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authors make a good argument for this, and I accept it fits a niche - the ability to understand 
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conclusions highlights that this model emulates the historical record - so either you see this 
as important or you don't! Perhaps a good way forward is to accept your parameter choice, 
but can you show that your main conclusions are not dependent on this - i.e. if you tuned the 
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Abstract. Changes to climate-carbon cycle feedbacks may significantly affect the Earth System’s response to greenhouse

gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth Sys-

tem Models (ESMs). Here, we construct a stylized global climate-carbon cycle model, test its output against comprehensive

ESMs, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain

aid understanding of carbon-cycle feedbacks and the operation of the carbon cycle. Specific results include that: different feed-5

back formalisms measure fundamentally the same climate-carbon cycle processes; temperature dependence of the solubility

pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate-carbon feedback; and

concentration-carbon feedbacks may be more sensitive to future climate change than climate-carbon feedbacks. Simple mod-

els such as that developed here also provide ‘workbenches’ for simple but mechanistically based explorations of Earth system

processes, such as interactions and feedbacks between the Planetary Boundaries, that are currently too uncertain to be included10

in comprehensive ESMs.

1 Introduction

The exchanges of carbon between the atmosphere and other components of the Earth system, collectively known as the carbon

cycle, currently constitute important negative (dampening) feedbacks on the effect of anthropogenic carbon emissions on

climate change. Carbon sinks in the land and the ocean each currently take up about one quarter of anthropogenic carbon15

emissions each year (Le Quéré et al., 2016). These feedbacks are expected to weaken in the future, amplifying the effect of

anthropogenic carbon emissions on climate change (Ciais et al., 2013). The degree to which they will weaken, however, is
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highly uncertain, with Earth System Models predicting a wide range of land and ocean carbon uptakes even under identical

atmospheric concentration or emission scenarios (Joos et al., 2013).

Here, we develop a stylised model of the global carbon cycle and its role in the climate system to explore the potential

weakening of carbon cycle feedbacks on policy-relevant time scales (<100 years) up to the year 2100. Whereas comprehensive

Earth System Models (ESMs) are generally used for projections of climate, models of the Earth System of low complexity5

are useful for improving mechanistic understanding of Earth system processes and for enabling learning (Randers et al., 2016;

Raupach, 2013). Compared to comprehensive Earth System Models, our model has far fewer parameters, can be computed

much more rapidly, can be more rapidly understood by both researchers and policy-makers, and is even sufficiently simple

that analytical results about feedback strengths can be derived. Compared to previous stylised models (Gregory et al., 2009;

Joos et al., 1996; Meinshausen et al., 2011a, c; Gasser et al., 2017a), our model features simple mechanistic representations,10

as opposed to parametric fits to ESM output, of aggregated carbon uptake both on land and in the ocean. Our stylised and

mechanistically based climate-carbon cycle model also offers a workbench for investigating the influence of mechanisms that

are at present too uncertain, poorly defined or computationally intensive to include in current Earth System Models. Such

stylised models are valuable for exploring the uncertain, but potentially highly impactful Earth system dynamics such as

interactions between climatic and social tipping elements (Lenton et al., 2008; Kriegler et al., 2009; Schellnhuber et al., 2016)15

and the planetary boundaries (Rockström et al., 2009; Steffen et al., 2015).

Analyses of climate-carbon cycle feedbacks conventionally distinguish four different feedbacks (Fig. 1) (Friedlingstein,

2015; Ciais et al., 2013). (i) In the land concentration-carbon feedback, higher atmospheric carbon concentration generally

leads to increased carbon uptake due to the fertilisation effect, where increased CO2 stimulates primary productivity. (ii) In

the ocean concentration-carbon feedback, physical, chemical and biological processes interact to sink carbon. Atmospheric20

CO2 dissolves and dissociates in the upper layer of the ocean, to be then transported deeper by physical and biological pro-

cesses. The concentration-carbon feedbacks are generally negative, dampening the effects of anthropogenic emissions. (iii)

In the land climate-carbon feedback, higher temperatures, along with other associated changes in climate, generally lead to

decreased storage on land at the global scale, for example due to the increase in respiration rates with temperature. (iv) In the

ocean climate-carbon feedback, higher temperatures generally lead to reduced carbon uptake by the ocean, for example due to25

decreasing solubility of CO2. The climate-carbon feedbacks are generally positive, amplifying the effects of carbon emissions.

We begin by introducing our stylised carbon cycle model and testing its output against historical observations and future

projections of Earth System Models. Having thus established the model’s performance, we introduce different formalisms used

to quantify climate-carbon cycle feedbacks and describe how they can be computed both numerically and analytically from

the model. We use our results to analytically study the relative strengths of different climate-carbon cycle feedbacks and how30

they may change in the future, as well as to compare different feedback formalisms. We conclude by speculating on how this

stylised model could be used as a ‘workbench’ for studying a range of complex Earth system processes, especially those related

to the biosphere.
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Figure 1. Climate-carbon cycle feedbacks and state variables as represented in the stylized model introduced in this paper. Carbon stored on

land in vegetation and soils is aggregated into a single stock ct. Ocean mixed layer carbon, cm, is the only explicitly modelled ocean stock

of carbon; though to estimate carbon-cycle feedbacks we also calculate total ocean carbon (Eq. (7)).

