline for revising our original manuscript. If new reviews and comments
will become available, we will update the list accordingly.

TODO (first manuscript revision, status 2017.12.13):
0. Correct typos and errors according to RC1 and EC1 (supplement).

1. Explain more clearly the differences between plain mathematical notation (e.g., set comprehension in T'= A, U),
functional notation (e.g., State : Nat— > Set) and Idris specific formulas (EC1). Perhaps introduce a short
“Notation” section after the introduction and before section 2 “Sequential emission problems”? Explain that
the article comes with a git repository and give the URL of IdrisLibs (EC1).

2. Summarize the results of Botta et al. (2017a,b) in an appendix of the revised manuscript (RC1.GC4). Move
the formal monotonicity condition to the appendix. There, give the type of fmap and an example, e.g., for
lists (EC1).

3. Discuss the differences between best, worst and average (expected value) as measures of uncertainty in more
detail (EC1). Perhaps link this discussion to the problem of finding sensible influence (responsibility) measures
in sequential decision problems under uncertainty.
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4. When discussing basic facts about optimal emission policies (in the beginning of section 5), stress the importance
of making decision makers aware of the consequences of (often implicit) assumptions. In particular, explain
that the last decision step needs a special care if one wants to avoid apparently inconsistent results (reducing
emission at the last step is never optimal, EC1) or just account for meaningful boundary conditions. Perhaps
formulate a sustainability principle?

5. In the introduction, explain more clearly that one would like to tackle the problem of computing optimal
emission policies for individual countries as a (mixed sequential and simultaneous) coordination game with a
finite number of decision makers over a finite (but not necessarily known) number of decision steps and under
different sources of uncertainty (RC1.GC1). Recall that (to the best of our knowledge), no theory (let apart a
computational theory) is available for such problems and that a very common approach is that of slicing the
problem into the questions:

a) When and by how much should global GHG emissions be reduced to avoid unmanageable future states?

b) How to make sure that (fair, optimal, etc.) emission reduction quotas, consistent with given optimal
global reduction, are actually implemented by individual countries or regions?

which, in a holistic approach, would have to be answered simultaneously. Answers the role of control-theory
and of game-theory in a), b).

6. In section 3, explain in more detail that applying a verified computational method for computing optimal
policies is crucial because optimality (e.g., of supposedly optimal policies) cannot, in general, be tested
(sometimes proving is easier than testing, RC1.GC2).

7. Make the context of our contribution more clear and compare our results to, among others, those presented by
M. Webster (RC1.GC3).

8. Explain (when referring to the new appendix, see TODO 02.) that the theory presented in Botta et al.
(2017a,b) is based on the notion of monadic dynamical systems originally introduced by Ionescu in his
PhD thesis. Explain that monads allows one to treat deterministic, non-deterministic, stochastic, fuzzy, etc.
problems with a seamless approach in which the differences are captured by a single problem parameter and
all computations (e.g. of optimal policies, possible trajectories, rewards, etc.) are generic with respect to this
parameter (RC1.SCO0).

9. In summarizing the results of Botta et al. (2017a,b) in an appendix (see TODO 02.), explain that a sequential
decision problem cannot be described as a sequence of payoffs: one has to give a function that returns one
payoff for every suitable combination of current state, selected control and next possible state (RC1.SC1).

10. Add a revised version of AC1 (comment “On a legitimate criticism to our contribution”) to section 5 (6?7) of
the revised manuscript (RC1.SC2).

Point-by-point replies to RC2, see also AC6 on discussion.

Please, cf. response to the editorial comment ECI.

Major revisions

o Added appendix with a summary of the Botta2017,JFP theory [TODO 02, 09).

e Added a sentence to the introduction arguing that, to the best of our knowledge, no theory is currently available
for tackling the problem of computing optimal emission policies for individual countries as a mixed sequential
and simultaneous coordination game with a finite number of decision makers, over a finite but not necessarily
known number of decision steps and under different sources of uncertainty [TODO 05].

¢ Added a “Notation” subsection to the introduction. Moved remarks on currying and dependent types from
section 2 to “Notation”. [TODO 01] Explained why we use dependently typed formalisations and Idris
[Recommendation from the supplement to the editorial review EC1].

o Added a short discussion on alternative uncertainty measures (worst, best, etc.) after the introduction of the
measure function [TODO 03].
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Expanded the discussion on measures that violate the monotonicity condition [Recommendation from the
supplement to the editorial review EC1]

Added remark at the beginning of section 5 to clarify the statement that “no optimal policy sequence can
require selecting low emissions when the state of the world is bad” [Recommendation from the supplement to
the editorial review EC1] and to comply with TODO 03.

Coloured controls in state-control trajectories to make the impact of different policies more visible.

Expanded the first part of the “Conclusions” section to integrate the comments of “On a legitimate criticism
to our contribution” [TODO 10].

Added two sentences to the “Conclusions” section to compare our results with those obtained by M. Webster
[TODO 07].

Rephrased the beginning of section “Future work” to remind the reader that, to the best of our knowledge, a
generic computational theory for SDPs under uncertainty, multiple players and a finite but unknown number
of decision steps is still missing [TODO 05].

Added a sentence to section “Logical consequences” to explain in more detail that applying a verified
computational method for computing optimal policies is crucial because optimality cannot be tested [TODO
06].

Added a sentence to the “Notation” section to explain that the theory allows one to treat deterministic,
non-deterministic, stochastic, fuzzy, etc. problems with a seamless approach in which the differences are
captured by a single problem parameter [TODO 08, RC1.SCO0].
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Abstract. We apply a computational framework for specifying and solving sequential decision problems to study the impact of
three kinds of uncertainties on optimal emission policies in a stylized sequential emission problem. We find that uncenainties
about the implementability of decisions on emission reductions (or increases) have a greater impact on optimal poelicies than
uncertaintios about the availability of effective emizsion reduction technologies and wscertainties about the implications of
trespassing critical cumulated emission thresholds. The results show that uncertainties about the implementability of decisions
on emission reductions (of increases) call for more precautionary policies. In other words, delaying emission reductions 1o
the point in time when effective iechnologies will become available is sub-optimal when these uncertainties are accounted for
rgorously. By contrast. uncertainties about the implications of exceeding critical cumulated emission thresholds tend to make

carly emission reductions less rewarding.

1 Introduction
L1 About this work

In this article we apply the framework for specifying and solving sequential decision problems presented in Botia et al. (200 7h)
to understand the impact of uncertainty on optimal greenhouse gas JGHG) emission policies. Specifically. we siudy the impact

of
1. Uncertainty about the implementability of decisions on GHG emigsion reductions,
2. uncertabnty about the availability of efficient technologies for reducing GHG emissbons,
3. uncertainty about the implications of exceeding a eritical threshold of cumulated GHG emissions.

The wark is also an application of the computational theory of policy advice under uncenainty proposed in Botta et al. (201 Ta).
The theory supporis a seamless approach towards sccounting for different kinds of uncerainties and makes it possible 1o
rigorously assess the logical consequences, amaong others, the risks, entailed by the implementation of optimal policies. We

explain what policies are and what it means for a policy sequence to be optimal in section 2.3,
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three kinds of uncertainties on optimal emission policies in a stylized sequential emission problem. We find that uncenainties
about the implementability of decisions on emission reductions (or increases) have a greater impact on optimal poelicies than
uncertaintios about the availability of effective emizsion reduction technologies and wscertainties about the implications of
trespassing critical cumulated emission thresholds. The results show that uncertainties about the implementability of decisions
on emission reductions (of increases) call for more precautionary policies. In other words, delaying emission reductions 1o
the point in time when effective iechnologies will become available is sub-optimal when these uncertainties are accounted for
rgorously. By contrast. uncertainties about the implications of exceeding critical cumulated emission thresholds tend to make

carly emission reductions less rewarding.

1 Introduction
L1 About this work

In this article we apply the framework for specifying and solving sequential decision problems (SDPs) presented in Botta et al.
1200 7b) 1o understand the impact of uncenainty on optimal greenhouse gas (GHG) emission policies. Specifically. we stwdy

the impact of
1. Uncertainty about the implementability of decisions on GHG emigsion reductions,
2. uncertabnty about the availability of efficient technologies for reducing GHG emissbons,
3. uncertainty about the implications of exceeding a eritical threshold of cumulated GHG emissions.

The work is also an application of the computational theory of policy advice and avoidability proposed in Botta et al. (200 Ta).
The theory supporis a seamless approach towards sccounting for different kinds of uncerainties and makes it possible 1o
rigorously assess the logical consequences, amaong others, the risks, entailed by the implementation of optimal policies. We

explain what policies are and what it means for a policy sequence to be optimal in section 2.3,
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1.2  Sequential decision problems and elimate change

In many decision problems in the context of climate change, decisions have to be taken sequentially: emission rights are issued
year after year, emission reduction plans and measures are iteratively revised and updated at certain (perhaps imegulary points
im time, ete.

In its founth Assessment Reponon Climate Change (20071, the Intergevernmental Panel on Climate Change (1IPCC) has
pointed out that responding to climate change involves “an iterative risk management process that includes both mitigation amd
adaptation, taking into sccount actual and avoided climate change damages. co-benefits, sustainability, equity and attitudes 1o
sk

The paradigmatic example of iterative, sequential decision problems in the context of climate change is that of controlling
GHG emissions. [n GHG emisasion control problems, a decision maker or a finite number of decision makers {countries) have
to select an emission level or, equivalently. a level of emission abaterment (reduction ) with respect w some reference emissions.
The idea is that the selected abatement level is then implemented, perhaps with some deviations, over a cemain period of time.
After that period another decision is taken for the next time period.

Implementing abatements implics both costs and benefits. These are typically affected by different kinds of uncertaintics
bt the idea is that, for a specific decision maker, a significant pant of the benefits come from avoided damages from climate
change. Avobded damages essentially depend on the overall abatements: higher global abatements lead to bess damages amd
thus higher benefite. In contrast, costs afe very much dependent on the abatement level implemented by the specific decision
maker. Here, higher emission reductions cost more than moderate emission reductions.

It turns out that, when considering a single decision step and for fairly general and realistic assumptions on how costs asd
benefits depend on abatement levels, the highest global benefits are obtained if all decision makers reduce emissions by certain
“optimal” amounts Finus et al. {2003); Helm 1 2003); Tobst et al {201 1).

In this simation. owever, many (if not all) decision makers typically face a free-ride option: they could do even beter if
they themselves would not implement any emission reduction (or, perhaps, if they would implement bess reductions) bur all the
others would still comply with their quotas. It goes without saying that if all players fail w comply with their optimal emission
reduction guotas, the overall outcome will be unsatisfactory for all or most players.

This sitwation is often referred to as an instance of the “Tragedy of the Commons™ Hardin (1968) and has motivated a
large body of research, among others, on coalition formation and on the design of mechanisms to deter free-riding. These
studies are naturally informed by game-theosetical approaches and focus on the non-parametric nature of decision making.
The sequentiality of the underlying decision process and the temporal dimension of decizion making are often waded for
analytic tractability. For a survey. see Jobst et al. (200 1)

Another avenwe of research focuses on the investigation of optimal global emission paths or, as we shall see in section 2.3,
of optimal sequences of global emission policies. Here, the core guestion is how uncertain future developments, typically, the
imtroduction of new technologies or the crossing of climate stability thresholds, shall inform current decisions. In a nutshell.
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1.2  Sequential decision problems and elimate change

In many decision problems in the context of climate change, decisions have to be taken sequentially: emission rights are issued
year after year, emission reduction plans and measures are iteratively revised and updated at certain (perhaps imegulary points
im time, ete.

In its fourth Assessment Repon on Climate Change (2007), the Intergovernmenial Panel on Climate Change (IPCC) has
pointed out that responding to climate change involves “an iterative risk management process that includes both mitigation amd
adaptation, taking into sccount actual and avoided climate change damages. co-benefits, sustainability, equity and attitudes 1o
sk

The paradigmatic example of ierative SDPs in the contesxt of climate change is that of controlling GHG emissions. In GHG
emission control problems, a decision maker or a finite number of decision makers (countries) have 1o select an emission
level oo, equivalently, a level of emission abatement (reduction) with respect to some reference emissions. The idea is that the
selected abatement bevel is then implemented, perbaps with some deviations, over a cenain period of time. After that period
another decision is taken for the next time period.

Implementing abatements implics both costs and benefits. These are typically affected by different kinds of uncertaintics
bt the idea is that, for a specific decision maker, a significant pant of the benefits come from avoided damages from climate
change. Avobded damages essentially depend on the overall abatements: higher global abatements lead to bess damages amd
thus higher benefite. In contrast, costs afe very much dependent on the abatement level implemented by the specific decision
maker. Here, higher emission reductions cost more than moderate emission reductions.

It turns out that, when considering a single decision step and for fairly general and realistic assumptions on how costs asd
benefits depend on abatement levels, the highest global benefits are obtained if all decision makers reduce emissions by certain
“optimal™ amounts Finus et al. {3003 Helm (2003}, Heitzig et al_ (2011,

In this simation. owever, many (if not all) decision makers typically face a free-ride option: they could do even beter if
they themselves would not implement any emission reduction (or, perhaps, if they would implement bess reductions) bur all the
others would still comply with their quotas. It goes without saying that if all players fail w comply with their optimal emission
reduction guotas, the overall outcome will be unsatisfactory for all or most players.

This sitwation is often referred to as an instance of the “Tragedy of the Commons™ Hardin (1968) and has motivated a
large body of research, among others, on coalition formation and on the design of mechanisms to deter free-riding. These
studies are naturally informed by game-theosetical approaches and focus on the non-parametric nature of decision making.
The sequentiality of the underlying decision process and the temporal dimension of decision making are waded for analytic
tractability. For a survey, see Heitzig et al. (2001},

Another avenue of research focuses on the investigation of optimal global emission paths or, as we shall see in section 2.3,
of optimal sequences of global emission policies. Here, the core guestion is how uncertain future developments, typically, the
imtroduction of new technologies or the crossing of climate stability thresholds, shall inform current decisions. In a nutshell.
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the problems here are when global emizzions should be reduced and by Jeaw mech given the uncenainties that affect both our
understanding of the zarth system and the socio-economic consequences of implementing emission reductions.

In these kinds of studies, the presence of multiple decision makers with possibly conflicting imterests and the question of
Jeow emission reductions can actually be implemented is almost always meglected. This makes it posgible o apply comtsol
thearetical approaches and to fully account for the temporal dimension of sequential emission games. This i3 also the approach
followed in this work. For a survey of sequential decision problem uder uncertainty in climate change see A- and Darshan

1200 11 Somnja 1 20061 and references therein.

1.3 Stylized sequential emission probl

O can try to understand the impact of uncertainties on optimal emission policies for a specific, real (or, more likely, realistic
emission problem. This requires, among others, specifying an integrated climate-economy assessment madel or, as doae in
Webster (2008), some tabulated version of the model undeglying the problem. The approach suppons drawing conclusions
which are specific for the problem under investigation and is what is typically done in applied policy advice. On the other
hand. smdying a specific, realistic problem makes it difficult to draw general conclusions and is well beyond the scope of this
wiork.

An alternative approach towards understanding the impacts of uncemainties on optimal policies is to swdy a “stylized”
emission problem. A stylized emission problem does does not attemipt at being realistic. Instead. it tries to capture the essential
features of a whole class of problems and support general instead of specific conclusions. This is the approach followed in this
paper.

14 Outline

In the next section we introduce sequential emission problems and explain what it means for sequences of emission policies
to be optimal. We discuss the most important differences between deterministic (cemaing problems and emission problems
under uncertainty. In section 3 we discuss some important traits of decision making under uncertainty. The discussion is meant
1o prepare the specification of the stylized emission problem presented in section 4. In section 5 we study the impact of the
uncertainties { 1+43) on optimal policy sequences for our stylized problem. We draw preliminary conclusions and outline future
work in section 6.

1 Seguential emission problems

Ag anticipated in the introduction, in this work we study the impact of uncertainties on optimal emission polices from a
controd theoretical {as opposed to a game theoretical) perspective. Thus, the focus is on a single decizion maker and on ow
uncertainties affect the questions of wies global emissions shall be reduced and by how much as opposed 1o the question of

Jeow emission reductions can actually be implemented in a siiation of mutual competition.

the problems here are when global emizzions should be reduced and by Jeaw mech given the uncenainties that affect both our
understanding of the zarth system and the socio-economic consequences of implementing emission reductions.

