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Abstract. Many meteorological forcing datasets include bias-corrected surface downwelling longwave and shortwave radiation
(rlds and rsds). Methods used for such bias corrections range from multi-year monthly mean value scaling to quantile mapping
at the daily time scale. An additional downscaling is necessary if the data to be corrected have a higher spatial resolution than
the observational data used to determine the biases. This was the case when EartH2Observe (E20BS; Calton et al., 2016)
rlds and rsds were bias-corrected using more coarsely resolved Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011)
data for the production of the meteorological forcing dataset EWEMBI (Lange, 2016). This article systematically compares
various parametric quantile mapping methods designed specifically for this purpose, including those used for the production
of EWEMBI rlds and rsds. The methods vary in the time scale at which they operate, in their way of accounting for physical
upper radiation limits, and in their approach to bridging the spatial resolution gap between E20BS and SRB. It is shown how
temporal and spatial variability deflation related to bilinear interpolation and other deterministic downscaling approaches can be
overcome by downscaling the target statistics of quantile mapping from the SRB to the E20BS grid such that the sub-SRB-grid
scale spatial variability present in the original E20BS data is retained. Cross-validations at the daily and monthly time scale
reveal that it is worthwhile to take empirical estimates of physical upper limits into account when adjusting either radiation
component and that, overall, bias correction at the daily time scale is more effective than bias correction at the monthly time

scale if sampling errors are taken into account.

Copyright statement. The author agrees to the licence and copyright terms of Copernicus Publications as of 6 June 2017.

1 Introduction

High-quality observational datasets of surface downwelling radiation are of interest in many fields of climate science, including
energy budget estimation (Kiehl and Trenberth, 1997; Trenberth et al., 2009; Wild et al., 2013) and climate model evaluation
(Garratt, 1994; Ma et al., 2014; Wild et al., 2015). As part of so-called climate or meteorological forcing datasets such as
those generated within the Global Soil Wetness Project (GSWP; Zhao and Dirmeyer, 2003), at Princeton University (Sheffield
et al., 2006), and within the WATer and global CHange project (WATCH; Weedon et al., 2011), the longwave and shortwave

components of surface downwelling radiation (abbreviated as rlds and rsds or just longwave and shortwave radiation in the
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following) are used to, e.g., correct model biases in climate model output (Hempel et al., 2013; lizumi et al., 2017; Cannon,
2017) and drive simulations of climate impacts (Miiller Schmied et al., 2016; Veldkamp et al., 2017; Chang et al., 2017,
Krysanova and Hattermann, 2017; Ito et al., 2017).

These meteorological forcing datasets are global, long-term meteorological reanalysis datasets such as those produced by
the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR; Kalnay et al.,
1996; Kistler et al., 2001) and the European Centre for Medium-Range Weather Forecasts (ECMWF; Uppala et al., 2005; Dee
et al., 2011), refined by bias correction using global, gridded observational data. For the components of surface downwelling
radiation, such a bias correction is often necessary because observations of these variables are not assimilated in the reanalyses,
which makes them subject to modelling biases of, e.g., land-atmosphere interactions and cloud processes (Kalnay et al., 1996;
Ruane et al., 2015).

Different approaches are adopted in order to carry out these bias corrections. Weedon et al. (2011, 2014) apply indirect
corrections at the monthly time scale using near-surface air temperature observations for rlds and observations of atmospheric
aerosol loadings and cloudiness for rsds. Sheffield et al. (2006) directly rescale rlds and rsds to match observed multi-year
monthly mean values. Ruane et al. (2015) directly adjust distributions of daily mean rsds. The observational dataset commonly
used for such direct adjustments of rlds and rsds is the Surface Radiation Budget (SRB) dataset assembled by the National
Aeronautics and Space Administration (NASA) and the Global Energy and Water EXchanges project (GEWEX; Stackhouse Jr.
etal., 2011).

Another meteorological forcing dataset, the EartH2Observe, WFDEI and ERA-Interim data Merged and Bias-corrected
for ISIMIP (EWEMBI; Lange, 2016), was recently assembled to be used as the reference dataset for bias correction of global
climate model output within the Inter-Sectoral Impact Model Intercomparison Project phase 2b (ISIMIP2b; Frieler et al., 2017).
The surface downwelling longwave and shortwave radiation data included in EWEMBI are based on daily rlds and rsds from
the climate forcing dataset compiled for the EartH2Observe project (E20BS; Calton et al., 2016). In order to reduce deviations
of E20BS rlds and rsds statistics from the corresponding SRB estimates in particular over tropical land (Dutra, 2015), for
EWEMBI, the former were bias-adjusted to the latter at the daily time scale using two newly developed parametric quantile
mapping methods.