2 Model formulation

There is a well-developed literature on stylized models used for gaining a deeper understanding of Earth system dynamics and

even for successfully emulating the outputs of comprehensive coupled atmosphere-ocean and carbon cycle models (Anderies

et al., 2013; Gregory et al., 2009; Joos et al., 1996; Meinshausen et al., 2011a, c; Gasser et al., 2017a). We developed a

combination of existing models and new formulations to construct a global climate-carbon cycle model with the following5

characteristics:

1. The model includes processes relevant to the carbon cycle and its interaction with climate on the policy-relevant time

scale of the present to the year 2100. Stylised carbon cycle models often do not, for example, include explicit represen-

tations of the solubility or biological pumps.

2. The model produces quantitatively plausible output for carbon stocks and temperature changes.10

3. All parameters have a direct biophysical or biogeochemical interpretation, although these parameters may be at an ag-

gregated scale (for example, a parameter for the net global fertilisation effect, rather than leaf physiological parameters).

We avoid models or model components constructed by purely parametric fits, such as impulse response functions, to

historical data or projections of Earth System Models (Kamiuto, 1994; Gasser et al., 2017b; Joos et al., 1996; Harman

et al., 2011; Gregory et al., 2009; Meinshausen et al., 2011a).15
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4. The model is sufficiently simple that calculation of the model’s feedback strengths is readily analytically tractable. This

tractability may come at the expense of complexity, for example multiple terrestrial carbon compartments, or accuracy

at millennial or longer time scales (Lenton, 2000; Randers et al., 2016).

Building on the work of Anderies et al. (2013), we constructed a simple model with globally aggregated stocks of: atmo-

spheric carbon in the form of carbon dioxide, ca; terrestrial carbon, including vegetation and soil carbon, ct; and dissolved5

inorganic carbon (DIC) in the ocean mixed layer, cm. The model’s fourth state variable is global mean surface temperature

relative to pre-industrial, ∆T = T −T0. Compared to Anderies et al. (2013), our model includes more realistic representation

of terrestrial and ocean processes but without increase in model complexity, as well as time lags for climate response to CO2.

We now describe the dynamics of the land carbon stock, the ocean carbon stock, and atmospheric carbon and temperature in

our model.10

2.1 Land

Net primary production (NPP) is the net uptake of carbon from the atmosphere by plants through photosynthesis. NPP is ex-

pected to increase with concentration of atmospheric carbon dioxide ca. A simple parameterisation of this so-called fertilisation

effect is ‘Keeling’s formula’ for global NPP (Bacastow et al., 1973; Alexandrov et al., 2003):

NPP(ca) = NPP0

(
1 +KC log

ca
ca0

)
(1)15

Throughout this article, the subscript ‘0’ denotes the value of the quantity at a pre-industrial equilibrium, and ‘log’ denotes nat-

ural logarithm. Keeling’s formula incorporates all climate change-related effects on global NPP occurring simultaneously with

carbon dioxide changes, for example, precipitation and temperature effects, in addition to fertilisation effects. The curvature

of the log function represents limitations to NPP such as changing carbon-use efficiency (Körner, 2003) or nutrient limitations

(Zaehle et al., 2010). Constant climate sensitivity is also a key assumption, otherwise the relative weight of climate and CO220

effects on NPP would change.

At the same time, carbon loss from the world’s soils through respiration, R, is expected to increase at higher global mean

surface temperature, ∆T . We approximate the net temperature response of global soil respiration using the Q10 formalism

R(∆T ) =R0Q
∆T/10
R ct/ct0 (Xu and Shang, 2016), whereQR is the proportional increase in respiration for a 10 K temperature

increase. We assume that pre-industrial soil respiration is balanced by pre-industrial net primary productivity, R0 = NPP0. To25

avoid introducing multiple pools of carbon into the model, we also have to assume that global soil respiration is proportional

to total land carbon (rather than soil carbon). Respiration in our model implicitly also includes other carbon-emitting processes

such as wildfires or insect disturbances.

It follows that the change in global terrestrial carbon storage is

dct
dt

= NPP0

(
1 +KC log

ca
ca0

)
− NPP0

ct0
Q

∆T/10
R ct−LUC(t).30
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In this expression we have also included loss of terrestrial carbon due to land use emissions LUC(t). We rearrange this expres-

sion to give

dct
dt

=
NPP0

ct0
Q

∆T/10
R [K(ca,∆T )− ct]−LUC(t) (2)

where the terrestrial carbon carrying capacity is

K(ca,∆T ) =
1 +KC log ca

ca0

Q
∆T/10
R

ct0. (3)5

For model simplicity, we do not explicitly model factors affecting terrestrial carbon uptake such as seasonality, species

interactions, species functionality, migration, and regional variability.

2.2 Ocean

In the upper ocean mixed layer, mixing processes allow exchange of carbon dioxide with the atmosphere. The solubility and

biological pumps then transport carbon from the mixed layer into the deep ocean. Since the residence time of deep ocean carbon10

is several centuries, we explicitly only model the dynamics of upper ocean carbon while the deep ocean is treated merely as an

extremely large carbon reservoir. We include the effects of ocean carbon chemistry, the solubility and biological pumps, and

ocean-atmosphere diffusion on upper ocean mixed layer carbon.