In these kinds of studies, the presence of multiple decision makers with possibly conflicting intesests and the guestion of Sow
emission reductions can actually be implemented is peglected. This makes it possible w0 apply control theoretical approaches
and 1o fully aceount for the tempaoral dimension of sequential emission games. This is also the approach followed in this work.
Tothe best of our knoowledge. no theory is currently available for tackling the problem of computing optimal emission policies
for individual countries as a (mixed sequential and simultaneous ) coordination game with a finite number of decision makers,
over a finite {but not necessarly known) number of decision steps and under different sources of uncemainty. For a survey of
SDPs under uncertainty in climate change see A and Darshan (2001 Sonja (2006} and references theeein.

1.3 Stylized sequential emission problems

O cam try to understand the impact of uncertainties on optimal emission policies for a specific, real (or, more likely. realistie )
emission problem. This requires, among others, specifying an integrated climate-economy assessment maodel or, as done in
Webster (2008), some tabulated version of the model underlying the problem. The approach suppors drawing conclusions
which are specific for the problem under investigation and is what is typically done in applied policy advice. On the other
hand. studving a specific, realistic problem makes it difficult o deaw general conclusions and 15 well beyond the seope of this
work.

An alternative approach towards understanding the impacts of uncemainties on optimal policies is to swdy a “stylized”
emission problem. A stylized emigsion problem does not attempt at being realistic. Instead, it tries to capture the essential

features of a whole class of problems and supports general instead of specific conclusions. This is the approach followed in

this paper
14 Notation

In section 5 we apply the theory for specifying and solving SDPs from Baotta et al. (200 7b, aj o the stylized emission problem
from section 4. The theory is based on the notion of sradic dynamical systems originally introduced in Lonescu (3009}, In
this context, monads allows one 1o treat deterministic, non-deterministic, stochastic, fuzzy, etc. uncenainty with a seamless
and all ¢

approach: the differences are captured by a single problem p putations are generic with respect to this
parameter. [n o nutshell, the theory is a dependently typed formalizstion of dynamic programming Bellman {(1957). The for-
malization language is ldris, see Brady (200 3). For a discussion on why functional, dependently typed languages are the first
choice for implementing such formalizations, see Botta et al. (2017a).

Because the theory is dependently typed, some familiarity with a functional. dependently typed notation is mandatory to
apply it to a specific decision problem. In this paper, we do not assume that our readership is familiar with dependent types and
functional languages. Thus, in sections 2 106 . we have restricted the formalism to the barely minimum. A simplified summary

of the Botta et al. {200 Ta) theory is provided in appendix A.
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21 Sequential emission processes

If we focus the attention on a single decision maker and on global emissions, sequential emission problems can be described
quite straightforwardly. Anthe core of any such problemis one hag a sequential emission precess (SEP). Informally, a sequential
emission process can be described in terms of three notions.

The first notion is that of a sare. A state represents the information available o the decizion maker &t a given decizsion
step. Typically, the state of a decision process consists of a number of aggregated measures. For instance, economic growth
measures, GHG concentration measures, curment emission level, etc.

Often, the information available to the decision maker is imperfect. For instance, for a given measure. the decision maker
might only be able to know a probability distribution instead of a precise value. Another possibility is that the decision makeg
only knows that, e.g., a GDP measure lies within certain bounds.

In the stylized sequential emission problem discussed in section 4, for example. the state consists of a tuple of four valses.
lated GHG & an implemented emission level, a level of availability of efficient
technologies for reducing GHG emissions and a state of the woeld. In that problem, we will assume that the decision maker
can only distinguish between low and high emissions

These represent an amount of CL

Emissionlevel = { Low, High'}

and available or unavailable efficient GHG emission reduction technologies
Tecknology = { Awaitable, Unavailobl=}

Similarly, the state of the world will be just good or bad:
Waorld = { Good, Bad |

In realistic SEPs, decision makers typically have to select between more than two emission levels, efficient technologies for
reducing GHG emission are available to centain degrees and the state of the warld is slightly more multifaceted than just good
ar bad.

The second notion that characterizes a sequential emission process are the controls available o the decision maker. In the
context of climate change studies, contrals are often referred o as options, actions of policies. To avoid confusion with the
mtion of policy from section 2.3 below, we will call them controls.

In GHG emission problems, controls are often phrased in terms of abaterent levels or, equivalently, in terms of maximum
GHG emissions growth rates. Thos, for instance, in Webster {20000 and over the first decision step (for the time interval
berween 2000 and 2009} controls can be one of eight values: 0, (L2, O, 006, 08, 1.0, 1.2 and 1.4. Here, a value of 04
represents a maximal emissions growth rate of 0.4%. In the emission problem of section 4, we will further oversimplify this
picture and only consider low and high GHG emissions.

Matice that, in geseral, not all controls are available in every state and at every decision step. In other words, the abatement
levels that can be selected in a given state can depend on that specific state. Thus, in our problem from section 4, we allow

Sull, a number of formulas appear in sections 2 0 6. In the rest of this section we iniroduce the notation uzed in these
formulas. This is a blend of standard mathematical potation and of standard (Haskell. Idris, Agda, eic.) functional programming
RTIT

Thus, for instance, in section 2, we write Teclnology = { Available, Unaveiloble} w posit that Technology is o et
that consists of two elements: Avaialobie and [Mmvailobie. This is plain set comprebension as in Bool = { Folae Trus},
A={T4.2}er Even={2=n|nc N}

Further, in section 2, we write Stafe : {f : M) — Type o posit that “State ¢ denotes the set of states the decision maker
can observe at the t-th decision step™. This is now standard Idris notation. Idris (and Haskell, Agda) follows the ussal meaning
of parentheses in mathematics! to enclose a sub-cxpression o resolve operator precedence. The special notation f{a) for the
value of a function f: A4 — B at a € A (very msch used in physics and engineering) uses parentheses in a non-standard way.

Another possible source of confusion is the signature (type) of the function State. Its domain are values of type M that is.
matural numbers. But its codomain are values of type Tipe! Thus, for instance a legal definition of Stafe could be

Shale t = Hool

which posits that State is the constant function that retums the tvpe Beol for every ¢, Being able to implement functions

that retum types is a key feature of dependently typed | Among others, it allows one to encode first-order logic

propositions as iypes. Thus, for instance

BoundedHy : M — List N — Type
BoundedBy noms = All {(Am =+ m Cn) ms

is a legal function definition and a value of tvpe BowsdedBy 5 24 is equivalent to a logical proof that all elements of o3 are
smaller or equal 5. Being able to encode logical propositions as types is crucial for implementing programs that can be
machine checked o be comect. It is also the key for expressing (e.g. modeling)y assumptions, conjeciures, requirements of
for formalizing domain-specific notions precisely. In sections 2 o & we will mot make explicit usage of propositional types.
But propositional types are at the core of the theory presented in Botta et al. (200 7h, a) and are extensively used there and in
appendix Botta et al. (2007h. a).

Another perhaps unfamiliar aspect of functiosal notations is currying. In mathematics, a function of 0 = 1 arguments is
often implicitly converted to a function that takes as a single argument one n—tuple. In Idris we instead wse nested function
application. Thus, if g hastype ¥ — (¥ — Zjorsimply X — ¥ — 2 we write (g 2] g {or simply ¢ x i because function
application is lefi-associative) to denote the valoe (of type Z) of g = (a function of type ¥ — Zlaty @ ¥l

Maotice that even though we do pot use propositional types in 2 to 6, most functions there are dependently typed. Thus, for
instance, in the signature of Costrol at page 5, the type of the second argument, Stode ¢, depends on the valoe of the first
argument, ¢ W say that Controel is dependently typed Noeell (2007): Brady (2003 2007

PThe idea that fesctioss of more than s yonable can alweys be writen as functions of just one varahle (that return funceions os ressll) was onganally
propesed by Schinfiskel in 1924 Schanfinkel (1924) and popularzed by Haskell B. Cury in Carry {1932), The openation &5 since the refemed o as carrdig.

It inverse & called wscuveying.
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the probability of implementing low (high) emissions in the pext period depend on the current jom level. As di d in
Websgter (2008], the probability of implementing low (high) emission levels in the sext period is higher if the current emission
are alresdy low (high) than if the current emissions are high (low). Thiz kind of uncertainty account for, among others, the
inertia of begiclation and, of course, political instabilities. Thus, one can fully describe the states and the controls of a sequential
decision process by defining oo functions:

Slate  : (1 : N} = Set

Control = (¢ : N} = {x : Slaote {) — Set

The imterpretation is as follows: State ¢ denotes the set of states the decision maker can observe at the $-th decision step.
Similardy, Control § & explaing which controls are available to the decision maker at decision step ¢ and in state & Motice
that, consistently with Botia et al. (2007h. a) and as common in functional languages, we denote function application by
justaposition. Thus, for f @ X — Yand 2 : X, fz @ ¥ represents the value of [ at =, Similarly, functions of more than
one variable are given in “curried” form': we write (g ) y : Z or simply g & » : £ (function application is assumed o be
left-associative) to denote the value of the function g = : V — ZTary: ¥,

Matice also that, in the signature of Contral, the type of the second argument, Stale ¢, depends on the value of the first
argument, £. We say that Control is a dependently tped function Noeell (2007 ); Brady (3013, 2017).

The third notion that characterizes 4 sequential emission peocess is that of a ransiton fmeton. Informally, transition func-
tions describe how states change, at each decision step, a8 a consequence of the controls selected by the decigion maker. Thus,

in a deterministic decision process the transition function has the type

nert : (£ : M) — (r: Stated) — {y : Control £ 1) — State (¢ + 1}
Again, the interpretation is that for every ¢ : B, ¢ @ Stafe ¢ and y : Control £ o nert ¢ r g s the new state at decision siep
1+ 1. Motice that the time between two successive decisions does not need to be constant_ In a time-dependent decision process.
for instance, there could be a function

ime ;& : M) = Heal
with time (£ +2) — time {1 + 1) # Hme (¢ + 1) — time ¢ for all (or, perhaps, only for certain) values of & In Webster { 3000).

for instance, the author investigates two-steps decision problems in which the first period extends over 10 years and the second
period extends over B0 vears.

2.1 Sequential emission problems

A decision process becomes a decision problem when we fully specify the costs and the benefits that are associated with each
transition. This can be done by defining a rewend function. A reward function is a function that associates a value, at each
decision siep, 1o every current siate, selected control and nest siate:

PThe idea that fesctioss of more than ose vanable can alweys be wrilten as functions of just one variable (that return functions os resdt) was origanally
propesed by Schinfiskel in 1924 Schanfinkel (1924) and popularzed by Haskell B. Cury in Carry {1932), The operation i since the refemed o as carrdig.

It inverse & called wscuveying.

Finally, ithe Bobia et al. (200 Th, a) theary applied in this paper is available in the SequentialDecisionPrablemns
component of Botta {20016-2017). This is a git repository and it is publicly available.

L5 Outhine

In the next section we introduce seguential emission problems and explain what it means for sequences of emission policies
1o be optimal. We discuss the most important differences between deterministic (cemain} problems and emission problems
umder uncertainty. In section 3 we discuss some important traits of decision making under uncertainty. The discussion is meant
o prepare the specification of the stylized emission problem presented in section 4. In section 5 we study the impact of the
umcertainties {1 {31 on optimal policy sequences for owr stylized problem. We draw preliminary eonclusions and outline future

work in section 6.

2 Seguential emission problems

Mg anticipated in the introduction, in this work we study the impact of uncertainties on optimal emission polices from a
controd theoretical (as opposed to a game theoretical) perspective. Thus, the focus is on a single decizion maker and on how
uncertainties affect the questions of wires global emissions shall be reduced and by how much as opposed 1o the question of

Jeow emission reductions can actually be implemented in a siboation of mutual competition.

11 Sequential emission processes

If we focus the attention on a gingle decizion maker and on global emissions. sequential emission problems can be described
quite straightforwardly. At the core of any such problems one has a sequential emission process (SEP). Informally, a sequential
emission process can be described in terms of three notions.

The first notion is that of a sare. A state represents the information available o the decision maker at a given decision
step. Typically, the state of a decision process consisis of a number of aggregated measures. For instance, economic growth
measures, GHG concentration measures, curment emission level, ete.

Often, the information available to the decision maker is imperfect. For instance, for a given measure, the decision maker
might only be able o know a probability dismribution instead of a precise value. Another possibility is that the decision maker
only knows that, e.g., a GOP measure lies within certain bounds.

In the stylized sequential emission problem discussed in section 4, for example, the state consists of a tuple of four valses.

These represent an amount of cumulated GHG i an impk

technologies for reducing GHG emissions and a state of the woeld. In that problem, we will assume that the decision makeg

can only distinguish between low and high emissions

d emission level, a level of availability of efficient

Emissionleved = { Low, High}

and available or unavailable efficient GHG emission reduction technologies
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rearard : (§c M) — (T Sigde t) = (p: Control § zp — (28 : State (§+ 1)) =+ Val

As usual, we write resard in curried form and reward £ 2 g 2" ¢ Val denotes the reward of selecting the control y in 2 at step
1 and ending up in =", Typically, Val is E. An obvious question is: Why shall reward explicitly depend on "7 If 2" is the next
stake

r=neizy

it seems that (t : M) — (£ : State t) — (y : Controd t ) — Vil wouald be a more appropriate signature for reward. The
reason for including a new state 1 in the signatare of rewerd is uncertainty, as we explain in the following paragraphs. We
have seen that. in deterministic decision processes, transition funciions have the type

[¢: M} = {r: State i) — [y : Conbrod £1) — Stade (#+ 1)

What if the decizion process is affected by oncertainties? If selecting an abatersent level in a given state has uncerain out-
comes | perhaps becanse of extemalities or because the consequences of implementing certain emission reductions are not fully
unederstood ), it would be unsoitable to describe the decision process in teems of a transition function that retams a single next
state. In this case, the transition function should retum a set of pociifle next states or a probability diswibution of next states.
A detailed in Botta et al. (2007h, a), we can account for different kinds of uncertainties in decision processes with transition
functions of the form

mert @ (£ : M) — (r: Staled) = {y - Control £ ) — M [State (¢ + 1))

Here, M is a functor. It represents the type of uncertainties underlving the decision process. For deterministic processes, W
i% just the identity functor: M = Id. For non-deterministic processes, M is the powerset functor. For stochastic processes, W
represents probability distributions, This is the case considered in this work. Thus, we take M = Prob where Prob X is the
type of simple probability distributions® on X . Therefore, et ¢ ¢ y is a probability distribution on next states that is, a value
of type Prob | State (8 + 1)). The states in next ¢ @ i are those that can be obtained after decision step ¢ by selecting  in state
&, Thus, in a stochastic decision process, selecting a control does not yield a unigue next state but a whole set of possible next
states with their probabilities. Therefore, the reward function has to explicitly depend on ' because this canmet be computed
from the current state x and the selected control & unambiguously. This justifies the signatore of reward a8 given above.

We can summarize the resulis obtained so far in the observation that stochastic sequential emission problems can be specified

in terms of four functions:

Slale [t : N} & Sel

Control = [t : M} = {r : Stote {) — Set

next st M) = {x: Staie i) = [y : Condrel { ©) = Prob | Skake (¢ + 1))
rearard ¢ (8 M} = {x: Stale ) —+ [y : Condrol ¢ 1) — (=" : Skate (£ + 1)) = Vo

*In 2 nuishell, simple probahilsty distributices are prohability diserdasons with fissie ssppoe, see Botin et al. (200 7).

Tecknology = { Availabile, Dravailoble }
Similarly, the state of the world will be just good or bad:
Warld = { Glood, Bad |

In realistic SEPs, decision makers typically have to select between more than two emission levels, efficient technologies fog
reducing GHG emission are available to cenain degrees and the state of the warld is slightly mose multifaceted than just good
ar bad.