These methods are conceptually similar to the Ruane et al. (2015) method, which fits beta distributions to reanalysed and
observed daily mean rsds for every calendar month, thereby accounting for upper and lower physical limits of rsds using the
multi-year monthly maximum value as the upper and zero as the lower limit of the distribution, and then uses quantile mapping
to adjust the distributions. In contrast to Ruane et al. (2015), the methods developed to adjust E20BS rlds and rsds for EWEMBI
applies moving windows to estimate beta distribution parameters for every day of the year. This precludes discontinuities at
the turn of the month (Rust et al., 2015; Gennaretti et al., 2015) and promises a better bias correction where the seasonality of
radiation is very pronounced such as for rsds at high latitudes. Also, the new methods estimate the physical upper limits of rlds
and rsds differently, acknowledging that these limits are necessarily greater than or equal to the greatest value observed during
any fixed period. Lastly, while Ruane et al. (2015) linearly interpolate SRB rsds from its natural horizontal resolution of 1.0°

to the 0.5° reanalysis grid prior to bias correction, the new methods aggregate the E20BS data from their original 0.5° grid
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to the 1.0° SRB grid, where the bias correction is then carried out, and disaggregates these aggregated and bias-corrected data
back to the E20BS grid. Depending on the disaggregation method, this approach promises to generate bias-corrected data with
more realistic temporal as well as spatial variability.

The new methods are comprehensively described and cross-validated in this article. Moreover, several modifications of the
new methods are tested here that differ in how they handle the spatial resolution gap between the E20BS and SRB grids, and
how they account for the physical upper limits of rlds and rsds. Also included are bias correction methods that operate at the
monthly time scale in order to test if bias correction of daily or monthly mean values yields better overall cross-validation
results. The lessons learned from these analyses shall benefit bias corrections of surface downwelling radiation to be carried

out in future generations of climate forcing datasets.

2 Data
2.1 E20BS

The EartH2Observe (E20BS; Dutra, 2015; Calton et al., 2016) daily mean rlds and rsds data bias-corrected for EWEMBI cover
the whole globe on a regular 0.5° x 0.5° latitude-longitude grid and span the 1979-2014 time period. Over the ocean, E20BS
rlds and rsds are identical to bilinearly interpolated ERA-Interim (ERAI; Dee et al., 2011) rlds and rsds. Over land, they are
identical to WATCH Forcing Data methodology applied to ERA-Interim reanalysis data (WFDEI; Weedon et al., 2014) rlds
and rsds. WFDEI rlds, in turn, is identical to bilinearly interpolated ERAI rlds, adjusted for elevation differences between the
ERAI and Climatic Research Unit (CRU; Harris et al., 2013) grids. WFDEI rsds is identical to bilinearly interpolated ERAI
rsds bias-corrected at the monthly time scale using CRU TS3.1/3.21 mean cloud cover and considering effects of interannual

changes in atmospheric aerosol optical depths (Weedon et al., 2010, 2011, 2014).
2.2 SRB

The observational data used for the bias correction of E20BS daily mean rlds and rsds for EWEMBI were the NASA-GEWEX
Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011) primary-algorithm estimates of daily mean rlds and rsds from
the latest SRB releases available at the time, which were release 3.1 for rlds and release 3.0 for rsds. These data cover the
whole globe on a regular 1.0° x 1.0° latitude-longitude grid and span the 07/1983—-12/2007 time period. For bias correction
and cross-validation, a 24-year subsample of these data was used and is used here that spans the 12/1983—11/2007 time period.
Additional data from the adjacent months 11/1983 and 12/2007 are employed for computations of running mean values. The
SRB estimates of rlds and rsds are based on satellite-derived cloud parameters and ozone fields, reanalysis meteorology and a
few other ancillary datasets. Due to a lack of satellite coverage during most of the 07/1983-06/1998 time period over an area
centred at 70°E, SRB data artefacts are present over the Indian Ocean (https://gewex-srb.larc.nasa.gov/common/php/SRB_
known_issues.php; cf. Figs. 2—4, 7). Every SRB grid cell contains exactly four E20BS grid cells.


https://gewex-srb.larc.nasa.gov/common/php/SRB_known_issues.php
https://gewex-srb.larc.nasa.gov/common/php/SRB_known_issues.php
https://gewex-srb.larc.nasa.gov/common/php/SRB_known_issues.php
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3 Methods