Ocean uptake of carbon dioxide from the atmosphere is chemically buffered by other species of dissolved inorganic carbon

such as HCO−3 and CO2−
3 , which are produced when dissolved CO2 reacts with water. The reaction of CO2 with water,15

producing these other species, reduces the partial pressure of CO2 in water allowing for more ocean CO2 uptake before

equilibrium with the atmosphere is achieved. The Revelle factor, r, is defined as the the ratio of the proportional change in

carbon dioxide content to the proportional change in total dissolved inorganic carbon (Sabine et al., 2004; Goodwin et al.,

2007). For simplicity, we assume a constant Revelle factor, except for the temperature dependence, DT , of the solubility of

CO2 in sea water. Therefore CO2 diffuses between the atmosphere and ocean mixed layer at a rate proportional to20

ca− p(cm,∆T ), (4)

where

p(cm,∆T ) = ca0

(
cm
cm0

)r
1

1−DT ∆T
, (5)

since at pre-industrial equilibrium p(cm0,0) = ca0.

There are two main mechanisms by which carbon is transported out of the upper ocean mixed layer into the deep ocean25

stocks: the solubility and biological pumps. In the solubility pump, overturning circulations exchange mixed layer and deep

ocean water. We assume that the large size of the deep ocean means its carbon concentrations are negligibly changed over the

100-year time scales relevant for the model. The net transport of carbon to the lower ocean by the solubility pump can therefore

be represented by

w0(1−wT ∆T )(cm− cm0) ,30
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where w0 is the (proportional) rate at which mixed layer ocean water is exchanged with the deep ocean and wT parameterises

weakening of the overturning circulation that is expected to occur with future climate change (Collins et al., 2013).

The biological pump refers to the sinking of biomass and organic carbon produced in the upper ocean to deeper ocean layers

(Volk and Hoffert, 1985). In the models on which the IPCC reports are based, a weakening of the biological pump is predicted

under climate change, mostly due to a decrease in primary production, in turn due to increases in thermal stratification of ocean5

waters (Bopp et al., 2013). We represent this climate-induced weakening in a single approximately linear factor, so that the rate

of carbon transported out of the upper ocean mixed layer by the biological pump to lower deep sea layers is given by

B(∆T ) =B0(1−BT ∆T ).

As on land, we assume a pre-industrial equilibrium where the biological pump was balanced by transport of carbon back to the

mixed layer by ocean circulation. We neglect deposition of organic carbon to the sea floor and the long time-scale variations10

in the biological pump that may have contributed to glacial-interglacial cycles (Sigman and Boyle, 2000). We therefore add an

additional term B(∆T )−B(0) to the transport of carbon from the ocean mixed layer to the deep ocean. Organic carbon that

does not sink to the deep ocean is rapidly respired back to forms of inorganic carbon; the ocean mixed layer stock of organic

carbon is therefore small, around 3 PgC (Ciais et al., 2013), and we do not count it in the model’s carbon balance.

By combining the expressions for the solubility and biological pumps with ocean-atmosphere carbon dioxide diffusion, we15

obtain the rate of change of ocean mixed layer DIC, cm:

dcm
dt

=
Dcm0

rp(cm0,0)
(ca− p(cm,∆T ))−w0(1−wT ∆T )(cm− cm0)−B(∆T ) +B(0), (6)

The coefficient of the first term was chosen such that 1/D is the time scale on which carbon dioxide diffuses between the

atmosphere and the ocean mixed layer (that is, derivative of the first term with respect to cm, evaluated at the pre-industrial

equilibrium, is D).20

The carbon content of the deep ocean does not explicitly enter Eq. (6). To evaluate ocean carbon feedbacks, however, we

require the change in total ocean carbon content cM compared to pre-industrial conditions. We calculate this as ocean mixed

layer carbon plus carbon transported to the deep ocean by the solubility and biological pumps:

∆cM = ∆cm +

t∫
[w0(1−wT ∆T )(cm(t)− cm0) +B(∆T )−B(0)]dt (7)

We do not explicitly model factors such as the thickness of ocean stratification layers, spatial variation of stratification, nutri-25

ent limitations to NPP, or changes in ocean circulation due to wind forcing, freshwater forcing or sea-ice processes (Bernardello

et al., 2014).

2.3 Atmosphere

We define cs to be the total carbon in our ‘system’ comprised by the ocean mixed layer, atmospheric and terrestrial carbon

stocks, that is,30

ca + ct + cm = cs. (8)
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The only processes that affect the total carbon are human emissions of fossil carbon into the atmosphere, e(t), and export of

carbon into the deep ocean by the solubility and biological pumps, giving

dcs
dt

= e(t)−w0(1−wT ∆T )(cm− cm0)− (B(∆T )−B(0)) , (9)

in which the initial value of cs is ca0 + ct0 + cm0. To obtain the dynamics of atmosphere carbon stocks, we therefore solve the

differential equation (9) and then use the carbon balance equation (8) to find ca.5

Increasing atmospheric carbon dioxide levels ca cause an change in global mean surface temperature, ∆T , compared to its

pre-industrial level. To model the response of ∆T , we follow the formulation of Kellie-Smith and Cox (2011), which includes

a logarithmic response as per the Arrhenius law and a delay of time scale τ . Physically, this time delay is primarily due to the

heat capacity of the ocean.

d∆T

dt
=

1

τ

(
λ

log2
log

(
ca
ca0

)
−∆T

)
. (10)10

The climate sensitivity λ specifies the increase of temperature in response to a doubling of atmospheric carbon dioxide levels.

