
Responses by the author (in green) to comments (in black) by 
anonymous referee #1

1. General Comments

[…]

My main concern is that the author provides some improvement to the description of results, 
particularly in terms of figures. I am aware that comparison among 8*3 methods, adopting different 
parameters over LW and SW radiation fields separately, requires a challenging effort in terms of 
clarity and conciseness. In some parts of the manuscript I found difficult to benchmark arguments 
described in the text with the mentioned figures. I will be more specific in the next section.

The results section has been almost completely rewritten and the figures have been made clearer, 
see my responses to your specific comments.

Another aspect that I think might be improved is a discussion of the implications of using a 
deterministic parametric method, rather than a stochastic one, for bias correction when a 
downscaling/upscaling is made necessary. A reference to Maraun, 2013 (JCLI) might be helpful in 
this respect. Related to this, a further appendix may be suitable, not only including such a 
discussion but also a basic description of the quantile mapping methodology for those who are not 
familiar with it. In the current draft, this is left to references although, as far as I could check, none 
of the mentioned papers explicitly addresses for the quantile mapping methodology.

I appreciate that not every reader is familiar with the quantile mapping (QM) methodology. Since 
also anonymous referee #2 asked for it, I have added Appendix A that includes a general description
of QM and touches on parametric versus non-parametric as well as deterministic versus stochastic 
QM.

2. Specific Comments

Figure 2: it was very difficult to me to distinguish among the various lines shown in the panels. The 
dotted red and dashed blue lines are almost indistinguishable (particularly in (b) and (c)) and the 
light blue line in (a) can hardly be seen. I would suggest to split this figure in two, separately 
showing the beta and advanced distributions respectively, with the related parameters. As for the 
caption, I would suggest to explain in first place on which data the computation of the distributions
and their parameters is based.

As to the caption, I followed your suggestion. I did not want to split the figure in two as suggested 
because the figure is supposed to illustrate similarities and differences between the different QM 
methods and that would be difficult if different methods were shown in different figures. However, I
have simplified the plot by removing the lowermost and uppermost dotted red and dashed blue lines
as these were a mere bonus (they just showed that the distribution fitting works well). Also, I have 
made the light blue line green and added the following sentence to the figure caption: “Note that the
basic and advanced estimates of mean values and standard deviations only differ in panel (c) near 
the beginning and end of polar night (cf. Table 1).” This should clarify that it is not a bug but a 
feature that the dotted red and dashed blue lines are mostly indistinguishable.

Table 2: I wonder if one could improve the notation for distribution parameters and arrange it with a
more mathematically appropriate symbols. Rather than plain text and footnotes, you may want to 
introduce a consistent notation with brackets and apostrophes to indicate means, running means and
variances, as well as apexes and subscripts referring to the length of the window and the amount of



years to be considered.

Thank you very much for this suggestion. I have introduced such a mathematical notation in the 
revised manuscript.

l. 32-33, p. 9: it may be worth mentioning here how the common factor for the aggregation of bias-
corrected values in the SRB-grid cell is chosen.

I have rewritten this paragraph such that it is now clearer how the common factor is determined.

l. 22, p. 10: As far as I understood the common factor f(i,j) is not the same as for the aggregation to 
the SRB-grid cell, given that it depends on whether the bias correction is applied on the lower or 
higher resolution. If it is not the case, it is once again not clear to me how the value of this common 
factor is chosen (see previous comment).

I have also adjusted this part such that it should be clear how fij is calculated.

l. 33-34 p. 12: the limits of parametric methods are here correctly mentioned. As stated in the 
General Comments section, this is a critical issue, and I think it would be worthwhile a few more 
arguments. If it is not too much work, I wonder if it would be possible to apply a non-parametric 
quantile mapping (e.g. using a cubic spline empirical CDF) to be compared with these parametric 
methods.

The number of QM methods compared in this study is already quite large. Also testing non-
parametric QM methods is beyond the scope of the article. However, I have added a paragraph to 
Section 5 that discusses potential benefits of using non-parametric QM methods compared to the 
parametric QM methods tested here.

l. 15-16 p. 14: looking at Figure 6 is very hardly distinguishable that the BCvmp1 at the daily time 
scale outperforms the same methods at the monthly time scale. This is in my opinion because 
Figure 6, as well as Figure 2, contains too much information that prevents from emphasizing the 
key points that are described in the text. The uncertainty range masks the differences among the 
bars. Furthermore, having five bars for every months makes very difficult to distinguish them, 
particularly the ones in lighter colours (BCvmp1 methods). I would suggest to split the figures in 
order at least to separately consider original and bias corrected p-values.

Again, I think that it would not help to split the figure as suggested because plotting p-values before
and after bias correction using the same scale is needed in order to illustrates the effect of the bias 
correction. Yet I appreciate that there are quite many box-whisker plots in the figure, so I have 
reduced the plot’s temporal resolution from monthly to seasonal. Also, I have reduced the range of 
the y-axis from [-14, 0] to [-10, 0], which has made differences between the individual box-whisker 
plots more easily distinguishable.

l. 9-11 p. 16 and l. 1-2 p. 18: I found very challenging to carve out the important information from 
Figures 7-8 and link it with the arguments in the text. It seems to me that the only clear information 
that can be driven from them is that BCvdax methods outrank BCvdax at the daily resolution for 
what concerns rlds, and the other way round for what concerns rsds and rlds in the monthly mean. 
The author refers to a tropical/extratropical asymmetry that to my best effort is barely 
distinguishable. Furthermore the seasonal dependence (if any) is not mentioned in the text, still 
making the clarity of the two figures even more arguable. I would suggest either to restructure the 
layout of Figures 7 and 8 or removing this part, since it does not add much to the discussion of 
results.



Since referee #2 also revealed several substantial shortcomings in this part of the manuscript, the 
entire validation against BSRN observations has been removed from the revised manuscript.

3. Technical comments

l. 6 p. 7 (and elsewhere in the text): replace “Sect.” with “Appendix”, when you reference to 
appendices.

I have done as suggested.

l. 5 p. 9: correct “it”.

I have done as suggested.

l. 8 p. 10: maybe “be” is needed between “to” and “made”.

I have done as suggested.

l. 11 p. 14: “that” is repeated twice.

I have substituted “this” for the second “that”.



Responses by the author (in green) to comments (in black) by 
anonymous referee #2

1. General comments

A first concern is the focus of the paper: is the focus the evaluation of different methods or the 
quantitatively correct bias correction rsds and rlds in an absolute sense? Overall, the paper seems to 
suggest the former (comparison of methods). However, the use of BSRN data as an independent 
quantitative check points to the later (quantitatively correct rsds and rlds in an absolute sense). If the
latter is indeed part of the goal, more work has to go into ascertaining the quantitative correctness of
the SRB data used for bias adjustment.

Many thanks to referee #2 for her comprehensive criticism of the validation agains independent 
surface observations. After carefully consulting the concerns presented and literature provided by 
the referee I have decided to completely remove this part of the manuscript. Indeed, the validation 
was a secondary goal of the paper, which clearly benefits from focusing on its main goal, which is 
the evaluation of the different quantile mapping (QM) methods.

A second major point is the overall clarity of the manuscript. The methods used are complex, the 
figures shown are (too) packed with interesting information. However, explanations and 
descriptions come in often (very) long sentences, with lots of details, making it difficult to grasp the
essentials. More focused and shorter sentences would help, as would some more information 
(possibly equations) on the parametric methods. The reason for specific choices (e.g. why 
comparing these methods, why using these metrics?) are not given. Conclusions read in wide parts 
more like an extensive summary.

Since referee #1 also pointed to too packed figures, I have reduced their information content to 
some extent in the revised manuscript. Also, I have almost entirely rewritten the results and 
conclusions sections using shorter sentences. These parts are now better structured, more focused 
and concise. Reasons for choices of methods and metrics are now better motivated.

Ideally, the statement that there are two best methods (one for rsds the other for rlds, and measured 
in terms of cross-validation) would be further embedded. Can these methods be used for bias 
correction of the entire E2OBS period without introducing artifacts? Could the methods be further 
improved? Are the other methods just slightly or clearly worse? 

The methods can definitely be used for bias correction of the entire E2OBS period, see my response
to your specific comment below. The relative performances of the different methods are now better 
described in the conclusions section.

2. Specific comments

p.3, l.27: Why use to different versions of SRB for rlds and rsds?

These are the latest available versions of the SRB dataset. The version numbers differ between rlds 
and rsds. This is now explained.

p.4, l.9: "If deviations of SRB from SRBQC data quantify methodological uncertainty inherent to 
SRB data then these findings justify the bias correction of E2OBS rlds and rsds using SRB data 
over land at least." Two points here. For rsds, one may argue on the same ground that wide parts of 
the oceans also need adjustment. More generally, you assume here that SRB is correct (at least more
correct than E2OBS). How can you be sure? For example, how does SRB compare to CERES data?



Or to global mean estimates of rsds and rlds? A number of papers, e.g. by Trenberth et al., give 
numbers for the latter. An alternative may be to focus only on the methods and not argue at all about
the quality of the SRB data.

In the revised manuscript I have focused only on the methods and do not argue at all about the 
quality of the SRB data.

Figure 1: Which of the differences are statistically significant?

This figure has been removed from the manuscript, in line with focusing on the methods.

Table 1: How about the altitude dependence of short wave radiation? (See e.g. Marty, Philipona, 
Frohlich, Ohmura, Theor. Appl. Climatol. 2002)

Also this table has been removed from the manuscript (and along with it the question of how 
shortwave radiation changes with altitude), in line with focusing on the methods.

p.6, l.6: What do you mean by bilinear interpolation from coarse (SRB) to fine (E2OBS) grid? 
Copying? Same question on p.11, l.18.

I have changed “bilinearly interpolated” to “spatially bilinearly interpolated” in both cases. I think 
this is a standard term, which does not need further explanation.

p.6, l.8: "For the BCvtp2 methods, the sub-SRB-grid scale spatial structure of the original E2OBS 
data is imposed upon spatially disaggregated SRB data prior to bias correction at the E2OBS grid." 
Please try to clarify. I think I understood much later, in Section 3.2.1, that you adjust the mean and 
variance of E2OBS data on the E2OBS grid with mean and variance of SRB data on the 
corresponding, coarser SRB gird. True?

I have changed this sentence to “the BCvtp2 methods adjust mean values and variances at the 
E2OBS grid such that mean values and variances of spatial aggregates to the SRB grid match the 
corresponding SRB estimates while the sub-SRB-grid scale spatial structure of mean values and 
variances present in the original E2OBS data is retained.”

p.6, l.14: "... of the underlying four E2OBS values." The two grids thus are such that four E2OBS 
cells correspond to one SRB cell? They are not shifted against each other?

Correct. I have added the sentence “ Every SRB grid cell contains exactly four E2OBS grid cells.” 
to the data description section.

p.6, l.16: It would be helpful if you added some information, possibly equations, on transfer 
functions, target distributions, estimation of means and variances of beta functions etc. in an 
appendix, as these are absolutely central to your study. Currently, the reader has to know all this or 
has to check out the references. After all, you even devote an appendix to explaining Kolmogorov-
Smirnov.

Thank you for pointing this out. Such an appendix has been added to the revised manuscript.

Figure 2d: Why are the colored lines so far away from the black and gray lines?

Because my estimates of the upper bounds of monthly mean radiation are calculated based on the 
upper bounds to the corresponding daily mean radiation. The resulting upper bounds are typically 



much larger than observed maximum monthly mean radiation because 31 consecutive days of daily 
mean radiation at its physical upper limit are very unlikely to occur in reality. I have added this 
explanation to Sect. 3.1.2.

p.7, l.8: What do you mean by "The rsdt climatology at a given latitude is rescaled such that it sits 
just above the multi-year maximum..."? Why do that?

To answer your questions, I have rewritten the beginning of this paragraph as follows: “The BCsda1
method employs the climatology of daily mean shortwave insolation at the top of the atmosphere 
(rsdt; see Appendix B for how rsdt is calculated in this study) for the upper bound estimation. This 
is motivated by rsds being limited by rsdt in most locations and seasons, which suggests that the 
annual cycle of the upper bound of daily mean rsds has a similar shape as the climatology of daily 
mean rsdt. Therefore, method BCsda1 uses a rescaled daily mean rsdt climatology as the upper 
bound climatology of daily mean rsds (solid blue line in Fig. 1c). The rescaling is done with the 
smallest possible factor which guarantees that the resulting upper bounds are greater than or equal 
to the multi-year maximum values of daily mean rsds on all days of the year with rsdt ≥ 50 W m-2. 
An extension of this guarantee to days of the year with lower rsdt would inflate the rescaling factor 
because during dusk and dawn of polar night, rsds can exceed rsdt due to diffuse radiation coming 
in from lower latitudes. Therefore, on days of the year with rsdt < 50 W m-2, the maximum of the 
rescaled rsdt and the empirical multi-year maximum daily mean rsds is used as the upper rsds 
bound.”

p.10, l.9: "... one possibility to define ..." What would other possibilities be? Why your choice?

Another possibility would be to follow the BCvtp0 approach, i.e. to use interpolated data. The 
motivation of my choice is that it solves the problem illustrated and discussed in Sect. 4.2. I have 
rephrased the sentence as follows: “With target distributions fixed at the SRB grid, target 
distributions at the E2OBS grid can be defined such that the bias-corrected data have the SRB-grid 
scale target distributions and the sub-SRB-grid scale structure of the original E2OBS data.”

p.10, Eq. 1: Where does the equation come from? Can you give a reference? The explanation 
following eq. 1 reads rather lengthy but not too clearly.

This does not need any reference. It is the standard formula for the variance of a linear combination 
of random variables. I have however inserted one intermediate step using covariances in the 
equation to make its derivation easier to understand.

p.11, l.9: How often does this "99%" condition kick in?

For longwave (shortwave) radiation, this "99%" condition kicks in over four (11% of all) grid cells 
and there on 15% (5%) of all days of the year. I have added this information to the revised 
manuscript version.

p.11, l.16: How often does this "40%" condition kick in?

The “40%” condition is never met for longwave radiation whereas for shortwave radiation it kicks 
in over 14% of all E2OBS grid cells and there on 2% of all days of the year. I have added this 
information to the revised manuscript version.

p.11, l.27: "Metrics used..." Why these? Why, for example, skewness? What do I learn from this 
measure? And why a Kolmogorov-Smirnov test? Why not a test that gives more weight to tails, e.g. 
Anderson-Darling? More generally, when do you say that your bias adjustment is good? When the 



adjusted E2OBS distribution is identical (mean, variance, skewness...) to the SRB distribution? 
Why then adjust at all and not just take the SRB data? Can you use your method to adjust E2OBS 
data beyond the time span where SRB data is available?

The skewness is included because it is the first distribution moment which is not explicitly adjusted 
by my parametric QM methods. It is included here to illustrate this conceptual imperfection of my 
methods. I have included this motivation in the revised results section. You are right about the KS 
test and the relatively low weight it gives to tails. In the revised section 4.1, I have included 
Kuiper’s test as one that (like the suggested AD test) gives the same weight to CDF differences at 
all quantiles. Qualitatively, however, the Kuiper’s test results are the same as those of the KS test. 
You are right that I (and, as far as I know, everybody else who cross-validates bias correction 
methods) consider a bias adjustment good if the adjusted distributions are identical to the target 
distributions. I have included this definition of (overall) performance in the revised section 4.1. In 
the ISIMIP framework, there are two reasons for doing the bias adjustment of E2OBS to SRB data 
and not just using the SRB data directly: It (i) promises a higher inter-variable consistency (e.g. 
consistency of temperature and longwave radiation) in the EWEMBI dataset and (ii) produces 
radiation data that cover a longer time span. Applying the methods to E2OBS data beyond the time 
span where SRB data are available is fine since the 1979-2013 period is in fact not much larger than
the 1983-2007 period, so that the former is expected to be sufficiently well represented by the latter.

p.12, l.2: Does the remark about CVCC imply that your method cannot be used to correct E2OBS 
data outside the SRB period (1983-2007)?

No, it does not, see my response to your previous comment.

p.12, l.11: "In the following, cross-validation results are only shown and discussed for the BCvtp0 
and BCvtp1 methods, since results for the corresponding BCvtp1 and BCvtp2 are virtually 
identical." What do you mean? That the difference between BCvtp0 and BCvtp1 is similar as 
between BCvtp1 and BCvtp2? And, consequently, BCvtp0 and BCvtp2 differ more?

No, I mean that cross-validation results for the BCvtp1 and BCvtp2 methods are virtually identical. 
In order to make this clearer I have rewritten the statement as follows: “Please note that results for 
BCvtp2 are not shown or discussed in this section because BCvtp1 and BCvtp2 produce virtually 
identical data at the SRB-grid scale.”

p.12, l.17: "... overall performance ..." What do you mean by overall performance?

This is now better explained in the new section 4.1.3.

p.12, l.24: Why now looking at relative differences?

Why not? For standard deviations, I think this makes more sense than to look at absolute 
differences.

Figure 3: I guess a good bias correction in your metrics results in a white map. True? The color / 
hue coding may be better explained upon first use.

Not true. White means low agreement in bias direction (positive or negative bias) over months and 
validation data samples. In order to make this clearer I have added the following sentence to the 
caption of this figure: “More saturated colours indicate higher statistical significance of biases 
remaining after bias correction.”



Figures 4 and 5: Why are the quantities shown of interest? And, again, what is good and what is 
bad? If white means "good", then none of the methods performs well here?

The cross-validation of multi-year maximum values shall reveal if it is worthwhile and if so, then 
how to explicitly adjust upper radiation bounds. This is now better explained in section 4.1.2. For 
why skewness is of interest, see my response to your comment on p.11, l.27. As to the significance 
of Figure 5, see my answer to your next question. In terms of what white means, see my answer to 
your previous comment. The methods are clearly not perfect but I also did not expect that. It does 
not make sense to make an absolute statement such as “this shows that the method performs well.” 
The only sensible question is if one method performs better than another one. Figures 2 to 4 
(formerly 3 and 5) quantify the magnitude of biases of selected statistics that remain after bias 
correction with different methods.

p.14, l.15: Why should bias adjustment on monthly timescales outperform daily bias adjustment 
with subsequent monthly averaging?