For the reader who is is not familiar with the concepts of quantile mapping and/or statistical downscaling, a short introduction
including definitions of relevant terms is given in Appendix A. The parametric quantile mapping methods introduced in the
following are named according to the scheme BCuvtpz, where v, t, p are used to distinguish between methods for longwave and
shortwave radiation (v = 1,s) operating at the daily and monthly time scale (¢ = d, m) using basic and advanced distribution
types or parameter estimation techniques (p = b, a). Index x =0, 1,2 is used for variants of these methods that differ in how
they handle the spatial resolution gap between the SRB and E20BS grids. For the BCvtp0 methods, the SRB data are spatially
bilinearly interpolated to the E2ZOBS grid and the E20BS data are then bias-corrected using these interpolated SRB data; this is
to mimic the Ruane et al. (2015) approach. For bias correction with the BCvtpl methods, E20BS data are spatially aggregated
to the SRB grid, the aggregated data are then bias-corrected and the resulting data disaggregated back to the E20BS grid; this
approach was used to produce the EWEMBI radiation data. Lastly, the BCvtp2 methods adjust mean values and variances
at the E20BS grid such that mean values and variances of spatial aggregates to the SRB grid match the corresponding SRB
estimates while the sub-SRB-grid scale spatial structure of mean values and variances present in the original E2OBS data is
retained; this is to overcome the variability deflation induced by the other two approaches. Since the BCvtp0 and BCuvtp2
methods are based on the BCutpl methods, the latter are introduced first. Readers who are merely interested in how the

EWEMBI radiation data were produced are informed that methods BCldal and BCsdal were used for that purpose.
3.1 Bias correction at the SRB-grid scale

For the BCuvtpl methods, daily mean E20BS rlds and rsds are first aggregated to the SRB grid using a first-order conservative
remapping scheme (Jones, 1999). The conservative remapping ensures that each aggregated value is the grid-cell area-weighted
mean of the underlying four E20BS values. The methods of bias correction of these aggregated values are described in the
following. The method used for the subsequent disaggregation to the E20BS grid is described in Sect. 3.1.3.

The BCutpl methods use parametric transfer functions of the form Fftf;Bfl(FﬁiOBs( -)), where FE%OBS and Fvst%B are
climatological cumulative distribution functions (CDFs) of aggregated E20BS and SRB data, respectively. The CDFs are
estimated individually for every SRB-grid cell and day of the year (Fig. 1). In order to quantify the extent to which bias
correction results benefit from explicitly accounting for physical radiation limits, the basic and advanced methods BCltb1
and BCltal for longwave radiation use normal and beta distributions, respectively. For shortwave radiation, the relevance of
physical limits is less questionable, given that the lower limit of zero matters at least during polar night, and that the solar
radiation incident upon land and ocean surfaces is limited by the solar radiation incident upon the top of the atmosphere (cf.
Fig. 1). Therefore, all BCstpl methods use beta distributions and the basic and advanced methods only differ in how they

estimate the beta distribution parameters (cf. Fig. 1, Table 1).
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Figure 1. Estimation of parameters of quantile mapping methods used for the bias correction of longwave (top) and shortwave (bottom)
radiation at the daily (left) and monthly (right) time scale. This example is based on SRB daily mean rlds and rsds data from 79.5°N, 12.5°E
and the 12/1983-11/2007 time period. Climatological distribution parameters are estimated based on empirical 24-year mean values (dark
grey), standard deviations (light grey range around mean values) and minimum and maximum values (black) of daily mean (left) and 31-day
running mean (right) radiation computed for every day of the year. The distribution parameters estimated for the basic (red) and advanced
(blue) bias correction methods (cf. Table 1) include mean values and standard deviations (dotted red, dashed blue), and upper bounds (solid
red, solid blue) where beta distributions are used. Note that the basic and advanced estimates of mean values and standard deviations only
differ in panel (c) near the beginning and end of polar night (cf. Table 1). The green line in panel (a) represents 25-day running mean values
of 25-day running maximum values of 24-year maximum values of daily mean rlds, which are used to estimate the upper bounds of the
climatological beta distributions used by the BCldal method (solid blue line in panel (a)). The lower bounds of all climatological beta

distributions are set to zero.

3.1.1 Bias correction at the daily time scale

The parameters of the climatological CDFs FEprBS and FUSdP;)B are estimated based on empirical multi-year mean values,
variances and maximum values of daily mean radiation from the 12/1983-11/2007 time period. Data from the whole period
were used for the production of EWEMBI rlds and rsds. Data from some half of the period (cf. Sect. 4.1) are used for cross-
validation in this study.

