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Abstract. We study daily surface air temperature (SAT) reanalysis in a grid over the Earth surface, to identify and quantify

changes in SAT dynamics during the period 1979–2016. By analysing Hilbert amplitude and frequency we identify the regions

where relative variations are most pronounced (larger than ±50% for the amplitude and ±100% for the frequency). Amplitude

variations are interpreted as due to changes in precipitation or ice melting; frequency variations, to a northward shift of the inter-

tropical convergence zone (ITCZ) and a widening of the rainfall band in the western Pacific Ocean. The ITCZ is the ascending5

branch of the Hadley cell and thus, by affecting the tropical atmospheric circulation, ITCZ migration has far reaching climatic

consequences. As the methodology proposed here can be applied to many other geophysical time series, our work will stimulate

new research that will advance the understanding of climate change impacts.

Copyright statement.

1 Introduction10

The unprecedented intensification of weather extremes is motivating research aimed at understanding long-term climatic vari-

ations (Barreiro et al., 2008; Coumou and Rahmstorf, 2012; England et al., 2014; Cai et al., 2014; Turco et al., 2015) that can

have profound socio-economic impacts (Ghil et al., 2011) and trigger complex ecological adaptation mechanisms (Lejeune

et al., 2002; Beaumont et al., 2011; Gottfried et al., 2012; Bordeu et al., 2016).

Quantifying variations in surface air temperature (SAT) dynamics over several decades is a challenging problem because15

of non-stationarity and the presence of trends, measurement noise, multiple time scales, memory and correlations in the data

(Franzke, 2012; Massah and Kantz, 2016); in addition, reanalysis data can be unreliable (due to the lack of observational

constrains in many geographical regions), and reanalysis time series are insufficiently long (as reanalysis starts at the beginning

of the satellite era). These challenges have motivated the use, for climate data analysis, of data-driven approaches that have

been commonly used for investigating observed complex signals in other fields of science (e.g., neurological, physiological,20

financial, etc.). Univariate analysis tools that have been used to analyze SAT time series include detrended fluctuation analysis,

fractional analysis, wavelet analysis, etc. Bivariate analysis and the complex network approach has also allowed to uncover
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inter-relations between SAT anomalies in different regions (Tsonis and Swanson, 2008; Donges et al., 2009; Barreiro et al.,

2011). In this approach the seasonal cycle is removed to eliminate the influence of solar forcing and the links represent

correlations (linear or nonlinear), or statistical similarities between SAT dynamics in different areas (Tirabassi and Masoller,

2016). On the other hand, changes in the SAT seasonal cycle have also been investigated, and a trend to reduced cycle amplitude

has been detected in many regions (Stine et al., 2009; Qian et al., 2011; Dwyer et al., 2012; Stine and Huybers, 2012; Duan et al.,5

2017; Chambers et al., 2013; Wang and Dillon, 2014). However, changes in SAT dynamics over several decades (such as those

observed in Fig. 1), have not yet been investigated at a global scale. In order to fill this gap, we use Hilbert analysis (described

in the Supporting Information) to investigate SAT time series with daily resolution (reanalysis covering the Earth surface in the

period 1979–2016). Our goal is to detect the most sensitive regions (“hotspots”) where variations in SAT dynamics over the

last decades are more pronounced.10

The Hilbert transform (HT) provides, for a real oscillatory time series, x(t) with t ∈ [1,T ], an instantaneous amplitude, a(t),

and an instantaneous frequency, ω(t), for each data point of the time series, and thus allows to characterize how the amplitude

and the frequency of a signal vary in time. If a signal does not have a sufficiently narrow frequency band, a(t) and ω(t) will

not have a clear physical meaning (Pikovsky et al., 2001). The usual solution is based on band-pass filtering to isolate a narrow

frequency band; however, HT directly applied to the signal can still yield useful information. An alternative solution is based15

on the Hilbert-Huang Transform (Huang et al., 1998), that combines Hilbert analysis with the empirical mode decomposition,

that decomposes an arbitrary real time series into components, each having the physical meaning of a rotation in the complex

plane.