Because of what is shown in Figure 4 (formerly 5). I have revised the explanation of Figure 4 
earlier in the text as follows in order to answer your question: “By design, the BCvdpx and 
BCvmpx methods are equally good at correcting multi-year mean values of daily mean radiation. 
However, both day-to-day and year-to-year variability are expected to be differently well corrected 
by the methods operating at different time scales. Since day-to-day variability is (not) explicitly 
adjusted by the methods operating at the daily (monthly) time scale the BCvdpx methods are 
expected to perform better at the daily time scale than the BCvmpx methods. The year-to-year 
variability, on the other hand, is explicitly corrected by the BCvmpx methods and it is not by the 
Bcvdpx methods because daily data from different years are pooled before quantile mapping is 
carried out at the daily time scale. Consequently, biases in interannual standard deviations of 
monthly mean radiation are much larger after bias correction with BCvda1 than with BCvma1 (Fig. 
4), and the BCvmpx methods are generally expected to perform better at the monthly time scale 
than the BCvdpx methods.”

p.15, l.3: "Rather, the p-value distributions depicted in Fig. 6b,d suggest that if sampling errors are 
taken into account then the BCvdp1 methods correct the distributions of monthly mean values 
almost as well as the BCvmp1 methods." I do not see this point from the text and / or figure.

I have removed this sentence from the revised manuscript.

p.15, l.7: "For BCvdp1, this is linked to an insufficient adjustment of third-and higher-order 
moments..." Not sure what you mean. That you should use another parametric method that takes 
into account higher moments? At what point do you start to "overfit" if you do this?

I mean that my parametric methods explicitly adjust mean values and variances. Higher-order 
moments are only implicitly (and therefore most likely not perfectly) adjusted through the 
distribution fitting. In fact, with my methods you cannot overfit in your sense because both the 
normal and the beta (provided its bounds have been fixed) distribution only have two parameters, 
which are fixed once two moments have been fixed. Therefore, they cannot adjust more than two 
moments explicitly. An alternative would be to use non-parametric QM methods. I think that all of 
this is now clearer thanks to the appendix about QM and downscaling that has been appended to the
revised manuscript.

p.15, l.11: "... correct the upper tail of the rlds and rsds distributions." Can you say this
if you use Kolmogorov-Smirnov, which focuses on the center of the distribution?



Kuiper’s test results confirm this. I have adjusted the statement accordingly.

Section 4.2: Comparison with BSRN data. Here you compare point data with area mean data. This 
comes with potentially quite some uncertainty. See e.g. papers by M.Z. Hakuba et al. 2013 / 2014 / 
2016 or N.A.J. Schutgens et al. 2016. Part of your disagreement could have its roots there. More 
generally, you are looking here more into how good your SRB data is than how good your bias 
adjustment is. If this is of interest, you should also consider other data, e.g. CERES or global mean 
estimates for rlds and rsds, e.g. by Trenberth et al. In its current form, the comparison with BSRN 
data is rather confusing than helping, I think.

I agree (see above). I have removed this section from the manuscript.

Figures 7 and 8: What is the colored rectangle to the lower left in each panel?

These figures have been removed from the revised manuscript.

p.18, l.1: "... and differences between standard deviation biases generated by BCdsdp0, BCsdp1 and
BCsdp2 are in line with cross-validation results." What do you mean?

Irrelevant now that this part has been removed from the revised manuscript.

p.18, l.5: "... which again suggests that biases relative to BSRN after bias correction using SRB data
depend more on the corresponding SRB data biases than on the method used for the bias 
correction." So the BSRN comparison does not make sense?

Irrelevant now that this part has been removed from the revised manuscript.

p.18, l.8: I do not understand this paragraph.

Irrelevant now that this part has been removed from the revised manuscript.

p.19, l.1 to 14: I think much of what you are describing here has to do with the fact that you are 
comparing point measurements with area means. See the above mentioned papers by Hakuba, 
Schutgens, and references therein.

Maybe. Has been removed from the revised manuscript.

p.19, l.26: Why use a staggered grid?

Smaller differences between RMSDs of adjusted E2OBS data from SRB-grid cell and staggered 
SRB-grid cell mean values are considered to indicate a better bridging of the E2OBS-to-SRB spatial
scale gap. Ideally, there would be no such difference and it would therefore be impossible to tell 
from this analysis if the target distributions of the bias correction were defined on the SRB or 
staggered SRB grid. I have included this explanation in the revised manuscript.

Figure 10: The figure seems to suggest that variability is strongly enhanced (red areas) by the bias 
adjustment. True?

True.

Appendix C: What is the take home message? Figure C2 seems to suggest that the window length is
irrelevant. True?



True.



List of all relevant changes made in the manuscript

• the old Table 1 and the old Figures 1, 7, 8 and 9 have been removed
• all text related to the validation against BSRN data has been removed
• Figures 1 (formerly 2) and 5 (formerly 6) have been simplified
• cross-validation using Kuiper’s two-sample test has been added (new Figure 6)
• the results and conclusions sections have been almost entirely rewritten
• a new Appendix A on quantile mapping and statistical downscaling has been added
• the individual reasons for testing the different bias correction methods are better explained
• a more mathematical notation has been introduced to define the bias correction methods in 

Table 1 (formerly 2)
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Abstract. Many meteorological forcing datasets include bias-corrected surface downwelling longwave and shortwave radiation

(rlds and rsds). Methods used for such bias corrections range from multi-year monthly mean value scaling to quantile mapping

at the daily time scale. An additional downscaling is necessary if the data to be corrected have a higher spatial resolution than

the observational data used to determine the biases. This was the case when EartH2Observe (E2OBS; Calton et al., 2016)

rlds and rsds were bias-corrected using more coarsely resolved Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011)5

data for the production of the meteorological forcing dataset EWEMBI (Lange, 2016). This article systematically compares

various parametric quantile mapping methods designed specifically for this purpose,
::::::::
including

:::::
those

::::
used

:::
for

:::
the

::::::::::
production

::
of

::::::::
EWEMBI

::::
rlds

:::
and

::::
rsds. The methods vary in the time scale at which they operate, in their way of accounting for physical

upper radiation limits, and in their approach to bridging the spatial resolution gap between E2OBS and SRB. It is shown how

temporal and spatial variability deflation related to bilinear interpolation and other deterministic downscaling approaches can10

be overcome by downscaling the target statistics of quantile mapping from the SRB to the E2OBS grid such that
:::
the sub-

SRB-grid scale spatial variability present in the original E2OBS data is retained. Cross-validations at the daily and monthly

time scale reveal that it is worthwhile to take empirical estimates of physical upper limits into account when adjusting either

radiation component and that, overall, bias correction at the daily time scale is more effective than bias correction at the

monthly time scale if sampling errors are taken into account. A validation against independent ground observations from the15

Baseline Surface Radiation Network (BSRN; König-Langlo et al., 2013) suggests that the bias correction of E2OBS surface

downwelling radiation using SRB data that was done for the production of EWEMBI had a positive and neutral overall effect

on rlds and rsds, respectively. Using any of the other methods tested here would have given similar results as the biases relative

to BSRN remaining after bias correction are dominated by the corresponding SRB data biases.

Copyright statement. The author agrees to the licence and copyright terms of Copernicus Publications as of 6 June 2017.20

1 Introduction

High-quality observational datasets of surface downwelling radiation are of interest in many fields of climate science, including

energy budget estimation (Kiehl and Trenberth, 1997; Trenberth et al., 2009; Wild et al., 2013) and climate model evaluation

1



(Garratt, 1994; Ma et al., 2014; Wild et al., 2015). As part of so-called climate or meteorological forcing datasets such as

those generated within the Global Soil Wetness Project (GSWP; Zhao and Dirmeyer, 2003), at Princeton University (Sheffield

et al., 2006),
:
and within the WATer and global CHange project (WATCH; Weedon et al., 2011), the longwave and shortwave

components of surface downwelling radiation (abbreviated as rlds and rsds or just longwave and shortwave radiation in the

following) are used to, e.g., correct model biases in climate model output (Hempel et al., 2013; Iizumi et al., 2017; Cannon,5

2017) and drive simulations of climate impacts (Müller Schmied et al., 2016; Veldkamp et al., 2017; Chang et al., 2017;

Krysanova and Hattermann, 2017; Ito et al., 2017).

These meteorological forcing datasets are global, long-term meteorological reanalysis datasets such as those produced by

the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR; Kalnay et al.,

1996; Kistler et al., 2001) and the European Centre for Medium-Range Weather Forecasts (ECMWF; Uppala et al., 2005; Dee10

et al., 2011), refined by bias correction using global, gridded observational data. For the components of surface downwelling

radiation, such a bias correction is often necessary as
::::::
because

:
observations of these variables are not assimilated in the reanal-

yses, which makes them subject to modelling biases of, e.g., land-atmosphere interactions and cloud processes (Kalnay et al.,

1996; Ruane et al., 2015).

Different approaches are adopted in order to carry out these bias corrections. Weedon et al. (2011, 2014) apply indirect15

corrections at the monthly time scale using near-surface air temperature observations for rlds and observations of atmospheric

aerosol loadings and cloudiness for rsds. Sheffield et al. (2006) directly rescale rlds and rsds to match observed multi-year

monthly mean values. Ruane et al. (2015) directly adjust distributions of daily mean rsds. The observational dataset commonly

used for such direct adjustments of rlds and rsds is the Surface Radiation Budget (SRB) dataset assembled by the National

Aeronautics and Space Administration (NASA) and the Global Energy and Water EXchanges project (GEWEX; Stackhouse Jr.20

et al., 2011).

Another meteorological forcing dataset, the EartH2Observe, WFDEI and ERA-Interim data Merged and Bias-corrected

for ISIMIP (EWEMBI; Lange, 2016), was recently assembled to be used as the reference dataset for bias correction of global

climate model output within the Inter-Sectoral Impact Model Intercomparison Project phase 2b (ISIMIP2b; Frieler et al., 2016)

:::::::::::::::::::::::::
(ISIMIP2b; Frieler et al., 2017). The surface downwelling longwave and shortwave radiation data included in EWEMBI are25

based on daily rlds and rsds from the climate forcing dataset compiled for the EartH2Observe project (E2OBS; Calton et al.,

2016). In order to reduce deviations of E2OBS rlds and rsds statistics from the corresponding SRB estimates
::
in

::::::::
particular over

tropical land (Dutra, 2015), for EWEMBI, the former were bias-adjusted to the latter at the daily time scale using two newly

developed parametric quantile mapping methods.

These methods are conceptually similar to the Ruane et al. (2015) method, which fits beta distributions to reanalysed and30

observed daily mean rsds for every calendar month, thereby accounting for upper and lower physical limits of rsds using the

multi-year monthly maximum value as the upper and zero as the lower limit of the distribution, and then uses quantile mapping

to adjust the distributions. In contrast to Ruane et al. (2015), the methods developed to adjust E2OBS rlds and rsds for EWEMBI

applies moving windows to estimate beta distribution parameters for every day of the year. This precludes discontinuities at

the turn of the month (Rust et al., 2015; Gennaretti et al., 2015) and promises a better bias correction where the seasonality of35
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radiation is very pronounced such as for rsds at high latitudes. Also, the new methods estimate the physical upper limits of rlds

and rsds differently, acknowledging that these limits are necessarily greater than or equal to the greatest value measured over

:::::::
observed

::::::
during

:
any fixed period. Lastly, while Ruane et al. (2015) linearly interpolate SRB rsds from its natural horizontal

resolution of 1.0◦ to the 0.5◦ reanalysis grid prior to bias correction, the new methods aggregate the E2OBS data from their

original 0.5◦ grid to the 1.0◦ SRB grid, where the bias correction is done
:::
then

::::::
carried

:::
out, and disaggregates these aggregated5

and bias-corrected data back to the E2OBS grid. Depending on the disaggregation method, this approach promises to generate

bias-corrected data with more realistic temporal as well as spatial variability.

The new methods are comprehensively described and cross-validated in this article, and in order to assess the value added

by the bias correction, the E2OBS and EWEMBI rlds and rsds are compared to independent ground observations from the

Baseline Surface Radiation Network (BSRN; König-Langlo et al., 2013). Moreover, several modifications of the new methods10

are tested
::::
here

:
that differ in how they handle the spatial resolution gap between

:::
the

:
E2OBS and SRB

::::
grids, and how they

account for the physical upper limits of rlds and rsds. Also tested
:::::::
included are bias correction methods that operate at the

monthly time scale as it is unclear a priori
:
in

:::::
order

::
to
::::

test
:
if bias correction of daily or monthly mean values yields better

validation resultsat either time scale
:::::
overall

::::::::::::::
cross-validation

:::::
results. The lessons learned from these analyses shall benefit bias

corrections of surface downwelling radiation to be carried out in future generations of climate forcing datasets.15

2 Data

2.1 E2OBS

The EartH2Observe (E2OBS; Dutra, 2015; Calton et al., 2016) daily mean rlds and rsds data bias-corrected for EWEMBI cover

the whole globe on a regular 0.5◦×0.5◦ latitude-longitude grid and span the 1979–2014 time period. Over the ocean, E2OBS

rlds and rsds are identical to bilinearly interpolated ERA-Interim (ERAI; Dee et al., 2011) rlds and rsds. Over land, they are20

identical to WATCH Forcing Data methodology applied to ERA-Interim reanalysis data (WFDEI; Weedon et al., 2014) rlds

and rsds. WFDEI rlds, in turn, is identical to bilinearly interpolated ERAI rlds, adjusted for elevation differences between the

ERAI and Climatic Research Unit (CRU; Harris et al., 2013) grids. WFDEI rsds is identical to bilinearly interpolated ERAI

rsds bias-corrected at the monthly time scale using CRU TS3.1/3.21 mean cloud cover and considering effects of interannual

changes in atmospheric aerosol optical depths (Weedon et al., 2010, 2011, 2014).25

2.2 SRB

The E2OBS data are bias-corrected using the
:::::::::::
observational

::::
data

::::
used

:::
for

:::
the

::::
bias

:::::::::
correction

::
of

:::::::
E2OBS

:::::
daily

:::::
mean

:::
rlds

::::
and

:::
rsds

:::
for

:::::::::
EWEMBI

::::
were

:::
the

:
NASA-GEWEX Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011) primary-algorithm

estimates of daily mean rlds and rsds from SRB Release
::
the

:::::
latest

:::::
SRB

::::::
releases

::::::::
available

::
at

:::
the

:::::
time,

:::::
which

:::::
were

::::::
release 3.1

and
:::
for

:::
rlds

::::
and

::::::
release 3.0 , respectively

::
for

::::
rsds. These data cover the whole globe on a regular 1.0◦×1.0◦ latitude-longitude30

grid and span the 07/1983–12/2007 time period. For bias correction and cross-validation, a 24-year subsample of these data is
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used which
:::
was

::::
used

:::
and

::
is
::::
used

::::
here

::::
that spans the 12/1983–11/2007 time period. Additional data from the adjacent months

11/1983 and 12/2007 are employed for computations of running mean values. The SRB estimates of rlds and rsds are based on

satellite-derived cloud parameters and ozone fields, reanalysis meteorology and a few other ancillary datasets. Due to a lack of

satellite coverage during most of the 07/1983–06/1998 time period over an area centred at 70◦E, SRB data artefacts are present

over the Indian Ocean (https://gewex-srb.larc.nasa.gov/common/php/SRB_known_issues.php; cf. Fig. 1).5

Deviations of E2OBS from SRB (left) and SRB from SRBQC (right) 12/1983–11/2007 mean longwave (top) and shortwave

(bottom) radiation. Root-mean-square deviations (RMSDs) over all ocean and all land grid cells are given at the bottom of

each panel.

Deviations of
::::
Figs.

::::
2–4,

:::
7).

:::::
Every

:::::
SRB

:::
grid

::::
cell

:::::::
contains

::::::
exactly

::::
four

:
E2OBS from SRB long-term mean rlds and rsds are

shown in Fig. 1, together with corresponding deviations of SRB from SRB Release 3.0 quality-check (SRBQC)products. The10

SRB and SRBQC products were produced with different algorithms (Stackhouse Jr. et al., 2011). Since the primary-algorithm

products are more reliable than the quality-check products (Zhang et al., 2015; Stackhouse Jr. et al., 2011) the former were

used for the bias correction of E2OBS rlds and rsds for EWEMBI. Over land, differences in long-term mean radiation between

E2OBS and SRB are greater in magnitude than those between SRB and SRBQC. Over the ocean, the differences are of similar

magnitude. If deviations of SRB from SRBQC data quantify methodological uncertainty inherent to the SRB data then these15

findings justify the bias correction of E2OBS rlds andrsds using SRB data over land at least.
:::
grid

:::::
cells.