The second notion that characterizes a sequential emission process are the controfs available o the decision maker. In the
context of climate change studies, contrals are often referred 1o as options. actions of policies. To avoid confusion with the
notion of policy from section 2.3 below, we will call them controls.

In GHG emission problems, controls are often phrased in terms of abaternent levels or equivalently, in terms of maximum
GHG emissions growth rates. Thuos, for instance, in Webster {20000 and over the first decision step (for the time interval
between 2000 and 2009} controls can be one of eight values: 0, (L2, O, 006, 0.8, 1.0, 1.2 and 1.4. Here, a valse of 0.4
represents & maximal emissions growth rate of 0L4%. In the emission problem of section 4, we will further oversimplify this
picture and only consider low and high GHG emissions.

Motice that. in general, not all controls are available in every state and at every decision step. In other words, the abatement
levels that can be selected in a given state can depend on that specific state. Thus, in owr problem from section 4. we allow the
probability of implementing low (high) emissions in the next period to depend on the current emission level. As discussed in
Webster (2008}, the probability of implementing low (high) emission levels in the next period is higher if the current emission
are already low (high) than if the current emissions are high (low). This kind of uncertainty account for, among others, the
inertia of begislation and, of course, political instabilities. Thus, one can fully describe the staies and the controls of a sequential
decision process by defining two functions:

Slate  :(f:H] = Ty
Contral : (¢ : H] = {r: Sloie i) — Type

The interpretation is as follows: State ¢ denotes the set of states the decision maker can observe at the #-th decision step.
Similarly, Control § r are the controls that are available to the decision maker at decision step ¢ and in state . Remember that,
as explained in section 1.4, we denote function application by juxtaposition.

The third notion that characterizes a sequential emission peocess is that of a ransivion fimenon. Informally, transition func-
tions describe how states change, at each decision step, as a consequence of the controls selected by the decision maker. Thus,
in a deterministic decision peocess the transition function has the type

next ;[ M) — (r: Staded) — y - Control £ z) — Stale (£ + 1)

Again, the interpretation is that for every ¢ : B, & : State t and § : Control § o, nert ¢ x  is the new state at decision siep
1+ 1. Motice that the time between two successive decisions does not need to be constant. In a time-dependent decision process,
for instance, there could be a function
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We define these functions for our siylized emission problem in section 4. For the time being. we need to better understand
the decizion problem that four such functions specify. This is crucial for understanding the notions of policy and of policy
sequence introduced in the pext section.

The idea is that, for a fized numnber of decision steps, the decizion maker seeks controls (emission bevels) that maximize a
sum of the rewards obtained over those steps. The emphasis here s on “a sum™ depending on the specific problem at stake.
fumure rewards might need o be discounted and the way valwes of type Vol ane added up might not be completely trivial. As
explained in detail in Botta et al. (2007, fully specifying stochastic sequential decizion problems requires defining Stabe,
Contrel, next, remerd and choosing a measure for weighting uncertain outcomes. Formally, a measure is just a function that
reduces probability distribution on values 1o valwes

meas : Prok Val — Val

The expected value function is probably the most widely used meagure in the stady of stochastic sequential decigion problems.
But other measures are possible. Depending on the specific problem and on the kind of uncenainties, other measures might be
mare suitable than the expected value. In section 4, wie walk the reader through the full specification of our stylized emission
problem, included uncertainty measures.

Solving sequential decision problems is nod trivial. For this, we instantiate the generic backward induction algorithms pre-
sented in Botta et al {2017, ah. 'We do not need to discuss these methods in dietail bere. But, before we move to section 4, it
is important to achieve a good understanding of what it means o solve a stochastic sequential decision problem and of what it
means for sequences of policies to be optimal.

In the rest of this section, we informally discuss the notions of policy, policy sequence and optimality of policy sequences.
We do so in the context of sequential emission probbems but the ideas apply to sequential decision problems in general. In
section 3, wie discuss a number of hasic facts about sequential emizzion problems. These, o, apply 10 sequential decision

processes without loss of generality.
13 Emission policies

We have pointed out that, in stochastic sequential emission problems, selecting an emission (abatement) level at a given decision
step and in a given state does not ugually yield a unbgue sext state. Ingtead, we obtain a probability distribution on next states.
The distribution encodes the uncertainties associated with the decigion process at study. Thus, for instance, the decision makeg
might select to reduce emissions by 2% but what sctually gets implemented is a smaller reduction, perhaps because of political
imertia or as a consequence of an increased economie activity.

One consequence of uncertainties is that, even if the decizion maker could fix a priod an emission schedule oe path’, she
would not know the state obtained after a fixved number of decision steps. This is. again, because each single step vields a
probability distribotion on rext states, not a single next state.

FEmsctly spenking, this ks impossibde because. as we Bave seen, what are feasshle emisssons in & given stme may depend oo thal stale,

tame : (¢ : M} — Heal

with time (£ +2) — time {1 4+ 1) # time (¢ 4+ 1) — tine ¢ for all (or, perhaps, only for certain) values of £ In Webster { 3000).
for instance, the author investigates two-steps decision problems in which the first period extends over 10 years and the secomd

period extends over B0 vears.
22 Sequential emission problems

A decision process becomes a decision problem when we fully specify the costs and the benefits that are associated with each
transition. This can be done by defining a rewend function. A reward function is a function that associates a value, at each

decision step, o every current state, selected control and next state:
rearard : (- M) — (z: Siade t) — (y: Control § zj — (' : State {§+ 1)) = Val

A usual, we write reward in curried form and reward £ 2oy 2" 0 Vel denotes the reward of selecting the control g in = at step
1 and ending up in +". Typically, Vel is E. An obvious question is: Why shall reward explicitly depend on ©'? If 2" is tee next
state

r=nentixy

it seems that (t : M) — (£ : State t) — (y : Conteod t ) — Vil wouald be a more appropriate signature for reward. The
reason for including a new state +' in the signature of reward is uncertainty. as we explain in the following paragraphs. We
have seen that. in deterministic decision processes, transition functions have the type

[t: N} = (x: Statet) — [y : Condrol ¢ 7] — Stode (¢ +1)

What if the decizion process is affected by oncertainties? If selecting an abatement level in a given state has uncertain out-
comes | perhaps because of extemalities or because the consequences of implementing certain emission reductions are ot fully
understood ), it would be unsuitable to describe the decision process in terms of a transition function that retums a single next
state. Im this case, the transition function should retum a set of poeiifle next states or a probability disiribution of next states.
Ag detailed in Botta er al. (200 7k, a), we can account for different kinds of uncertainties in decision processes with transition
functions of the form

next @ (£ : M) — (z: Sfaded) — {y: Control £ z) — M (Stafe (¢ + 1))

where M is a functor, [t represents the type of uncertainties underlying the decision process. For deterministic processes, M is
just the identity functor: M = Jd. For stechastic proceases. M represents probability distributions. This is the case considened in
this work. Thus, we take Mf = Prob where Prob X is the type of simple probability distributions® on X Therefore, wert { =
is a probability distribution on next states that is, a value of type Prob { State (¢ + 1)). The states in aext §x y are those that
can be obtained after decision step ¢ by selecting y in state 2. Thus, in a sochastic decision process, selecting a control does

*In & nuishell, simple probahilsty distributioss are probability diserdwsons with fisse ssppon, see Botia et al. (200 7).
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Thus, the best a decision maker can hope o obiain as a solution of a siochastic sequential emission problem is a sequence
of rubes that tell her which conirol (abatement level) 1o select for each decision step and, at that step, for each possible state.

In control theory. such “rules of action” are called policies. This is also the sense in which the word policy has been uged
in Botta et al. (200 7h, a). The control theoretical notion matches quite well the notion of strstegy in game theory Fudenberg
and Tigole { 1991 ), but notice that, in plain English, the term policy is often used to denote a plan of sction rather than a rule of
action.

Here we follow the control theory standard and policy sequences are just sequences of functions, one for each decision step.
A sequence of policies for s + 1 decision steps consists of a policy p for the (-th decision step and of a policy sequence ps fog
funther n steps. Formally we write

[p=pz] @ PolicySeqd [n+1)

with p : Palicy £ {n+ 1) and ps : PoliegSey (¢ + 1) #. Here, :: i3 the operator that prepends a policy to a (possibly empty)
policy sequence. see sections 3.3, 3.7 and 3% of Bota et al. (2017a). More formally, if ps = [, p2.pd | then g ps =
[p.p?, pZ.p3] forall p : Policy £ (n+ 1) ps : PolicySey (t+ 1) n.

But what does it mean for a sequence of emission policies 1o be optimal? The decision maker aims at maximizing the sum
of rewards over a fixed number of steps. Thus, (p:: ps) is an optimal policy sequence for 5 + 1 decision steps i vo other
sequence aitains a higher sum of rewards [over & + 1 steps) for any given = = Stalbe {.

While fairly imtwitive, formalizing this notion of optimality is not compleiely trivial. This is because, in a stochastic emission
problem, a sebected abatement level does mot entail & unique next state, as explained above. Thus, for any posside next state
{and, therefore. for any possible valoe of taking # further decision steps taken with the policies of ps and starting from that
state) we have a cormesponding reward amd a probability. Such a probability distribotion of rewands bas 1o be measored with
saeas inorder to obtain the value of making n + 1 decision steps according to the policy p and to the policy sequence ps.

In Botta et al. {301 Th, a) we discuss the computation of the value of policy sequences in great detail. For the purpose of this
work, it is sufficient to recognize that one can precisely define a function

wval - i{r : State §] = PolicpSeg t e —+ Val

In the theory of sequential decision problems, el is called the value function. As one would expect, vl ¢ ps is the valoe, in
terms of the measured sum of posaible rewards, of performing  decision steps with the policy sequence ps and starting in
state . Crucially, val @ ps only depends on State, Otel, nest, rewerd, mees and on the mle for adding up rewards.

The value function allows us 1o give a precise meaning to the intuitive notion of optimality of policy sequences discussed
above. More importantly, it allows us to actally compute optimal sequences of policies, at least for decision problems that
fulfill certain natural conditions,

Again, a comprehensive discussion of the notion of optimality and of the conditions under which optimal policy sequences
can be computed goes well beyond the scope of this work. We refer the interested reader to Botta et al. (2007a) and close this
section by recalling an often neglected fact on decision making under uncertainty.

mit yield a unique next state but a whole set of possible next states with their probabilities. Therefore, the reward function has
to explicitly depend on =" because this cannot be computed from the cusrent state & and the selected control ¢ unambiguously.
This justifies the signature of reward as given above,

We can summarize the resulis obtained o far in the observation that stochastic sequential emission problems can be specified

in terma of four functions:

State  :(t: M} = Type

Control : [t : M} = {x : Stale i) = Type

next st M) = {x : State t) — (v : Condad ¢ ) = Prob | Slate (¢4 1))
reasard : (f: M) = {x: State £) — [y : Condral ¢ ) — (' @ Stade (£ + 1)) = Val

We define these functions for our stylized emission problem in gection 4. For the time being, we need to better understand
the decizion problem that four such functions specify. This i crucial for understanding the notions of policy and of policy
sequence introdsced in the next section.

The idea is that, for a fixed number of decision steps, the decision maker seeks controls (emission bevels) thar maximize a
sum of the rewards obtained over those steps. The emphasis here is on “a sum™ depending on the specific problem at stake.
fumure rewards might need 1o be discounted and the way values of type Vol anre added up might not be completely trivial. As
explained in detail in Boita et al. (200 7a). fully specifying stochastic SDPs requires defining Stale, Conirol, nert, reivard
and choosing a measure for weighting uncertain outcomes. Formally, a measure is just a function that reduces probability
distribution on values to values

meas : Prok Val — Val

The expected value function is probably the most widely wed measure in the study of stochastic SDPs. But other measures
are possible. Depending on the specific problem and on the kind of uncertainties, other measures might be more suitable than
the expected value, Thus, for instance, a rsk-averse decision maker might adopt a werst measure rather than relying on the
expected value. It is also conceivable, that a decizion maker adopts different measures of uncenainty at different decision steps.
The theory summarized in appendix A can be zasily extended to cope with this siluation. In section 4, we walk the reader
through the full specification of our stylized emission problem, included uncemainty measures.

Solving SDPs is not trivial. For this, we instantiate the generic backward induction algorithms presented in Botta et al.
12001 Th, a). We do not need to discuss these methods in detail here but, before we move to section 4, it is important o achieve
a good understanding of what it means to solve a stochastic SDP and of what it means for sequences of policies o be optimal.

In the rest of this section, we informally discuss the notions of policy, policy sequence and optimality of policy sequences.
We do g0 in the context of sequential emission problems but the ideas apply 1o SDPs in general. In section 3, we discuss a
numbser of bagic facts about sequential emission problems. These, too, apply to sequential decizsion problems without loss of
generality.




DiffPDF « ESD-2017.submission.R01.pdf vs. ESD-2017.submission.R02.pdf « 2018-02-15

A fundamental difference between decision making under deterministic transition functions and decision making under
umcertainty is that. in the latier case, regret cannod, in general, be avoided. Here, by regret we mean a judgment in hindsight,
often triggered by an unlucky sequence of wansitions. Thus. for instance. a system for optimal routing may recommend a
driver 1o leave a highway in order to avoid an wpecoming traffic jam. On the alternative road, the driver may get invalved in
a car accident and finally regret having left the highway. OF course. the driver's segret does not change the fact that leaving
the highway was a best choice {under the problem’s reward function, measure of possible rewards, etc.) at the point in time in
which she had to make her choice,

In both the deterministic and in the uncertain case, the notion of “best decision” is the same: at, say, decision step £ and in
x : State £, a best decision y° : Otel ¢ o is a decision that cannot be bettered (in terms of sum of possible rewards) given the
decision problem (that is, the functions Stete, Ctel, nexd, reward, the measure seas, and the rule for adding rewards) and a
sequence of policies (optimal or not) for taking » further decisions.

But when the outcome of a decision step is a probability distribution on next states. we will have {possibly infinitely) many
piossible trajectories of length « + 1| starting in = instesd of just one. In general, there iz nothing peeventing some of these
trajectiones to contain states that make any best decision in ¢ regrettable. This is true even fior rajectories of length | that s,

for =t = (.

3 Lagical consequences of SEPs

In this section we discuss some logical consequences of the notions introduced in 2. A first consequence of the notion of
optimal policy sequence is that optimal decizsions may vary over time: a best control at a given step does not need to be a best
control at a subsequent (or previous) step even if the decision maker observes the same state at both decision steps. There is
nothing worrying with this fact: time-inconsistency of optimal policies and Bellman's principle of optimality Bellman (1957}
are in fact pesfectly consistent!

Another consequence of the notions introduced in section 2 i8 that exploiting available information is crucial in decision
making under uncertainty. We have seen that, under uncertainty, regret canmd in general be aveided. In spite of this fact,
the motion of optimal policy sequence and of “best” decigion are both clear and compelling: optimal policy sequences fog
SEPs provide decision makers with mles for selecting emission levels that, ar any decision step. cannot be bettered given the
information available io the decision maker at that step.

The crocial peint is exploiting the information available at a given decision step. As seen in section 2, this information is
coded in the notion of Stete and the mechanism for exploiting such information are policies or action mles. Taking decisions
on the basis of optimal policies is in most cases better than selecting controls according to fixed {ex-ante) action plans. This
is because, in contrast o fixed action plans, policies provide an action for every possible state that can eventually be reached
[ex-posth at a given decision step. They sccount for all the information available 1o the decision maker at that step. Further,
optimal policies entail actions that cannot be bediered.

2.3 Emission policies

Wi have pointed out that, in stochastic sequential emission problems, selecting an emisaion (abatement) level at a given decision
stzp and in a given state does not nsually yield a unigue next state. Insiead, we obiain a probability distribution on next stabes.
The distribution encodes the uncenainties associated with the decision process ai sivdy. Thus, for instance, the decision maker
muight select to reduce emissions by 2% but what actually gets implemented is a smaller reduction, perhaps because of political
imertia or a8 a consequence of an increased economie activity.

One consequence of uncertainties is that, even if the decicion maker could fix a prior an emission schedule or path?, she
would not know the state obtained after a fived number of decision steps. This is. again, because each single step vields a
probability distribution on next states, not a single next state.