The climate sensitivity accounts for energy balance feedbacks such as from clouds and albedo. We use the transient climate

sensitivity (Collins et al., 2013) as this specifies the response of the climate system over an approximately 100-year time scale

(see section 3).
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Table 1. Model parameters.

Name Symbol Value Reference/Notes

Pre-industrial atmospheric carbon ca0 589 PgC Ciais et al. (2013)

Pre-industrial soil and vegetation

carbon

ct0 1875 PgC 1325 PgC of soil organic carbon in top metre of soil (Köchy et al., 2015)

plus midrange of vegetation carbon estimate by the Ciais et al. (2013).

Pre-industrial ocean mixed layer

carbon

cm0 900 PgC Ciais et al. (2013)

Climate sensitivity (TCR) λ 1.8 K Multi-model mean transient climate response (Flato et al., 2013)

Climate lag τ 4 yr Calculations on ocean heat uptake, the primary cause of climate lag,

indicate a response time (e-folding time) of 4 yr for time scales up to

centuries, before deep ocean heat uptake dominates at millennial time

scales (Gregory et al., 2015). This result is consistent with simulations

that indicate that maximum warming after a CO2 pulse is reached after

only a decade (Ricke and Caldeira, 2014) and with results from impulse

response model experiments (Joos et al., 2013).

Atmosphere-ocean mixed layer

CO2 equilibration rate

D 1 yr−1 Time scale of approximately 1 year, although highly spatially dependent

(Jones et al., 2014).

Revelle (buffer) factor r 12.5 Williams et al. (2016)

Solubility temperature effect DT 4.23%/K Takahashi et al. (1993); Ciais et al. (2013, p498)

Pre-industrial biological pump B0 13 PgC/yr Ciais et al. (2013)

Temperature dependence of biolog-

ical pump

BT 3.2%/K 12% decrease (Bopp et al., 2013, Fig 9b) after approximately 3.7 K

climate change (Collins et al., 2013)

Solubility pump rate w0 0.1 yr−1 DIC flux rate from ocean mixed layer divided by DIC stock in mixed

layer (Ciais et al., 2013)

Weakening of overturning circula-

tion with climate change

wT 10%/K Approximate fit to values reported by Collins et al. (2013, p1095)

Terrestrial respiration temperature

dependence

QR 1.72 Raich et al. (2002); Xu and Shang (2016). Based on soil respiration,

which contributes the majority of terrestrial ecosystem respiration.

Pre-industrial NPP NPP0 55 PgC/yr Wieder et al. (2015); Sitch et al. (2015)

Fertilisation effect KC 0.3 Estimated by substituting recent NPP ≈ 60 PgC/yr (Wieder et al., 2015;

Sitch et al., 2015) and recent terrestrial carbon stocks, ct ≈ ct0 + 240

(Ciais et al., 2013), into Eq. (1). Alexandrov et al. (2003) found that

values between 0.3 and 0.4 are compatible with results from a process-

based global NPP model.
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Table 2. Model validation. Historical changes are carbon stocks in 2011 relative to stocks in 1750 (Ciais et al., 2013) and temperatures in

2012 relative to temperatures in 1880 (Hartmann et al., 2013). Predicted future changes are carbon stocks in 2100 compared to 2012 (Collins

et al., 2013) and global mean surface temperatures (GMST) averaged over 2081–2100 relative to 1986–2005 (Collins et al., 2013), under the

range of RCP scenarios.

Ocean carbon changes (PgC) Land carbon changes (PgC) GMST change, ∆T (K)

IPCC AR5 Model result IPCC AR5 Model result IPCC AR5 Model result

Historical 155± 30 95 −30± 45 26 0.85 [0.65 to 1.06] 0.82

RCP2.6 150 [105 to 185] 174 65 [-50 to 195] 67 1.0 [0.3 to 1.7] 0.5

RCP4.5 250 [185 to 400] 243 230 [55 to 450] 135 1.8 [1.1 to 2.6] 1.2

RCP6 295 [265 to 335] 278 200 [-80 to 370] 168 2.2 [1.4 to 3.1] 1.7

RCP8.5 400 [320 to 635] 340 180 [-165 to 500] 207 3.7 [2.6 to 4.8] 2.4

3 Model parameterisation and validation

Our climate-carbon cycle model has twelve parameters, four state variables and three nontrivial initial conditions (by definition,

the initial value of ∆T is 0). We choose to parameterise each process with the best available knowledge about that process,

rather than try to force the model to fit historical data. This is in line with our stated model purposes of understanding and

learning, rather than prediction. Parameters for the response of climate to carbon dioxide (λ, τ ) and two parameters of the5

response of the ocean to changing temperature (BT and wT ) were set based on the output of atmosphere-ocean global circu-

lation models. For the climate sensitivity λ, transient climate response was used. All other parameters are based on historical

observations of the global carbon cycle (Table 1).