:

2.3 BSRN

Observations made at the following 54 BSRN stations are used in this study. In order to adjust rlds for elevation differences

between BSRN stations and E2OBS-grid cells, prior to data comparison, BSRN rlds values are offset by the values listed in

the rightmost column, based on the formula proposed by Stackhouse Jr. et al. (2011; see text). station latitude longitude offset20

ALE 82.451 -62.508 -6.580 ASP -23.798 133.888 -4.256 BAR 71.323 -156.607 0.000 BER 32.267 -64.667 -0.112 BIL 36.605

-97.515 -0.560 BON 40.060 -88.370 -0.280 BOU 40.048 -105.007 -9.772 BRB -15.601 -47.713 -0.504 CAB 51.971 4.927

-0.056 CAM 50.217 -5.317 0.588 CAR 44.083 5.059 -14.840 CLH 36.905 -75.713 0.896 CNR 42.816 -1.601 -3.500 COC

-12.193 96.835 0.140 DAA -30.665 23.993 0.476 DAR -12.425 130.891 0.812 DOM -75.100 123.383 0.534 DRA 36.626

-116.018 -3.780 EUR 79.980 -85.930 -5.740 FLO -27.533 -48.517 -9.324 FPE 48.310 -105.100 -1.204 FUA 33.582 130.37525

-1.092 GCR 34.255 -89.873 -0.112 GOB -23.561 15.041 -4.788 GVN -70.650 -8.250 -0.097 ILO 8.533 4.566 2.492 ISH 24.337

124.163 -0.504 station latitude longitude offset IZA 28.500 -16.300 57.316 KWA 8.720 167.731 0.252 LAU -45.045 169.689

-7.420 LER 60.140 -1.185 1.232 LIN 52.210 14.122 1.764 MAN -2.058 147.425 -0.952 MNM 24.288 153.983 0.000 NAU

-0.521 166.916 -0.084 NYA 78.925 11.950 -3.388 PAL 48.713 2.208 1.932 PAY 46.815 6.944 -6.076 PSU 40.720 -77.930

0.028 PTR -9.069 -40.320 0.504 REG 50.205 -104.713 0.336 SAP 43.060 141.328 -4.200 SBO 30.860 34.779 -1.764 SMS30

-29.443 -53.823 1.932 SON 47.054 12.958 39.424 SOV 24.910 46.410 -3.640 SPO -89.983 -24.799 0.290 SXF 43.730 -96.620

-0.056 SYO -69.005 39.589 -14.012 TAM 22.790 5.529 -1.120 TAT 36.058 140.126 -0.924 TIK 71.586 128.919 -1.484 TOR

58.254 26.462 -0.028 XIA 39.754 116.962 0.280

4
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Ground observations of longwave downward and shortwave downward (global) radiation made at 54 stations of the Baseline

Surface Radiation Network (BSRN; Table 1; König-Langlo et al., 2013) are used as independent validation data for rlds and

rsds, respectively. BSRN measurements began at a few stations in 1992. The latest measurements included here are from

2014. Daily mean values of BSRN measurements, which are taken every minute or every few minutes, depending on the

station, are computed in two steps. First, gaps no longer than 467/11 minutes in the original rlds/rsds time series are filled by5

linearly interpolation between values right before the beginning and after the end of a gap, as suggested by Schild (2016; for

statistics of BSRN data gaps see Roesch et al., 2011). Daily mean values are then calculated for days that are fully covered

by these gap-filled values. Prior to data comparison, the resulting BSRN data availability masks are applied to the original

and bias-corrected E2OBS time series from the respective E2OBS-grid cells. Additionally, BSRN rlds values are adjusted for

elevation differences between BSRN stations and E2OBS-grid cells as proposed by Stackhouse Jr. et al. (2011). For elevations10

zBSRN of BSRN stations and zE2OBS of E2OBS-grid cells, BSRN rlds values are offset by 0.028 (zBSRN− zE2OBS) (cf. Table

1).

3 Methods

:::
For

:::
the

:::::
reader

::::
who

::
is

::
is

:::
not

:::::::
familiar

::::
with

:::
the

:::::::
concepts

::
of

:::::::
quantile

::::::::
mapping

:::::
and/or

::::::::
statistical

::::::::::::
downscaling,

:
a
::::
short

:::::::::::
introduction

::::::::
including

:::::::::
definitions

::
of

:::::::
relevant

:::::
terms

::
is

:::::
given

::
in

:::::::::
Appendix

::
A.

:
The parametric quantile mapping methods introduced in the15

following are named according to the scheme BCvtpx, where v,t,p are used to distinguish between methods for longwave and

shortwave radiation (v = l,s) operating at the daily and monthly time scale (t= d,m) using basic and advanced distribution

types or parameter estimation techniques (p= b,a). Index x= 0,1,2 is used for variants of these methods that differ in how

they handle the spatial resolution gap between
::
the

:
SRB and E2OBS . The

::::
grids.

:::
For

:::
the

:
BCvtp0 methodscorrect E2OBS data

directly at ,
:::
the

::::
SRB

::::
data

:::
are

:::::::
spatially

:::::::::
bilinearly

::::::::::
interpolated

::
to the E2OBS grid using bilinearly

::
and

:::
the

:::::::
E2OBS

::::
data

:::
are

::::
then20

:::::::::::
bias-corrected

:::::
using

:::::
these

:
interpolated SRB data

:
;
::::
this

:
is
:::

to
:::::
mimic

:::
the

:::::::::::::::::
Ruane et al. (2015)

:::::::
approach. For bias correction with

the BCvtp1 methods, E2OBS data are spatially aggregated to the SRB grid, the aggregated data are then bias-corrected and

the resulting data disaggregated back to the E2OBS grid. For
:
;
:::
this

::::::::
approach

:::
was

::::
used

::
to
:::::::
produce

:::
the

:::::::::
EWEMBI

:::::::
radiation

:::::
data.

:::::
Lastly,

:
the BCvtp2 methods , the

:::::
adjust

:::::
mean

:::::
values

::::
and

::::::::
variances

::
at

:::
the

:::::::
E2OBS

::::
grid

::::
such

:::
that

:::::
mean

::::::
values

::::
and

::::::::
variances

::
of

:::::
spatial

::::::::::
aggregates

::
to

:::
the

::::
SRB

::::
grid

:::::
match

:::
the

:::::::::::::
corresponding

::::
SRB

::::::::
estimates

:::::
while

:::
the

:
sub-SRB-grid scale spatial structure25

of
:::::
mean

:::::
values

::::
and

::::::::
variances

::::::
present

::
in

:
the original E2OBS data is imposed upon spatially disaggregated SRB data prior to

bias correction at the E2OBS grid. The bias correction of E2OBS rlds and rsds for EWEMBI was done with methods BClda1

and BCsda1, respectively.
:::::::
retained;

:::
this

::
is
:::

to
::::::::
overcome

:::
the

:::::::::
variability

::::::::
deflation

:::::::
induced

::
by

:::
the

:::::
other

::::
two

::::::::::
approaches. Since

the BCvtp0 and BCvtp2 methods are based on the BCvtp1 methods, the latter are introduced first.
:::::::
Readers

::::
who

:::
are

::::::
merely

::::::::
interested

::
in

::::
how

:::
the

:::::::::
EWEMBI

:::::::
radiation

::::
data

:::::
were

::::::::
produced

:::
are

:::::::
informed

::::
that

:::::::
methods

:::::::
BClda1

::::
and

:::::::
BCsda1

:::::
were

::::
used

:::
for30

:::
that

:::::::
purpose.

:
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Figure 1. Parameters
::::::::
Estimation

:
of climatological distributions

::::::::
parameters

:
of

::::::
quantile

:::::::
mapping

:::::::
methods

::::
used

::
for

:::
the

::::
bias

::::::::
correction

::
of

longwave (top) and shortwave (bottom) radiation
:
at
:::

the
::::
daily

::
(
::

left
:
)
:::
and

::::::
monthly

::
(
:::

right
:
)
::::
time

::::
scale.

::::
This

:::::::
example

::
is

::::
based

:::
on

::::
SRB

::::
daily

::::
mean

:::
rlds

:::
and

::::
rsds

:::
data

::::
from

::::
79.5◦N

:
,
:::
12.5◦E

:::
and

::
the

::::::::::::::
12/1983–11/2007

:::
time

::::::
period.

:::::::::::
Climatological

:::::::::
distribution

:::::::::
parameters are estimated

based on empirical 24-year mean values (dark grey), standard deviations (light grey range around mean values) and minimum and maximum

values (black) of daily mean (left) and 31-day running mean (right) radiation computed individually for every day of the year. The distri-

bution parameters estimated for the basic (red) and advanced (blue) bias correction methods (cf. Table 1) include mean values and standard

deviations (dotted red, dashed blue), and upper bounds (solid
:::
red,

::::
solid

::::
blue) where beta distributions are used.

::::
Note

:::
that

:::
the

::::
basic

::::
and

:::::::
advanced

:::::::
estimates

::
of

::::
mean

:::::
values

::::
and

::::::
standard

::::::::
deviations

::::
only

::::
differ

::
in

:::::
panel

:
(
:
c)

::::
near

::
the

::::::::
beginning

:::
and

:::
end

::
of
:::::

polar
::::
night

:::
(cf.

::::
Table

:::
1).

The light-blue
::::
green line in

::::
panel (a) represents 25-day running mean values of 25-day running maximum values of 24-year maximum values

of daily mean rlds, which are used to estimate the upper bounds of the climatological beta distributions used by the BClda1 method (solid

blue ; see text
:::
line

::
in

::::
panel

:
(
:
a)). Please note that the

:::
The lower bounds of all climatological beta distributions are set to zero.The lowermost

and uppermost dotted red and dashed blue lines are the medians of sample minimum and maximum values of random samples of length

24 drawn from the estimated climatological distributions. This plot is based on SRB daily mean rlds and rsds data from 79.5, 12.5and the

12/1983–11/2007 time period.

3.1 Bias correction at the SRB grid
::::::::
SRB-grid

:::::
scale

For the BCvtp1 methods,
::::
daily

:::::
mean E2OBS rlds and rsds are

:::
first

:
aggregated to the SRB grid using a first-order conservative

remapping scheme (Jones, 1999). This
:::
The

:::::::::::
conservative

:::::::::
remapping

:
ensures that each aggregated value is the grid-cell area-

weighted mean of the underlying four E2OBS values. In the following, the
:::
The

:
methods of bias correction of these aggregated

values are described .
:
in
:::
the

:::::::::
following.

::::
The

::::::
method

:::::
used

::
for

:::
the

::::::::::
subsequent

::::::::::::
disaggregation

::
to

:::
the

:::::::
E2OBS

::::
grid

:
is
:::::::::
described

::
in5

::::
Sect.

:::::
3.1.3.

The BCvtp1 methods use parametric transfer functions of the form F SRB
vtp

−1
(FE2OBS

vtp ( ·)), where FE2OBS
vtp and F SRB

vtp are

climatological cumulative distribution functions (CDFs) of aggregated E2OBS and SRB data, respectively, estimated at daily

temporal resolution for each .
::::
The

:::::
CDFs

:::
are

::::::::
estimated

:::::::::::
individually

::
for

:::::
every

:
SRB-grid cell individually

:::
and

:::
day

:::
of

:::
the

::::
year

6



Table 1. Distribution types and parameter estimation methods of bias correction methods BCvtp1
::
for

:::
day

::
d

::
of

::
the

::::
year (cf. Fig. 1). Please

note that the lower bounds of all climatological beta distributions are set to zero and that 24-year statistics are replaced by 12-year statistics

for cross-validation.

method distribution type mean value
::
µd variance

::
σ2
d upper bound

:
bd:

BCldb1 normal rm25ym241
:::::::::::
〈〈xij〉i24〉j25d rm25ys244

::::::::::
〈{xij}i24〉j25d: —

BClda1 beta rm25ym241
:::::::::::
〈〈xij〉i24〉j25d rm25ys244

::::::::::
〈{xij}i24〉j25d: rm25rx25yx24-rm25ym247

:::::::::::::::
A〈〈xij〉i24〉j25d +B

:

BClmb1 normal ym24rm312
:::::::::::
〈〈xij〉j31d〉i24 ys24rm315

::::::::::
{〈xij〉j31d}i24: —

BClma1 beta ym24rm312
:::::::::::
〈〈xij〉j31d〉i24 ys24rm315

::::::::::
{〈xij〉j31d}i24: rm31lda8

:::::::::
〈blda1j 〉j31d

BCsdb1 beta rm25ym241
:::::::::::
〈〈xij〉i24〉j25d rm25ys244

::::::::::
〈{xij}i24〉j25d: rm25rx25yx249

::::::::::::::
〈[[xij ]i24]j25k〉k25d:

BCsda1 beta rm25∗ym243
:::::::::::
〈〈xij〉i24〉j25d∗: rm25∗ys246

:::::::::::
〈{xij}i24〉j25d∗: yx24-rsdt10

::::::
C rsdtd

BCsmb1 beta ym24rm312
:::::::::::
〈〈xij〉j31d〉i24 ys24rm315

::::::::::
{〈xij〉j31d}i24: rm31sdb11

::::::::
〈bsdb1j 〉j31d

BCsma1 beta ym24rm312
:::::::::::
〈〈xij〉j31d〉i24 ys24rm315

::::::::::
{〈xij〉j31d}i24: rm31sda12

:::::::::
〈bsda1j 〉j31d

1 25-day running mean value of 24-year daily mean values
2 24-year daily mean value of 31-day running mean values, with February 29 value replaced by average of February 28 and March 1 values
3 25-or-fewer-day running mean value of 24-year daily mean values (see text)
4 25-day running mean value of 24-year daily variances
5 24-year daily variance of 31-day running mean values, with February 29 value replaced by average of February 28 and March 1 values
6 25-or-fewer-day running mean value of 24-year daily variances (see text)
7 affine transformation of mean value climatology of BClda1 that sits just above the 25-day running mean values of 25-day running maximum values of 24-year maximum values of daily mean

rlds (see text)
8 31-day running mean value of upper bounds of BClda1 method
9 25-day running mean value of 25-day running maximum values of 24-year maximum values of daily mean rsds
10 rescaled rsdt climatology that sits just above 24-year maximum values of daily mean rsds (see text)
11 31-day running mean value of upper bounds of BCsdb1 method
12 31-day running mean value of upper bounds of BCsda1 method

::
xij::

is
::
the

:::
daily

:::
mean

:::
rlds

::
(for

::::::
BCltp1)

:
or
:::
rsds

::
(for

::::::
BCstp1)

::
on

::
day

::
j

:
of
:::
year

:
i.

:::::
Brackets

::::::
〈 · 〉,{·},

::
and

::
[ · ]

::::
denote

::
the

:::::::
calculation

:
of
::::
sample

::::
mean

::::
values,

::::::
variances,

::
and

::::::
maximum

:::::
values,

:::::::
respectively.

::::
Bracket

::::::
subscripts

:::
i24,

::::
j25d,

::
and

:::::
j25d∗

:::::
indicate

::
that

:::
these

:::::
sample

:::::
statistics

::
are

::::::
calculated

:::
over

:::
years

::::::::::
i ∈ {1, . . . ,24},

:::
over

:::
days

:::::::::::::::::
j ∈ {d− 12, . . . ,d+12},

::
and

:::
over

:::
days

:::::::::::::::
j ∈ {d−n, . . . ,d+n}

:::
with

::::::::::::::::::::::::::::::::::::::::::
n = min{12,max{n≥ 0: ∀j ∈ {d−n, . . . ,d+n} : rsdtj > 0}},

::::::::
respectively.

::::::
Constants

:
A,
::
B,

:::
and

:
C
::

are
:::::::

determined
::
by

::::::::::::::::::::::::::::::::::::::::::::
argminA,B′

∑365
l=1(〈[[xij ]i24]j25k〉k25l−A〈〈xij〉i24〉j25l +B′)2,

:::::::::::::::::::::::::::::::::::::::::::::::::::
min{B > 0: ∀l ∈ {1, . . . ,365} : A〈〈xij〉i24〉j25l +B ≥ 〈[[xij ]i24]j25k〉k25l},::

and
:::::::::::::::::::::::::::::::::::
min{C > 0: ∀j ∈ {1, . . . ,365} : C rsdtj ≥ [xij ]i24},::::::::

respectively.

(Fig. 1). In order to quantify the extent to which bias correction results benefit from explicitly accounting for physical radiation

limits, the basic and advanced methods BCltb1 and BClta1 for longwave radiation use normal and beta distributions, respec-

tively. For shortwave radiation, the relevance of physical limits is less questionable, given that the lower limit of zero matters

at least during polar night, and that the solar radiation incident upon land and ocean surfaces is limited by the solar radiation

incident upon the top of the atmosphere (cf. Fig. 1). Therefore, all BCstp1 methods use beta distributions and the basic and5

advanced methods only differ in how they estimate the beta distribution parameters (cf. Fig. 1, Table 1).
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3.1.1 Bias correction at the daily time scale

The parameters of the climatological CDFs FE2OBS
vdp and F SRB

vdp are estimated based on empirical multi-year mean values,

variances and maximum values of daily mean radiation from the 12/1983–11/2007 time period. Data from the whole period

were used for the production of EWEMBI rlds and rsds. Data from some half of the period (cf. Sect. 4.1) are used for cross-

validation in this study.5

For shortwave radiation, the basic daily bias correction method is designed to resemble the method outlined by Ruane et al.

(2015, Sect. 3.4). BCsdb1 estimates mean values and variances of climatological beta distributions by 25-day running mean

values of multi-year daily mean values and variances, respectively, and their upper bounds by 25-day running mean values of

25-day running maximum values of multi-year maximum values of daily mean rsds (solid red line in Fig. 1c). The idea behind

this upper bound estimate is that 25-day running maximum values of multi-year maximum values of daily mean rsds resemble10

the multi-year monthly maximum values of daily mean rsds used by Ruane et al. (2015). Please note that using the same

window length for the running maximum calculation and the additional smoothing ensures that the resulting upper bounds are

always greater than or equal to the multi-year maximum values of daily mean rsds.

The BCsda1 method employs the climatology of daily mean shortwave insolation at the top of the atmosphere (rsdt; see

Sect.
::::::::
Appendix B for how rsdt is calculated in this study) for the upper bound estimation. The rsdt climatology at a given15

latitude is rescaled such that it sits just above the multi-year maximum values of
::::
This

:
is
:::::::::
motivated

::
by

::::
rsds

:::::
being

::::::
limited

::
by

::::
rsdt

::
in

::::
most

::::::::
locations

:::
and

:::::::
seasons,

:::::
which

::::::::
suggests

:::
that

:::
the

::::::
annual

:::::
cycle

::
of

:::
the

:::::
upper

:::::
bound

::
of

:
daily mean rsds on all days with rsdt

≥ 50 . On a given day of the year, the maximum of this rescaled rsdtvalue and the empirical multi-year maximum daily mean

rsds is then used
:::
has

:
a
::::::
similar

:::::
shape

:::
as

:::
the

::::::::::
climatology

::
of

:::::
daily

:::::
mean

::::
rsdt.

:::::::::
Therefore,

::::::
method

::::::::
BCsda1

::::
uses

:
a
:::::::
rescaled

:::::
daily

::::
mean

::::
rsdt

::::::::::
climatology

:
as the upper bound of the beta distribution

::::::::::
climatology

::
of

:::::
daily

:::::
mean

::::
rsds (solid blue line in Fig. 1c).20

The reason for handling days with rsdt below and above
:::::::
rescaling

::
is
:::::
done

::::
with

:::
the

:::::::
smallest

:::::::
possible

:::::
factor

:::
that

:::::::::
guarantees

::::
that

::
the

::::::::
resulting

:::::
upper

:::::::
bounds

:::
are

::::::
greater

::::
than

::
or

:::::
equal

::
to

:::
the

:::::::::
multi-year

:::::::::
maximum

:::::
values

:::
of

::::
daily

:::::
mean

::::
rsds

:::
on

::
all

::::
days

:::
of

:::
the

:::
year

:::::
with

:::
rsdt

::
≥

:
50 Wm−2separately is that .