Thus, the best a decision maker can hope to obtain as a solution of a stochastic sequential emission problem is a sequence
af rubes that tell her which contral (abatement level) 1o select for each decision step and. at that step, for each possible state.

In control theory, such “rules of action™ are called policies. This is also the sense in which the word policy has been used in
Botta et al. (2017h, a). The control theoretical notion matches quite well the notion of sirategy in game theory Pudenberg and
Tigole { 19491 ), but notice that, in plain English, the temm policy is ambigeous: sometimes it is used to denote a plan {course) of
action, sometimes a rule of action, see wwa.merriam-webster.com/dictionary/policy.

Here we follow the control theory standard and policy sequences are just sequences of functions, one for each decision step.
A sequence of policies for s+ 1 decizion steps consists of a policy p for the f-th decision step and of a policy sequence ps fog
funther n steps. Formally we write

[paps) : PolicySeq ¢ in+1)
with p = Palicy £ {n+ 1) and ps : PolicgSeq (8 + 1) ©. Here, < i3 the operator that prepends a policy to a (possibly empiy)
policy sequence, see appendix A and sections 3.5, 3.7 and 3.9 of Botta et al. (2017a). More formally, if ps = [pd . p2. 57| then
pops=[p.pi p2 ps| forall p - Policy ¢ {5+ 1), ps : PolicgSeq (14 1) n.

But what does it mean for a sequence of emission policies o be optimal? The decision maker aims al maximizing the sum
of rewards over a fixed number of gteps. Thus, (p::ps) is an optimal policy sequence for 5 + 1 decision steps iff mo other
sequience attaing & higher sum of rewards (over @ + | steps) for any given & @ State (.

While fairly intwitive. formalizing this notion of optimality is not completely trivial. This is because. in o stochastic emission
problem. a sebected abatement level does vt entail & unique pext state, as explained above. Thus, fior any possile next st
(and, therefore, for any possible value of taking « further decision steps taken with the policies of ps and starting from that
state) we have a correaponding rewand amd a probability. Such a probability distribation of rewards has o be measuned with
meas in order to obiain the value of making n + 1 decision steps acconding to the policy p and to the policy sequence ps.

In appendix A, we discuss the computation of the value of policy sequences in detail. In arder to get an intuition of the
notion of optimality for policy sequences, it is sufficient to recognize that one can precisely define a function

wval = (r - State £} = PolicySeg t v — Val

*Snscily speaking, this s impossible because, as we bave scen, what are feasible emisssans in & grven siule may depend on thal stale.
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In section §, we discuss optimal policies for the emission problem of section 4. Becanse these policies are computed using
the verified framework presented in Bota et al. (2017h, a), they have been machine-checked io be optimal: at each decision
step, they make best use of the information available at that step. Thus, we know (in apite of the uncertainties affecting emission
problems, for certain!) that the conclusions that we draw for our uncenain emission problem are logical congequences of the
problem specification. In other words, we can rule out our the possibility that computational artifaces affect our conclusions.

A thisd obvious bogical conseguence of the the notions introduced in the previous section is that best controls and optimal
policies are ot in general, unique. In section § we discuss a problem setup in which both increasing and decreasing emissions
is optimal. When applying optimal control to inform policy advice and decision making is imporiant to keep in mind that
optimal policies are not necessarily unique: different optimal emission sequences can yield different sets of possible emission
paths. Decizion makers might not be able o distinguizh them in terms of measures of possible sums of rewands, but they =il
might have reasons o prefer certain optimal emission policies to others. For instance, precautionary approaches might bead
decision makers to prefer optimal policies that entail low risk levels to high risk optimal policies.

Another bogical consequence of decision making wsder uncertainty is that the valoe of policies depends not only on the
problem-specific reward function and on the way rewards are added (e.g. via discounting) but also on how the decision makeg
weighs uncertain outcomes. This is captured by the measure function mees. Different measures reflect different attitudes or
dispositions, eg., towards risk.

As explained in Lonescu {2009), decision makers are free to choose whatever measure they like as far as it fulfills a mono-
tomicity condition. Informally, the monotonicity condition says that if one increases the values of a probability distribution, its
measure shall pot decrease. Formally, one can express the monotonicity condition on mieas as:

measMon : {A: Type} —
=4 —= Val) =+ ig: 4 = Val) =
[{az Al =+ [f a)*LTE {ga]) —
|ma = Frob A} — meas (fmap f ma) ' LTE" mess ( fmap g ma)

It is easy to see that the expected value in much the same way as worst and best case measures fulfill this condition, Bur.
as pointed out by lonescu lonesca (2009, likelibood-based measures are typically non-monctonic. It is a responsibility of

scientific advisors to make sure that decision making is informed by meaningful, monotonic measures.

4 A stylized sequential emission problem

In this and in the next section, we study how optimal sequences of GHG emission policies are affected by:
1. Uncertainty about the implementability of decisions on GHG emigsion reductions.
2. Uncertainty about the availability of efficient iechnologies for reducing GHG emissions.

3. Uncertainty about the implications of exceeding a critical threshold of cumulsted GHG emissions.
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In the theory of SDPs, wal is called the value function. As one would expect, vel x ps is the value, in terms of the measured
sum of possible rewards, of performing » decision steps with the policy sequence ps and starting in state x. Crucially, val & ps
only depends on State, Ctel, next, rewand, meees and on the mle for adding wp rewards.

The value function allows us 1o give a precise meaning to the intuitive notion of optimality of policy sequences discussed
above. More impontantly, it allows us to actually compute optimal sequences of policies, at least for decision problems that
fulfill certain natural conditions.

Again, a comprehensive discussion of the notion of optimality and of the conditions under which optimal policy sequences
can be computed goes well beyond the scope of this work. We refer the interested reader to appendix A and to Botta et al.
1204 Ta) and close this section by recalling an often neglected fact on decision making under uncertainty.

A fundamental difference between decision making under deterministic transition functions and decision making under
uncertainty is that, in the latter case, regret cannot, in general, be avoided. Here, by regret we mean & judgment in hindsight.
often triggered by an unlucky sequence of transitions. Thus. for instance, a system for oplimal routing may recommend a
driver o leave a highway in order o avoid an wpeoming traffic jam. On the allemnative road, the deiver may get invalved in
a car accident and finally regret having left the highway. Of course. the driver's regret does not change the fact that leaving
the highway was a best choice {under the problem’s reward function, measure of possible rewards, etc.) at the point in time in
which she had to make her choice.

In both the deterministic and in the uncertain case, the notion of “best decision” is the same: at, say, decision step  and in
x : State £, a best decision y° : Ol ¢ o is a decision that cannot be bettered (in terms of sum of possible rewards) given the
decision problem (that is, the functions State, O, neat, reward, the measure meas, and the rule for adding rewards) and a
sequence of policies (optimal or not) for taking » further decisions.

But when the outcome of a decision gtep iz a probability distribution on mext states, we will have many possible trajectories
of length #+ | starting in # ingtead of just one. In general, there is nothing preventing some of these trajectories o contain

states that make any best decizion in o+ regrettable. This is wue even for trajectories of length 1 that is, for & = (.

3 Lagical consequences of SEPs

In this section we discuss some logical consequences of the notions introduced in 2. A first consequence of the notion of
optimal policy sequence is that optimal decisions may vary over time: a best controd at a given step does not need to be a best
controd at a subsequent (or previous) step even if the decision maker observes the same state at both decision steps. There is
nathing worrying with this fact: time-inconsistency of optimal policies and Bellman's principle of optimality Bellman (1957
are perfecily consistent!

Another consequence of the notions introduced in section 2 15 thar exploiing available information is crecial in decision
making under uncertainty. We have seen that, under uncertainty, regret canndd in general be avoided. In spite of this fact.
the motion of eptimal policy sequence and of “best” decigion are both clear and compelling: optimal policy sequences fog
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As anticipated in the introduction, we first specify a stylized sequential emission problem that sccounts for all three sources
of uncertainty and yet is simple enough 0 support investigating the logical consequences of different assumptions on such
uncertainties. In section 5 we discuss the optimal policies obtained for our gtylized problem under different azgumptions.

We specify our stvlized emission problem by instantiating the theory for sequential decision problems discussed in Bota
etal {200Th, a). Technically. this iz done by defining all the undefined variables in the modules that implement the theory. Fog
the implementation provided in

SeguentiallecisionProblems®
these are the undefined varizbles (holes) in CoreThesry, Ful 1Theary and in the ancillary modules
Deils,
CoreTheoryOptDefaults,
FullTheoryOptDefaults,
FastStpchasticDefaults,
TabBackwardsInducktian and
TabBackwardsInduetionOptDefaults.

For a detailed discussion on how to specify a sequential decizion problem using the theory implemented in
SequentialbecisionProblens, see Botta et al. (2017a). In the rest of this section, we skip most technical details and
focus on the specification of the emission problem from an applicational perspective. A eomplete, commented implementation
of our specification is available in SequentiallecisianPrablems/applications /EmissionGamez.

As anticipated in the introduciion, we specify our stylized emission problem as a stochastic sequential decision problem.
Thus, A = Prok. We have to define the four functions Stefe, Condrol, next and reard discussed in section 2. We start by
defining the controls, that is the options available to the decision maker.

4.1 Contrals

In our stylized emission problem, at each decision step, the decizion maker can only select between low and high GHG
emissions. Thus,

Cemtral § ¥ = Lowfigh

where LowHigh is a type inhabited by only two values: Low and High. The kdea is that low emissions, if acually implemented.

increase the cumulated GHG emissions less than high emissions.

Aim barps il b pik- potsd sm defona/ldrisk ibs

SEPs provide decision makers with rules for selecting emission levels that, at any decision siep. cannot be bettered given the
information available to the decizion maker at that step.

The crucial point iz exploiting the information available at a given decision step. As seen in section 2, this information is
coded in the notion of Stete and the mechanism for exploiting such information are policies or action miles. Taking decisions
on the basis of optimal policies is in most cases better than selecting controls according to fixed fex-ante) action plans. This
i because, in contrast o fixed action plans, policies provide an action for every possible state that can eventually be reached
[ex-posth at a given decizion step. They sccount for all the information available 1o the decision maker at that step. Further,
optimal policies entail actions that cannot be bettered.

In section 5, we discuss optimal policies for the emission problem of section 4. Becanse these policies are computed using
the verified framework presented in Botta et al. {200 T, &), we know {in spite of the uncenainties affecting emission problems,
for certain?) that the conclusions that we draw for our uncertain emission problem are logical consequences of the problem
specification. Computing optimal policies with a verified implementation is crucial because, in contrast to other properties of
solutions of computational problems, optimality cansot in general be established by testing. This is a well know case in which
proving is (albeit difficult, still) easier than testing, see lonescu and Jansson (2003).

A third obviows logical consequence of the notions introduced in the previows section is that best conirols and optimal
policies are mot, in general, unique. In section 5 we discuss a problem setup in which both increasing and decreasing emissions
iz optimal. When applying optimal control to inform policy advice and decision making is imporiant to keep in mind that
optimal policies ane not necessarily unique: different optimal emission sequences can yield different sets of possible emission
paths. Decizion makers might not be able to distinguish them in terms of measunes of possible sums of rewards, but they stll
might have reasons to prefer cerain optimal emission policies to others. For instance, precautionary approaches might lead
decision makers o prefer optimal policies that entail low risk levels 1o high risk optimal policies.

Another bogical consequence of decision making wsder uncertainty is that the valoe of policies depends not only on the
problem-specific seward function and on the way rewards are added (e.g. via discounting) but also on how the decision makeg
weighs uncertain outcomes. This iz captured by the measure function oees. Different measures reflect different attitudes of
dispositions, e.g., towards risk.

A explained in Lonescu {2009), decision makers are free to choose whatever measure they like as far as it fulfills a mono-
tonicity condition. Informally, this condition says that if one increases the Val-values of a probability distribution by amy
arbitrary amount (by leiting their probabilities unchanged), its measure shall ot decrease, see appendix A. The expected value
in much the same way as worst and best case measures fulfill this condition, But notice that, as discovered by lonescu (2009
in the context of vulnerability studies. measures that pick up the most (least) probable Val-value of a probability distribution
do violate the monotonicity condition. It §s a responsibility of scientific advisors 1o make sure that decision making is informed

by meaningful, monsonic measures.
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4.1 States

At each decision step, the decision maker has to choose between low and high emission levels on the basis of four data:
a measure of cumulated GHG emissions, the current emission level (itself either low or high), the availability of effective
technologies for reducing GHG emissions and a “state of the world”. Effective technologies for reducing GHG emissions can
be either available or unavailable. The state of the world can be either good or bad:

Stade t = {(CumalatedEmissions ¢, LowHigh, Aveilable inovaidabe GoodBed )

The idea is that the decision process starts with zero cumulated emissions, high emisaion levels. unavailable GHG iechrologies
and with the world in a good state. In these conditions, the probability for the world to turm to the bad state is low. But if the
cumulated emissions increase beyond a fixed critical threshold, the probability that the world becomes bad increases. If the
world i in the bad state, there is no chance o come back to the good state. Similarly, the probability that effective iechnologies
for reducing GHG emissions become available increases afier a fined number of decizion steps. Once available, effective
technologies stay available for ever.

In a realistic problem, the capability of actually implementing a decigion on a given GHG emission level typically depends
on a variety of factors. In our stylized problem. we follow Webster (2000, 2008) and focus on the uncerainties about the
implementability of decisions on GHG emission reductions that come from inertia: implementing low emissions is easier
when bow emission measures are already in place than when the current emissions are high. Similarly, implementing high

emission measures is casier if the current emissions are high than under low emissions regulations.

4.3  Transition function

‘We have defined Stale ¢ to be a wple of values repe ting curmulated GHG the current emission level, the avail-
ahility of effective technologies for reducing GHG emissions and the state of the world ot decision step ¢ As our stylized
emission problem is stochastic, its ransition function at decision step ¢ yields a probability distribution on values of type
Srate (E+ 1)

The idea is that low emission levels leave the cumulated emissions unchanged and high emissions increase the cumulated
emissions. Without kst of generality, we can take such increase o be one. We have mentioned that the probability of the state
of the world to become bad depends on a critical cumulated emissions threshold. Let's call this threshold crf

eri  Double

and let @57 and pS2 the probabilities of staying in a good world when the cumulated emissions are smaller or equal o erfE
and greater than orE, pespectively:

pid ¢ NonNegDouble
pa2 @ NonNegDouble
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4 A stylized sequential emission problem

In this and in the next section, we study how optimal sequences of GHG emission policies are affected by:
1. Uncertainty about the implementability of decisions on GHG emission reductions.
2. Uncertainty about the availability of efficient echiologies for reducing GHG emissions.
3. Uncertainty about the implications of exceeding a eritical threshold of cumulsted GHG emissions.

Ag anticipated in the introduction, we first specify a stylized sequential emission problem that acoounts for all three sources
of uncertainty and yet is simple enough 1o support investigating the logical consequences of different assumptions on such
uncertainties. In section 5 we discuss the optimal policies obtained for our stylized problem under different assumptions.

‘W specify our stylized emission problem by instantiating the theary for SDPs summarized in appendix A, Technically, this
is done by defining all the undefined variables in the modules that implement the theory. For the implementation provided
in the SequentialDecisionProblems component of Botta (2016-2017), these are the undefined variables (holes)y in
CoreThessy, FullThesry and inm  the ancilliy modules Ueils, CoreThesryOptDefaults,
FullTheoryOptDefaults, FastStochasticDefaules, TabhBackwardsInduct ion amd
TabBackwardsInduct ionCotDefault s For a detailed discussion on bow to specify a SDP, see Botta et al. (201 7a).
In the rest of this section, we skip most iechnical details and focus on the specification of the emission problem from an ap-
plicational perspective. A complete implementation of our specification is available in applicat ions/EmissianGamsz.
This iz a subcomponent of SequentialDesisianPrablems in Botta (2006-2017).