For shortwave radiation, the basic daily bias correction method is designed to resemble the method outlined by Ruane et al.
(2015, Sect. 3.4). BCsdbl estimates mean values and variances of climatological beta distributions by 25-day running mean
values of multi-year daily mean values and variances, respectively, and their upper bounds by 25-day running mean values of
25-day running maximum values of multi-year maximum values of daily mean rsds (solid red line in Fig. 1c). The idea behind
this upper bound estimate is that 25-day running maximum values of multi-year maximum values of daily mean rsds resemble

the multi-year monthly maximum values of daily mean rsds used by Ruane et al. (2015). Please note that using the same
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Table 1. Distribution types and parameter estimation methods of bias correction methods BCuvtpl for day d of the year (cf. Fig. 1). Please

note that the lower bounds of all climatological beta distributions are set to zero and that 24-year statistics are replaced by 12-year statistics

for cross-validation.

method distribution type  mean value jiq  variance o2 upper bound by
BCldbl  normal ((xij)i24)j254 ({wijtiza)josa  —

BCldal  beta ((zij)iza)josa  ({xij}iza)jesa A{(Tij)ioa)josa + B
BClmbl  normal ((xi5)j31d)i24 {{xij)j31d ti2a —

BClmal  beta ((ij)jmra)iza  {(@wiz)jsratioa (b)) ja14

BCsdbl  beta ((xij)i24) 5254 ({xij}i2a)j25a ([[zij]i24) j25K ) K25d
BCsdal  beta ((wij)ioa)josax  ({@ijtioa)josax  Crsdty

BCsmbl  beta ((ij)jsradiza {(mis)jaratioa  (B5)js1a

BCsmal beta ((wi5)j31d)i24 {{@ij)j31d}ioa <b;‘dal>j31d

x4 is the daily mean rlds (for BCl¢p1) or rsds (for BCstp1l) on day j of year 4.

Brackets (- ),{ -}, and [ -] denote the calculation of sample mean values, variances, and maximum values, respectively.
Bracket subscripts 24, j25d, and 725d* indicate that these sample statistics are calculated over years ¢ € {1,...,24},
overdays j € {d —12,...,d+ 12}, andoverdays j € {d —n,...,d + n} with

n =min{12,max{n >0:Vj € {d—n,...,d+n}: rsdt; > 0}}, respectively.

Constants A, B, and C are determined by argminA,B/ Z?ﬁ? <[[xij]i24]j25k>k251 — A <<$1] >i24>j25[ =+ B/)2,

min{B >0:Vle {1, .. ,365}: A(<xij>i24>j25l + B> ([[xij]i24]j25k>k25l}» and
min{C > 0: Vj € {1,...,365}: Crsdt; > [x;;]i24 }, respectively.

window length for the running maximum calculation and the additional smoothing ensures that the resulting upper bounds are
always greater than or equal to the multi-year maximum values of daily mean rsds.

The BCsdal method employs the climatology of daily mean shortwave insolation at the top of the atmosphere (rsdt; see
Appendix B for how rsdt is calculated in this study) for the upper bound estimation. This is motivated by rsds being limited by
rsdt in most locations and seasons, which suggests that the annual cycle of the upper bound of daily mean rsds has a similar
shape as the climatology of daily mean rsdt. Therefore, method BCsdal uses a rescaled daily mean rsdt climatology as the
upper bound climatology of daily mean rsds (solid blue line in Fig. 1c). The rescaling is done with the smallest possible factor
that guarantees that the resulting upper bounds are greater than or equal to the multi-year maximum values of daily mean rsds
on all days of the year with rsdt > 50 Wm™2. An extension of this guarantee to days of the year with lower rsdt would inflate
the rescaling factor because during dusk and dawn of polar night, rsds can exceed rsdt due to diffuse radiation coming in from
lower latitudes. Therefore, on days of the year with rsdt < 50 Wm™2, the maximum of the rescaled rsdt and the empirical
multi-year maximum daily mean rsds is used as the upper rsds bound. Mean values and variances of the climatological beta
distributions of the BCsdal method are estimated by running mean values of multi-year daily mean values and variances,
respectively. The window length used for these running mean calculations is 25 days by default. On days that are fewer than
13 days away from the beginning or end of polar night (as defined by daily mean rsdt going to zero), the window length is

shortened to 2n 4 1, where n is the number of days between the day in question and the beginning or end of polar night.
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For longwave radiation, both the basic and the advanced daily bias correction methods use 25-day running mean values
of multi-year daily mean values and variances to estimate climatological mean values and variances, respectively. The upper
bounds used by BCldal are not estimated by the often rather unsmooth 25-day running mean values of 25-day running
maximum values of 24-year maximum values of daily mean rlds (solid green line in Fig. 1a) but by a suitably shifted and
rescaled mean value climatology (solid blue line in Fig. 1a; formulas in Table 1).