:::
An

:::::::::
extension

::
of

:::
this

:::::::::
guarantee

::
to

::::
days

::
of

:::
the

::::
year

::::
with

:::::
lower

::::
rsdt

:::::
would

::::::
inflate

::
the

::::::::
rescaling

:::::
factor

:::::::
because

:
during dusk and dawn of polar night, rsds can exceed rsdt due to diffuse radiation coming in from

lower latitudes.
:::::::::
Therefore,

::
on

:::::
days

::
of

:::
the

::::
year

::::
with

::::
rsdt

::
<

:::
50 Wm−2

:
,
:::
the

::::::::
maximum

:::
of

:::
the

:::::::
rescaled

::::
rsdt

:::
and

:::
the

:::::::::
empirical25

::::::::
multi-year

:::::::::
maximum

:::::
daily

:::::
mean

:::
rsds

::
is
:::::
used

::
as

:::
the

:::::
upper

::::
rsds

::::::
bound.

:
Mean values and variances of the climatological beta

distributions of the BCsda1 method are estimated by running mean values of multi-year daily mean values and variances,

respectively. The window length used for these running mean calculations is 25 days by default. On days that are fewer than

13 days away from the beginning or end of polar night (as defined by daily mean rsdt going to zero), the window length is

shortened to 2n+ 1, where n is the number of days between the day in question and the beginning or end of polar night.30

For longwave radiation, both the basic and the advanced daily bias correction methods use 25-day running mean values

of multi-year daily mean values and variances to estimate climatological mean values and variances, respectively. The upper

bounds used by BClda1 are not estimated by the often rather unsmooth 25-day running mean values of 25-day running

maximum values of 24-year maximum values of daily mean rlds (rm25rx25yx24; solid light-blue
::::
solid

:::::
green

:
line in Fig. 1a)
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but by a suitably shifted and rescaled mean value climatology : First, the mean value climatology curve is shifted and rescaled

such that it best fits rm25rx25yx24 according to ordinary least squares. This fitted curve is then shifted once more such that the

resulting upper bound climatology sits just above rm25rx25yx24 (solid blue line in Fig. 1a
:
;
::::::::
formulas

::
in

::::
Table

::
1).

Since the choice of the window length used for all of the running mean and maximum
::::
value

:
calculations mentioned above

is somewhat arbitrary, the window length dependence of the overall performances of the BCvda1 methods is investigated in5

Sect.
::::::::
Appendix

:
D. Sensitivities are found to be very low for window lengths between 10 and 40 days.

3.1.2 Bias correction at the monthly time scale

In order to mimic a bias correction at the monthly time scale as is
:
it was done by, e.g., Sheffield et al. (2006, Sect. 3.d.3), the

BCvmp1 methods bias-correct 31-day running mean values and then rescale each daily value by the corrected-to-uncorrected

ratio of the respective 31-day running mean value.10

Mean values and variances of the climatological CDFs FE2OBS
vmp and F SRB

vmp of 31-day running mean values are simply esti-

mated by 24-year (or 12-year for cross-validation) daily mean values and variances of 31-day running mean values, respectively,

with February 29 values replaced by averages of February 28 and March 1 values.

Upper bounds of beta distributions are estimated by 31-day running mean values of the upper bounds of the corresponding

daily CDFs FE2OBS
vdp and F SRB

vdp ::
of

::::
daily

:::::
mean

::::::::
radiation (cf. Fig. 1, Table 1) as

:::::::
because 31-day running mean values of multi-15

year maximum values of daily mean radiation are
:::::::::::::
mathematically always greater than or equal to multi-year maximum values

of 31-day running mean radiation.
:::
The

::::::::
resulting

:::::
upper

:::::::
bounds

:::
are

:::::::
typically

::::::
much

:::::
larger

::::
than

::::::::
observed

:::::::
24-year

:::::::::
maximum

:::::::
monthly

::::
mean

::::::::
radiation

:::
(cf.

::::
Fig.

:::
1d)

:::::::
because

::
31

::::::::::
consecutive

::::
days

::
of

:::::
daily

:::::
mean

:::::::
radiation

::
at

:::
the

::::::::
respective

:::::::
physical

:::::
upper

:::::
limit

::
are

::::
very

::::::::
unlikely

::
to

::::
occur

:::
in

::::::
reality.

3.1.3 Disaggregation to the E2OBS grid20

In principle, the disaggregation of aggregated and bias-corrected E2OBS data from the SRB to the E2OBS grid can be done

in various ways. The simplest approach would arguably be a mere interpolation, which is disadvantageous since it ignores the

sub-SRB-grid scale spatial variability present in the original E2OBS data. Probabilistic disaggregation methods, on the other

hand, that are designed to retain that variability (cf. Sheffield et al., 2006, Sect. 3.b.1), are impractical if, as in the present

case, the purpose of the disaggregation is the construction
::::::::
production

:
and publication of a dataset, because all variants of25

the dataset that can potentially be generated by a probabilistic algorithm are, as long as all conceivable constraints have been

incorporated in the algorithm, equally plausible candidates for the one dataset to be published. Therefore,
:::
not

:
a
:::::::::::
probabilistic

:::
but the following deterministic disaggregation approach was used for the construction

:::::::::
production of EWEMBI rlds and rsds

and is adopted here for all BCvtp1 methods.

First, E2OBS-grid scale upper bounds of daily mean radiation are estimated by bilinearly interpolated maximum values30

of the climatological upper bounds of SRB all-sky and clear-sky radiation, which , in turn ,
:
in

::::
turn

:
are estimated using the

BClda1 method for rlds and the BCsda1 methods for rsds (cf. Table 1 and blue lines in Fig. 1a,c). The clear-sky radiation data

are included in order to prevent the E2OBS-grid scale upper bounds from being much lower than the real physical limits of
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daily mean radiation at that spatial scale, given that due to sub-SRB-grid scale spatial variability, upper radiation bounds at the

E2OBS-grid scale may exceed those at the SRB-grid scale.

The original daily E2OBS data are then clamped between zero and these upper bounds, and the resulting values
::
(or

:::::
their

:::::::
distances

:::
to

::::
their

:::::
upper

:::::::
bounds)

:
are rescaled day by day and SRB-grid cell by SRB-grid cell such that their SRB-grid scale

aggregates match the respective bias-corrected values. More precisely, if
::
on

::
a
:::::
given

:::
day

:
the SRB-grid scale aggregate of the5

(clamped) original values from the four E2OBS-grid cells contained in one SRB-grid cell is greater than the bias-corrected

value
::
of

:::
that

::::
day

:::
and

::::::::
SRB-grid

::::
cell,

:
then the four values are all reduced by a common factor. Otherwise, the distances of the

four values to their climatological upper bounds are reduced by a common factor.

3.2 Bias correction at the E2OBS grid
::::::::::
E2OBS-grid

:::::
scale

3.2.1 The BCvtp2 methods10

The disaggregation method introduced above corrects the original E2OBS values from the four E2OBS-grid cells contained

in one SRB-grid cell as if they must all be too low /high
:::::
(high)

:
if their area-weighted average is too low /high

:::::
(high). This

implicit assumption is questionable since it rules out the possibility that the area-weighted average is too low because one of

the four values is much too low while the others are slightly too high, to give just one example. A statistical manifestation of

this problem is illustrated and discussed in Sect. 4.2.15

The assumption does not need to
::
be

:
made if the bias correction is carried out directly at the E2OBS grid. With target distribu-

tions fixed at the SRB grid, one possibility to define target distributions at the E2OBS grid is to require
::
can

:::
be

::::::
defined

::::
such

::::
that

the bias-corrected data to (i) have the SRB-grid scale target distributions and (ii) retain the sub-SRB-grid scale structure of the

original
::::::
E2OBS data. For parametric bias correction methods such as those introduced above, this can be achieved via suitable

definitions of the parameters of the E2OBS-grid scale target distributions. Here, for every BCvtp1 method, a corresponding20

BCvtp2 method is defined to operate at the same temporal scale and to use the same source (at the E2OBS grid) and target

(at the SRB grid) distribution type and parameter estimation technique (cf. Table 1). E2OBS-grid scale target climatologies of

mean values, variances and (where necessary) upper bounds are defined as follows.

The mean value estimates of the original E2OBS data are shifted by a common offset per SRB-grid cell and day of the

year to obtain the E2OBS-grid scale target mean values. The offsets are chosen such that the E2OBS-grid scale target mean25

values aggregated to the SRB grid match the corresponding SRB mean value estimates. E2OBS data bias-corrected using

these E2OBS-grid scale target mean values have SRB grid-scale aggregates that match the SRB grid-scale target mean values

because (i) the aggregation is a linear operation and (ii) the mean value of a linear combination of random variables is equal to

the same linear combination of the mean values of these random variables.

The
::
To

::::::
obtain

:::
the

::::::::::
E2OBS-grid

:::::
scale

:::::
target

:::::::::
variances,

:::
the

:
variance estimates of the original E2OBS data are rescaled by30

a common
::
(to

:::
all

::::
four

:::::::
E2OBS

::::
grid

::::
cells

::::::::
contained

:::
in

:::
one

::::
SRB

::::
grid

:::::
cell) factor fij per day i of the year and SRB-grid cell

jto obtain the E2OBS-grid scale target variances. For the derivation of the formula for fij let Yijk (and Xijk) denote random

variables representing bias-corrected (and original) E2OBS data from day i of the year and E2OBS-grid cells k = 1,2,3,4
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contained in SRB-grid cell j. Then the estimated variance of the
::::::::
SRB-grid

::::
scale

:
aggregate of Yijk can be expanded to

Var

(
4∑

k=1

wjkYijk

)
=

4∑
k,l=1

wjkwjl Cov
:::

(Yijk,Yijl) =

4∑
k,l=1

wjkwjl

:::::::::::::::::::::

Cor(Yijk,Yijl)
√

Var(Yijk)Var(Yijl), (1)

where wjk is the area weight of E2OBS-grid cell jk with
∑4

k=1wjk = 1 for all j,
:::::::::::::
Cov(Yijk,Yijl) :

is
:::
the

:::::::::
estimated

:::::::::
covariance

::
of

::::
Yijk :::

and
::::
Yijl,:Cor(Yijk,Yijl) is the estimated Pearson correlation between

:
of

:
Yijk and Yijl, and Var(Yijk) is the estimated

variance of Yijk. A bias correction would be deemed successful if the left-hand side of Eq. (1) was equal to the estimated5

variance of Zij , the SRB data from day i of the year and grid cell j. On the right-hand side of Eq. (1), fij Var(Xijk) can

be substituted for Var(Yijk) by definition of the scaling factors, and Cor(Yijk,Yijl) can be approximated by Cor(Xijk,Xijl)

since parametric quantile mapping preserves trends
:::::
ranks and therefore rank correlations and therefore approximately Pearson

correlations. The variance scaling factors
:::
fij for method BCvtp2 are therefore calculated based on

VarZij = fij

4∑
k,l=1

wjkwjl Cor(Xijk,Xijl)
√

Var(Xijk)Var(Xijl), (2)10

where the variances are estimated using the respective BCvtp1 approach (
::
cf.

:
Table 1), and the Pearson correlations are esti-

mated as
::
by

:
inversely Fisher-transformed 25-day running mean values of Fisher-transformed 24-year daily Pearson correlations

of daily (for BCvdp2) or 31-day running mean (for BCvmp2) radiation data. The Fisher transformations are invoked here in

order to approximately account for correlation value-dependent sampling error intervals (Fisher, 1915, 1921).

The E2OBS-grid scale target upper bounds are calculated in the same way as the E2OBS-grid scale target mean values.15

This way, the latter rarely exceed the former. Where they do, the latter are reduced to 99% of the former. This reduction is

only necessary for some of the very low rsds values that occur under (near-) polar night conditions
::
For

:::::::::
longwave

::::::::::
(shortwave)

::::::::
radiation,

::::
such

:::::::::
reductions

::
are

:::::::::
necessary

::
in

:::
four

:::::
(11%

::
of

:::
all)

:::::::
E2OBS

::::
grid

::::
cells,

::::
and

::::
there

::
on

:::
an

::::::
average

::
of
:::::
15%

::::
(5%)

::
of

:::
all

::::
days

::
of

:::
the

::::
year.

In
:::::::::::
Furthermore,

::
in order to obtain realistic E2OBS-grid scale target beta distributions, we further limit the E2OBS-grid scale20

target variances calculated using Eq. (2)
::
are

::::::
limited

:
to 40% of µ(b−µ), where µ and b are the E2OBS-grid scale target mean

values and upper bounds, respectively. This limit is imposed because (i) the variance σ2 of a random variable taking values

from within the interval [a,b] can generally not be greater than (µ− a)(b−µ) if µ is the random variable’s mean value, (ii) if

that random variable is beta-distributed and σ2 > (µ− a)(b−µ)/2 then the probability density function is U-shaped (Wilks,

1995), which is considered unrealistic for climatological distributions of rlds and rsds, and (iii) σ2/(µ(b−µ)) has an empirical25

upper limit of about 40% in the original E2OBS radiation data.
:::
The

::::
40%

::::::::
condition

::
is

:::::
never

:::
met

:::
for

::::::::
longwave

::::::::
radiation

:::::::
whereas

::
for

:::::::::
shortwave

::::::::
radiation

:
it
::
is

::::
met

::
in

::::
14%

::
of

::
all

:::::::
E2OBS

::::
grid

::::
cells,

::::
and

::::
there

:::
on

::
an

:::::::
average

::
of

:::
2%

::
of

:::
all

::::
days

::
of

:::
the

::::
year.

:

3.2.2 The BCvtp0 methods

For the BCvtp0 methods, daily SRB data are first bilinearly interpolated to the E2OBS grid. The E2OBS data are then bias-

corrected directly at the E2OBS grid using the interpolated SRB data and transfer functions defined exactly as for the respective30

BCvtp1 method.
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4 Results

The
::
In

:::
the

:::::::::
following,

:::
the

:
bias correction methods introduced above are assessed in a threefold way. First, original and

bias-corrected E2OBS data are compared to SRB data
::::::::::::
cross-validated at the SRB-grid scale using a cross-validation approach.Secondly,

they are compared to independent ground observations made at 54 BSRN stations. Thirdly,
:::::
(Sect.

::::
4.1),

:::
and

:::::
their

::::::::::::
disaggregation

::::::::::
performance

::
is

:::::::
assessed

:::
by

:::::::::
comparing sub-SRB-grid scale spatial variability before and after bias correction are compared in5

order to measure the disaggregation performance of all methods.

Data comparisons are done at the daily and monthly time scale in order to identify strengths and weaknesses of bias

correction methods operating at either of these time scales. Metrics used to quantify statistical dissimilarity between E2OBS

and SRB or BSRN data include differences between multi-year mean values, standard deviations, skewness and maximum

values, root-mean-square deviations (RMSDs) between time series, and p-values of two-sample Kolmogorov-Smirnov (KS)10

test statistics for empirical CDF comparisons (see
:
(Sect. C for details

:::
4.2).

4.1
::::::::::::::

Cross-validation
::
at

:::
the

::::::::
SRB-grid

:::::
scale

For the cross-validation against SRB data, 24 years worth of overlapping E2OBS and SRB data are divided into two 12-year

samples of which the first
:::
one

:
is used to calibrate and the second

:::
one

:
to validate the method. Switanek et al. (2017) have

shown that if climatological distributions differ substantially between calibration and validation samples of either the observed15

(here SRB) or modelled (here E2OBS) data (such differences are hereafter denoted as calibration-validation
::::::::
Common

:::::::
practice

:::::
would

::
be

:::
to

:::
use

::::
data

::::
from

:::
the

::::
first

::::
and

::::::
second

:::
half

:::
of

:::
the

::::::
24-year

::::::
period

::
to

::::::
define

::::
these

::::::::
samples.

:::
Yet

::::
due

::
to

::::::
climate

:::::::
change

:::
this

::::::::
definition

::::
may

:::::
yield

:::::::::
calibration

::::
and

::::::::
validation

::::
data

:::::::
samples

::::
that

:::::
differ

::::::::::
statistically.

:::::
These

::::::::::
differences

::
in

::::
turn,

::::::
which

:::
are

::::::::
essentially

:
climate change signalsor CVCCSs), then the remaining biases after quantile mapping trained on the calibration data

sample and applied to the validation datasample are dominated by differences between observed and modelled CVCCSs. This20

implies that calibration and validation data samples should be made as statistically similar as possible if the ,
::::

may
::::::

differ
::
in

:::::
extent

:::::::
between

:::
the

:::::::
E2OBS

:::
and

:::::
SRB

::::
data.

:::::::::::::::::::
Switanek et al. (2017)

::::
have

:::::
shown

::::
that

::::
such

::::::::::
differences

::
in

::::::
climate

:::::::
change

::::::
signals

:::
may

:::::
then

::::::::
dominate

:
cross-validation is to only measure the

:::::
metrics

::::
and

:::::::
thereby

::::::
distort

:::
the

:::::::::::
comparative

::::::::
validation

:::
of

:
bias

correction methods’ imperfections. Hence.
:::

In
:::::
order

::
to

::::::::
minimise

:::
this

:::::::
climate

::::::
change

::::::
impact

:::
on

:::::::::::::
cross-validation

::::::
results, here,

calibration and validation data samples are composed of data from every second and every other year or vice versa, respectively.25

The samples are accordingly labelled every1st and every2nd.