Unless otherwise noted, we perform emissions-based model runs using harmonized historical data and future RCP scenarios

on fossil fuel emissions [e(t)] and land use emissions [LUC(t)] (Meinshausen et al., 2011b). While the focus of our study is on10

future climate change, from the present day until 2100, we begin simulations in 1750 to compare our model against historical

observations. Time series of the model output are displayed in Fig. 2. Model solutions were approximated in continuous time.
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Figure 2. Model output under forcing from different RCP scenarios: (a) land ocean carbon stock change, (b) ocean land carbon stock changes,

(c) atmospheric carbon stock change, and (d) global mean surface temperature change. Historical changes in carbon stocks are from Le

Quéré et al. (2016) and historical temperature anomalies are from NOAA (2018). The historical temperature dataset of NOAA (2018), which

is relative to the period 1901-2000, has been offset to match the model’s average temperature anomaly over the same period.

4 Feedback analysis

Our climate-carbon cycle model is sufficiently simple that the strengths of its feedbacks can be estimated analytically. Such

computations are useful since the resulting symbolic expressions can be used to identify how parameters of interest affect

feedback strengths and model dynamics. In this section we introduce definitions of feedback strengths, calculate climate-

carbon cycle feedbacks analytically and numerically, and estimate feedback nonlinearities.5

4.1 Definitions

There are multiple measures of carbon cycle feedbacks currently in use. We here review three of the most common measures.

Consider an emission of E PgC over some time period to the atmosphere. In the absence of carbon cycle feedbacks, the

atmospheric carbon content would increase by ∆coff
a ≡ E. With a feedback switched on, the atmospheric carbon content would

actually change by ∆con
a . The feedback factor is (Zickfeld et al., 2011)10

F =
∆con

a

∆coff
a

. (11)
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Out of the total atmospheric carbon change ∆con
a , the carbon cycle feedback contributes (Hansen et al., 1984)

∆cfeedback
a = ∆con

a −∆coff
a . (12)

Gain is the change in a feedback to atmospheric carbon content caused by changes in atmospheric carbon content:

g =
∆cfeedback

a

∆con
a

. (13)

Gain and feedback factor are related by5

F =
1

1− g
. (14)

An alternative formalism, introduced by Friedlingstein et al. (2006), allows feedbacks to be characterised from carbon cycle

model output. Climate models are not required, except as a forcing to the carbon cycle model. The formalism relates the

changes in terrestrial and marine carbon stocks to changes in global mean temperature and atmospheric carbon dioxide as

follows:10

∆ct = βL∆ca + γL∆T (15)

∆cM = βO∆ca + γO∆T. (16)

Here the βL and βO feedback parameters are the land and ocean, respectively, carbon sensitivities to atmospheric carbon

dioxide changes ∆ca. Likewise, γL and γO are the land and ocean, respectively, carbon sensitivities to temperature changes

∆T . Note that cM denotes the total marine carbon stock, both mixed layer and deep ocean. The differences ∆ca, etc., are15

usually calculated over the duration of a simulation. To isolate the β and γ feedback parameters, simulations are conducted

with biogeochemical coupling only and with radiative coupling only (Gregory et al., 2009).

In both the formalisms introduced thus far, the feedback measures are calculated by examining the changes in carbon stocks

at the end point of model simulations. In contrast, Boer and Arora (2009) estimate sensitivities Γ and B of the instantaneous

carbon fluxes from atmosphere to land and ocean:20

dct
dt

=BL∆ca + ΓL∆T (17)

dcM
dt

=BO∆ca + ΓO∆T. (18)

These feedback parametersB and Γ are usually computed for all time points during a simulation, again using biogeochemically

coupled and radiatively coupled simulations.

The two sets of parameters (B,Γ) and (β,γ) are related by25

β∆ca =

∫
B∆cadt (19)

γ∆T =

∫
Γ∆Tdt. (20)

Accordingly, Boer and Arora (2013) refer toB and Γ as direct feedback parameters and to β and γ as time-integrated feedback

parameters.
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4.2 Analytical feedback strengths based on equilibrium changes

Analytical approximations to the strengths of carbon cycle feedbacks in our model require choosing a time scale on which

the feedbacks will be calculated. Numerically estimated feedback factors [Eq. (11)] and time-integrated feedback parameters

[Eqs. (15-16)] are conventionally calculated using carbon stock changes over 100 years or more. Responses on the longest

time scales of our model are therefore most relevant if our analytical approximates are to approximate numerically calculated5

values. While recognising that the Earth’s climate system is presently far from equilibrium, we use changes in the equilibrium

state of the model to approximate model responses over long time scales.