As anticipated in the intraduction, we specify our siylized emiszion problem as a stochastic SDE Thus, M = Prob. We have
to define the four functions Siate, Coniral, nest and revard introduced in section 2. We start by defining the conirols, that is

the options available to the decizion makes.
41 Contris

In our stylized emission problem, at each decision step, the decizion maker can only select between low and high GHG

emissions. Thus,
Clemirol ¢ r = Lowfigh

where LowHigh is a type inhabited by only twio values: Low and Hégh. The kdea is that low emisgions, if acually implemented.

increase the cumulated GHG emissions less than high emissions.
4.1 States

Atb each decision step, the decision maker has to choose between bow and high emission levels on the basis of four data:

a measure of cumulated GHG emissions, the current emission level (itself either low or high), the availability of effective
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Thus, the probabilities of geiting into a bad world below and above the threshold are 1 — pS1 and 1 — @52, respectively. Asa
sanity check, we require pS2 1o be bess of equal to pSi.
Mexr, we have to specify the uncerainties about the availability of efficient iechnologies for reducing GHG emissions. This,

v, can b done in terms of a critical number of decision steps

er¥ N

and of two probabilities: the probability of effective technologies for reducing GHG emissions becoming available when the
mumber of decision sieps is below or at cr and the probability for the case in which ¢ is above ceN:

pAl 2 NonMeglouble
pAL @ NonNegDouble

Also for these probabilities we need a sanity eheck: pA7 shall be at most equal o pd 2. Finally, we have to specify the
uncertainties about the implementability of decisions on GHG emission reductions. Following the discussion in the previous
section, we do so in terms of four conditional probabilities. These are the probability of implementing low emission measures
when the current emissions measunes ane low and low emissions are selected pl L. the probability of implementing low emission
measures when the current emissions measures are high and low emissions are selected pL# and their counterparts for high
emissions:

pLL : NoenNegDouwble

pLH : NonNegDowhle

piL : NenNegDouble

plil @ NenNegDowble

Also for these probabilities, we require two sanity checks to be fulfilled: pLA shall not exceed pl L and p/L shall not exceed
pHH . With these parameters in place, the transition function neet can be implemented by cases. For a full implementation. we

refer the reader to EmissionGame?. As an example we discuss here the case in which the current state is
r = [e. High, Unovailable, (oo )

the decision maker has opted for low emissions,  is smaller or equal to erE and 1 is smaller or equal o crV . In this case, the
result of nest ¢ o Lo is & probability distribution with the following assignments:

e, Low, Unaswilable, (ond) = pLH  s{one—pdl]= psT
Le+ 1, High. Uneooilable, Good) = (one — pLH ) s {one — pA i) s p&I
ligs Low,  Avolable, CGond) = pLH ® pAl = pid
le+ 1, High, Auvnilable, Good) = (one — plH )« pAl = p&I
e, Low, Vneeailable, Bad) = pLH  sione— pAl)={one— psI)
(e + 1, High, Unasailable, Bad) = [one — pLE) «{one — pd 1] = {on=— pST)
e, Low, AvamlaWe, Bad) = pLH = pAl  s{one— pdT)
(e+ 1, High, Avmlable, Bad) = (one— plH )« pAl  s{on=— piT)
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technologies for reducing GHG emissions and a “state of the world”. Effective technologies for reducing GHG emissions can
be either available or unavailable. The state of the world can be either good or bad:

Stale | = {CumelatedEvassions ¢, LowHigh, Aveilable Unovolabe . GoodBed )

The idea is that the decision process stans with zero cumulated emissions, high emission levels, unavailable GHG wechiologies
and with the world in a good state. In these conditions, the probability for the world to turm to the bad state is bow. But if the
cumulated emissions increase beyond a fixed critical threshold, the probability that the world becomes bad increases. IF the
world is in the bad state, there is no chance 1o come back to the good state. Similarly, the probability that effective iechrologies
for reducing GHG emissions become available increases afier a fixed number of decizion steps. Once available, effective
technologies stay available for ever.

In a realistic problem, the capability of actually implementing a decigion on a given GHG emission level typically depends
on a variety of factors. In our stylized problem. we follow Webster (2000, 2008) and focus on the uncertainties about the
implemeniability of decisions on GHG emission reductions that come from inertia; implementing low emissions is easier
when bow emission measures are already in place than when the current emissions are high. Similarly, implementing high

emission measures is casier if the current emissions are high than under low emissions regulations.

4.3  Transition function

We have defined State ¢ 1o be a wple of values repe ing cumulated GHG
ahility of effective technologies for reducing GHG emissions and the state of the world st decision step ¢ As our stylized

the current emission level, the avail-

emission problem is stochastic, its ransition function at decision step ¢ yields a probability distribution on values of type
State (t+ 1)

The idea is that low emission levels leave the cumulated emissions unchanged and high emissions increase the cumulated
emissions. Without loss of generality, we can take such increase to be one. We have mentioned that the probability of the state
of the world to become bad depends on a critical cumulated emissions threshold. Let's call this threshold crf

erE . Double

and let @57 and pS2 the probabilities of staying in a good world when the cumulated emissions are smaller or equal o erf
and greater than o E, pespectively:

pid @ NonNegDouble
pa2 @ NonNegDouble

Thus, the probabilities of getting into a bad world below and above the threshold are 1 — pSd and 1 — @52, respectively. Asa
sanity check, we require pS2 to be bess or equal o pSi.
Mext, we have to specify the uncertainties about the availability of efficient techrologies for reducing GHG emissions. This,

too, can be done in terms of & critical number of decision steps
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Similarly for the other cases. Notice that the marginal probability of the new staie 1o enter a bad world is ane — pS1, as one
would expect. Similarly, the probability of effective techsologies for reducing GHG emizsions becoming available is pad @ (we
are considering the case ¢ £ cof) and the probability of implementing low emission measures is pLH a8 the current emission
levels are high.

44 Reward fanction

T complete the specification of our stylized emission problem, we have to defing the reward function and the measure

meas : Prok Val — Val

according to which the decision maker weights uncertain outcomes. Unless stated otherwise, we will take Vol to be NonNegDowble
(non-negative double precision floating point numbsers) and meas 10 be the expected value function. In this section we focus
the attention on the reward function

rearrd : (£ M) — [ : Stode t) — (y : Control § z) — (' : State {t+ 1)) = Val

The kdea is that being in a good world yields one unit of benefits per step and being in & bad world vield less benefita. We can
formalize this idea by introducing a dimensionless number

td Cverirosd @ NoreNegDouble

which represents the ratio between the step benefits in a bad world and the step benefits in a good world. It goes without savimg
that & constant ratio s a very crude approsimation that can only be justified in a stylized problem. In sequential emission
problems aiming &t informing decicion making under realistic conditions, the costs and the benefits of nod transgressing global
emission thresholds are likely to be time dependent and have to be carefully d, ez, by ing global cli dizl
coupled with economic models amd perhaps energy models. Unless otherwise stated, we will take baditoerGood to be equal
to (L5, OF course, we require the badOver{ood ratio to be smaller or equal 1o one_

Emitting GHGs also brings step benefits, e.g. by supporting economic growth. These can be represented as a fraction of
the step benefits of being in a good world. Moreover. low emissions bring less benefits (higher cosis) than high emissions and
reducing emissions when effective technologies are unavailable costs more than reducing emissions when such echrologies
are available. We can summarize this state of affairs in term of three dimensionless numbers. A first number represents the
ratio bepween the step benefits of low emissions and the step benefits in a good world when effective technalogies for reducing
GHG emissions are unavailable

towCverdioad Unereilable @ NonNegllouble

A second mumber represents the same ratio when effective technologies are available

towlherdsood Avaidable : NorNegDowlle
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¥ N

and of two probabilities: the probability of effective technologies for reducing GHG emissions becoming available when the
mumber of decision steps is below or at cr and the probability for the case in which ¢ is above ceN:

pAl 2 NonMeglouble

pAZ : NonNegouble
Also for these probabilities we need a sanity ehbeck: pA7 shall be at most equal o pd 2. Finally, we have to specify the
uncertainties about the implementability of decisions on GHG emission reductions. Following the discussion in the previous
section, we do so in terms of four conditional probabilities. These are the probability of implementing low emission measures
when the current emissions measures are low and low emissions are selected plL L. the probability of implementing low emission
measures when the current emissions measures are high and low emissions are selected pL# and their counterparts for high
emissions:

pLL : NoenNegDouwble

pLH : NenNegDouble

pHL @ NorNegDowble
piilt : NenNegDouwble

Also for these probabilities, we require two sanity checks to be fulfilled: pLH shall not exceed pf L and pH L shall not exceed
pHH . With these parameters in place, the transition function nert can be implemented by cases. For a full implementation. we
refer the reader to applicat fons/EmissianGamea?. As an example we discuss here the case in which the current state is

r = [, Migh, Urovoilable, oo )

the decision maker has opted for low emissions,  is smaller or equal to erE and ¢ is smaller or equal to crV. In this case, the
result of nest ¢ o Lo is & probability distribution with the following assignments:

e, Low, Unaveilable, & ond) = pLH wi{one —pAi]= pal
le+ 1, High. Unaeeilable, (ood) = (one — pLI) s {one — pd i) = Pl
e, Low, Avalable, o) = pPLH » pAl = Pl
le+ 1, High, Auvoilable, CGood) = (one— plH )« pAl & pai

e, Low, Vneeailable, Bad) = pPLH eione — pAl]={on=— pST)
e+ 1, High, Unaeeileble, Fod) = (one — pLH) »{one — pA ] = {on= — pST]
e, Low, Avalabe, Bad) = pPLH » pAl s{one—pST)
le+ 1, High, Avoilable, Bad) = [on=— pLH )« pAI s{one— pSI)

Similarly for the ether cases. Notice that the marginal probability of the new state to enter a bad world is one — pS7, as one
would expect. Similarly, the probability of effective technologies for reducing GHG emizsions becoming available is pA @ (we
are considering the case ¢ £ coN)and the probability of implementing low emission measures is pLH as the current emission
levels are high.
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and, fimally, the ratio between the siep benefits obtained theough high emissions and the step benefits in good worlds

kighChverfzood - NonNegDouble

W require both leeDverGosd Dnavalaile, TowFrerood A vailabie and figh Chrer(oad 10 be sialler o equal toone, leeQeerTond Do

1o be amaller or equal 1o TowFer{Zood A vailabie and the latter to be smaller o1 equal 1o Figh Cerfood. Unless siated other-
wise, we take JowrerTood Unevailable, uverGood Available and highOeerGood to be equal to 0.1, 0.2 and 0.3, respec-
tively.

With these notions in place, we can easily implement the reward function of our stylized emission problem. The idea is that
the rewards only depend on the next state (the state during the period starting with the current decision) not on the carment state
or on the sebected control. We have 8 cases with the following assignments

| e gk, Unaeeileble, (food) = ore + one » figh Cuerifood
[ e, Higlk, Unavailable, Hod) = one « bedOveriiood + ane s figh Over{food
Lo, Higle, Avmilable food) = one + ane s figh Cuerdsood
Lo, High, Avmlable, Had) = one + badCQverdiood + ane s high Querdsmed
Le, Low, Unavailable, (food) = ore + ane + losUhver GFood [rovailoble
(e, Low, Unaeaileble, Hod) = ore « bad Qverdfood + one » loarUver Goed Drovaniloblz
le, Low, Avmiloble, food)] =+ one + one s loalheriGosd Available

(e, Low, Avmidoble, BHod) = ore « badOver{food + one ¢ loaChver Gosd Avaitabde

Completing the specification of our problem and computing optimal sequences of emission policies requires filling in some
maore details. These are annotated and discussed in EmissionGame? They are pertinent to the notions of reachability.
viability, finiteness and decidability. These notions are crucial for understanding the problem of computing optimal policies
under uncertainty but their discussion would go well beyond the scope of this work., W refer the interested reader to Botta
etal. (2017a).

5 Optimal policies

In thiz section we discuss optirnal emission policies for the stylized emission problem of section 4 and stady the impact of
the uncertainties { L-(3) on such polickes. As explained in section 3, the computed policies have been machine-checked o be
optimal- Thus, they only depend on our problem specification. This i simple enough to allow deducing some general properties
that optimal decisions — decisions taken according to optimal policy sequences — have o fulfill.

A first one is that when the state of the warld is bad, reducing emissions is never optimal. This is because, as posited in
section 4, there is no way o make a transition from a bad world 10 3 good world and, in a bad world in moch the sane way
as in a good world, higher emissions bring more emission benefits. In other words, reducing emissions can only pay off if it
allows avoiding ransitions to & bad world, if perhaps only for a limited number of steps. A consequence is that in the lase step
it is always optimal to select high emissions.
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44 Reward fanction

To complete the specification of our stylized emission problem. we have to define the reward function and the measure

meas : Prok Val — Val

aceording to which the decision maker weights uncertain outcomes. Unless stated otherwise, we will iake Val to be NonNegDawble
{non-negative double precision floating point numbers) and meas 10 be the expected value function. In this section we focus
the attention on the reward function

rearerd : (£ 2 M) — [z Slabe d) = (p : Controd d 2} — (2 : State (§+ 1)) =+ Val

The idea is that being in a good world vields one unit of benefits per step and being in a bad woeld yields bess benefits. We can

formalize this idea by introducing a dimensionless numbes
td Cveriioad @ NorNegDouble

which represents the ratio between the step benefits in a bad world and the step benefits in a good world. It goes without saving
that & constant ratio is a very crude approximation that can only be justified in a stylizsd problem. In sequential emission
problems aiming at informing decizion making under realistic conditions, the costs and the benefits of not ransgressing global
emission thresholds are likely to be time dependent and have to be carefully ted, e.g., by ing global climat dizl
coupled with economic models amd perhaps energy models. Unless otherwise stated, we will take bod@ier{ood to be equal
to (05, OF course, we require the badOeer{ood ratio to be smaller or equal 1o one_

Emitting GHGs also brings step benefits, e.g. by supporting economic growth. These can be represented as a fraction of
the step benefits of being in a good world. Moreover, low emissions bring less benefits (higher costs) than high emissions and
reducing emissions when effective technologies are unavailable costs more than reducing emissions when such iechmologies
are available. We can surmmarize this state of affairs in terms of three dimensionless numbers. A first number represents the
ratio bepween the step benefits of low emissions and the step benefits in a good world when effective technologies for reducing

GHG emissions are unavailable

towlverioad Unavailable @ NonNegDouble
A second mumber represents the same ratio when effective technologies are available
towfverfead Avedeble © NonNegDoukle

and, finally, the ratio between the siep benefits obiained theough high emissions and the step benefits in good worlds
teighChveriioosd = NonNegDowble
We reguire both fowCeerGood ieuailable, fouDverGood Aveilable and hagheerGood o be smaller or equal w0 one,

lowheriGood lnosaifalle o be smaller or equal to lowverFosddredlable and the latter w be smaller or equal 1o
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Unless specified, we consider 9 decision steps with erf = 4 and erN = 2. Thus, it takes at least 5 decision steps (and 5
perinds with high emissions) o achieve states in which the sum of the cumulated emissions exceeds orE and, therefore, the
probability of a transition 10 a bad world increases from pSi o pS2. Similasly, with erV = 2, it takes 3 decision steps to
achieve states in which the probability that effective technologies for reducing GHG emissions become available increases
from pd ! o pAd2

In other worlds, if pSf = pAd? =0 and p5% = pA2 = 1, effective technologies will be available (with certainty) afier 4
decision steps. And after § periods of high emissions, a transition to a bad world will eceur. This is the deterministic base case

studied in the next section.
51 The deterministic base case

Before stdying the impact of uncertainties on optimal policies, we consider the certain case. Beside pSi = pd? =0 amd
#582 = pA2 =1 we also have pLl = pLH = pHL = pHH = 1. Thus, there i3 no oncenainty about the implementability of
emission measures! decisions of reducing or increasing emissions ane implemented with probability one.