4.2 Cross-validation against SRB data

In the following, cross-validation results are only shown and discussed for the BCvtp0 and
:::::
Please

::::
note

:::
that

::::::
results

:::
for

:::::::
BCvtp2

::
are

::::
not

:::::
shown

::
or

:::::::::
discussed

::
in

:::
this

::::::
section

:::::::
because

:
BCvtp1 methods since results for the corresponding BCvtp1 and BCvtp2

are virtually identical . In order to (i) measure how the use of spatially interpolated SRB data for bias correction impacts30

::::::
produce

::::::::
virtually

:::::::
identical

::::
data

::
at

:::
the SRB-grid scale biases, and (ii) assess the value of

:::::
scale.
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4.1.1
::::::::
BCvtp0

::::::
versus

::::::::
BCvtp1

:::
The

::::
first

:::::::
question

::::::::
addressed

::::
here

::
is

::::
how

:::
the

::::::
bilinear

::::::
spatial

:::::::::::
interpolation

::
of

::::
SRB

::::
data

::
to

:::
the

::::::
E2OBS

::::
grid

:::::
before

::::
bias

:::::::::
correction

::::
with

:::
the

:::::::
BCvtp0

:::::::
methods

:::::::
impacts

:
the extra complications involved in the parameter estimations of the advanced compared

to the basic bias correction methods
:::::::::
distribution

:::
of

::::::::::::
bias-corrected

::::
rlds

:::
and

::::
rsds

::::::
values

::
at
::::

the
::::::::
SRB-grid

:::::
scale.

:::
To

::::::::
quantify

::::
these

:::::::
impacts, biases in multi-year daily mean values, standard deviations, skewness and maximum values remaining after5

bias correction with methods BCvda0 , BCvda1 and BCvdb1 are compared first.Then, bias correction methods operating at

different temporal scales are compared with respect to their ability to adjust the interannual variability of monthly mean values

. Lastly, the overall performance of all BCvtp1 methods is assessed via CDF comparisons at both the daily and monthly time

scale.
:::::::
BCvda1

:::
are

::::::::
compared

::
in
:::
the

::::
left

:::
and

::::::
middle

:::::::
columns

::
of

:::::
Figs.

:
2
::::
and

::
3.

Maps of biases in multi-year mean values, standard deviations , skewness
::::
Since

::::::
linear

::::::::::
interpolation

:::::::
always

:::::
yields

::::::
values10

:::
that

:::
are

:::::::::::
intermediate

::
to

:::
the

::::::
values

::
at

:::
the

:::::::::::
interpolation

:::::
knots

::
it

:
is
::::::::

expected
::::
that

:::::
daily

::::
SRB

::::
data

::::::::
bilinearly

::::::::::
interpolated

:::
to

:::
the

::::::
E2OBS

::::
grid

:::
and

::::
then

:::::::::
aggregated

:::::
back

::
up

::
to

:::
the

::::
SRB

::::
grid

::::
will

::
be

::::
more

:::::::
smooth

::::::
overall

::::
both

::
in

:::::
space

:::
and

::::
time

::::
than

:::
the

:::::::
original

::::
SRB

::::
data.

:::::::::::::
Manifestations

::
of

:::
the

::::::::
increased

::::::::::
smoothness

::
in

::::
time

:::
are

:::
the

::::
more

:::::::
negative

::::::
biases

::
of

:::::::
standard

:::::::::
deviations

::::
(Fig.

::
2)

:
and

maximum values of daily mean rlds and rsds
::::
(Fig.

:::
3) remaining after bias correction at the daily time scale are depicted in

Figs. 2 and 3. Remaining mean value biases for BCvdp1 are small with medians
:::
with

::::::::
BCvda0

::::
than

::::
with

::::::::
BCvda1.

::::::::
Standard15

::::::::
deviations

::::
after

::::
bias

::::::::
correction

::::
with

::::::::
BCvda0

::
in

::::::::
particular

:::
are

::::::::
negatively

::::::
biased

::
by

:::::
more

:::
than

:::
4%

:::::::
(median

:
over calendar months

and
:
×

:
validation data samplesbeing within ±1 at most locations. At low/high latitudes, BCsdb1 leaves smaller/larger mean

value biases than BCsda1. In comparison to BCvda1, BCvda0 leaves greater mean value biases in particular over coastal and

mountainous regions, where spatial gradients are large.

Medians of relative standard deviation biases
:
)
::
in
:::::

most
:::::::

regions.
:::

In
:::::::::::
mountainous

::::
and

::::::::
therefore

:::::::
spatially

:::::::::::::
heterogeneous20

::::::
regions,

::::
also

:::::::::
multi-year

:::::::
monthly

:::::
mean

:::::::
radiation

::
is

:::::::
changed

::::::::::
significantly

:::
by

:::
the

:::::::::::
interpolation,

::::
with

::::::
median

::::::
biases

::::
over

:::::::
calendar

::::::
months

::
×

:::::::::
validation

::::
data

:::::::
samples

:
remaining after bias correction with BCvdp1 are mostly within ±4%. Underestimations

by more then 4% remain over large parts of subtropical Northern Hemisphere land. In most locations, BCldb1 leaves smaller

rlds standard deviation biases than BClda1. Bias correction with BCvda0 yields systematically too low standard deviations in

most locations, in particular for shortwave radiation.This is a result of the variance deflation the bilinear interpolation inflicts25

on the SRB data.
::::::::
exceeding

::
2 Wm−2

::
in

:::::
many

::::
such

:::::
places

:::::
(Fig.

::
2).

:

Large skewness biases with medians frequently exceeding ±50% remain

4.1.2
::::::::
BCvtax

::::::
versus

::::::::
BCvtbx

::::
Next

::
is

::
an

:::::::::
assessment

:::
of

:::
how

:::
the

::::::::
treatment

:::
of

:::
the

:::::
upper

:::::
bound

::
of

:::
the

:::::::::::
distributions

::::::::
estimated

::
by

:::
the

::::::::
BCvdp1

:::::::
methods

:::::::
impacts

::
the

::::::::::
distribution

:::
of

::::::::::::
bias-corrected

:::
rlds

::::
and

::::
rsds

:::::
values

::
at
:::

the
:::::::::

SRB-grid
:::::
scale.

:::
To

:::::::
quantify

:::::
these

:::::::
impacts,

::::::
biases

::
in

:::::::::
multi-year30

::::
daily

:::::
mean

::::::
values,

::::::::
standard

:::::::::
deviations,

:::
and

:::::::::
maximum

::::::
values

:::::::::
remaining after bias correction with any method. The median

skewness of longwave radiation is mostly too low, in particular over the ocean and no matter if CDFs of beta or normal

distributions are used in the transfer function. The median skewness of shortwave radiation is too low over most of the tropics

13



Figure 2. Biases relative to SRB in mean values (a–f) and standard deviations (g–l) of spatially aggregated (to the SRB grid) daily mean

longwave (a–c, g–i) and shortwave (d–f, j–l) radiation after bias correction with methods BCvda0 (left), BCvda1 (middle) and BCvdb1

(right). The biases are calculated individually for each calendar month (January to December) and calibration data sample (every1st, ev-

ery2nd) pooling SRB and corrected E2OBS data from all years of the corresponding validation data sample (every2nd, every1st, respectively)

and omitting shortwave radiation data from months with monthly mean rsdt less than 1Wm−2 (cf. Sect.
:::::::

Appendix B and Fig. D1c). Depicted

are median and agreement in direction
::::
(sign

::
of

::::
bias) of these individual biases, represented by hue and saturation of a grid cell’s colour, re-

spectively. Categories of agreement in bias direction are defined based on one-sided p-values obtained from modelling underestimations and

overestimations for individual calendar months and validation data samples as possible outcomes of
:::::::::
independent fifty-fifty Bernoulli trials.

::::
More

:::::::
saturated

::::::
colours

::::::
indicate

:::::
higher

:::::::
statistical

:::::::::
significance

::
of

:::::
biases

::::::::
remaining

:::
after

::::
bias

::::::::
correction.

and high-latitude oceans and too high over most land masses and subtropical oceans. The biases of third- and higher-order

moments of the distribution of daily mean radiation would arguably be better adjusted by non-parametric quantile mapping

methods.
:::::::
methods

:::::::
BCvda1

:::
and

::::::::
BCvdb1

:::
are

::::::::
compared

::
in
:::
the

::::::
middle

::::
and

::::
right

:::::::
columns

:::
of

::::
Figs.

::
2

:::
and

::
3.

Medians of remaining biases in
::
For

:::::::::
longwave

::::::::
radiation,

:::
the

::::
basic

:::::::
method

:::::::
BCldb1

:::::::
assumes

::::::::
normally

:::::::::
distributed

:::::
values

::::
and

:::::::
therefore

::::
does

::::
not

::::::
account

:::
for

::::
any

:::::
upper

:::::::
physical

:::::
limit

::
of

:::
rlds

::::::::
whereas

:::
the

::::::::
advanced

::::::
method

:::::::
BClda1

::::::::
assumes

:::
the

::::::::
existence5

::
of

::::
such

:
a
:::::

limit
:::
and

::::::::
estimates

::
it
::::::::::
empirically.

::::::
Figure

::
3

:::::
shows

::::
that

:::
the

::::::::
advanced

:::::::
method

::::::::
generally

:::::
yields

::
a

:::::
better

::::::::
correction

:::
of

12-year maximum valuesare mostly within ±10 . Compared to BCvda1, these biases are shifted to more negative values for

BCvda0.This is related to the negative standard deviation biases that remain after bias correction with BCvda0. For rlds, the

14



Figure 3. Same as Fig. 2 but for biases in skewness (a–f) and 12-year maximum values (g–l).

use of beta instead of normal distributionsclearly reduces the remaining maximum value biases. For rsds, the basic estimates

of upper radiation bounds yield a slightly greater reduction of maximum value biases than the advanced ones.
:
.
::
In

::::::::
contrast,

:::::::
standard

:::::::::
deviations

:::
are

:::::::
slightly

:::::
better

::::::::
corrected

:::
by

:::
the

:::::
basic

:::::::
method

:::
and

::::::
mean

:::::
values

::::
are

::::::
equally

::::
well

:::::::::
corrected

::
by

:::::
both

:::::::
methods

::::
(Fig.

:::
2).

:::
For

::::::::
shortwave

::::::::
radiation,

::::
both

:::
the

:::::
basic

:::
and

:::
the

::::::::
advanced

:::::::
method

:::::::::
empirically

:::::::
estimate

::::::
upper

:::::::
physical

:::::
limits

::
of

::::
rsds

:::
and

::::
take5

::::
these

::::
into

:::::::
account

::
in

:::
the

::::
form

::
of

:::::
upper

:::::::
bounds

::
of

::::
beta

:::::::::::
distributions.

:::
The

:::::
limit

::::::::
estimates

:::
are

:::::
based

::
on

:::::::::::
downwelling

:::::::::
shortwave

:::::::
radiation

::
at

:::
the

:::::::
surface

:::
and

::
at

:::
the

:::
top

:::
of

:::
the

:::::::::
atmosphere

:::
for

::::::::
BCsda1,

::::
and

::
on

::::
rsds

::::
only

:::
for

::::::::
BCsdb1.

::::::
Figure

::
3

:::::
shows

::::
that

:::
the

::::
basic

:::::::
method

::::::::
generally

:::::
yields

::
a

:::::
better

::::::::
correction

:::
of

::::::
12-year

:::::::::
maximum

::::::
values.

:::::
Also

:::::::
standard

:::::::::
deviations

:::
and

:::::
mean

::::::
values

:::
are

::::::
slightly

:::::
better

::::::::
corrected

::
by

::::::::
BCsda1

::::
than

::
by

::::::::
BCsdb1

::::
(Fig.

:::
2).

4.1.3
::::::::
BCvdpx

::::::
versus

::::::::::
BCvmpx10

Since multi-year mean values of monthly mean values are identical to multi-year mean values of the underlying daily values,

bias correction at the
::::
Next

::
is

:
a
:::::::::::

comparative
:::::::::::::
cross-validation

:::
of

:::::::
methods

::::::::
BCvdpx

::::
and

::::::::
BCvmpx

::::::::
operating

::
at
:::

the
:::::

daily
::::
and

:::::::
monthly

::::
time

:::::
scale,

::::::::::
respectively.

::::
The

:::::::::::::
cross-validation

::::
itself

::
is
::::
also

::::
done

::
at
:::
the

:::::
daily

:::
and

:
monthly time scale adjusts multi-year

mean values of daily rlds and rsds similarly well as
::::
based

:::
on

:::::::
statistics

:::
of

::::
daily

::::
and

:::::::
monthly

:::::
mean

::::::::
radiation,

:::::::::::
respectively.

::
A
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Figure 4. Same as Fig. 2 but for relative biases in interannual standard deviations of monthly mean radiation remaining after bias correction

with methods BCvda1 (left) and BCvma1 (right).

::::
joint

:::::::::
assessment

::
of

:::::
these

::::::::::::::
cross-validations

::::
shall

:::::
reveal

:::::::
whether

:
bias correction at the daily time scale (cf. Fig. 2a–f). However,

the
::
or

:::::::
monthly

::::
time

::::
scale

::
is
:::::
better

:::::::
overall.

::
By

:::::::
design,

:::
the

::::::::
BCvdpx

:::
and

:
BCvmpx methods leave larger and spatially less homogeneous biases of

::
are

:::::::
equally

:::::
good

:
at
:::::::::

correcting
:

multi-year standard deviations and maximum
:::::
mean

:
values of daily mean radiationthan the

:
.
::::::::
However,

:::::
both

:::::::::
day-to-day

:::
and

:::::::::::
year-to-year

:::::::::
variability

:::
are

::::::::
expected

::
to

:::
be

:::::::::
differently

::::
well

::::::::
corrected

:::
by

:::
the

::::::::
methods

::::::::
operating

::
at

::::::::
different5

::::
time

:::::
scales.

:::::
Since

:::::::::
day-to-day

:::::::::
variability

::
is

::::
(not)

::::::::
explicitly

::::::::
adjusted

::
by

:::
the

:::::::
methods

::::::::
operating

::
at

:::
the

:::::
daily

::::::::
(monthly)

::::
time

:::::
scale

::
the

:
BCvdpx methods, with medians over calendar months and validation data samples being mostly within ±20% and ±20 ,

respectively. In general, bias correction at the monthly
:::::::
methods

:::
are

:::::::
expected

::
to

:::::::
perform

:::::
better

::
at

:::
the

::::
daily

:
time scale is expected

to leave smaller biases at the monthly time scale than bias correction
:::
the

::::::::
BCvmpx

::::::::
methods.

::::
The

::::::::::
year-to-year

:::::::::
variability,

:::
on

::
the

:::::
other

:::::
hand,

::
is

::::::::
explicitly

::::::::
corrected

::
by

:::
the

::::::::
BCvmpx

::::::::
methods

:::
and

::
it

::
is

:::
not

::
by

:::
the

::::::::
BCvdpx

:::::::
methods

:::::::
because

::::
daily

::::
data

:::::
from10

:::::::
different

:::::
years

:::
are

::::::
pooled

:::::
before

:::::::
quantile

::::::::
mapping

::
is

::::::
carried

:::
out

:
at the daily time scale. This is exemplified in Fig. 4, where

median biases of
:::::::::::
Consequently,

:::::
biases

::
in
:
interannual standard deviations of monthly mean rlds and rsds are shown to be mostly

within/beyond±20%
:::::::
radiation

:::
are

:::::
much

:::::
larger after bias correction with BCvma1/BCvda1 .

:::
than

::::
with

::::::::
BCvma1

:::::
(Fig.

::
4),

::::
and

::
the

:::::::::
BCvmpx

:::::::
methods

:::
are

::::::::
generally

:::::::
expected

::
to
:::::::
perform

:::::
better

::
at
:::
the

::::::::
monthly

::::
time

::::
scale

::::
than

:::
the

::::::::
BCvdpx

:::::::
methods.

:

::
In

::::
order

::
to

::::::
assess

:::::::
whether

:::
bias

:::::::::
correction

::
at

:::
the

::::
daily

::
or

:::::::
monthly

::::
time

:::::
scale

:
is
:::::
more

:::::::
effective

:::::::
overall,

:
a
:::::::::::
performance

:::::::
measure15

:
is
:::::::

needed
::::
that

::
is

::::::::::
comparable

:::::
across

:::::
time

::::::
scales.

::::::::
Common

:::::::::::
performance

::::::::
measures

::
of

::::::::::
distribution

:::::::::::
adjustments

::
at

:::::::::
individual

::::
time

:::::
scales

:::
are

:::
the two-sample Kolmogorov-Smirnov test statistics of the respective E2OBS and SRB data before (black) and

after (colours) bias correction (cf. Sect. C; greater
::::
(KS)

:::
and

::::::::
Kuiper’s

::::::::::
two-sample

:::
test

:::::::
statistic.

::::::
While

:::::::
Kuiper’s

:::
test

::
is
:::::::
equally

16



:::::::
sensitive

::
to

:::::
CDF

:::::::::
differences

::
at

:::
all

::::::::
quantiles,

:::
the

:::
KS

::::
test

::
is

:::::
more

:::::::
sensitive

::
at
:::
the

:::::::
median

::::
than

::
in

:::
the

:::::
tails.

::
A

:::::::::::::
straightforward

:::::::::
comparison

::
of

:::::
these

:::
test

::::::::
statistics

:::::
across

::::
time

:::::
scales

::
is

:::
not

::::
very

::::::::::
meaningful

::::::
because

:::::::
sample

::::
sizes

::
at

:::
the

::::
daily

::::
and

:::::::
monthly

::::
time

::::
scale

:::::
differ

::
by

::
a
:::::
factor

::
of

::::::
thirty,

:::::
which

::::::
implies

::::
that

:::
the

:::::
same

::::
value

:::
of

:
a
:::
test

:::::::
statistic

:::
has

::::::::
different

::::::::
statistical

::::::::::
significance

::
at

:::
the

::::
daily

:::
and

:::::::
monthly

::::
time

:::::
scale.

::
A

:::::
better

::::::::::::
comparability

:::
can

::
be

::::::::
achieved

::
by

:::::::::
comparing

:::
the

:::
test

::::::::
statistic’s p-values indicate stronger

agreement of
:::::
-value,

::::::
which

::::::::
represents

:::
the

::::::::
statistical

::::::::::
significance

::
of
:::::
CDF

::::::::::
differences.

::
In

:::
the

::::::
present

::::::::::::::
cross-validation,

:::
the

:::::
CDFs5

::::::::
compared

:::
are

:::::
based

::
on

::::::::::::
bias-corrected

:
E2OBS and SRB distributions). The

::
the

::::::::::::
corresponding

::::
SRB

:::::
data,

:::
and

::
a

:::::
higher

:
p

:::::
-value

:::::::
indicates

:::::
more

::::::
similar

:::::
CDFs

::::
and

::::::::
therefore

:
a
:::::
better

::::
bias

:::::::::
correction.