We analytically calculate the gains associated with each of the feedback loops in Fig. 1 as follows. We calculate the sensitivity

(mathematically, partial derivative) of the equilibrium value of each quantity in the feedback loop with respect to the preceding

quantity in the loop. We form the product of the derivatives (as per the chain rule of differentiation) to estimate the gain of that10

feedback loop. For example, to calculate the land climate-carbon gain we calculate the sensitivity of equilibrium temperature

with respect to changes in atmospheric carbon content (∂T ∗/∂ca), multiplied by the sensitivity of equilibrium terrestrial carbon

with respect to changes in temperature (∂c∗t /∂T ), multiplied by the sensitivity of equilibrium atmospheric carbon with respect

to changes in terrestrial carbon (∂c∗a/∂ct).

Land climate-carbon equilibrium gain g∗TL ≡
∂T ∗

∂ca

∂c∗t
∂T

∂c∗a
∂ct

15

Land concentration-carbon equilibrium gain g∗L ≡
∂c∗t
∂ca

∂c∗a
∂ct

Ocean climate-carbon equilibrium gain g∗TO ≡
∂T ∗

∂ca

∂cM
∂T

∂c∗a
∂cM

Ocean concentration-carbon equilibrium gain g∗O ≡
∂cM
∂ca

∂c∗a
∂cM

The subscript T denotes that the feedback involves temperature. Asterisks (*) denote equilibrium quantities. From these gains,

the feedback factors F ∗TL, F ∗L, F ∗TO and F ∗O can be calculated using Eq. (14). We label these gains and feedbacks factors g∗20

and F ∗, respectively, to denote they are based on an equilibrium approximation, not directly from transient simulations as

estimated by Zickfeld et al. (2011).

The derivatives of c∗a are trivial to calculate: by carbon balance, ∂c∗a
∂ct

=
∂c∗a
∂cM

=−1. To calculate the derivatives of c∗T , we set

0 = dct
dt , solve for ct and calculate the necessary derivatives. A similar procedure provides ∂T∗

∂ca
.

The remaining derivatives are ∂cM
∂T and ∂cM

∂ca
. Carbon sunk into the deep ocean is substantial and cannot be neglected. Deep25

ocean carbon storage equilibrates on time scales of millennia or more, however, far longer than the time scales of interest in

this model (we therefore write derivatives of cM rather than c∗M ). We therefore cannot use the same equilibrium approach as

for the other variables. Instead, we derive approximations to Eq. (7) as follows. First, we observe that in the SRES A2 scenario

used below both cm(t) and ∆T (t) can be approximated as linear increases, starting at cm = cm0 and ∆T = 0 respectively,

over a time interval tlin. We estimate this time interval by tlin = (cm(tend)− cm0)/c′m(tend) using the value cm and gradient c′m30

at the end of the simulation period. We obtain

∆cM ≈ cm− cm0 +w0(
1

2
− 1

3
wT ∆T )(cm− cm0)tlin−

1

2
B0BT ∆Ttlin. (21)

12



We use this equation to calculate the derivatives ∂cM
∂T and ∂cM

∂ca
. Evaluating these derivatives will involve the derivatives ∂cm

∂T

and ∂cm
∂ca

. Since partial pressures across the air-sea interface equilibrate rapidly on the time scale of the model (D = 1yr−1,

Table 1), we assume that ca ≈ p(cm,∆T ), rearrange for cm and then calculate the appropriate derivatives from the resulting

equation.

We analytically estimate equilibrium versions of the time-integrated feedback parameters of Friedlingstein et al. (2006)5

using a similar approach:

γ∗L =
∂c∗t
∂T

β∗L =
∂c∗t
∂ca

γ∗O =
∂cM
∂T

β∗O =
∂cM
∂ca

.10

Since the ocean component of the model has multiple processes that respond to temperature, some analytical forms were too

complicated for easy visual inspection (Table A1). We derived approximate analytical feedbacks by comparing the magnitudes

of terms in the numerator and denominator of the feedback measures by expanding in power series of DTT and ca/ca0.

4.3 Analytical feedback strengths based on carbon fluxes

We estimate the direct feedback parameters as follows:15

Γ∗L =
dct
dt

∣∣∣∣
ca=ca0

1

∆T

B∗L =
dct
dt

∣∣∣∣
∆T=0

1

ca− ca0

Γ∗O =
dcM
dt

∣∣∣∣
ca=ca0

1

∆T

B∗O =
dcM
dt

∣∣∣∣
∆T=0

1

ca− ca0
.

Here dct/dt and dcM/dt denote the atmosphere-land and atmosphere-ocean fluxes. The subscript ∆T = 0 denotes a biogeo-20

chemically coupled (and radiatively decoupled) simulation and ca = ca0 denotes a radiatively coupled (and biogeochemically

decoupled) simulation.

The values of the feedback parameters are strongly scenario-dependent (Arora et al., 2013). To calculate the direct feedback

parameters, we assume a standard CO2-quadrupling concentration pathway in order to compare our results with Arora et al.

(2013). This scenario has ca(t) = ca0a
t where a= 1.01. In this scenario, 1

ca
dca
dt = loga and, ignoring an initial exponential25

transient, dT
dt = λ loga/ log2.

For the atmosphere-land carbon flux, the calculation is straightforward under the following assumptions. We assume that

NPP0/ct0� loga so that ct tracks its carrying capacity ct ≈K [Eq. (2)]. We also ignore land use change, so that dct
dt ≈

dK
dt .