Because many natural geophysical time series have a seasonal periodicity, this has motivated the use of Hilbert analysis to

characterize the time-varying oscillation amplitude, to investigate phase-shifts, phase-amplitude couplings, etc. Applications in20

various geophysical fields are discussed in Huang and Wu (2008). As more recent examples, Massei and Fournier (2012) used

Hilbert analysis to characterize the daily variability of the Seine river flow from 1950 to 2008, uncovering linkages between

river flow variability and global climate oscillations (the North-Atlantic Oscillation and the Madden-Julian Oscillation). Sun

(2015) used Hilbert analysis to compute the daily phase shift between temperature signals recorded at the ground surface and

at a depth of 5m in two meteorology stations in Taiwan from 1952 to 2008. Significant reductions in the phase shift from 1980s25

to 1990s were found, which was interpreted to be related to the warming of the Pacific Decadal Oscillation. Reddy and Adarsh

(2016) applied Hilbert analysis to rainfall time series in India, and found that the multiscale components of rainfall series have

similar periodic structure as global climate oscillations (the Quasi Biennial Oscillation, El Niño Southern Oscillation, etc.).

We have recently applied Hilbert transform to unfiltered daily SAT reanalysis (Zappalà et al., 2016). We have shown that

the maps of time-averaged Hilbert frequency, 〈ω〉, and of standard deviation, σω , revealed well-defined large-scale structures30

which were consistent with known dynamical processes.

Here we use a(t) and ω(t) to quantify SAT variations. Our hypothesis is that changes in a(t) and ω(t), can yield information

about variations in SAT dynamics. Specifically, we are interested in addressing the following questions: Which properties of

a(t) and ω(t) display relevant variations? Where are the regions where these variations are more pronounced? Which processes

can be responsible of these variations? Can these variations be used as a quantitative measure of regional climate change?35
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2 Data

In the main text we present results from ERA-Interim daily SAT reanalysis (Dee et al., 2011), that covers the period from

January 1979 to June 2016 with a spatial resolution of 2.5 degrees, both in latitude and in longitude. Thus, there are N =

73× 144 = 10512 geographical sites and in each site the SAT time series has T = 13696 days. In the Supporting Information

we compare ERA-Interim with NCEP-DOE Reanalysis 2, that is an improved version of the NCEP Reanalysis I model (Kistler5

et al., 2001). It covers a longer time interval and has 94× 192 = 18048 geographical sites. In order to perform a precise

comparison between the results of the two datasets, in the NCEP-DOE Reanalysis 2 we consider the same time interval as the

ERA-Interim dataset.

3 Methods

3.1 Hilbert analysis10

To apply the Hilbert transform (described in the Supporting Information) we first pre-process each raw SAT time series, rj(t)

(where j ∈ [1,N ] represents the geographical site and t ∈ [1,T ] represents the day): we eliminate the linear trend and normalize

to zero mean and unit variance, obtaining xj(t). The Hilbert transform is then applied to xj(t), obtaining yj(t) =HT [xj(t)].

From xj(t) and yj(t), the amplitude aj(t) and the phase ϕj(t) were calculated as: aj(t) =
√

[xj(t)]
2

+ [yj(t)]
2 and ϕj(t) =

arctan[yj(t)/xj(t)].15

3.2 Measures used to quantify variations in SAT dynamics

Variations in the Hilbert amplitude were quantified by the relative change, ∆a/〈a〉= (〈a〉l−〈a〉f)/〈a〉, where 〈a〉f is the

average value of the amplitude during the first 10 years of the time series (January 1979 to December 1988), and 〈a〉l, during

the last ten years (July 2007 to June 2016). Analogously, we calculated the relative change of amplitude variance, ∆σ2
a/σ

2
a, of

average frequency, ∆ω/〈ω〉, and of frequency variance, ∆σ2
ω/σ

2
ω . In the Supporting information we analyze how the spatial20

structures uncovered depend on the time-intervals used to calculate the relative variations: we compare with relative variations

during the first and final five years of the reanalysis, and also, during the first half period and the second half period of the

reanalysis. While the values of the relative variations vary with the time-interval considered, the spatial maps are remarkably

robust as the same structures are found with the three time intervals considered.

A similar analysis was performed to detect changes directly from the raw SAT time series, rj(t), by computing the amplitude25

of the climatology (or seasonal cycle), cj(t), and the variance of anomaly time series, zj(t).