Since the choice of the window length used for all the running mean and maximum value calculations mentioned above
is somewhat arbitrary, the window length dependence of the overall performances of the BCvdal methods is investigated in

Appendix D. Sensitivities are found to be very low for window lengths between 10 and 40 days.
3.1.2 Bias correction at the monthly time scale

In order to mimic a bias correction at the monthly time scale as it was done by, e.g., Sheffield et al. (2006, Sect. 3.d.3), the
BCvmpl methods bias-correct 31-day running mean values and then rescale each daily value by the corrected-to-uncorrected
ratio of the respective 31-day running mean value.

Mean values and variances of the climatological CDFs F20B5 and FJRB of 31-day running mean values are simply esti-
mated by 24-year (or 12-year for cross-validation) daily mean values and variances of 31-day running mean values, respectively,
with February 29 values replaced by averages of February 28 and March 1 values.

Upper bounds of beta distributions are estimated by 31-day running mean values of the upper bounds of the corresponding
CDFs FR2OPS and FURP of daily mean radiation (cf. Fig. 1, Table 1) because 31-day running mean values of multi-year
maximum values of daily mean radiation are mathematically always greater than or equal to multi-year maximum values of
31-day running mean radiation. The resulting upper bounds are typically much larger than observed 24-year maximum monthly
mean radiation (cf. Fig. 1d) because 31 consecutive days of daily mean radiation at the respective physical upper limit are very

unlikely to occur in reality.
3.1.3 Disaggregation to the E20BS grid

In principle, the disaggregation of aggregated and bias-corrected E20BS data from the SRB to the E20BS grid can be done
in various ways. The simplest approach would arguably be a mere interpolation, which is disadvantageous since it ignores the
sub-SRB-grid scale spatial variability present in the original E20BS data. Probabilistic disaggregation methods, on the other
hand, that are designed to retain that variability (cf. Sheffield et al., 2006, Sect. 3.b.1), are impractical if, as in the present case,
the purpose of the disaggregation is the production and publication of a dataset, because all variants of the dataset that can
potentially be generated by a probabilistic algorithm are, as long as all conceivable constraints have been incorporated in the
algorithm, equally plausible candidates for the one dataset to be published. Therefore, not a probabilistic but the following
deterministic disaggregation approach was used for the production of EWEMBI rlds and rsds and is adopted here for all
BCutpl methods.

First, E20BS-grid scale upper bounds of daily mean radiation are estimated by bilinearly interpolated maximum values

of the climatological upper bounds of SRB all-sky and clear-sky radiation, which in turn are estimated using the BCldal
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method for rlds and the BCsdal methods for rsds (cf. Table 1 and blue lines in Fig. 1a,c). The clear-sky radiation data are
included in order to prevent the E20BS-grid scale upper bounds from being much lower than the real physical limits of daily
mean radiation at that spatial scale, given that due to sub-SRB-grid scale spatial variability, upper radiation bounds at the
E20BS-grid scale may exceed those at the SRB-grid scale.

The original daily E20BS data are then clamped between zero and these upper bounds, and the resulting values (or their
distances to their upper bounds) are rescaled day by day and SRB-grid cell by SRB-grid cell such that their SRB-grid scale
aggregates match the bias-corrected values. More precisely, if on a given day the SRB-grid scale aggregate of the (clamped)
original values from the four E20BS-grid cells contained in one SRB-grid cell is greater than the bias-corrected value of that
day and SRB-grid cell, then the four values are all reduced by a common factor. Otherwise, the distances of the four values to

their climatological upper bounds are reduced by a common factor.
3.2 Bias correction at the E20BS-grid scale
3.2.1 The BCvtp2 methods

The disaggregation method introduced above corrects the original E2OBS values from the four E20BS-grid cells contained in
one SRB-grid cell as if they must all be too low (high) if their area-weighted average is too low (high). This implicit assumption
is questionable since it rules out the possibility that the area-weighted average is too low because one of the four values is much
too low while the others are slightly too high, to give just one example. A statistical manifestation of this problem is illustrated
and discussed in Sect. 4.2.

The assumption does not need to be made if the bias correction is carried out directly at the E20BS grid. With target
distributions fixed at the SRB grid, target distributions at the E20BS grid can be defined such that the bias-corrected data
have the SRB-grid scale target distributions and the sub-SRB-grid scale structure of the original E2Z0BS data. For parametric
bias correction methods such as those introduced above, this can be achieved via suitable definitions of the parameters of the
E20BS-grid scale target distributions. Here, for every BCuvtpl method, a corresponding BCvtp2 method is defined to operate
at the same temporal scale and to use the same source (at the E2Z0BS grid) and target (at the SRB grid) distribution type and
parameter estimation technique (cf. Table 1). E20BS-grid scale target climatologies of mean values, variances and (where
necessary) upper bounds are defined as follows.