Then we calculate dK
dt |ca=ca0

= ∂K
∂T

dT
dt and dK

dt |∆T=0 = ∂K
∂ca

dca
dt .

13



While the atmosphere-ocean flux could be read off directly from the first term of Eq. (6), this form is however not particularly

useful. As it involves a small difference between two large quantities, ca and p(cm,∆T ), the size of the difference can only be

estimated from numerical results and gives no immediate insight into how it depends on parameters. Furthermore, we seek to

compare our analytical results to the results presented by Arora et al. (2013), in which the feedback parameters are presented

as functions of ca or ∆T only (not cm).5

We instead derive an approximation based on time scale separation as follows. The characteristic time scale of atmosphere-

ocean diffusion is much faster than the solubility pump, biological pump or human emissions into the atmosphere (D�
w0,B0/cm0, loga). Since atmosphere-ocean diffusion is the fastest process, ocean mixed layer carbon content rapidly gains

an equilibrium cm = p−1(ca,∆T ) with respect to atmospheric carbon content, where p−1(ca,∆T ) is the solution to ca =

p(cm,∆T ). On the time scale of our model, the atmosphere-ocean flux is therefore controlled by the solubility and biological10

pumps, with diffusion providing a rapid coupling between ocean mixed layer and atmosphere. An approximation for the

atmosphere-ocean flux is therefore dcM/dt≈ w0(1−wT ∆T )(p−1(ca,∆T )− cm0)−B0BTT , which upon substitution into

the definitions of B∗O and Γ∗O gives the forms in Table A1. Taylor series expansions and L’Hôpital’s rule were then used to

derive the approximate forms in Table 3.

4.4 Numerical estimation of feedback strengths15

In addition to the analytical approximations to carbon cycle feedbacks derived from our model, we also estimate feedback

factors from direct numerical simulations of our model. To compare the results of our model to previous studies, we use the

following scenarios. To compare our results with the time-integrated feedback parameters reported by Friedlingstein et al.

(2006) and the feedback factors and gains of Zickfeld et al. (2011), we employ the SRES A2 emissions scenario used in those

articles. To compare our results with the direct feedback parameters of Arora et al. (2013), we use the same scenario used in20

that article in which CO2 concentration increases 1% per year until it quadruples (approximately 140 years). For each scenario,

we perform four simulations:

1. Fully coupled simulation.

2. Completely uncoupled simulation, giving coff
a (t) = ca0 +

∫ t
E(t)dt for the emissions-driven scenario and the specified

concentration pathway for concentration-driven scenario.25

3. Biogeochemically coupled simulation. We switch off feedbacks involving temperature response to atmospheric CO2, by

setting λ= 0. Since our model contains no radiative forcing other than changes in CO2, temperature ∆T = 0 in this

simulation. From this simulation we estimate the carbon-concentration feedback factors via land FL = ∆con
a /∆c

off
a =

1−∆ct/∆c
off
a and ocean FO = ∆con

a /∆c
off
a = 1−∆cM/∆c

off
a , time-integrated feedback parameters βL = ∆ct/∆ca and

βO = ∆cM/∆ca, and direct feedback parameters BL(t) = dct
dt /(ca− ca0) and BO(t) = dcM

dt /(ca− ca0).30

4. Radiatively coupled simulation. We switch off feedbacks involving the carbon cycle, by setting KC = 0 and changing

the ca in Eq. (6) to ca0. From this simulation we estimate the carbon-climate feedback factors FTL = 1−∆ct/∆c
off
a and

14



Table 3. Feedback analysis. Gains (g), feedback factors (F ), time-integrated feedback parameters (γ and β) and direct feedback parameters

(Γ and B) were calculated analytically and numerically. Analytical ocean feedbacks are approximations of the exact forms in Table A1 (see

Sec. 4.2. Exact forms were used to calculate numerical values. In this table, p≡ p(cm,T ). Units of the climate-carbon integrated feedback

parameters are PgC/K and concentration-carbon integrated feedback parameters are PgC/ppm. Ranges for analytical results are written in

the form (value at start of simulation) to (value at end of simulation). Emissions scenarios are as indicated; land use emissions were assumed

to be zero. From the results of simulations using the SRES A2 scenario we use tlin ≈ 100 corresponding to a period between the years 2000

and 2100.

Feedback measure Land climate- Ocean climate- Land conc.- Ocean conc.-

carbon feedback carbon feedback carbon feedback carbon feedback

Gain, analytical expression
λct0

(
1 +KC log ca

ca0

)
logQR

10caQ
∆T/10
R log2

λtlin
ca log2

(
B0BT

2
+
cmDTw0

2r − ct0KC

caQ
∆T/10
R

−cmw0tlin
2car

+
w0wT (cm − cm0)

3

)
Feedback factor (numerical scenario: SRES A2) (> 1 amplifies climate change; < 1 dampens climate change)

- estimate from analytical gain 1.81 to 1.18 1.01 to 1.09 0.51 to 0.81 0.89 to 0.84