Motice that the absence of whatsoever uncentainties implies that, for any initial state and policy sequence {optimal or nod)
there is exactly one possible state-control trajectory. Mamely that determined by that policy sequence. Thus, for instance, if
we start i (0, B, [T (7)) {zero cumulated emissions, high emissions, unavailable efficient iechnologies and a good world) and
adopt the policy of constantly increasing emissions, we obiain the state-control trajectory

[60em, O, Gh Yy {[1aB DGk BE, (2B G Y D3 H W GY HY G A (4, Ha R G HE s
LS, H, B, Gh o HY g { LB H ABF HE, ({T.H,RB) s H], L(B H, BBy HY, {03 HA,BE, F]

with probability one. The sum of rewards associated 1o this “centain” trajectory is 9.7: these result from five periods in a good
world {step benefits equal o one), 4 periods in a bad world (step benefits 0.5) and 9 periods of high emiscions (emission
benefits per step of 0.3). As expected, efficient technologies for reducing GHG emissions become available at decision step 4
{after 4 decisions) and the transition 1o a bad world takes place after 3 periods of high emissions and 6 decisions. We can do a
litthe hit better by selecting low emissions st every step. In this case the state-control trajectory is

LD M U, G s Ly A0, Lo U GhaLt, 00, L UG L0 L(D, LW G, LYy 400, Laf, GhaLb,

[0 LB Gh by L0, LeAeGhaLhy (40,0, A6 LY, (DL R Gh, LY, 400y LAy Gks F]

What are optimal policy sequences like in the ceriain case? The intuition is that. in at least 4 decizion steps. emissions should
be high. Thiz yields higher rewards at no rigk of getting into a bad world. One would also expect that lower emissions ane
selected {and implemented with certainty) in states in which efficient technologies for reducing GHG emiszions are available.

The trajectory associated with an optimal sequence of policies

[L4D M, U, GY By, A I1,H U;Gh B}, ({2,H,U,G) H], [(3,H,0,GI,HI, {04,H,A Gl,Lk,
Lid Ly, GhaLby L4, LA GheLb, (44, Le R G)sLY, L0d, L, R, GY,HY, {05, H,A,GE }]
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high DeerGond. With these notions in place, we can easily implement the reward function of our stylized emission prob-
lern, The idea is that the rewards only depend on the next state (the state during the period staming with the current decizion)
ot on the current state or on the selected control. We have § cases with the following assignments

| e Himk, Unaewilable, (food) = ore + one » fighCuer{food

e, Higk, Unavailzble, Sad) = ore » badOverdiood + one ¢ figh Querifood

P, Higle, Avmilable {food) = one + ane & frigh Cuerdsood

(e, Higk, Avmlable, Bad) = one s badOverdfood + one ¢ figh Overdfmod

Le, Low, Unavailzble, (food) = ore + ane & loasChver (Food ['rovailoble
(e, Low, Unaveilable, Hod) = ene « badOver(food + ane o losCheer Goed DUVravanloble
le, Low, Avmloble, (food)] = one + ane  loaslheriiosd Available
(e, Low, Avmioble, BHod) = ore s badOverlfood + one s lowCveriomd Avalable

In surmeary, the parameters that define the reward function of our stylized emission problem. their default values and sanity
constraints are!

parameler valse | congrainis

hadwerizan 05 | badCweriiood < 1

Rugh Chverts ood 0.3 | highdverGood = 1

TewOweriZood A vailable 0.2 | lewiherfoodAeeileble < huphUverdromd

T Ower{zomt navailafle 0l | dowCperfosd Unavaitabile < foslverCGood Available

Tubde 1. Eeward function: parameters, default values and sanity constraints,

Completing the specification of our problem and computing optimal sequences of emission policies requires flling in some
mare distails. These are annotated and discossed in applications /EmissicnGame2. They are peninent to the notions
of reschability, viability, finiteness and decidability. These notions are crucial for understanding the problem of computing
optimal policies under uncertainty but their discussion would go well bevond the scope of this work. We refer the interested
reader to Botta et al. {2017a).

& Optimal policies

In thig section we discuss apiimal emission policies for the sivlized emission problem of section 4 and swdy the impact of
the uncertainties {11—(3) on such policies. As explained in section 3, the computed policies have been machine-checked 1o be
optimal. Thus, they only depend on our problem specification. This is simple enough to allow deducing some general properties
that optimal decisions — decisions taken according to optimal policy sequences — have to fulfill.

A first one is that no optimal policy sequence can require selecting bow emissions when the state of the world is bad. This is

because, as posited in section 4. there is no way o make a transition from a bad world o a goeod woeld and. in a bad world in
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shwows that such intuition is correct. The sum of rewards associated to this wajectory is 11.3. By selecting low emission starting
from the fifth decision step, the optimal policy guarantees thai the world stays in the good state. At the lagt decizion step, high
emissions are selected, a8 anticipated.

The computation suppors the intuition that, in a world without uncertainties, it is best delaying emisgion reductions antil
efficient technologies become available. OF course, this requires knowing the critical number of decision steps erlV.

521 The impact of uncertainties about the implementability of decisions on emission reduct

What happens to optimal policies if we factor in oncernainties about the implementability of decisions on emission reductions
of increases?

Let's consider the case in which the probability of implementing low emission measures in the next period is higher if the
current emissions are already low than in the case in which the current emissions ane high. Conversely. the probability of
implementing high emission in the next period is higher if the current emissions are high In other woeds, we have plJf <
pLL and pHL < pHH instead of pLi = pLi = pHL = pHH = 1. Specifically, consider optimal policies for the case pLL =
pHH =09 and pLH = pHL=10.7.

Our decision problem iz now not anymone deterministic. Thus, a policy (ogtimal or not) entails a whole set of possible futune
state-control trajectories. More precisely, we have 2% = 512 possible trajectories: we take 9 decigion step and, at every decision
step and no matter whether we select low or high emissions, we have two possible outcomes. Mow, the “business as usual”

policy of always selecting high emissions yields the trajectory

[0 H, U, G Hyy {11, H, UG} HE, ({2,H,0,6) 4], [(3;H,U0,G),H), {(d,H,A,G}.H},
LES, M, B, GY H)y {IE,H A B} HE, ({T.H, A, B),H], [(B,H,A,B),H), {(%,H,AB}, }]
with probability (009" = (.387. The two next most likely trajectories are

[0, H, U, G, Hyy {11, H UGk HE, ({2,H,0,6) 1), ((3:H,0,G),HY, {(4,H,A,G},Hf,

[E5 M R G HY s {LE.H A Bh,HE, ({ToH R B)HI. LB, H R, BY,HY, {UB L,ABY  }]
and

[0 H, U, G, By {(1,H U, Gh HE, ({2, H,0,6)  H), ({3 H, U, Gy, H), { (4, H, A, G}, HF,
L, LB, Gh By A5, H A GE HEy (6 H RGBT, DT M R B HY, (BB A B, K]

with probabilities of 0.043 and 0.033. The expected sum of rewands (remember that meos is the expected value function) is
0. The compuied optimal policies for the same problem yield the trajectory

[Cd0em, 0, Gh By s A [1aB 0G0 BF, (2:B, 0,05 L) D2 L0 Gh, LYy 4 (2, LaA Gk o Lha
D62, LR, GY e by d (2, LA GhHE, ({3, H, R G)  HY, D04 H, R GY,HY, {05, H A, Gy F]

with probability (L2534, The two next most likely trajectories ane
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much the same way as in a good world. higher emissions bring more emission benefits. In other words, reducing emissions can
only pay off if it makes it possible (albeit not cenain o avoid transitions to a bad world, if perhaps only for a limited number
of steps. Once such a transition has taken place. reducing emissions is pointless, A consegquence of this matter of facts is that in
the last se it is always optimal to select high emissions. In a realistic emission problem. one could easily prevent this situation
by introducing a suitable “unsustainability” penalty in the reward function at the last decisbon step.

We do not need to deal with such complications here bat it is perhaps useful to point out that very often, seemingly natural
and innecieous assumptions (in this case, that the number of decision steps is finite and known 1o the decision maker) can
have non-rivial consequences on “best” decisions. Thus, for instance, the rate at which rewands are discounted in integrated
assesament models of climate change typically has a severe impact on optimal emission policies. Thus, in policy advice, it is
erucial to apply theories that require all assumpiions o be made explicitly. This was one of the guiding criteria in developing
the theory of policy advice and avoidability discussed in Botta et al. {2017a).

Unless specified, we consider 9 decision steps with crf = 4 and er¥' = 2. Thus, it takes at least 5 decision steps (and 5
periods with high emissions) to achieve states im which the sum of the cumulsted emissions excesds o+E and, therefore, the
probability of a transition 10 a bad world increases from pSd w0 pS2. Similasly, with eV =2, it takes 3 decision steps to
achieve states in which the probability that effective technologies for reducing GHG emissions become available increases
from pAd ! o pd2

In other worlds, if pSf = pd{ =0 and p52 = pA2 = 1, effective technologies will be available (with certainty) afier 4
decision steps. And after § periods of high emissions. a transition to a bad world will eccur. This is the deterministic base case
studied in the next section.

Z1 The deterministic base case

Before studying the impact of uncertainties on optimal policies, we consider the certain case. Beside pSi = pAd? =0 amd
p82 = pA2 =1 we also have pLl = pLH = pHL = pHH = 1. Thus, there is no uncenainty about the implementability of
emission measures, decisions of reducing or increasing emissions are implemented with probability one.

Matice that the absence of whatsoever uncenaintics implies that, for any initial state and policy sequence {optimal or not)
there is exactly one possible state-control trajectory. Namely that determined by that policy sequence. Thus, for instance, if
we start in {0, B, U, G} {2eto cumulsted emissions, high emissions, unavailable efficient technologies and a good world) and
adopt the policy of constantly increasing emissions, we obiain the stste-control trajectory

[0 H U, GhuH)y (1, BH,U,Gh HE, ({2, H,0,6) 8], ({3, H,U,Gh,HY, {(d,H,A,G}.Hb,

[(5,H, B, G) Hyy {1EHAE} HE, ({7, H, A, B, H], [(B,H, A, By, HI, {(%H, A B}, }]

with probability one. The sum of rewards associated to this “ceriain” trajectory is 9.7: these result from five periods in a good
world {step benefits equal o one), 4 pericds in a bad world (step benefits 0.5) and 9 periods of high emissions (emission
benefits per step of 0.3). As expected, efficient technologies for reducing GHG emissions become available at decision step 4
{after 4 decisions) and the transition 1o a bad world takes place after 3 periods of high emissions and 6 decisions. We can do a

litthe hit better by selecting low emissions st every step. In this case the state-control trajectory is
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[C60em, O Gh By [LaB DGk BE, (2B 0 G) L) D3 H W G LY (3, LaRe GE oLk
LE3 LR, G e Lhy A L3, LA GheLb, (43, L,R,G)  HY, (04, H, R, G),H), (5, H.2,Gk, |]

[0, H, U, G, HYy {I1,H, UG} HE, ({2,HD,G),L], [(2,L,U,G), L), {(2,LA, G}, L},
D62, Ly R, G e Lhy A L2, L A GhHE, (4240, A, G) o HY, (03, H, R, GY,HY, A (4, HaRy G,y F]

both with probability 0.078. The expected sum of rewards (remember that mees is the expecied valve function) is 11.085.
Motice that. under uncertainties about the implementability of decisions on emission reductions or increases. optimal policies
dictate more precautious best decisions: instead of waiting for efficient technologics for reducing GHG emissions to become
available, optimal decizion making requires staming to reduce emissions after only two decision steps.

The fact that higher uncerainties abour the implementability of decisions on emission reductions or increases lead to mone
precautionary optimal palicies is confirmed by computing opiimal policies for the case plL = pHH =0T and plH = pHL =
11.5. In this case optimal policies dictate low emizsions in the first decision steps for the three most likely possible trajectories.
This iz still true in the limit pLL = pHH =05 + ¢ for € = 0, ¢ — 0 although the advantage of optimal policies againsgt non-
optimal policies (e.g. business ag ugual policies) in terms of expectad rewards tends 0 Zero &8 ¢ Q0es 10 2E00.

In the limit case in which the decision maker has no power to enforce its emission decisions for the next period and pLL =
pHH = pLH = pHL = (L5, any policy sequence is optimal, as one would expect. As discussed in section 3, this is an example
of mon-unbgueness of optimal policy.

E3  The impact of uncertainties about the availability of efficlent technologies for reducing GHG emissl

What if the probability of efficient technologies becoming available after 3 decision steps is less than one and there is a small
bt mot o probability that such iechsologies become available before 3 decision steps?

With the same uncertainties a8 in 5.2 (pLL = pHH = 0.%and pLH = pHL = (LT and pA 1, pA2 equal o 0.1 and 0.9 instead
of 0 and 1, we have now 2™ & [ + 1) possible trajectories® for n decision steps. Thus, for & = 9, we have 5120 wajectories
instead of just 512, The “business as wswal” policy of always selecting high emissions vields the same most likely trajectory
and a slightly higher expected sum of rewards: 991, The computed optimal policies also yield the same most likely trajectories
as in 5.2 although with lower probabilities. of course. The expected sum of rewards iz 11,102,

Thus, perhaps surprisingly. uncertainties on the availability of efficient technologies for reducing GHG emissions have little
impact on optimal decisions, ai least when compared to the impact of uncemainties about the implementability of decizions on

emission reductions.

* At each decision step, o possible stwe s which efficien iechnelogses are not mailohle, say o Ussiate, eniails 4 possible mexi staies: two in which efficiest
technidogies are svailsble sed two i which they are nol. A possible stae n which efficient technologies are svailsbde an A-stile only eniails 2 possible
neExl slies hecmsss cmce technologess become svailabde they stay svailoble in all poassible future staees. Thus, after one decisson siep, we have ten possible
LU-states and twn possthle A-states. Afler two decision stepe, we have four possshle Ulstates and eight poosible A-sates. Afier three decision sicps we have
eagha possible Ul-states s rwenty-four possible A-states. And soon.
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[0 H, UGl Ly A 00, LUy GheLh, (40, L,0,6) ;L) ((0;L, UGy, LY, A (0L, A Gl Lk,
LE0, LB, Gh oLy (L0, LA GEaLE, (40, LR, G) L], LMD, LR, GY,E), 400, L.A,GF, |]
What are optimal policy sequences like in the cerain case”? The intuition i< that, in at lzast 4 decision steps. emisgions should
be high. This yields higher rewards at no risk of getting into a bad world. One would also expect that lower emissions are
selected fand implemented with certainty) in states in which efficient technologies for reducing GHG emissions are available.
The trajectory associated with an optimal sequence of policies
[Ld0, M, U, Gy HYy A1, B, U,GhaHE, (42, H,0,G) H], ({3, MU0, Gh,HY, {04, HA, Gl Lk,
L4 Ly A Gl Ly (9, LeAsGhaLl, (44, LR G) L], (04, Lo R GY,HY, (05, HOAGE K]
shows that such infuition is correct. The sum of rewards associated 1o this trajectory is 11.3. By selecting low emission starting
from the fifth decision step, the optimal policy guarantees that the world stays in the good state. At the lagt decizion step, high
emissions are selected, as anticipated.
The computation suppors the intuition that, in a world without uncertainties, it is best delaying emisgion reductions antil
efficient technologies become available. OF course, this requires knowing the critical number of decision steps erlV.

£l Thei of uncertainties about the imph ability of decisions on emission reductl

What happens to optimal policies if we factor in oncertainties about the implementability of decisions on emission reductions
of increases?

Let's consider the case in which the probability of implementing low emission measures in the next period is higher if the
current emissions are already low than in the case in which the current emissions ane high., Conversely, the probability of
implementing high emission in the next period is higher if the current emissions are high In other woeds, we have plif <
pLL and pHL < pHH instead of pLi = pLi = pHL = pHH = 1. Specifically, consider optimal policies for the case pLL =
pHH =09 and pLH = pHL=10.7.

Our decision problem is now not anymore deterministic. Thus, a policy (optimal or ned) entails a whaole set of possible futune
state-control trajectories. More precisely, we have 2% = 512 possible trajectories: we take 9 decision step and. at every decision
step and no matier whether we select low or high emissions, we have two possible outcomes. Mow, the “business as usual”
paolicy of always selecting high emissions yields the trajectory

[LE0H, U, Gh HYy (L1, H, 0,6k HE, ({2,H,0,G) ;Hl, L(3:H,0,G),H), {4, H, 8, Gk, Hi,
L5, H, B, GhaHY s (LB H A Bh HY, ({T+H; B B)  H], ((B H, BBy, H), (% H,A,Bk, }]

with probability (.97 = (L3587, The two next most likely trajectories are
[ 60 H, U, G, Yy L1, H, O,GhHE, ({2,H,0,G) ;Hl, (3% H,U,G),HY, A (4, H, R, Gk, Hi,
L5, Ha R Gl HY s LB H ABEHE, (47 H AGB) (MY, DB H, A By, HY, {00, L,A,BF F]

ani

[LCH U, GhaHby (L1, B UGl HE e (12,H, 05 pH, 03 H U GY HY f (4, Hy A Gl HE
Lds Ly, Gl By (L5, He R Gl HEy (16 HoRGB) BT, LOT HORGBY HY, {TBHAAGEL, ]
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4 The impact of uncertainties about the implications of exceeding a eritical threshold of cumulated GHG emissions.