Specifically, the amplitude of the climatology was calculated as: a(clim)
j (I) = max[cIj (t)]−min[cIj (t)], where cIj (t) is the

climatology series calculated only in the time interval I . We remark that the climatology amplitude a(clim)
j (I) is a scalar number

that depends on the choice of the time interval I . We calculated the climatology amplitude in the first and last decade, as well

as in the whole series. As before, we used these values to calculate the relative change ∆a(clim)/a(clim). Also, the variance of30

the anomaly time series zj(t) was calculated and then used to find the relative change, ∆σ2
z/σ

2
z .
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With the goal of relating changes in Hilbert frequency with changes in statistical properties of SAT time series, an analysis

of the number of zero-crossings was performed: for each xj(t) we counted the number of crossings through the mean value,

x= 0. As with other quantities, we then calculated the relative change.

3.3 Significance Analysis

A statistical significance analysis was performed by surrogating Hilbert series. For each amplitude time series (i.e., in each grid5

point) 100 shuffle surrogates were generated and for each surrogate the relative change, ∆as/〈as〉, was calculated. Then, the

average over the 100 surrogates, 〈∆as/〈as〉〉s, and its standard deviation, σs were used to define the significance threshold:

the relative change computed from the original data was considered significant if it was higher than 〈∆as/〈as〉〉s + 2σs, or

lower than 〈∆as/〈as〉〉s− 2σs. In the colour maps, regions where variations are not significant are displayed in white. The

same test was applied to frequency variations and the other quantities, except for the climatology for which a surrogate test is10

not applicable. In the Supporting Information various thresholds are considered and in addition, a non-parametric significance

test is used. Here we present only the maps obtained with threshold ±2σ, because it is a compromise between uncovering the

spatial regions where SAT changes are pronounced, and disregarding the areas where the variations are small.

4 Results

We analyse the maps of 〈ω〉, 〈a〉, σ2
ω and σ2

a, in the first ten years and in the last ten years of the period covered by the reanalysis,15

as well as the relative change between the two decades.

4.1 Analysis of Amplitude Variations

Figures 1(a) and 1(b) display 〈a〉 in the first and in the last ten years, respectively, and Fig. 1(c) displays the relative difference

(see Methods for details). In Fig. 1(c) we see an area of large increase (more than 50%) of average amplitude, located in South

America (red spot marked by a triangle), and an area of large decrease (again, more than 50%), located in the Arctic (blue spot20

marked by a circle). The raw SAT time series in these regions are displayed in Figure 2.

In both time series we clearly observe a change in the amplitude of the oscillations in the last ten years with respect to the

first ten years, having a visual confirmation of the changes detected by Hilbert amplitude. The red spot in Amazonia, whose

SAT series shown in Fig. 2(a) has an increasing amplitude, can be interpreted in terms of changes in precipitation. In particular,

the increase of Hilbert amplitude is linked to the decrease of precipitation and to the lengthening of the dry season (as reported25

in (Gu et al., 2016; Liebmann et al., 2004; Fu et al., 2013)). This is due to the fact that, when precipitation decreases, the

fraction of solar radiation that is not used for evaporation is used to heat the ground, which in turns heats the surface air. This

leads to higher extreme temperatures during the dry seasons, as can be observed in Fig. 2(a). Regarding the blue spot in the

Arctic region, where SAT series shown in Fig. 2(b) has a decreasing amplitude, it can be interpreted as due to the melting of sea

ice. In fact, when ice is present at the surface of the sea, it acts as an insulator, preventing heat exchange between sea and air.30

This causes a large amplitude of SAT cycle. On the other hand, if the ice melts, the air-sea heat exchange reduces the amplitude
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Figure 1. Relative change of time-averaged Hilbert amplitude. (a) Amplitude averaged over the first ten years (January 1979 to Decem-

ber 1988). (b) Amplitude averaged over the last ten years (July 2007 to June 2016). (c) Relative change of Hilbert amplitude, ∆a/〈a〉.

(d) Relative change of amplitude of the seasonal cycle, computed from the amplitude of the climatology, ∆a(clim)/a(clim). A good qualitative

agreement is seen in the spatial structures in panels (c) and (d). Importantly, the structures uncovered by Hilbert amplitude are well defined,

in comparison with those uncovered by the analysis of the climatology amplitude, which look noisier.

of the cycle. In particular, during winter the air temperature is mitigated by the sea and tends to have more moderated values.