::::
For

::::::
details

::
of

:::
the

:::::::::
calculation

:::
of

:
p-values are determined

individually for each grid cell, calendar month and calibration data sample, with all corresponding values pooled into one

distribution and omitting shortwave radiation data from months with average rsdt less than 1 . The horizontal lines of each

box-whisker plot represent the 90th, 75th, 50th, 25th and 10th (from top to bottom) grid-cell area-weighted percentile of the10

natural logarithms of these p-values over calibration data sample (1sthalf, 2ndhalf), latitude and longitude
:::::::::
two-sample

:::
KS

::::
and

:::::::
Kuiper’s

::::::::::
two-sample

:::
test

:::::::
statistic

:::
see

::::::::
Appendix

::
C. The grey horizontal line marks the p= 10% significance level. Compared

to BCvtp1, p-values produced by BCvtp0 are slightly lower but qualitatively similar.

The overallperformance of the BCvtp1 methods is examined next. As delineated above, it is measured by similarities of

empirical CDFs of (spatially aggregated) E2OBS and SRB data before and after bias correction, quantified by15

:::::
Global

:::::::::::
distributions

::
of

:
p-values of two-sample KS test statistics (cf. Sect. C; greater p-values indicate stronger agreement

of E2OBS and SRB distributions). For all radiation types, validation time scales, calendar months and BCvtp1 methods,

distributions of these p-values over calibration data sample, latitude and longitude are depicted as box-whisker plots
:::
test

:::::::
statistics

:::
for

:::::::
seasonal

::::::::::
distributions

:::
of

::::
daily

::::
and

:::::::
monthly

:::::
mean

:::
rlds

:::
and

::::
rsds

:::
are

::::::
shown in Fig. 5 .

In all panels of Fig. 5, the
::
for

:::
the

:::
KS

::::
test

:::
and

::::
Fig.

::
6

::
for

::::::::
Kuiper’s

::::
test.

::
In

:::::::::
accordance

:::::
with

:::::::::::
expectations,

::::
both

::::
tests

:::::::
indicate20

:::
that

:::::
CDFs

:::
are

::::::::
generally

::::::
better

:::::::
adjusted

:::
by

:::::::
BCvdpx

::::
than

:::
by

::::::::
BCvmpx

::
at
::::

the
::::
daily

::::
time

:::::
scale

:::
and

::::
vice

:::::
versa

::
at
:::
the

::::::::
monthly

::::
time

:::::
scale.

:::
Yet

:::::::::::
performance

:::::::::
differences

:::::::
between

::::::::
BCvdpx

::::
and

::::::::
BCvmpx

:::
are

::::::
clearly

:::::
more

:::::::::
significant

::
at

:::
the

:::::
daily

::::
than

::
at

:::
the

:::::::
monthly

::::
time

:::::
scale.

::::
This

:::::::
suggests

::::
that

::::::::::::
bias-correcting

::
at
:::
the

:::::
daily

::::::
instead

::
of

::
at

:::
the

:::::::
monthly

::::
time

:::::
scale

:::::
yields

::::
bias

::::::::::
decrements

:
at
:::
the

:::::
daily

::::
time

:::::
scale

:::
that

::::::
exceed

::::
bias

:::::::::
increments

::
at

:::
the

:::::::
monthly

::::
time

:::::
scale.

:::::::::
Therefore,

::::
bias

:::::::::
correction

::
at

:::
the

::::
daily

::::
time

:::::
scale

:
is
:::::::
deemed

:::::
more

:::::::
effective

::::::
overall

::::
then

::::
bias

::::::::
correction

::
at

:::
the

:::::::
monthly

::::
time

:::::
scale.

:
25

::
To

::::::::
elaborate

::::
this

::::::
further,

:::
the

:
p= 10% significance level is marked with

::
by a grey horizontal line .

::
in

:::
all

:::::
panels

:::
of

::::
Figs.

::
5

:::
and

:
6
::::

and
::
is

::
to

::
be

:::::::::
compared

::::
with

:::
the

::::
10th

:::::::::
percentiles

:::
of

:::
the

:::::
global

:::::::::::
distributions

::
of

:::::::
p-values

:::
of

:::
the

:::::::::
two-sample

::::
test

::::::::
statistics.

Any coincidence of a p-value distributions’
::::
such

:
a
:

10th percentile with the 10% significance level suggests that that
:::
the

:::::::::::
corresponding

:
p-value distribution is in agreement with the null hypothesis of the KS test, which

:::::::::
respective

:::
test.

:::::
Since

:::
the

::::
null

:::::::::
hypothesis

::
of

::::
both

::::
tests is that the compared samples were drawn

:::::::
samples

::::::::
compared

:::
are from the same underlying distribution,30

and this indicates that the respective bias correction method did its job
::::
such

:
a
::::::::::
coincidence

:::::::
suggests

:::
that

:::
the

::::
bias

::::::::
correction

::::::
which

:::::::
produced

::::
one

::
of

:::
the

::::::::
samples

::::::::
compared

:::::::
worked

:::::::
perfectly

::::::
within

:::
the

:::::
limits

::
of

::::::::
sampling

::::::::::
uncertainty. Similarly, 10th percentiles

of p-value distributions below/above
::::
above

:::::::
(below)

:
the 10% significance level indicate undercorrections/overcorrections .

As expected by design, the BCvdp1 methods outperform the BCvmp1 methods at the daily
::::::
suggest

:::::::::::::
overcorrections

:::::::::::::::
(undercorrections)

::
in

:::::
terms

::
of

::::::::
sampling

::::::::::
uncertainty.

::
In

::::
that

:::::
sense,

:::
the

::::::::
BCvtpx

:::::::
methods

:::
are

::::::::
generally

::::::::::::
overcorrecting

:::
at

:::
the

:::::::
monthly

:
time scale35
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Figure 5. Overall performance of bias correction methods BCvtp1
:::::::
BCvda1,

::::::::
BCvda0,

:::::::
BCvdb1,

:::
and

::::::::
BCvma1

:
for longwave (top) and

shortwave (bottom) radiation at the daily (left) and monthly (right) time scale as quantified by p-values of two-sample Kolmogorov-Smirnov

test statistics of the respective E2OBS and SRB data before (black) and after (colours) bias correction (cf. Sect.
:::::::
Appendix C; greater p-values

indicate stronger agreement of E2OBS and SRB distributions). The p-values are determined individually for each grid cell, calendar month

:::::
season,

:
and calibration data sample, with all corresponding values pooled into one distribution and omitting shortwave radiation data from

months with average rsdt less than 1Wm−2. The horizontal lines of each box-whisker plot represent the 90th, 75th, 50th, 25th, and 10th

(from top to bottom) grid-cell area-weighted percentile of the natural logarithms of these p-values over calibration data sample (1sthalf,

2ndhalf), latitude and longitude. The grey horizontal line marks the p= 10% significance level. Compared to BCvtp1, p-values produced

by BCvtp0 are slightly lower but qualitatively similar.

and the latter outperform the former at the monthly time scale. Yet performance gaps are much larger at the daily than at

the monthly
:::::::::::::
undercorrecting

::
at

:::
the

:::::
daily time scale. The small performance gaps at the monthly time scale demonstrate that

even though a direct bias correction of monthly mean values adjusts their distribution more precisely than a correction of the

distribution of the underlying daily values (cf.Fig. 4), the statistical significance of this adjustment is low for sample sizes as

small as in this cross-validation study. Rather, The p-value distributions depicted in Fig. 5b,d suggest that if sampling errors are5

taken into account then the BCvdp1 methods correct the distributions of monthly mean values almost as well as the BCvmp1

methods . In fact, both types of methods tend to overcorrect them.

In contrast, distributions of daily E2OBS data are undercorrected across the board. For BCvdp1, this is linked to an

insufficient adjustment of third- and higher-order moments of the distributions of daily mean radiation(cf. Fig. 3). Throughout

the year, BCldb1 performs slightly worse than BClda1 while BCsdb1 performs slightly better than BCsda1. The findings10

around Figs. 2 and 3 suggest that these differences in overall performance can be explained by how well the respective methods
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Figure 6.
::::
Same

::
as

::::
Fig.

:
5
:::
but

::::
based

::
on

:::::::
p-values

::
of

:::::::
Kuiper’s

::::::::
two-sample

:::
test

:::::::
statistic.

correct the upper tail of the rlds and rsds distributions. Finally, it is worth noting that rlds biases do not exhibit any pronounced

seasonality whereas rsds biases are particularly large in the solstice months of June and December,

:::
The

:::
KS

::::
and

:::::::
Kuiper’s

:::
test

::::::::
statistics

::::
also

::::::
confirm

:::
the

::::::
finding

:::
of

::::
Sect.

:::::
4.1.2

:::
that

::
at

:::
the

:::::
daily

::::
time

:::::
scale,

:::
the

:::::::
BCvda1

::::::::
methods

:::::::::
outperform

:::
the

:::::::
BCvdb1

::::::::
methods

:::
for

::::::::
longwave

:::::::
radiation

::::
and

:::
vice

:::::
versa

:::
for

::::::::
shortwave

:::::::::
radiation.

::::
This

::::
holds

::::
true

:::
for

::
all

:::::::
seasons

:::
and

::::::::::
irrespective

::
of

::::
CDF

:::::::::
differences

:::::
being

::::::::
generally

::::::
greater

::
in
:::::::
summer

::::
and

:::::
winter

:::::
(DJF

:::
and

::::
JJA)

::::
than

::
in

:::
the

::::::::
transition

:::::::
seasons5

::::::
(MAM

:::
and

:::::
SON)

:
both before and after bias correctionwith any method. .

:::::::::
Moreover,

:::
the

:::
test

::::::::
statistics

::::
find

::::
both

:::::::
BCvda1

::::
and

:::::::
BCvdb1

::
to
::::::::::

outperform
::::::::
BCvda0

::
at

:::
the

:::::
daily

::::
time

::::::
scale,

:::::
which

::
is
:::

in
:::
line

:::::
with

:::
the

::::::
finding

:::
of

::::
Sect.

:::::
4.1.1

::::
that

:::
the

::::::::
BCvda0

:::::::
methods

::::::
deflate

:::::::::
day-to-day

:::::::::
variability.

:::
The

::::
fact

::::
that

::
all

::::::::
BCvdp1

::::::::
methods

:::
are

::::::::::::::
undercorrecting

::
at

:::
the

:::::
daily

::::
time

:::::
scale

:::::::::::
demonstrates

::::
the

:::::::::::
imperfections

:::
of

:::::
these

:::::::::
parametric

::::::
quantile

::::::::
mapping

:::::::
methods.

::::
The

:::::::::
remaining

::::
CDF

:::::::::
differences

::::
must

:::
be

:::::
linked

::
to

::::::::
imperfect

::::
bias

:::::::::
corrections

::
of

::::::::
moments10

::
of

:::::
higher

::::
than

::::::
second

:::::
order

::::
since

:::::::::
multi-year

:::::
mean

:::::
values

::::
and

:::::::
standard

::::::::
deviations

:::
are

::::
well

:::::::
adjusted

:::
by

::::::
design.

::
To

::::::::
illustrate

::::
this,

::::::
relative

::::::::
skewness

:::::
biases

:::::::::
remaining

::::
after

::::
bias

::::::::
correction

::::
with

::::::::
BCvdp1

::
are

::::::
shown

::
to

::::::
exceed

::::
50%

:::::::
(median

::::
over

:::::::
calendar

:::::::
months

::
×

::::::::
validation

::::
data

::::::::
samples)

::
in

:::::
many

::::::
regions

:::::
(Fig.

:::
3).

:::::::
Another

:::::::::::
manifestation

:::
of

:::
the

:::::::::::
imperfections

:::
are

:::::::::
remaining

::::::
biases

::
in

:::
the

:::
tails

:::
of

:::
the

:::::::::
distribution

:::
of

::::
daily

:::::
mean

::::
rlds

:::
and

::::
rsds.

:::::
These

::::
must

:::
be

:::::
larger

::::
than

:::
the

:::::::::
remaining

::::::
median

::::::
biases

::::::
because

::::::::
p-values

::
of

:::::::
Kuiper’s

:::
test

::::::::
statistics

:::
for

::::
these

:::::::::::
distributions

:::
are

:::::::
generally

::::::
larger

::::
than

::::
those

::
of

:::
the

::::::::::::
corresponding

:::
KS

::::
test

::::::::
statistics.15

4.2 Validation against BSRN data
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Rankings of original (black) and bias-corrected (colours) E2OBS data according to their similarity in distribution to the

corresponding BSRN data from 54 stations (Table 1) and the 1992–2014 time period for daily (left) and monthly (right)

mean longwave (top) and shortwave (bottom) radiation. Similarity in distribution is quantified by p-values of two-sample

Kolmogorov-Smirnov test statistics (cf. Sect. C). Higher ranks indicate greater p-values and thus greater similarity in distribution.

The map shows the highest ranking E2OBS dataset per station and calendar month (see legend). Rankings for rsds are not5

computed for months with average rsdt less than 1 . Rank distributions over stations and months are shown in the inset at the

lower left of each panel. The percentages at the upper left of each panel display in how many cases (stations, calendar months)

E2OBS data bias-corrected with a certain method (colour) outrank the corresponding original E2OBS data. Very similar results

are obtained for the corresponding basic bias correction methods, with outranking percentages deviating by ±1% at most.

Same as Fig. 7 but for biases in multi-year daily standard deviations (left) and multi-year monthly mean values (right), with10

higher ranks corresponding to lower absolute values of these biases.

Rankings of original and bias-corrected E2OBS data according to their similarity in distribution to the corresponding BSRN

data for daily and monthly mean longwave and shortwave radiation are depicted in Fig. 7. The distribution of rankings over

BSRN stations and calendar months suggest that in most cases, bias correction of E2OBS using SRB data is beneficial either

with any method or not at all, depending on whether the SRB or the original E2OBS data are less biased relative to the BSRN15

ground truth.

More often than with BCltp1 or BCltp2, the bias correction with BCltp0 reduces rlds biases relative to BSRN. Smaller and

opposite differences are found between the BCstpx methods. At the monthly time scale, the differences in rlds distribution

similarity are mainly determined by long-term mean value biases (cf. Figs. 7b and 8b). This suggests that more often than

not, the bilinear interpolation included in BCvtp0 yields more realistic long-term mean rlds values at the E2OBS grid than the20

disaggregation methods of BCvtp1 and BCvtp2. Presumably, this is due to an elevation correction implicitly carried out along

with the interpolation.

At the daily time scale , standard deviation biases explain most of the method dependencies of distribution similarities

between BSRN and bias-corrected E2OBS data (cf. Figs. 7a,c and 8a,c). For rlds, compared to BClmpx, BCldpx leaves

lower/higher standard deviation biases and yields higher/lower distribution similarities over the tropics/extratropics. For rsds,25

BCsdpx leaves lower standard deviation biases and yields higher distribution similarities everywhere, and differences between

standard deviation biases generated by BCsdp0, BCsdp1 and BCsdp2 are in line with cross-validation results (Fig. 2).

Changes in RMSDs of E2OBS from BSRN daily (left) and monthly (right) mean longwave (top) and shortwave (bottom)

radiation at 54 stations (Table 1) after bias correction with methods BCvtax. At each station, RMSDs are computed over the

whole time series of available BSRN data, only omitting shortwave radiation data from months with average rsdt less than30

1 . Listed in grey are the stations where bias correction on average decreases (left list; the more the lower) or increases (right

list; the more the higher) RMSDs of monthly mean radiation by more than 10 . Annotated in black are stations where RMSD

changes (b) for BClta0 differ by more than 5 from those obtained with any other method, (c) spread a range larger than 10 over

all bias correction methods. Numbers given in each panel are station mean RMSD changes per bias correction method (colour;
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) over all high-latitude (beyond 66or 66; first row), all mid-latitude (66–33and 33–66; second row), all low-latitude (33–33;

third row) and all (fourth row) stations. These numbers change by at most±0.2 for the respective basic bias correction method.

Bias correction-induced changes in RMSDs of E2OBS from BSRN time series of daily and monthly mean longwave and

shortwave radiation are shown in Fig. 9. At both time scales and for both radiation types, the between-station variance of

the RMSD changes is larger than their within-station variance, which again suggests that biases relative to BSRN after bias5

correction using SRB data depend more on the corresponding SRB data biases than on the method used for the bias correction.

However, there are two notable exceptions from this rule. First, more often than not, rlds RMSDs are systematically lower

after bias correction with BCltp0 than with BCltp1 or BCltp2. This is particularly well visible at the monthly time scale. As

conjectured above, this might be the result of an elevation correction of long-term rlds mean values implicitly done by BCltp010

along with its bilinear interpolation of SRB data to the E2OBS grid.

Secondly, at eight stations (BER, COC, ISH, IZA, KWA, MAN, MNM, NAU; cf. Table 1), daily rsds RMSDs after bias

correction with different methods spread over a range wider than 10 (in six cases even 20 ). These stations are all located on

islands that are smaller than one SRB-grid cell but large enough to be resolved by the original E2OBS data, which is to say

that the E2OBS climatologies at the corresponding 0.5grid cells stand out against those at the neighbouring 0.5grid cells. Bias15

correction results at these stations can therefore be expected to depend on how a given method modifies the sub-SRB-grid

scale spatial variability of the original E2OBS data. It turns out that, at all of these stations except IZA, daily rsds RMSDs are

smaller after bias correction with BCstp1 than with BCstp0 and BCstp2

On average over the respective stations, rlds RMSDs are reduced by all bias correction methods at all latitudes. In contrast,

bias correction results are more heterogeneous for rsds. At low latitudes (33–33), bias correction has a neutral average effect, at20

middle latitudes (66–33and 33–66) it reduces average rsds RMSDs, and at high latitudes (beyond 66or 66) it strongly increases

them. Five out of the six stations with the greatest rsds RMSD increases are high-latitude stations (ALE, BAR, DOM, GVN,

SYO; cf. Table 1). believe that the difficult cloud characterisation over surfaces that are frequently covered by snow, ice or

water is the primary reason for large SRB shortwave radiation biases at such polar sites.