So far we have assumed that, if the critical comulated GHG emissions threshold e+ E was exceeded, the world would wim to a
bad state with probability one. Conversely, for cumulated emissions below the erE. the probability of a transition info a bad
world was zeno.

What if we assume a 10% probability of tuming o a bad woeld for cumualated emissions below the crE and a 105 chance
of staying in & good world above the critical threshold?

Adding these uncenainties to the certain “base” case yield 10 possible wrajectories. These cormespond 1o transitions to a bad
world in the first, second. .. and ninth decision step. In this seenario, alwavs selecting high emissions vields the trajectory of
the certain case

(LD H U GhaHY s L1, H UsGHoHE e (12,H, WG] HY, (03 H, U, G),HY, {4, Ha A Gl o HE
LS H R GheHY s (LEHe A B HE, (17 HoRGB) jHI G LGBy H BB HY, (IS5 HAEL, ]

with probability 0.53 1. The expected sum of possible rewards is bower than in the centain case: 9.076. Similarly, optimal policies
under uncertainty about the implications of exceeding cr yield the possible rajectony

[f0em, 0, Gha By {(1.H DGk BE s (2B E) o Y D3 H W G HY G o (4, B A G Lk s
Lid Ly B, G Ly 4[4, L ApGheLb, ({4, LR,G) L], (04,0, R, Gy, HY, A5, H.2,Ghy F]

with probability 0L3ET. In the certain case, this was also “the” (cenain) optimal trajectory. The expected gum of possible rewards
89731 much lower than in the certain case but still better than for the “business as uanal” policies.

These results suggest that, as for the case of uncerainties about the availability of efficient technologies, uncenainties abowt
the implications of exceeding crE do not affect optimal policies substantially: the inmition that lower emissions should be
selected (and implemented with cenainty) in states in which efficient technologies for reducing GHG emissions are available
stilll holds.

Adding uncentainties about the implications of exceeding <rE on the top of uncenainties about the implementability of de-
cisbons and of uncertainties abow the availability of efficient technalogies also does not change substantially the undesstanding
obtained in section 5.2 and 5.3, But it brings some new unexpecied resulis

With pLL = pHH =09, pLH = pHL=0.7, pAT =01, pA2 = 0.9 and pST = (1.9, pS2 = (1.1 one obtaing 51200 possible
trajectonies. For “business asg usual” policies, the most likely is the usual

[0, H, UG, HYy {I1,H, UG HE, ({2,H,0,6) , H), [(3,H,U, Gy, HY, {(4,H,A, G}, Hf,
LS, H, B, Gh o HY s (LB H A Bl HF, ({T.H A B) H], (0B H, R, BY,HY, 0% H.A,Bl, }]

with probability 0.133. Remember that, in absence of uncertaingy about the implications of exceeding crE the three most likely

trajectonies wens

1w

with probabilities of (.043 and 0.0533. The expecied sum of rewards (remember that meas is the expected value function) is
000, The compuied optimal policies for the same problerm yield the trajectory

[f0u, 0, Gh By, {[1,B, 0,6k HF, (2:B,0,6) L], 12,0 G, LY, 4 (2, LA, Gk Lk,
D62, LR, GY g Wby A L2, L A GhHY, ({3, H B G) o HY, (04 H, R, GY,HY, 405, Ha R G, F]

with probability (L2354, The two next most likely trajectories ane

[0 H, U, G By {1, H UGk HE, (42,H,0,6) L), ((3:H,0,G), L), 4(3,L,A,Gk, Lk,

63 LR, Gha by (3, LA Gha Ll (43, L, AG) o HY, (04 H R G HY, 4050 HLA G, |

(LD H U, GhaHYy L1, H UGl eHE s (12,H, WG] 401, (02,0, UG, L), 4 (2, LaAGlaLl,
2L GhaLby {12, LeAGEoHEy (12,00 R5) (BT, D03 H R G HY S {04, HAAGGE, H]

bath with probability 0.078. The expected sum of rewards (remember that mees is the expected valee function) is 11.085.
Matice that, under uncertainties abowt the implementability of decisions on emission reductions or increases, optimal policies
dictate more precautious best decisions: instead of waiting for efficient technologies for reducing GHG emissions to become
available, optimal decision making requires staning to reduce emissions after only two decision steps.

The fsct that higher uncenainties about the impl tability of di
precautionary optimal pelicies iz confinmed by computing optimal policies for the case pLL = pHH = 0.7 and pLH = pHL =

bons on emission reductions or increases lead to mone

11.5. In this case optimal policies dictate low emissions in the first decision steps for the three most likely possible trajectories.
This is still true in the limit pLL = piH = 0.5 + ¢ for € = 0. ¢ — 0 although the advaniage of optimal policies against non-
optimal policies (e.g. business as usoal policies) in terms of expected rewards tends o zero as ¢ goes 1o 2e00.

In the limit case in which the decision maker has no power v enforce its emission decisions for the next peried and plLL =
pHH = pLH = pHL =05, any policy sequence is optimal, as ane would expect. As discussed in section 3, this is an example
of non-unigueness of optimal policies.

53  The impact of uncertainties about the availability of efficient technologies for reducing GHG emissions

What if the probability of efficient technologies becoming available after 3 decision steps is less than one and there is a small
bt mot 2o probability that such iechsologies become available before 3 decision steps?

With the same uncertainties as in 3.2 (pLL = piH = 0.%and pLH = pHL = (LT and pA 1, pA2 equal o 0.1 and 0.9 instead
of 0 and 1, we have now 2" & (x + 1) possible trajectories? for n decision steps. Thus, for & = %, we have 5120 wajectories
instead of just 512, The “business as usual” policy of always selecting high emissions vields the same most likely trajectory

A1 each decision step. o possible sise = which efficien 1echnologses ore not ovailoble, say o U-state, entails 4 poesible mext states: owo in which efficiess
technologies are svailshle s two i which they are nol A possible state im which effcient technologies are svailsble (Gn A-stie) only entails 2 possible
DexL sl hease cnce Iechnologses beoame wvailable they stay available in all possible future sises. Ths, after oo decisson siep, we have two possihle
Ulstates and vwo posable A-stabes. Afer rwo decision steps, we have foer possible Ulstates and eight possible A-states. Afler three decisicn sieps we have
akgha possible Ulstates s rwenty-fosr possible A-ststes. And soon.
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[C6em, 0 Gha Yy [LaB DGk BE, (2B G L) DLW G LY 4 (2, LaAeGFa Lk
LG, LR, GY e Lhy 412, LA GheHE, ({3, H, R G)  HY, LG4, H, R, G, HY, {05, H. R, Gy F]

[0, H, UGy, HYy {I1,H,U,G} H}, ({2,HD,G6),L], [(3HUG), L), {03, LA G} L},
i3 LB, G e by A L3, Lo AsGheLb, (3,0, A, G) o HY, (04 H, R G, HY, A5, HaR G, F]

[0 H, U, G, By (1, H U GhHE, ({2, H,0,6) ;L) ((2,L,0,G), L), {(2,L,A,Gk, Lk,
L2 LR, Ghy Lhy 12, L ApGhaHEy (42, L, A G oMY, D03 H, R G HY, 4 (9, H &Gk K]

with associated rewards 112, 11,3, 11.] and probabilities 0,154, 0,051 and 0.051. The expected sum of possible rewards was
1102, Adding 1% of uncertainty abowt the implications of exceading ¢ vields

[LiD,H, U, B, HYy {11, H UG HE, ({2,H,D,G)  HY, (43 H, UG, LY, A (3, LA Gl L,

O3 LB, G e Ly L3, Ly A Gha Ll (43 LR G)pHl s [ H, R Gy, HY, A5, H RG]

[0, H, U, G, HYy {I1,H,U,E} H}, ({2,H,U,B),H], ({3 H,UB),HI, {(4,H,AE} H},

LS H, B, BYaHYy {[E,H A B} H), (1T H,AB) HY, ((B,H, R, B, HY, (% H.AEl, }]

[0 H, U, &), Hyy {I1,H, UG} Hb, ({2,H0,B) H), ((3:H,0,B),H), {(d,H,A, B}, Hf,
LS Ha R By By [E HAB}HE, (47 H AGB) HY, DB H A BY HY, {3 H AB), }]

with expected rewards 11.3, 7.2, 7.7 and probabilities (L0539, 0,025 and 0,023, respectively. The expected sum of possible
rewards is 9.543. Now, optimal policies for the most likely trajectory require postponing emission redsctions by one siep: low
emizzion are selected starting from ¢ = 3 ingiead of § = 2.

Maotice that the optimal policies require constant high emissions both for the second and for the third most likely trajectories!
This is because, in these wajectories, the world enters a bad state right after the first decision step (second trajectory) o aftes
the second decigion step (third trajectory). Indeed, the rewards asociated o the second and to the thind trajectories (7.2 and
7.7, respectively ) are significantly lower than the rewards sssociated to the most likely wajectory (11.3)

Maotice also that, even though the probability of transitions into a bad world is only 0.1 for comuolated emissions below o,
the trajectory that entails such a transition immediately after the first decigion step (the second one) is more likely to occur than
the teajectory in which the world stays in the good state for the frst period (third ene).

This seems at the first sight counter-intuitive. But it can easily be verified by inspection® and is in fact easily explained:the
crucial point is that the probability of entering a bad world at the first decision step {and then, necessarily, staying in a bad
world) is 1.1 By conteast, the probability of staying in a good world for one period and then getting into a bad waorld is, ceteris
paribug, (08 * (L1, This difference makes the second trajectory more likely than the third ose. OF course, both trajectonies are
much less likely than the first one which is a realization of precautionary policies as in the cases discussed in 5.2 and 5.3,

(iiven the probabilities pS7, pS2. pA2, pA2, pLL, pLH, pHL and pHH s above, the probability of 2 given rujectory & just the produce of the
probahilities of the comrespomding transitsons.

and a slightly higher expected sum of rewards: 9.91. The compuied optimal policies also yield the same most likely trajectories
as in 5.2 although with lower probabilities, of course. The expected sum of rewards iz 11.102,

Thus, perhaps surprisingly. uncertainties on the availability of efficient technologies for reducing GHG emissions have little
impact on optimal decisions, at least when companed to the impact of uncermainties about the implementability of decigions on

emission reductions.
Ed4  The impact of uncertainties aboot the implications of exceeding a critical threshold of cumulated GHG emissions.

S fiar wie have assumed that, if the critical comulated GHG emissions threshold o E was exceeded, the world would tum to a
bad state with probability one. Conversely, for cumulated emissions below the e+ E. the probability of a transition inio a bad
world was zeno.

What if we assume a 10% probability of teming 1o a bad woeld for cumulated emissions below the oo E and a 105 chance
of staying in a good world shove the critical threshold?

Adding these uncertainties to the certain “base™ case yigld 10 possible trajectories. These commespond to transitions to a bad
world in the first, second. .. and ninth decizsion step. In this seenario, always selecting high emiszions vields the trajectory of
the certain case

[(60H, U, GhaH), {[1,H,0,G}:HE, ({2:H, 0,6 H], DASGH UG HYG | (4, He R G o HE 4

LS, H, R, Gy o Hby {[E,H A B} HE, (4T, H AGB)  H], DB, H, R B HY, (U5 HAAEL, |H]

with probability (.53 1. The expected sum of poasible rewards is lbower than in the ceriain case: 9.076. Similarly, optimal policies
umder uncertainty about the implications of exceeding er® yield the possible trajeciony
[[60,H, U, Gh,HY, {[1,H,0,G},HI, (420,06 Hl: [0%:H UG HY . A, HaR, Gh o Lk g
[ LR, Gh Ly {19, LeAsGHaLE, (44, L, ARG s L], (4L R, G, HY, {05, H.AGHs F]
with probability 0387, In the certain case, this was also “the" {centain) optimal trajectory. The expected sum of possible rewards
is 9731 much lower than in the certain case but still better than for the “business as usoal™ policies.

These resulis suggest that, as for the case of uncerainties abowt the availability of efficient technologies, uncenainties abowt
the implications of exceeding crF do not affect optimal policies substantially: the intuition that lower emissions should be
selected (and implemented with cenainty) in states in which efficient technologies for reducing GHG emissions are available
still hodds.

Adding uncenainties about the implications of exceeding ¢rE on the top of uncenainties about the implementability of de-
cisbons and of uncertainties abow the availability of efficient technalogies also does not change substantially the undesstanding

obtained in section 5.2 and 5.3, But it brings sonse sew unexpected results.
With pLL = pHH =09, pLH = pHL=0.7, pAT = 0.1, pA2 = 0.9 and pST = (1.9, p§2 = (1.1 one obtaing 51200 possible
trajectonies. For “business as usual™ policies, the most likely is the usual
[LEDH UG aHYy AL, HaUsGhaHE, (2. H UG o HY s LO3: M, WG, HYy 404, HaR Gl HE
LSRG HY G | [E.H A Bl HE, ({7, Ho R B) o H], (B H A BY,HY, {03 H.AEN, ]

0
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& Conclusions

We have studied the impact of uncertainties about 1) the implementability of decisions on emission reductions, 2) the avail-
ability of technologies fior reducing emissions and 3) the implications of exceeding a critical threshold of cumulated emissions
on optimal emission policies in a siylized sequential emission problem.

pon that uncertaint

In a nuishell, the resulis presented in section 3 suppost the concl about the implementability of
decisions on emission reductions {or increases) call for mode precautionary policies. By contrast, uncertainties about the im-
plications of exceeding eritical cumulated emission thresholds tend to make precautionary policies sub-optimal.

Maore specifically, the results of section § suggest that uncertainties about the implementability of decisions on emission
reductions and, up to & more limited extent, uncertainties abowt the implications of exceeding critical cumulated emission
thresholds have a grater impact on optimal emissions policies than uncertainties on the availability of effective echmologies
for reducing GHG emissions.

This is at the first glance perhaps a bit surprising but actually guite onderstandable: if decisions on emission {no matter
whether reductions or increases) can be implemented with certaingy, it is obviously better to delay necessary but costly reduc-
tions wntil available technologies make abatements cheaper. This holds as far as delays do not lead global emissions to exceed
the critical threshold erE.

But if we cannot be sure that future decisions will be implemented with certainty — for instance, because of inertia in
legislation of political instability — than starting implementing emigzion reductions (or trying doing 20) sooner yields highes
rewards. This is a typical case in which precantionary policies are optimal.

How earlier is it optimal o undentake costly abatement sieps {rather than waiting for technobogical innovation 1o make
emission reductions cheaper) very much depends on the rewards structure and on the uncenainties of the specific emission
problem at stake.

Perhaps more surprisingly, the results of section 5.4 suggest that the optimal time for staning reducing emissions also
depends on the bevel of uncertainty about the implications of wespassing critical thresholds of cumulated emissions. As these
uncertainties increase, precautionary policies become sub-optimal. In other words: the better we can estimate the consequences
of exceeding eritical thresholds, the more does it pay off adopting precautionary policies.

A caveat is probably inorder here: the results presented in section 5.4 offer a rather limited view on the impacts of uncertain-
ties about the implications of exceeding critical thresholds of cumalated GHG emissions on optimal policies. It is true that we
have performed a few more assesaments {with probabilities of 3% and 20% of wming 1o a bad world for cumulated emissions
below erE | not reported section 5.4) that clearly supporn the conclusions drawn above.

However, our statistics on the set of possible rajectories associated with a given policy sequence {optimal or not) has been
throughowt section 3 very mudimentary: we have only assessed the three most likely trajectories, their valses and probabilities
and the expected sum of rewards.