It is important to take into account that this blue spot is in a region for which the observational constraints from satellites on

the reanalysis are scarce, which decreases the quality of the reanalysis in the region. Therefore, in order to check whether the

detected changes are robust, we performed the same analysis using the NCEP-DOE reanalysis dataset. The results, presented

in the Supporting Information, confirm the presence of the blue spot in the Arctic.5

Next, we compare the changes detected by Hilbert amplitude with those computed directly from SAT (by decomposing SAT

time series into climatology and anomaly, as explained in Methods). Since the climatology term retains the seasonal variation,

we expect its amplitude change to give similar indications as the Hilbert amplitude change. On the other hand, the anomaly

term contains all the rapid variability, so we expect its variance to give similar results as the variance of Hilbert amplitude.

Figures 1(c) and 1(d), which display respectibely the relative change of Hilbert amplitude and of climatology amplitude,10

and Figs. 3(a) and 3(b), which display respectively the relative change of Hilbert amplitude variance and of anomaly variance,

confirm these expectations.
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Figure 2. Surface air temperature in two regions where a clear change in the oscillation amplitude in the last ten years, with respect to the

first ten years, is observed. (a) Site of coordinates (7.5 S, 307.5 E), marked with a triangle in Fig. 1(c). (b) Site of coordinates (75 N, 40 E),

marked with a circle in Fig. 1(c).
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Figure 3. Relative change of amplitude fluctuations computed from the variance of (a) Hilbert amplitude, ∆σ2
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The good qualitative agreement seen in the spatial structures in these maps confirms that Hilbert analysis directly applied

to unfiltered SAT indeed gives a physically meaningful instantaneous amplitude, with average and variance values that are

consistent with those computed from SAT.

In Figs. 3(a) and 3(b), however, there is a difference in the eastern Pacific Ocean, in the area marked with a circle. In

particular, in Fig. 3(b) there is an area with large decrease of variance (deep blue, around -100%), while in (a) the decrease is5

less pronounced (light blue, around -65%) and extended over a smaller area. In addition, in Fig. 3(a) there is an orange-red area

that indicates a moderate increase of variance (around 45%), while in (b) such area is absent. The reasons underlying these

differences will be discussed later.

4.2 Analysis of Frequency Variations

Figure 4(a) displays the average frequency 〈ω〉 in the first ten years, Fig. 4(b) in the last ten years, and Fig. 4(c) displays the10

relative change, ∆ω/〈ω〉. In Fig. 4(c) we note that in the eastern Pacific Ocean there are two small areas, enclosed by the circle,

of intense increase (red) and decrease (blue) of frequency. They both represent frequency changes whose absolute values are

larger than 100% and correspond to the same region where differences were detected in Fig. 3.

These two areas of opposite signs suggest that, between the initial and the final decade, there is a shift of the inter-tropical

convergence zone (ITCZ) toward the north. The ITCZ involves strong convective activity, which causes rapid fluctuations of15

SAT, thus giving high values of instantaneous frequency, as shown in Figs. 4(a,b). Therefore, in the relative change of frequency,

in regions corresponding to the initial position of the ITCZ we see a decrease, while in regions corresponding to the present

position of the ITCZ we see an increase. For the same reason, the two red areas in the western Pacific Ocean (indicated by

two squares) suggest an expansion of the tropical convective regions. This interpretation is in agreement with previous works

that have related a northward shift of ITCZ to an inter-hemispheric temperature gradient, as the one experienced during the20

last decades (Yoshimori and Broccoli, 2008; Kang et al., 2009; Frierson and Hwang, 2012; Schneider et al., 2014; Talento and

Barreiro, 2016). Regarding the red areas in the north Atlantic, in the north Pacific and in the south Pacific, they are consistent

with an increase in the occurrence of fronts which cause large daily fluctuations of temperature and thus an increase of Hilbert

frequency.

To gain insight into the physical meaning of the changes that are captured by Hilbert frequency, we use an alternative25

approach to estimate frequency variations: we define as “events” the zero crossings of SAT time series (Pikovsky et al., 2001)

(detrended and normalised to zero-mean as described in Methods). Then, we count the number of events in the first ten years,

in the last ten years, and calculate the relative variation.

Figure 4(d) displays the map of relative change of zero-crossings. We see that there is a qualitative good agreement with the

spatial structures seen in Fig. 4(c), thus providing a physical interpretation for the observed variation of Hilbert frequency: the30

areas where the frequency increases (decreases) correspond to areas where the number of zero-crossings increases (decreases).