4.2 Disaggregation
::::::
Spatial

:::::::::::::
disaggregation and sub-SRB-grid scale spatial variability25

As outlined in Sect. 3.2.1, the BCvtp1 disaggregation method
:::::::
BCvtp1

::::::::
approach

::
to

:::
the

::::::::::::
disaggregation

::
of

::::::::::::
bias-corrected

:::::
daily

::::
mean

::::
rlds

::::
and

::::
rsds

::::::
values

::::
from

::::
the

:::::
SRB-

::
to

::::
the

::::::::::
E2OBS-grid

:::::
scale

:
is based on the implicit assumption that the original

E2OBS values of daily mean radiation onto the four E2OBS-grid cells contained in one SRB-grid cell must all be too low

/high
:::::
(high)

:
if their area-weighted average is too low /high

:::::
(high). The four

::::::
original

:
values are then all increased /decreasedby

the disaggregation
:::::::::
(decreased)

:::
by

:::
the

:::::::
BCvtp1

:
method. In order to account for their upper /lower

::::::
(lower) physical bounds, the30

increases /decreases
:::::::::
(decreases)

:
are done by a common scaling factor applied to the distances to the respective upper/lower

::::
these

:
bounds. This leads to a reduction of the differences between the four values (necessarily if the four bounds are equal, in

most cases if they are similar), i.e., to a deflation of sub-SRB-grid scale spatial variability.
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Figure 7. Relative change after
::
by

:
bias correction with methods BCvda0 (left), BCvda1 (middle)

:
, and BCvda2 (right) of the RMSD of

daily 0.5
::::
mean

:::::::::
E2OBS-grid

::::
scale

:
longwave (a–f) and shortwave (g–l) radiation from the respective 1grid-cell mean

::::::::
aggregated

:::::::
SRB-grid

::::
scale

:::::
values based on 1◦ grid cells of the SRB grid (a–c, g–i) and the staggered SRB grid (d–f, j–l; see text). For every 1◦ grid cell and calendar

month, the RMSDs are calculated using original or bias-corrected E2OBS data from the four associated 0.5◦ grid cells and
:::::::
contained

::
in

:
the

:
1◦

:::
grid

::::
cell,

::::::
pooling

:::
data

::::
from

:::
the

:::::
entire 12/1983–11/2007 time period ,

:::
and

:
omitting shortwave radiation data from months with average

rsdt less than 1Wm−2(cf. Sect. B and Fig. D1c). Depicted are median and agreement in direction of individual
::::::
monthly RMSD changes

after
::
by bias correction (cf.

::::
same

:::::::
colouring

::::::
scheme

::
as

:
in
:
Fig. 2). Very similar results are obtained for the corresponding basic bias correction

methods.

In order to illustrate and measure
:::::::
quantify

:
the extent of this deflation,

::::::::
variability

::::::::
deflation

::::
and

:::::::
compare

::::
the

::::::::
BCvtp0,

:::::::
BCvtp1,

::::
and

:::::::
BCvtp2

::::::::
methods

::
in

:::::
terms

:::
of

::::
their

::::::
impact

:::
on

::::::::::::
sub-SRB-grid

:::::
scale

::::::
spatial

:::::::::
variability,

:
the RMSD of the four

E2OBS
::::::::::
E2OBS-grid

::::
scale

:
values of daily mean radiation per SRB-grid cell from their area-weighted average is calculated

for every time step
:::
over

:::
all

::::
days

::
of

::
a

:::::
given

:::::::
calendar

::::::
month both before and after bias correction with methods BCvda1. The

median
:::::
either

:::::::
method.

:::::::
Median

::::::
relative

:
bias correction-induced deflation

::::::
changes

:
of these RMSDs over all calendar monthsis5

found to exceed
:::
are

:::::::
depicted

::
in

::::
Fig.

:
7
::::
and

::::::::::
demonstrate

:::
that

::::::::
BCvda1

::::::
indeed

::::::::
generally

::::::
deflates

:::::
them,

::
in
:::::
some

:::::::
regions

::
by

:::::
more

:::
than

:
20% in some locations

:
%

::::::::
(median

::::
over

:::::::
calendar

::::::::
months) for both longwave and shortwave radiation(Fig. 7b, h).

::
In

:::::::
contrast,

:::::::
BCvtp0

:::
and

:::::::
BCvtp2

::::::
deflate

::
or
::::::
inflate

::::
them

:::::::::
depending

:::
on

:::::::
variable

:::
and

::::::
region.

:
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In an analogous manner,
:::
such

:
RMSDs can be computed based on data from the four E2OBS-grid cells contained in each

:::
one

:
staggered SRB-grid cell, where the staggered SRB grid is a regular 1.0◦×1.0◦ latitude-longitude grid shifted by 0.5◦

latitude and 0.5◦ longitude relative to the SRB grid, i.e., every staggered SRB-grid cell contains E2OBS-grid cells con-

tained in four different SRB-grid cells. Bias correction with methods BCvda1 has a strong impact on these RMSDs (
::::::
Median

::::::
relative

::::
bias

::::::::::::::::
correction-induced

:::::::
changes

::
of

:::::
these

::::::::
RMSDs

:::
are

::::
also

:::::::
depicted

:::
in Fig. 7e, k), with increases/decreases found5

mostly over tropical and polar regions/middle latitudes. Most importantly, the RMSD change patterns at the .
:::::::
Ideally,

::::
bias

:::::::::::::::
correction-induced

:::::::
changes

:::
of

:::::::
RMSDs

:::::
from

:::::
SRB

:::
and

:
staggered SRB grid are very different from those at the

:::::::
grid-cell

::::
mean

::::::
values

::::::
would

::
be

::::::
equal.

::
It

:::::
would

::::
then

:::
be

:::::::::
impossible

::
to
::::

tell
::::
from

::::
their

::::::::::
comparison

:::::::
whether

::::
the

:::
bias

:::::::::::
correction’s

:::::
target

::::::::::
distributions

::::
were

:::::::
defined

::
on

:::
the SRB

:
or

:::
on

:::
the

::::::::
staggered

::::
SRB

:
grid. This is considered to be an artefact caused by the BCvtp1

disaggregation method.10

E2OBS data bias-corrected with BCvda2 do not suffer from the deflation of sub-SRB-grid scale spatial variability that results

from
:::
The

:::::::
BCvdp1

::::::::
methods

::
do

::::
not

::::
fulfil

::::
this

:::::::
criterion

:::
as

::::
they

::::::
deflate

:::::::
RMSDs

::::
from

:::::::::
SRB-grid

:::
cell

:::::
mean

::::::
values

::::::::::
everywhere

::::
while

::::::::
inflating

:::::::
RMSDs

::::
from

::::::::
staggered

::::::::
SRB-grid

::::
cell

:::::
mean

:::::
values

::
in

:::::
many

:::::::
regions,

::
in

::::::::
particular

::::
over

:::
the

:::::::
tropical

::::::
oceans.

::::
The

:::::::
criterion

::
is

:::::
much

:::::
better

::::::
fulfilled

:::
by

:::
the

:::::::
BCvdp2

::::
and

:::::::
BCvdp0

::::::::
methods.

:::
The

:::::::
RMSDs

:::
are

::::::::
generally

::::::
greater

::::
after

:
bias correction

with BCvda1 (Fig. 7c, i). Moreover, the RMSD change patterns at the SRB and the staggered SRB grid are much more similar15

after bias-correction with BCvda2 than with BCvda1, except for rlds over land, where RMSDs are more noisy and smaller on

average at the staggered SRB grid (Fig. 7f,l).

Bias correction with BCvtp0 yields virtually identical RMSD change patterns at the SRB and the staggered SRB grid. For

rsds, these patterns are very similar to those obtained with BCvtp2. In contrast, rlds RMSDs over land are reduced much more

by BCvtp0 than by BCvtp2. As a consequence, the
:::::::
BCvdp2

::::
than

::::
with

::::::::
BCvdp0,

::::
i.e.,

:::::::
BCvdp2

::::::::
produces

::::
data

:::::
with

::::::
greater20

:::::::::::
sub-SRB-grid

:::::
scale

:::::
spatial

:::::::::
variability

::::
than

::::::::
BCvdp0.

::::
This

::::::::
difference

::
is

::::
most

::::::
visible

:::
for

::::::::
longwave

::::::::
radiation,

:::
for

:::::
which

::::::::
BCvdp0

:::::::
produces

::
a

::::
stark

:
land-sea contrast of rlds RMSD changes is much larger for BCvtp0 than for BCvtp2, in particular over the

tropics. The
::::::
RMSD

:::::::
changes

::::
with

::::::
strong

::::::
RMSD

:::::::::
reductions

::::
over

::::
land

:::::::
whereas

:::::::
BCvdp0

:::::
does

::
so

::
to

::
a

:::::
much

:::::
lesser

::::::
extent.

::::
This

strong deflation of rlds sub-SRB-grid scale spatial variability produced by BCvtp0 over land is considered
::
is

:::::::
believed

:
to be

another artefact caused by the bilinear interpolation of SRB data to the E2OBS grid. The magnitude of the deflation of more25

than 40% in most cases cannot be explained by the associated deflation of SRB-grid scale temporal variability, which in most

cases does not exceed 8% (Fig. 2g,j). Presumably, it is mainly due to a deflation of the sub-SRB-grid scale spatial variability

of long-term mean rlds values caused by the bilinear interpolation.

5 Summary and conclusions

This article introduces various parametric quantile mapping methods for the bias correction of E2OBS
::::
daily

:::::
mean

:
surface30

downwelling longwave and shortwave radiation using SRB satellite estimates. Bias correction results are cross-validated as

well as validated using independent BSRN ground observations.
:::
the

::::::::::::
corresponding

::::
SRB

::::
data.

:
The quantile mapping methods
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differ in (i) the time scale at which they operate, (ii) if and how they take physical upper radiation bounds into account, and

(iii) how they handle the spatial resolution gap between E2OBS and SRB.

As expected,
::
A cross-validation results suggest

::
at

:::
the

::::::::
SRB-grid

:::::
scale

:::::::::::
demonstrates that statistics of daily mean radiation

are mostly better corrected by methods operating at the daily time scale than by those
::::::
methods

:
operating at the monthly time

scale, and vice versa for statistics of monthly mean radiation. However, compared to BSRN observations, daily mean longwave5

radiation is mostly better corrected by the methods operating at the monthly time scale because the methods operating at the

daily time scale adulterate the day-to-day variability of the original data. Given the composition of the E2OBS data, this

suggests that the day-to-day variability of ERA-Interim longwave radiation is mostly more realistic than the corresponding

SRB estimates.

While the methods operating
:::::
Since

::::
these

:::::::::::
performance

:::::::::
differences

:::
are

::::::::::
statistically

:::::
more

:::::::::
significant

::
at

:::
the

:::::
daily

::::
than at the10

monthly time scaleare best at adjusting the interannual variability of monthly mean values, our cross-validation results show

that for calibration and validation sample sizes of only 12 years each, the methods operating ,
:::::::

overall,
::::
bias

:::::::::
correction at the

daily time scale perform almost as well if sampling errors are taken into account. In that case, the methods operating
:
is

:::::::
deemed

::::
more

:::::::
effective

::::
then

::::
bias

::::::::
correction

:
at the monthly time scaleare in fact overcorrecting. This result should be seen as an incentive

to develop bias correction methods that take sampling errors into account. .
:

15

Methods that do and that do not take
:::
The

::::::::::::::
cross-validation

::::::
further

:::::::
suggests

::::
that

::
it
::
is

::::::::
generally

::::::::::
worthwhile

::
to
:::::::::

explicitly

:::
take

::::::::
physical upper radiation bounds into account during quantile mappingare applied to daily mean longwave radiation. It is

found that multi-year monthly maximum values as well as the shape of the whole distribution is better adjusted by methods

that respect the estimated upper bounds.
:
. For shortwave radiation, different approaches to estimating the upper bounds

::::
their

::::::::
estimation

:
are tested. A simple method based on

:::::::
approach

:::::
using

:
running maximum values is found to perform better in20

cross-validation than
:::::::::
outperform

:
a more complicated one that uses rescaled

::::
based

:::
on

:
daily mean insolation at the top of the

atmosphere . Arguably, that is because
:::::
(rsdt).

::::
This

::::
must

:::
be

:::
due

::
to

:::::
other

::::::
factors

::::::
besides

::::
rsdt

:::
that

::::::::
influence

:::
the

:
upper physical

bounds to downwelling shortwave radiation at the surface (rsds) are determined by downwelling shortwave radiation at the top

of the atmosphere (rsdt) as well as by other factors such as atmospheric humidity. In fact, the
:
of

::::
rsds.

:::::::::::
Atmospheric

::::::::
humidity

::
is

::
an

:::::::
example

:::
for

::::
such

:
a
::::::
factor:

::::
The highest rsds values usually occur under clear-sky conditions and they are the higher the drier25

the atmosphere. Atmospheric humidity , in turn ,
::
in

::::
turn

:
is limited by the water vapour holding capacity of the atmosphere,

which is controlled by atmospheric temperature. Since the
:::
The

:
climatology of atmospheric temperature lags that of rsdt

:
.
:::::
Hence,

the climatology of upper bounds to rsds can also
::
the

:::::
upper

:::::::
physical

::::::
bounds

::
of

::::
rsds

:::
can

:
be expected to deviate from any rescaled

::
the

:
rsdt climatology.

The most simple approach tested here to bridging the spatial resolution gap between E2OBS and SRB data is to bilinearly30

interpolate the more coarsely resolved SRB data to the E2OBS grid and to use these interpolated data for a bias correction at

:::::::::::::
cross-validation

:::
also

::::::
reveals

::
to
:::::
what

:::::
extent

:::
the

::::::
bilinear

::::::
spatial

:::::::::::
interpolation

::
of

::::
SRB

::::
data

::
to the E2OBS grid. Methods operating

this way are found to erroneously deflate both the temporal and the spatial variability of the original E2OBS data. On the other

hand, relative to BSRN observations, the interpolation is found to more often than not benefit the multi-year monthly mean

longwave radiation. This positive effect of the interpolation is interpreted as the result of an implicit elevation adjustment from35
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the SRB to the E2OBS grid. This outcome encourages elevation adjustments preceding future bias corrections of longwave

radiation using, e. g., the Stackhouse Jr. et al. (2011) formula or the Cosgrove et al. (2003) method
:::
grid

::::
prior

::
to
::::
bias

:::::::::
correction

::::
with

:::
the

:::::::
BCvtp0

::::::::
methods

:::::::
deflates

:::::::::
day-to-day

:::::::::
variability.

:::::
This

:::::::::
variability

:::::::
deflation

::::
has

:
a
:::::::

greater
:::::
effect

:::
on

::::
bias

:::::::::
correction

::::::::::
performance

::::
than

:
a
:::::::
change

::
of

::
if

:::
and

::::
how

:::::::
physical

:::::
upper

::::::::
radiation

::::::
bounds

:::
are

:::::
taken

:::
into

:::::::
account

::::::
during

:::::::
quantile

::::::::
mapping,

:::
but

:
a
:::::
much

::::::
smaller

:::::
effect

::::
than

::
a

::::::
change

::
of

:::
the

::::
time

::::
scale

::
at
::::::
which

:::
the

:::::::
quantile

:::::::
mapping

::
is

::::::
carried

::::
out.5

:::::
Lastly,

:::
the

::::::::::::::
cross-validation

::
at

:::
the

::::
daily

::::
time

:::::
scale

::::::
shows

:::
that

:::::
none

::
of

:::
the

:::::::
quantile

::::::::
mapping

:::::::
methods

:::::
tested

::::
here

::
is

:::::::
perfect,

:::::::::
concerning

::
in

::::::::
particular

:::
the

::::::::::
adjustment

::
of

::::::::::
distribution

::::
tails

:::
and

::::::::
moments

::
of

::::::
higher

::::
than

::::::
second

:::::
order.

::::
This

::::::::
indicates

::::
that

:::
the

:::
true

::::::::::
distribution

::
of

:::
rlds

::::
and

:::
rsds

::
is
:::
not

::::::
always

:::::::
exactly

::::::
normal

::
or

::::
beta,

::
as

::::::::
assumed

::
by

:::
the

:::::::::
parametric

:::::::
quantile

:::::::
mapping

::::::::
methods

:::::
tested

::::
here.

::::::::::
Potentially,

:::::::::::::
non-parametric

:::::::
quantile

:::::::
mapping

::::::::
methods

::::
(that

:::
do

:::
not

::::
rely

::
on

:::::
such

:::::::::::
assumptions)

:::::
could

:::::
yield

:::::
better

:::::::::::::
cross-validation

::::::
results

::
as

::::
long

:::
as

:::::::::
overfitting

::
is

:::::::
avoided

:::::::::::::::::::::::::::
(e.g., Gudmundsson et al., 2012).

:::::::::
However,

::
an

:::::::::::
introduction

::
of

::::
and10

:::::::::
comparison

::
to
:::::
such

:::::::
methods

::
is

::::::
beyond

:::
the

:::::
scope

::
of

::::
this

:::::
article.

The second approach used here aggregates the original
::
To

::::::
bridge

:::
the

::::::
spatial

:::::::::
resolution

:::
gap

:::::::
between

:
E2OBS data to the

SRBgrid, where the bias correction is done, and disaggregates these aggregated
:::
and

::::
SRB,

:::
the

::::::::
methods

::::
used

:::
for

:::
the

:::::::::
production

::
of

::::::::
EWEMBI

::::
rlds

::::
and

::::
rsds

::::::::::::::
deterministically

::::::::::
disaggregate

::::
the

::::::
E2OBS

::::
data

:::::::::
previously

::::::::::
aggregated

::
to

:
and bias-corrected data

back to the E2OBS grid. The deterministic disaggregation
:
at

:::
the

::::
SRB

:::::
grid.

:
It
::
is

::::::
shown

:::
that

:::
the

:
method used for that purpose is15

found to deflate
::::::::::::
disaggregation

:::::::::
introduces

:::::::
artefacts

::
in the sub-SRB-grid scale spatial variabilityof the original data. Yet it also

has its merits, where sub-SRB-grid scale spatial gradients in radiation statistics are very large, such as over islands covering just

one E2OBS grid cell. There, the aggregation-correction-disaggregation of rsds produces substantially lower root-mean-square

deviations from daily mean BSRN values than the other approaches.