21

with probability 0. 135, Remember that, in absence of uncerainiy about the implications of exceeding erE the three most likely

Trajectones wene

[LCD: M, U, GYaHY,
L2, L, A, Gha L,

[ 6D H, U, Gy HY
L3, LR, Gh, L,

[L6DH, U, G, HY,

L2, L, R, GY s Ly

{11, H, 0, G HE
{12, Lo A Gl HE

111, H Uy Gl e HE S
{3, L A G L

111, H, U, G} HE .

{12, L, A, G}, HE,

(12, H,0,G) ;L] ,

(3. B A, G) 5 H] G

20, 5) 5 L],

43,1, 8,5)  H],

2B, 6) L],

(42, L, 0, G) s H)

L0, LW, Gh, L),
Lid,H, B, G, HY .

L3 H, 0, GY, LYy
LideH, B, GY HY

L2 L, W, Gh, L),

L3, H, B, G, HY .

102, LA, Ghy Lk
115, H A, Ghe }]

103, Ly A Gl Lbs
{15, Ha A Gk }]

102, Ly A, Gh o Lby

{04, Ha 2, Gl F]

with associated rewards 11.2, 113, 11.] and probabilities 0,154, (L0510 and 0.051. The expected sum of posgsible rewards wias
11102 Adding 1% of uncertaingy about the implications of exceeding crE yields

[0 H, U, Gh,HYy

63, LA, Gh o L,

[LED: M, U, GhaHY
[(5:H, A, Bl . HY,

[L60aH, U, G HY
LiS, H, A, By  HY,

1LLH UG HE

113, LAy GlaLly

{11, B, U, B HE
{LE He A Bl HE

111 H Uy Gl g HE S
{lE,H A E}, H},

(42, 8,10, G) ;H),;

(13 L, B G o HD

(2, H,0, B) (H],

Te B A B) s H] G

2 B0 B) pH]
(47 H A, B) L HD,

L3, H, W, G, L),

Lid,H, R, G, HY .

Li3:H, U, BY, HY,
LB, H, R, By, HY

L3 H 0, BY HY
LB, H, R, BY, H),

403, Ly Ay Gl Lk,

{E5 Ha R GEA 1]

{04, H, A, Bl HE 4
18 HA B F]

104, Ha A Bl HE s
1058, H A B, |

5§ with expected rewards 11.3, 7.2, 7.7 and probabilities (L0359, 0,025 and 0023, respectively. The expected sum of poszible

rewards is 9543, Mow, optimal policies for the most likely trajectory requine postponing cmission reductions by ome step: bow

emission are selected starting from ¢ = 3 instead of § = 2.

Matice that the optimal policies require congtant high emissions both for the second and for the third most likely trajectories!
This is because, in these irajectories, the world enters a bad state right after the first decision step (second trajectory) or afier
the secomd decision step (third rajectory). Indeed. the rewards associated to the second and o the thind trajectories (7.2 and
7.7, respectively ) are significantly lower than the rewarnds associated 1o the most likely trajectory (11.3)

Motice also that, even though the probability of transitions into a bad world i3 only 0.1 for comuolated emissions below o E.
the trajectory that entails such a transition immediately after the first decision step (the second one) is more likely to occur than

the irajectory in which the world stays in the good state for the first period (third one).

This seems s the first sight counter-intuitive. But it can easily be verified by inspection® and is in fact easily explained: the
erucial point is that the probability of entering a bad world ai the first decision step {and then, necessarily, staying in a bad

*Cilven the probabilities p57, pf2, pA2, pA2, pLL, plH, pHL and pHH w above, the probhability of 2 given wajeciory & just the produce of the
prodabilaies of the coeresgpomding transisons.
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In studying the impacts of uncertainties about the implications of exceeding critical thresholds, we have to do with 51200
possible trajectonies for every single policy sequence. In this case, a more comprebensive statistics would probably be at place.

This is © see section T.

jonally challenging

Thus, the conclusions that we can draw from the results of section 5 are necessarily preliminary. Motice, however, that they
afe consistent with the analysis reported in Webster ( 2008) for a two-step decision problem.

It is probably fair to also point oui that, as uncertainties on the implementability of emissions decisions increase and (thene-
fore) optimeal policies requine more and mone precautionary approaches, the advantages {in terms of rewards) of earlier emission
reductions against delays do vanish: in the limit case in which political decisions have no bearing on the measunes actually
implemented. all policies ane optimal.

It ahvould also be remembered that, in our idealized problem, we have kept the cumulasted emission threshold coF and the
critical number of decision steps for technological innovation ¢V fixed. In increasing the uncertainty about the availability
of techaobogies for reducing emissions and sbout the implications of excesding erE. we have modified the probability dis-
tributions below and above orlV and erf symmetrically. Thus, taking ag reference the certain case, we have increased the
probability that efficient technalogies become available before el steps from zero to 001 and &t the same time decreased the
probability after erN from one to 0.9 Similarly for uncertainties on the consequences of exceeding cr®. [t goes without saving
that shifting e\ and e does indeed have a strong impact on optimal policies.

Thus, the resulis presented in section 5 do not imply that improving the accuracy of erV and crE estimates is nod worth
the efforts, But they suggests that obtaining more realistic estimates for the probability of effective technologies for reducing
GHG becoming available before and after a critical date is perhaps ot as crucial (for computing optimal emission policies for
realistic decision problems) as improving our undesstanding of the implementability of decisions on emission reductions of
increases.

Obtaining plausible estimates for the probabilities of being able to implement decisions on emissions reductions or incneases

maturally brings & political perspective into the problem of computing plausible optimal emission policies.

T  Future work

In the introduction. we have explained that realistic GHG emission problems involve more than one decision makers {countries)
in a compeditive situation rather than a single decision maker.

To the best of our knowledge, a generic computational theery for optimal decision making under uncertainty, multiple
plavers and for finite horizon sequential decision problems is siill missing. Developing such a theory is a challenging research
programt. The theory would have to span the bordes between control and game theory and likely require the introduction of
new equilibrium notions. One promising approach towards developing such theory is 1o extend the formalization of sequential
decision problems presented in Boita en al. (200 7h) using the notions of guaniifier and of selecnion funciion (together with theig
respective products) introduced in Escardo and Oliva {20100 Hedges {2017) for infinite horizon open games,

world) is 0.1. By contrast, the probability of staying in a good world for one period and then getting into a bad world is, ceteris
paribus, 0.9 * (1. This difference makes the second trajectory more likely than the third one. OF course, both irajeciories ane
much less likely than the first one a2 in the cases discussed in 5.2 and 5.3,

& Conclusions

We have studied the impact of uncertainties about 1) the implementability of decisions on emission reductions, ) the avail-
ability of technologies for reducing emissions and 3) the implications of exceeding a critical threshold of cumulated emissions
on optimal emission policies in a siylized sequential emission problem.

In a nutshell, the resulis presented in section 5 support the conclusion that uncertaintics about the implementability of
decisions on emission reductions (or increases) call for more precautionary policies. By contrast, uncertainties about the im-
plications of exceeding critical cumulated emission thresholds tend o make precautionary policies sub-optimal_

Maore specifically, the results of section § suggest that uncertainties about the implementability of decisions on emission
reductions and, up to a more limited extent, uncertainties abowt the implications of exceeding critical cumulated emission
thresholds have a grater impact on optimal emiszions policies than uncertainties on the availability of effective technologies
for rediscing GHG emissions.

This is at the first glance perhaps a bit sunprising but actually guite onderstandable: i decisions on emission {no matter
whether reductions or increases) can be implemented with certaingy, it is obviously better to delay necessary but costly redue-
tions wntil available technologies make abatements cheaper. This holds as far as delays do not lead global emissions 1o exceed
the critical threshold e &,

But if we cannot be sure that future decisions will be implemented with cerainty — for instance, because of inertia in
legislation or political instability — than starting implementing emission reductions (or trying doing s0) sooner yields higher
rewards. This is & typical case in which precautionary policies are optimal.

How earlier is it optimal to undentake costly abatement steps {rather than waiting for technobogical innovation 1o make
emission reductions cheaper) very much depends on the rewards structure and on the uncenainties of the specific emission
problem at stake.

Perhaps more surprisingly, the resulis of section 5.4 suggest that the optimal time for starting reducing emissions also
depemds on the bevel of uncertainty abowt the implications of wespassing critical thresholds of cumulated emissions. As these
uncertainties increase, precautionary policies become sub-optimal. In other words: the better we can estimate the consequences
of exceeding critical thresholds, the more does it pay off adopting precautionary policies.

Taro caveats are in order here. First, while the results presented in section 5 are rigorous (the optimal emission policies
our conclusions rely upon have been maching checked), the stylized emission problem for which we have computed such
policies is defined in terms of a small but not empty sei of parameters. In panticular, the value of policy sequences [optimal
ar not) erucially depend on the problem reswards that §s, on the values of the four parameters badCver Faod, TighCherifood,
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From a more applicational point of view, there are two obviows ways in which the work presented in this paper could be
extended to provide more nseful insights into the problem of making optimal decisions on emizsion paths under uncertainty.

One would be to compute optimal emission policies for a realistic emission problem. Beside extending the notions of state
and control spaces and, e.g.. allow the decision maker 1o pick up a few intermediate emission levels berween Low and High,
this woubd require assessing the costs and the benefits of implementing a given emission level using a realistic imtegrated
assesament model. Such an emerprise would require an interdisciplinary effort on the border between climate science amd
computing science. Technically, it would require extending the framework for the specification of sequential decision problems
SeguentialbecisionProblens’ with asmall domain specific language for emission problems,

Another way of extending the work presented in this paper would be to keep the focus on stylized emission problems like the
ane of section 4 but improve the statistical sudy of the logical consequences of taking decisions according to optirnal policy
sequences. This could yield to tools that support accountable decision making in real-time situstions, for instance, dusing
megotiations. Technically, this would imply, among others, extending SequentialbDecisionPrablems with algorithms
for computing all optimal policies for a given decizion problem or perhaps just a certain number of optimal policies.

Ag we have seen at the end of section 5. computing optimal policies and parsing large collections of possible trajectories of
“decision networks™ can be computationally challenging even for idealized problems.

Thus, extending SequentialbecisionProblems for computing more optimal policy sequences and more compre-
hensive statistical analyses of decision networks would benefit from exploiting the concurrency inherent in many of the al-
gorithms presented in Botta et al. (201 Tk, This is also an interdisciplinary enterprise involving formal methods (concurment
implementations should preserve the machine checkable optimality proofs that come with the sequential implementation).
high-performance computing and climate science.

Ar 1 The waork p d im this paper beavily relies on free software, among others on kdris. Apda, GHC, git. vi. Emacs,

X and on the FreeBSD amd Debian GNL/Linux operating sysiems. It is our pleasure to thank all developers of these excellent products.

7 In hpscigitlabepik- poisdam. de/botin/TdnsLiks

lowiherfioot A vailable and lowOuver Fopd Unaredaile, see Table | at the end of section 4. Are our conclusions only valid
for these specific values?

Apart from substantiating our findings with a careful ibut, necessarily, probibitively expensive) sensitivity analysis, we can
v 1o achieve a better analytical understanding of the role of the above parameters on optimal policy sequences.

From the definition of the seward function given at the end of section 4, we can immediately deduce that, at each decision
step, the cosis of selecting low emissions are greater or egual o

teigh Cerfiood — lowOeerlosddvailabie

Remember that dow Cuer Gasd Unarailaible is the ratio between the benefits of low emissions and the benefits of being in a gond
world when effective technologies for reducing GHG emissions are unavailable. Similarly, dowOuverFord A voilable is the ratio
berween the benefits of bow emigsions and the benefits of being in a good world when effective technologies are available.
Ag summarized in Table |, we require lowOverGosd Dravedleble to be smaller or equal to PeieOhee (G omd A veilable (effective
technologies for reducing GHG emissions diminish the costs of low emissions) and founDeerGoosd Available o be smaller
ar equal o highOeerGomd {low emissions cost meore than high emissions). Thus, the difference between bighrer(Good and
lowiher Gaod A vatleble nepresents the minimal costs (e.2., due to missed growth, higher GHG filtering and sequestration costs,
taxes, etc.) implied by low emission measures. By contrast, the costs (damages) that can be avoided by keeping the world in a
good state are expressed, in our stylized decision problem by the difference

1 — dwdleer(s ood

Thus, if 1 — badDeer(Tomd is smaller or equal o highOveriTood — lowver e Availabie, sebecting low emissions never pays
off. Therefore,

erifadliverfiomd = 1 — [highChver(iomd — loelhverCGosdAvatlable )

i an impostant threshold in the par: problem: for valwes of bedfrerGood between cr B Chrer oo
and one, selecting low emissions cannot be optimal: in this interval, optimal policies will recommend high GHG emissions. Are

ters apace of our

there other impomant theesholds in the problem's parameter space? At this point, we do not know. We have computed optimal
policy sequences for a few values of badCuer@rond between 0L8 and 0.91. These resulis confirm the analysis and support the
conclusion presented above.

The second caveat is that the resulis presented in section 5.4 offer a rather limited view on the impacis of unceriainties
about the implications of exceeding critical thresholds of cumulated GHG emissions on optinal policies_ It i mae that we have
performed mose assessments (with probabilities of 3% and 204% of tarming 1o a bad world for cumulated emissions below crE.
it reported section 5.4 and that these supporn the conclusions drawn above.

However, our stafistics on the set of possible trajectories associated with a given policy sequence (optimal or not) has been
throughowt section 5 very rudimentary: wie have only assessed the three most likely trajectories, their values and probabilities
and the expected sum of rewards.
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In studying the impacts of uncertainties about the implications of exceeding critical thresholds, we have to do with 51200
possible trajectonies for every single policy sequence. In this case, a more comprebensive statistics would probably be at place.
This is ©

jonally chalk 2. see section T.

Thus, the conclusions that we can draw from the results of section 5 are necessarily preliminary. Motice, however, that they
afe consistent with the analysis reponted in Webster {2008) for a two-step decision problers. We are not aware of stsdies in
which the impact of uncertainties on optimal emission policies have been studied systematically fior more than two decision
steps.

It is probably fair to also point oui that, as uncertainties on the implementability of emissions decisions increase and (there-
fore) optimeal policies requine more and mone precautionary approaches, the advantages {in terms of rewards) of earlier emission
reductions against delays do vanish: in the limit case in which political decisions have no bearing on the measuses actwally
implemented. all policies ane optimal.

It should also be remembered that, in our idealized problem, we have kept the cumulsted emission threshold oF and the
critical mumber of decizion steps for technological innovation oV fixed. In increasing the uncertainty about the svailability
of technobogies for reducing emissions and shout the implications of excesding erE. we have modified the probability dis-
tributions below and above crdV and er® symmetrically. Thus, taking as seference the ceriain case, we have increased the
probability that efficient technologies become available before crl steps from zero to 001 and at the same time decreased the
probability after erN from one to 0.9 Similarly for uncertainties on the consequences of exceeding cr®. [t goes without saving
that shifting coN and crE does indeed have a strong impact on optimal policies.

Thus, the resulis presented in section 5 do not imply that improving the accuracy of crN and orE estimates i3 not worth
the efforts, But they suggests that obtaining more realistic estimates for the probability of effective technologies for reducing
GHG becoming available before and after a critical date is perhaps not as crucial (for computing optimal emission policies for
realistic decision problems) ag improving our undesstanding of the implementability of decisions on emission reductions of
increases.

Obtaining plausible estimates for the probabilities of being able w implement decisions on emissions reductions or incneases

maturally brings a political perspective into the problem of computing plausible optimal emission policies.

T  Future work

Realistic GHG emission problems imvolve more than one decision maker (countries) in a competitive situation rather than a
single decision maker.

As explained in the introduction, & generic computational theory for 8DPs under uncertainty, multiple players and a finite
but unknown number of decision steps is, to the best of our knowledge, still missing. Developing such a theory is a chal-
lenging research program. The theory would have o span the border berween control and game theory and likely require the
introduction of new egquilibrum notions. One promising approach towards developing a general theory of opiimal decision
making is to extend the formalization of SDPs presented in Botta et al. {2017h) using the notions of guandifer and of seleciion
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