The mean value estimates of the original E20BS data are shifted by a common offset per SRB-grid cell and day of the
year to obtain the E20BS-grid scale target mean values. The offsets are chosen such that the E20BS-grid scale target mean
values aggregated to the SRB grid match the corresponding SRB mean value estimates. E20BS data bias-corrected using
these E20BS-grid scale target mean values have SRB grid-scale aggregates that match the SRB grid-scale target mean values
because (i) the aggregation is a linear operation and (ii) the mean value of a linear combination of random variables is equal to
the same linear combination of the mean values of these random variables.

To obtain the E20BS-grid scale target variances, the variance estimates of the original E20BS data are rescaled by a common

(to all four E20BS grid cells contained in one SRB grid cell) factor f;; per day i of the year and SRB-grid cell j. For the
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derivation of the formula for f;; let Y;;; (and X;;;) denote random variables representing bias-corrected (and original) E20BS
data from day ¢ of the year and E20BS-grid cells k£ = 1,2,3,4 contained in SRB-grid cell j. Then the estimated variance of
the SRB-grid scale aggregate of Y;;;, can be expanded to

4 4 4
Var (ijkYijk> = Z wirw;i Cov(Yije, Yiji) = Z WiKWj1 Cor(Yijk,Y;jl)\/Var(Yijk)Var(Y;jl), (1)
k=1 k=1 k=1
where w;y, is the area weight of E20BS-grid cell jk with Y4 _, w;x = 1 for all j, Cov(Yijx, Yij1) is the estimated covariance
of Yy and Y;;;, Cor(Y;k, Yij1) is the estimated Pearson correlation of Y;;, and Y;;;, and Var (Y}, ) is the estimated variance
of Y;;%. A bias correction would be deemed successful if the left-hand side of Eq. (1) was equal to the estimated variance of
Z;;, the SRB data from day ¢ of the year and grid cell j. On the right-hand side of Eq. (1), f;; Var(X,;x) can be substituted
for Var(Y;;1) by definition of the scaling factors, and Cor(Y;,Y;;;) can be approximated by Cor(X;;x,X;;;) since quantile
mapping preserves ranks and therefore rank correlations and therefore approximately Pearson correlations. The variance scaling

factors f;; for method BCuvtp2 are therefore calculated based on

4

VarZij = fij Y wywji Cor(Xje, Xij)y/Var(Xije) Var(X,0), @)
k=1

where the variances are estimated using the respective BCuvtpl approach (cf. Table 1), and the Pearson correlations are esti-

mated by inversely Fisher-transformed 25-day running mean values of Fisher-transformed 24-year daily Pearson correlations

of daily (for BCvdp2) or 31-day running mean (for BCump?2) radiation data. The Fisher transformations are invoked here in

order to approximately account for correlation value-dependent sampling error intervals (Fisher, 1915, 1921).

The E20BS-grid scale target upper bounds are calculated in the same way as the E20BS-grid scale target mean values. This
way, the latter rarely exceed the former. Where they do, the latter are reduced to 99% of the former. For longwave (shortwave)
radiation, such reductions are necessary in four (11% of all) E2Z0BS grid cells, and there on an average of 15% (5%) of all days
of the year.

Furthermore, in order to obtain realistic E20BS-grid scale target beta distributions, the E20BS-grid scale target variances
calculated using Eq. (2) are limited to 40% of (b — ), where 1 and b are the E20BS-grid scale target mean values and upper
bounds, respectively. This limit is imposed because (i) the variance o of a random variable taking values from within the
interval [a,b] can generally not be greater than (i — a)(b— u) if p is the random variable’s mean value, (ii) if that random
variable is beta-distributed and 02 > (12 — a)(b— i) /2 then the probability density function is U-shaped (Wilks, 1995), which
is considered unrealistic for climatological distributions of rlds and rsds, and (iii) o2 /(1(b— y)) has an empirical upper limit of
about 40% in the original E20BS radiation data. The 40% condition is never met for longwave radiation whereas for shortwave

radiation it is met in 14% of all E20OBS grid cells, and there on an average of 2% of all days of the year.
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3.2.2 The BCvtp0 methods

For the BCvtp0 methods, daily SRB data are first bilinearly interpolated to the E20BS grid. The E20BS data are then bias-
corrected directly at the E20BS grid using the interpolated SRB data and transfer functions defined exactly as for the respective
BCutpl method.

4 Results

In the following, the bias correction methods introduced above are cross-validated at the SRB-grid scale (Sect. 4.1), and their
disaggregation performance is assessed by comparing sub-SRB-grid scale spatial variability before and after bias correction
(Sect. 4.2).