We note that the relative variations in Hilbert frequency are more pronounced than those in the number of crossings, and this

specifically holds in the regions where frequency variations are interpreted in terms of ITCZ migration.
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Figure 4. Relative change of time-averaged Hilbert frequency (in units of oscillations/year). (a) Average in the first ten years (1979–1988).

(b) Average in the last ten years (2007–2016). (c) Relative change of Hilbert frequency, ∆ω/〈ω〉. (d) Relative change of the number of

zero-crossings of the normalised SAT time series. In (a) and (b) the colour scale is adjusted to represent in white the regions where the

average frequency is one oscillation per year. In (c) and (d), a good qualitative agreement of spatial structures is seen; however, we note that

Hilbert frequency detects stronger variations than those measured by the number of zero-crossings.

Figures 5(a) and 5(b) display SAT time series in the dipole region indicated with the circle in Fig. 4(c), and also indicate

(in red) the zero-crossings. We can understand the difference that was detected in this region between the variance of Hilbert

amplitude (Fig. 3a) and the variance of anomaly (Fig. 3b). This difference is explained in the following terms: in the first

decade the seasonal cycle is more irregular than in the last decade, probably a consequence of an El Niño event in 1982–1983.

The anomaly series contains these slow fluctuations as well as the rapid ones, and thus its variance is affected by both effects.5

In contrast, the Hilbert amplitude is less affected by the slow fluctuations as its variance captures mainly the rapid fluctuations

of SAT.

To demonstrate the robustness of our findings, in the Supporting Information we compare the results obtained from ERA-

Interim with those obtained from another reanalysis dataset, NCEP-DOE. We find a good qualitative agreement in the spatial

structures in the maps of 〈ω〉, 〈a〉, σ2
ω and σ2

a, but we discuss also some relevant differences. In addition, to further understand10

the relationship between statistical properties of SAT and those of Hilbert amplitude and frequency, in the Supporting Infor-
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Figure 5. Normalised SAT time series and number of zero-crossings in the regions indicated with a circle in Fig. 4(c). In the red region (2.5

N, 245 E), panel (a), the number of zero-crossings increases in the last ten years with respect to the first ten years (289/202 respectively),

while in the blue region (7.5 S, 250 E), panel (b), it decreases (128/258 in the last/first ten years).

mation we apply Hilbert analysis to synthetic data generated by an autoregressive AR(1) process. We chose an AR(1) process

because it is commonly used in the literature to model climate data. We find that, when increasing the noise intensity in the

synthetic series, the Hilbert amplitude decreases while the frequency increases and show that this trend is also observed in real

SAT time series.

5 Conclusions5

We have used Hilbert analysis to quantify the changes in SAT dynamics, in a global scale, that have occurred over the last

three decades. From the SAT time series with daily resolution we derived the amplitude and the frequency time series, and then

calculated the relative change (between the first and the last decade) of average and variance of these series.Large variations

of Hilbert amplitude (more than 50%) in the Arctic and in Amazonia were interpreted respectively as due to ice melting and

precipitation decrease. The analysis of Hilbert frequency also uncovered areas of large changes. In particular, two areas of10

opposite changes in eastern Pacific Ocean and two areas of increase in western Pacific Ocean suggest a shift towards north and

a widening of the ITCZ. While there is evidence that ITCZ has moved north-south in the past, to the best of our knowledge

our work is the first one to confirm this migration in the last decades. Our findings have important implications because, as the
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ITCZ is the ascending branch of the Hadley cell, its migration affects both the Earth’s radiative balance and the release of latent

heat that drives the tropical atmospheric circulation. Taken together, these effects have not only local but far reaching climatic

consequences. Additional analysis provided in the Supporting Information confirms the robustness of these observations.

As the methodology used here can be applied to many other climatological time series that exhibit well defined oscillatory

behaviour, we believe that our work will stimulate new research to identify and quantify the impacts of climate change, directly5

from observed data.

Code and data availability. The Hilbert algorithm used is available in Bilato et al. (2014); the data sets used are ERA-Interim Reanalysis,

provided by the European Centre For Medium-Range Weather Forecasts (ECMWF), Reading, UK, from their website: https://www.ecmwf.int

and NCEP-DOE Reanalysis 2, provided by NOAA Boulder, Colorado, USA, from their website: http://www.esrl.noaa.gov/psd/.
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