The third approach introduced here corrects biases ,
::::::
which

:::
can

:::
be

::::::::
overcome

:::
by

:::::::
applying

:::::::
quantile

::::::::
mapping

:::::::
directly at the20

E2OBS grid using
:::::
either

::::::::
bilinearly

::::::::::
interpolated

::::
SRB

::::
data

::
or

:
target distribution parameters that are based on the more coarsely

resolved SRB data as well as on sub-SRB-grid scale spatial variability present in the original E2OBS datato the end of adjusting

:
.
::::
This

:::::
latter

::::::::
approach

:::::
yields

:::::
both

::::
good

::::::::::::::
cross-validation

::::::
results

::
at

:::
the

:
SRB-grid scale biases while preserving

:::
and

:::::::
suitable

::::::::::
adjustments

::
of

:
the sub-SRB-grid scale spatial variability. The latter objective is achieved here by preserving sub-SRB-grid

scale ratios between climatological standard deviations and offsets between climatological mean values and upper bounds.25

Potentially more suitable non-linear relationships might be tested in future studies. By design, the third approach precludes any

of the variability deflations caused by the first and second approach.

The cross-validation reveal that substantial skewness biases remain after

:::
The

::::
best

:::::::
methods

::::::::
identified

::::
here

:::
are

:::::::
therefore

:::::::
BClda2

:::
for

::::
rlds

:::
and

:::::::
BCsdb2

:::
for

::::
rsds.

::
In

::::::::::
comparison

::
to

:::::::
BClda1

::::
and

:::::::
BCsda1

::::
used

:::
for

:::
the

:::::::::
production

:::
of

:::::::::
EWEMBI

:::
rlds

::::
and

:::::
rsds, bias correction with any of the parametric quantile mapping methods30

introduced here, as these do not explicitly adjusted third- andhigher-order moments. Better results might be obtained using

non-parametric quantile mapping methods
::::
these

:::::::
methods

::::::
yields

::::
more

::::::
natural

::::::::::::
sub-SRB-grid

::::
scale

::::::
spatial

:::::::::
variability

::::
and,

::
in

:::
the

:::
case

:::
of

::::
rsds,

::::::
slightly

:::::
better

::::::::::::::
cross-validation

:::::
results

::
at
:::
the

::::::::
SRB-grid

:::::
scale.

Deviations of bias-corrected E2OBS data from BSRN observations turn out to be dominated by the corresponding SRB data

biases. This exemplifies that bias correctionusually does not actually correct biases but merely adjusts them to those of another35

25



dataset, which is why some colleagues prefer the term bias adjustment over bias correction. In the example studied here,

this is most painfully visible at polar BSRN stations, where in most cases bias correction using SRB estimates substantially

increases E2OBS shortwave radiation biases relative to the BSRN ground truth. Yet apart from these cases, the validation

against BSRN observations suggests that, overall, bias correction of E2OBS radiation using SRB data has a slightly positive

effect on longwave radiation and a neutral effect on shortwave radiation. For the EWEMBI dataset (Lange, 2016), E2OBS5

longwave radiation was adjusted to the SRB 3.1 primary-algorithm product using the BClda1 method, and E2OBS shortwave

radiation was adjusted to the SRB 3.0 primary-algorithm product using the BCsda1 method. In that application, the full 24

years worth of SRB data and the same 24 years worth of E2OBS data aggregated to the SRB grid were used to derive the transfer

function parameters. The present study identifies shortcomings of the BClda1 and BCsda1 methods and tests modifications of

these methods as remedies. In terms of cross-validation results and variability deflation issues, the best methods tested here are10

BClda2 and BCsdb2, whereas biases relative to BSRN observations are most effectively reduced by BClmb0 and BCsdb1.

Data availability. The EWEMBI dataset is publicly available via https://doi.org/10.5880/pik.2016.004.

Appendix A:
:::::::
Quantile

::::::::
mapping

::::
and

:::::::::
statistical

:::::::::::
downscaling

:::::::
Quantile

::::::::
mapping

::
is

::::
used

:::
to

:::::
adjust

::::
the

::::::::::
distribution

::
of

::::::
values

:::::
from

::
a

::::
data

:::::::
sample.

::
In

::::
the

::::::
context

:::
of

::::
bias

:::::::::
correction,

::::
the

:::::::::
distribution

::
to

:::
be

:::::::
adjusted

::
–

:::
the

:::::
source

::::::::::
distribution

::
–

::
is

:::::::
believed

::
or

::::::
known

::
to

:::
be

::::
more

::::::
biased

::::
than

:::
the

::::::::::
distribution

:::
the

::::::
source15

:::::::::
distribution

::
is

:::::::
adjusted

:::
to

:
–
:::
the

:::::
target

:::::::::::
distribution.

::
In

:::::::
practise,

::::::
source

::::
and

:::::
target

::::::::::
distributions

:::
are

::::::::::
empirically

::::::::
estimated

:::::
from

::
the

:::::::::
respective

:::::::
samples,

:::
in

::
the

:::::::
present

::::
case

::
of

:::::::
E2OBS

:::
and

::::
SRB

::::::::
radiation

::::
data,

::
in

:::
the

:::::
form

::
of

:::::::::
cumulative

::::::::::
distribution

::::::::
functions

::::::
(CDFs)

:::::::
FE2OBS

::::
and

:::::
F SRB,

:::::::::::
respectively.

:::::::
Quantile

::::::::
mapping

::
is

::::
then

::::::
defined

::
by

:

x 7→
:::

F SRB
::::

−1(FE2OBS(x)),
:::::::::::::

(A1)

:::::
where

::::::::::::::::::
F SRB−1(FE2OBS( ·))

::
is

:::::
called

:::
the

:::::::
transfer

::::::::
function.20

:::::::
Quantile

::::::::
mapping

::
is

:::::
called

::::::::::
parametric

::
if

:::
the

:::::
CDFs

:::
are

::::::::
assumed

::
to

::::
take

:::::::
certain

::::::::
functional

::::::
forms.

:::::
Their

::::::::::
estimation

::::
then

::::::
reduces

::
to
:::

the
::::::::::

estimation
::
of

:::
the

:::::::::
parameters

::::
and

:::::
these

::::::::
functions.

::::::::::
Otherwise,

:::::::
quantile

::::::::
mapping

::
is

:::::
called

:::::::::::::
non-parametric

::::
and

:::::
CDFs

:::
are

::::::::
estimated

:::
by

::::::::
estimating

:::::::
selected

:::::::::
quantiles,

:::::::
between

:::
and

:::::::
beyond

:::::
which

::::::::
quantiles

:::
are

::::::::::
interpolated

::::
and

:::::::::::
extrapolated,

::::::::::
respectively

::::::::::::::::::::::::::
(e.g., Gudmundsson et al., 2012)

:
.

::
In

:::
the

::::::
present

:::::
study,

:::::
source

::::
and

:::::
target

::::::::::
distributions

:::
are

:::::::
assumed

::
to

::
be

::::::
normal

:::
or

:::
beta

:::::::::::
distributions.

:::::
Mean

::::::
values

:::
and

::::::::
variances25

::
of

::::::
normal

::::::::::
distributions

:::
are

::::::::
estimated

:::
by

::::::
running

:::::
mean

:::::
values

:::
of

::::::::
multi-year

:::::
daily

::::::
sample

:::::
mean

:::::
values

:::
and

:::::::::
variances.

:::::
Lower

::::
and

:::::
upper

::::::
bounds

::
of

::::
beta

::::::::::
distributions

:::
are

:::
set

::
to

::::
zero

::::
and

::::::::
estimated

::
by

:::::::
physical

:::::
upper

::::::
limits

::
of

::::
daily

:::::
mean

::::::::
radiation,

:::::::::::
respectively.

:::::
Shape

:::::::::
parameters

::
of

::::
beta

:::::::::::
distributions

:::
are

::::::::
estimated

::::
with

:::
the

::::::
method

::
of

::::::::
moments

::::::::::::
(Wilks, 1995)

::::
using

:::::::
running

:::::
mean

::::::
values

::
of

::::::::
multi-year

:::::
daily

::::::
sample

:::::
mean

:::::
values

::::
and

::::::::
variances.

:
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::::
Bias

::::::::
correction

::::::::
includes

::
a

::::::
spatial

::::::::::::
disaggregation

:::
or

::::::::::
downscaling

::::
step

::
if
::::

the
::::
data

::::::
behind

::::::
source

::::
and

:::::
target

:::::::::::
distributions

::::
have

:::::::
different

::::::
spatial

::::::::::
resolution,

::
as

::
in

::::
the

::::::
present

:::::
case,

::
or

::::::::
represent

::::
area

:::::
mean

::::::
values

::::
and

:::::
point

::::::
values,

:::
as

::
in

:::
the

::::
case

:::
of

::::::
quantile

::::::::
mapping

:::::::
between

:::::::
gridded

:::
and

::::::
station

:::::
data.

::
If

:::
the

:::
data

::::::
behind

:::
the

::::::
target

:::::::::
distribution

:::::
have

:::::
higher

:::::::::::::::::
resolution/represent

::::
finer

:::::
spatial

::::::
scales

::::
than

:::
the

::::
data

::::::
behind

:::
the

::::::
source

::::::::::
distribution,

::::
then

:::::::
quantile

::::::::
mapping

::::
may

:::
lead

:::
to

::::
both

:::::::
temporal

::::
and

::::::
spatial

::::::::
variability

::::::::
inflation

:::::::::::::
(Maraun, 2013).

::::
For

:::
the

::::::
reverse

:::::
case,

:::
the

::::::
present

::::::
study

:::::
shows

::::
how

:::::::
quantile

::::::::
mapping

::::
may

::::
lead

::
to
:::::

both5

:::::::
temporal

::::
and

:::::
spatial

:::::::::
variability

::::::::
deflation.

:::::::::::::
Maraun (2013)

:::::::
suggests

::
to
:::::
solve

:::
the

:::::::
inflation

:::::
issue

::::
with

:::::::::
stochastic

:::::::::::
downscaling.

::
It

:
is
::::::
shown

::::
here

::::
that

:::
the

:::::::
deflation

:::::
issue

::
of

:::
the

::::::
reverse

::::
case

::::
can

:::
also

:::
be

::::::::
overcome

::::
with

:::::::::::
deterministic

:::::::::::
downscaling

::
at

:::
the

:::::::
transfer

:::::::
function

::::
level.

:

Appendix B: Daily mean insolation at the top of the atmosphere

Over the course of a year, the total solar irradiance, S, varies according to S = S0(1 + ecos(Θ))2, where S0 = 1360.8 Wm−210

is the solar constant (Kopp and Lean, 2011), e= 0.0167086 is the Earth’s current orbital eccentricity and Θ is the angle to the

Earth’s position from its perihelion, as seen from the Sun. If the orbital angular velocity of the Earth is approximated to vary

sinusoidally in time then the total solar irradiance on day n after January 1 of the first year of a four-year cycle including one

leap year is approximately given by

S = S0

(
1 + ecos

(
2π

n− 2

365.25
+ 2esin

(
2π

n− 2

365.25

)))2

, (B1)15

since S is at its maximum when the Earth is at its perihelion, which on average occurs on January 3.

The daily mean insolation at the top of the atmosphere, rsdt, at some fixed geolocation depends on the location’s latitude,

φ, and on the declination of the Sun, δ, which varies over the course of a year. On day n after January 1 of the first year of a

four-year cycle including one leap year, the declination of the sun is approximately given by

sinδ = cos

(
2π
n+ 10

365.25
+ 2esin

(
2π

n− 2

365.25

))
sinδmin, (B2)20

since δ is at its minimum value δmin =−23.4392811◦ at the December solstice, which on average occurs on December 22.

Latitude and declination of the Sun determine the hour angle at sunrise, h, according to

cosh= min{1,max{−1,−tanφtanδ}}. (B3)

The daily mean insolation at the top of the atmosphere at latitude φ on day n is then given by

rsdt =
S

π
(hsinφsinδ+ sinhcosφcosδ). (B4)25

For a given latitude, the rsdt climatology used to estimate the upper bounds of the climatological beta distribution of rsds in

the BCsdax methods is derived using Eqs. (B1)–(B4) to compute rsdt over a four-year cycle including one leap year and then

averaging calendar day values over the four cases of leap year occurrence in the four-year cycle.
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Appendix C: Two-sample Kolmogorov-Smirnov test
:::
and

::::::::
Kuiper’s

:::::::::::
two-sample

:::
test

The overall effectivity of the bias correction methods introduced in this study is measured by similarities of empirical CDFs of

SRB and E2OBS data before and after bias correction using the two-sample Kolmogorov-Smirnov (KS) test
::::::::::::::::::::::::::::::
(Kolmogorov, 1933; Smirnov, 1948)

:::
and

:::::::
Kuiper’s

::::::::::
two-sample

::::
test

:::::::::::::::::::::::::
(Kuiper, 1962; Stephens, 1965). Let F1 be the empirical CDF of uncorrected or corrected daily

or monthly mean longwave or shortwave E2OBS data for one particular grid cell, calendar month and validation data sample,5

with all corresponding values pooled into one distribution, and let F2 be the empirical CDF of the corresponding SRB or

BSRN data. Then the two-sample KS test statistic,
:::
D,

::::
and

:::::::
Kuiper’s

::::::::::
two-sample

::::
test

:::::::
statistic,

:::
V , of these CDFs is given by

D = supr |F1(r)−F2(r)|.
::
are

:::::
given

:::
by

D = sup
r
|F1(r)−F2(r)| ,

::::::::::::::::::::

(C1)

V = sup
r

(F1(r)−F2(r)) + sup
r

(F2(r)−F1(r)) .
:::::::::::::::::::::::::::::::::::::::

(C2)10

The null hypothesis of
:::
both

:
the KS test

:::
and

:::::::
Kuiper’s

::::
test is that the two data samples whose empirical CDFs are compared

have the same underlying distribution. According to Vetterling et al. (1992, Sect. 14.3), the probability p of incorrectly rejecting

this null hypothesis can be approximated by

p= 1−F
([√

n+ 0.12 + 0.11/
√
n
]
D
)
,

15

p= 1−F
([√

n+ 0.12 + 0.11/
√
n
]
D
)

and
:::::::::::::::::::::::::::::::::::::

(C3)

p= 1−G
([√

n+ 0.155 + 0.24/
√
n
]
V
)

:::::::::::::::::::::::::::::::::
(C4)

::
for

:::
the

:::
KS

::::
test

:::
and

:::::::
Kuiper’s

::::
test,

:::::::::::
respectively, where F is the CDF of the Kolmogorov distribution,

::
and

:::
G

:::
are

::
the

::::::
CDFs

::
of

:::
the

:::::::::
asymptotic

::::::::::
distributions

::
of

:::::

√
nD

:::
and

::::::

√
nV ,

::::::::::
respectively,

:
n= n1n2/(n1+n2) is the effective sample size, and n1 and n2 are the

sizes of the samples behind F1 and F2, respectively. This approximation of the true p-value is not only asymptotically accurate20

but already quite good for n≥ 4 (cf. von Mises, 1964; Vetterling et al., 1992)
::::::::::::::::::::::::::::::::::
(cf. Stephens, 1970; Vetterling et al., 1992).

In order to adjust these p-values for potential autocorrelations in the samples compared here, which are in fact time series,

n1 and n2 in the formula for n are replaced by n1(1− ρ1) and n2(1− ρ2), respectively, as proposed by Xu (2013), where

the autoregression coefficients ρ1 and ρ2 of first-order autoregressive processes fitted to the time series are estimated by the

respective sample autocorrelation at lag one.25

Appendix D: Window length for running mean and maximum calculations

The climatologies of mean values, variances, and upper bounds of daily mean radiation estimated by the BCvdpx methods are

based on running mean values of empirical multi-year daily mean values, variances and running maximum values, respectively.
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A common window length of 25 days is used for these running mean and maximum
:::::
value calculations (cf. Table 1). An obvious

question is how sensitive the bias correction results are to the choice of this window length.

The question is addressed here via variants of the BCvda1 methods that use uneven window lengths between 10 and 40

days for their running mean and maximum
:::::
value calculations and are otherwise identical to the BCvda1 method introduced

in Sect. 3.1.1. The performance of these BCvda1 variants is then quantified by p-values of two-sample KS statistics of bias-5

corrected E2OBS data cross-validated against SRB data (cf. Sect. 4 and Sect.
::
4.1

::::
and

::::::::
Appendix

:
C). The window lengths that

maximise these p-values vary considerably with location, calendar month and calibration data sample (Fig. D1). The reason

for this high variability is illustrated in Fig. D2, where the overall performance of the BCvda1 variants, quantified by p-values

of two-sample KS statistics aggregated over time (calendar months) and space (grid cells), is shown to only weakly depend on

the chosen window length.10

The optimal window length is thus highly uncertain. For longwave /shortwave
:::::::::
(shortwave)

:
radiation, the overall performance

of the BCvda1 variants is slightly higher for window lengths from the upper /lower
::::::
(lower)

:
end of the investigated range

(Fig. D2). For practical matters, one can apply the methods using any window length between 10 and 40 days and expect

similarly well adjusted radiation biases. The choice of 25-day running windows made here for both longwave and shortwave

radiation ensures a close-to-optimal performance of the BCvda1 methods for both variables.15
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Figure D1. Optimal window length for running mean and maximum calculations that precede the estimation of parameters of the climato-

logical distributions of longwave (v = l; top) and shortwave (v = s; bottom) radiation that are used for bias correction with BCvda1 (cf.

Table 1). Window lengths are varied between 10 and 40 days. Optimal window lengths maximise the p-value of the two-sample KS statistic

of bias-corrected E2OBS data cross-validated against SRB data (cf. Sect. 4 and Sect.
:::::::
Appendix

:
C) and are determined individually for every

grid cell, calendar month (with all corresponding values pooled into one distribution) and calibration data sample (every1st, every2nd). Zonal

medians of optimal window lengths for each month and calibration data sample are shown in panels (a) and (c). Results are masked in (c)

where and when the monthly mean rsdt (Eqs. (B1)–(B4)) is less than 1Wm−2. Panels (b) and (d) show medians of optimal window lengths

over months and calibration data samples.

Figure D2. Dependence of two-sample KS statistic p-values on window length for different radiation types and calibration data samples (see

text and Fig. D1). Plotted are the grid-cell area-weighted 50th (left
:
a) and 2nd (right

:
b) percentiles of the natural logarithms of the p-values

over months, latitudes and longitudes.
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