4.1 Cross-validation at the SRB-grid scale

For the cross-validation against SRB data, 24 years worth of overlapping E20BS and SRB data are divided into two 12-year
samples of which the first one is used to calibrate and the second one to validate the method. Common practice would be to
use data from the first and second half of the 24-year period to define these samples. Yet due to climate change this definition
may yield calibration and validation data samples that differ statistically. These differences in turn, which are essentially
climate change signals, may differ in extent between the E20BS and SRB data. Switanek et al. (2017) have shown that such
differences in climate change signals may then dominate cross-validation metrics and thereby distort the comparative validation
of bias correction methods. In order to minimise this climate change impact on cross-validation results, here, calibration and
validation data samples are composed of data from every second and every other year or vice versa, respectively. The samples
are accordingly labelled every1st and every2nd.

Please note that results for BCwvtp2 are not shown or discussed in this section because BCvtpl and BCuvtp2 produce virtually

identical data at the SRB-grid scale.
4.1.1 BCuwitp0 versus BCvtpl

The first question addressed here is how the bilinear spatial interpolation of SRB data to the E2Z0BS grid before bias correction
with the BCvtp0 methods impacts the distribution of bias-corrected rlds and rsds values at the SRB-grid scale. To quantify
these impacts, biases in multi-year daily mean values, standard deviations, and maximum values remaining after bias correction
with methods BCvda0 and BCwvdal are compared in the left and middle columns of Figs. 2 and 3.

Since linear interpolation always yields values that are intermediate to the values at the interpolation knots it is expected
that daily SRB data bilinearly interpolated to the E20BS grid and then aggregated back up to the SRB grid will be more
smooth overall both in space and time than the original SRB data. Manifestations of the increased smoothness in time are
the more negative biases of standard deviations (Fig. 2) and maximum values (Fig. 3) remaining after bias correction with

BCuvda0 than with BCvdal. Standard deviations after bias correction with BCvda0 in particular are negatively biased by
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Figure 2. Biases relative to SRB in mean values (a—f) and standard deviations (g-1) of spatially aggregated (to the SRB grid) daily mean
longwave (a—c, g-i) and shortwave (d—f, j-1) radiation after bias correction with methods BCwvda0 (left), BCvdal (middle) and BCvdbl
(right). The biases are calculated individually for each calendar month (January to December) and calibration data sample (everylst, ev-
ery2nd) pooling SRB and corrected E20BS data from all years of the corresponding validation data sample (every2nd, every1st, respectively)
and omitting shortwave radiation data from months with monthly mean rsdt less than 1 Wm ™2 (cf. Appendix B and Fig. Dlc). Depicted
are median and agreement in direction (sign of bias) of these individual biases, represented by hue and saturation of a grid cell’s colour,
respectively. Categories of agreement in bias direction are defined based on one-sided p-values obtained from modelling underestimations
and overestimations for individual calendar months and validation data samples as outcomes of independent fifty-fifty Bernoulli trials. More

saturated colours indicate higher statistical significance of biases remaining after bias correction.

more than 4% (median over calendar months x validation data samples) in most regions. In mountainous and therefore spatially
heterogeneous regions, also multi-year monthly mean radiation is changed significantly by the interpolation, with median biases
over calendar months x validation data samples remaining after bias correction with BCvda0 exceeding 2 Wm ™2 in many

such places (Fig. 2).
4.1.2 BCutaxz versus BCutbx
Next is an assessment of how the treatment of the upper bound of the distributions estimated by the BCvdpl methods impacts

the distribution of bias-corrected rlds and rsds values at the SRB-grid scale. To quantify these impacts, biases in multi-year daily
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Figure 3. Same as Fig. 2 but for biases in skewness (a—f) and 12-year maximum values (g-1).

mean values, standard deviations, and maximum values remaining after bias correction with methods BCvdal and BCvdb1l
are compared in the middle and right columns of Figs. 2 and 3.

For longwave radiation, the basic method BCldb1 assumes normally distributed values and therefore does not account for
any upper physical limit of rlds whereas the advanced method BCldal assumes the existence of such a limit and estimates
it empirically. Figure 3 shows that the advanced method generally yields a better correction of 12-year maximum values. In
contrast, standard deviations are slightly better corrected by the basic method and mean values are equally well corrected by
both methods (Fig. 2).

For shortwave radiation, both the basic and the advanced method empirically estimate upper physical limits of rsds and take
these into account in the form of upper bounds of beta distributions. The limit estimates are based on downwelling shortwave
radiation at the surface and at the top of the atmosphere for BCsdal, and on rsds only for BCsdbl. Figure 3 shows that the
basic method generally yields a better correction of 12-year maximum values. Also standard deviations and mean values are

slightly better corrected by BCsdal than by BCsdb1 (Fig. 2).
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Figure 4. Same as Fig. 2 but for relative biases in interannual standard deviations of monthly mean radiation remaining after bias correction

with methods BCvdal (left) and BCumal (right).

4.1.3 BCuvdpx versus BCvmpx

Next is a comparative cross-validation of methods BCvdpzr and BCvmpx operating at the daily and monthly time scale,
respectively. The cross-validation itself is also done at the daily and monthly time scale based on statistics of daily and monthly
mean radiation, respectively. A joint assessment of these cross-validations shall reveal whether bias correction at the daily or
monthly time scale is better overall.

By design, the BCvdpzr and BCvmpx methods are equally good at correcting multi-year mean values of daily mean ra-
diation. However, both day-to-day and year-to-year variability are expected to be differently well corrected by the methods
operating at different time scales. Since day-to-day variability is (not) explicitly adjusted by the methods operating at the daily
(monthly) time scale the BCvdpx methods are expected to perform better at the daily time scale than the BCvmpx methods.
The year-to-year variability, on the other hand, is explicitly corrected by the BCvmpx methods and it is not by the BCvdpx
methods because daily data from different years are pooled before quantile mapping is carried out at the daily time scale.
Consequently, biases in interannual standard deviations of monthly mean radiation are much larger after bias correction with
BCwvdal than with BCvmal (Fig. 4), and the BCvmpx methods are generally expected to perform better at the monthly time
scale than the BCvdpz methods.

In order to assess whether bias correction at the daily or monthly time scale is more effective overall, a performance measure
is needed that is comparable across time scales. Common performance measures of distribution adjustments at individual time

scales are the two-sample Kolmogorov-Smirnov (KS) and Kuiper’s two-sample test statistic. While Kuiper’s test is equally

13



10

daily monthly

H MHH IM"EHI'H—HIYH_ZQ

)
_
—
—
—_
—
—O
—_
—_
T
T
| ]
R

rlds (v

| S |
® N o

o
+
=)
1
©

|
N

———
—_"T
—
P A
+—+—
—q
—q
T
—
—
—
—q
T
L
-
|

|
w
In p-value two-sample KS test statistic

=8)
T
1
ES

I
|
o

rsds (v
—
|
D

— BCvdail
L BCvda0

— BCvdb1
BCvmat

() T — original |

DJF MAM JJA SON DJF MAM JJA SON

|
N

) |
© o™

Figure 5. Overall performance of bias correction methods BCvdal, BCvda0, BCvdbl, and BCvmal for longwave (top) and shortwave
(bottom) radiation at the daily (left) and monthly (right) time scale as quantified by p-values of two-sample Kolmogorov-Smirnov test
statistics of the respective E20BS and SRB data before (black) and after (colours) bias correction (cf. Appendix C; greater p-values indicate
stronger agreement of E20BS and SRB distributions). The p-values are determined individually for each grid cell, season, and calibration
data sample, with all corresponding values pooled into one distribution and omitting shortwave radiation data from months with average rsdt
less than 1 Wm ™ 2. The horizontal lines of each box-whisker plot represent the 90th, 75th, 50th, 25th, and 10th (from top to bottom) grid-cell
area-weighted percentile of the natural logarithms of these p-values over calibration data sample (1sthalf, 2ndhalf), latitude and longitude.

The grey horizontal line marks the p = 10% significance level.

sensitive to CDF differences at all quantiles, the KS test is more sensitive at the median than in the tails. A straightforward
comparison of these test statistics across time scales is not very meaningful because sample sizes at the daily and monthly
time scale differ by a factor of thirty, which implies that the same value of a test statistic has different statistical significance
at the daily and monthly time scale. A better comparability can be achieved by comparing the test statistic’s p-value, which
represents the statistical significance of CDF differences. In the present cross-validation, the CDFs compared are based on
bias-corrected E20BS and the corresponding SRB data, and a higher p-value indicates more similar CDFs and therefore a
better bias correction. For details of the calculation of p-values of the two-sample KS and Kuiper’s two-sample test statistic see
Appendix C.

Global distributions of p-values of two-sample test statistics for seasonal distributions of daily and monthly mean rlds and
rsds are shown in Fig. 5 for the KS test and Fig. 6 for Kuiper’s test. In accordance with expectations, both tests indicate that
CDFs are generally better adjusted by BCvdpz than by BCvmpz at the daily time scale and vice versa at the monthly time

scale. Yet performance differences between BCvdpz and BCvmpz are clearly more significant at the daily than at the monthly
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Figure 6. Same as Fig. 5 but based on p-values of Kuiper’s two-sample test statistic.

time scale. This suggests that bias-correcting at the daily instead of at the monthly time scale yields bias decrements at the daily
time scale that exceed bias increments at the monthly time scale. Therefore, bias correction at the daily time scale is deemed
more effective overall then bias correction at the monthly time scale.
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