- from simulation 1.15 1.10 0.80 0.73

- Zickfeld et al. (2011) 1.25 1.22 0.66 0.71

Time-integrated feedback parameter (numerical scenario: SRES A2) (< 0 amplifies climate change; > 0 dampens climate change)

- analytical expression − ct0 logQR

10Q
∆T/10
R

−B0BT
tlin
2

− cmDTw0tlin
2r

ct0KC

ca

cmw0tlin
2car−w0wt(cm − cm0)

tlin
3

- estimate from analytical form -102 to -86 -3 to -67 2.04 to 0.51 0.26 to 0.42

- from simulation -74 -48 0.84 1.09

- Zickfeld et al. (2011) -129 -32 1.32 0.98

- Friedlingstein et al. (2006) -79 (-20 to -177) -30 (-14 to -67) 1.35 (0.2 to 2.8) 1.13 (0.8 to 1.6)

Direct feedback parameter (numerical scenario: CO2 doubling) (< 0 amplifies climate change; > 0 dampens climate change)

- analytical expression −ct0λ logQR loga

10∆T log2
−w0cm0DT

r
−B0BT

ct0KC loga

ca − ca0

w0cm
rca

- estimate from analytical form Fig. A1a Fig. A1b Fig. A1a Fig. A1b

- from simulation Fig. A1a Fig. A1b Fig. A1a Fig. A1b

- Arora et al. (2013) see text

Nonlinearity -0.43 -0.11 0.03 0.03

FTO = 1−∆cM/∆c
off
a , time-integrated feedback parameters γL = ∆ct/∆T and γO = ∆cM/∆T following Arora et al.

(2013), and direct feedback parameters ΓL(t) = dct
dt /∆T and ΓO(t) = dcM

dt /∆T .
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4.5 Feedback nonlinearity

Zickfeld et al. (2011) found, in emissions-driven scenarios, that the fully coupled simulation sunk more terrestrial and marine

carbon than the sum of the biogeochemically and radiatively coupled scenarios. They refer to this difference as the non-linearity

of the feedback, with the land sink contributing 80% of the nonlinearity and the ocean sink 20%. Our analytical expressions

for the feedbacks can be used to obtain an alternative measure of feedback nonlinearity.5

We evaluate the nonlinearity in the ocean and land climate-carbon feedbacks byF ∗TO(ca, cm, ct,∆T )−F ∗TO(ca0, cm0, ct0,∆T )

and F ∗TL(ca, cm, ct,∆T )−F ∗TL(ca0, cm0, ct0,∆T ), respectively, where the F ∗(ca0, cm0, ct0,∆T ) are analytical approxima-

tions of feedback factors from a radiatively coupled simulation (all carbon stocks are fixed at pre-industrial levels). We eval-

uate the nonlinearities in the ocean and land concentration-carbon feedbacks by F ∗O(ca, cm, ct,∆T )−F ∗O(ca, cm, ct,0) and

F ∗L(ca, cm, ct,∆T )−F ∗L(ca, cm, ct,0), respectively, where the F ∗(ca, cm, ct,0) are analytical approximations of feedback fac-10

tors from a biogeochemically coupled simulation (temperature is fixed at its pre-industrial level). These expressions indicate

the effect of temperature and atmospheric carbon on the concentration-carbon and climate-carbon feedbacks, respectively, We

used the SRES A2 scenario.

5 Results and Discussion

5.1 Model evaluation15

Most predictions of our model are within the range of model predictions produced for the IPCC’s Fifth Assessment Report (Ta-

ble 2). Our model estimates around 55 PgC more historical land carbon uptake than the IPCC multi-model mean, possibly due

to our simplification to a single land carbon pool. Because it omits radiative forcing due to greenhouse gases other than CO2,

our model consistently underestimates future temperature changes, although in all except the RCP8.5 scenario the projections

are within the IPCC model range. The purpose of our model is not to precisely predict future climate change, but to serve as20

an approximate, mechanistically based emulator of the carbon cycle component of Earth System Models (see Sec. 2). If we

choose parameters to fit historical observations rather than based on the best available knowledge about each process

(see Sec. 3), then our results remain mostly within IPCC model range although ocean and land uptake are consistently

above and below the IPCC multi-model mean, respectively (Table A2a). We conclude that the model emulates historical

observations and future projections of Earth System Models with sufficient accuracy for this purpose.25

5.2 Feedback analysis

All feedback measures calculated directly from our stylised model simulations, as well as most of our analytically estimated

feedback measures, are within a factor of 2 of the mean output from Earth System Models reported by Friedlingstein et al.

(2006) and Zickfeld et al. (2011) [Table 3; compare also Fig. A1 with figures 4-5 of Arora et al. (2013) for direct feedback

parameters]. This is a remarkably good agreement considering the highly stylised nature of our model. Furthermore, all of30

the numerically time-integrated feedback parameters from our stylised model are within the multi-model range reported by
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Friedlingstein et al. (2006). This agreement The agreement observed here serves as additional validation of our model as well as

validation of the approximations used to calculate analytical feedback factors.

An exception to the close agreement is the ocean concentration-carbon feedback, with analytically estimated feedback

factor and time-integrated feedback parameter indicating a weaker negative feedback than the numerical estimates from our

stylised model or ESMs. This mismatch is primarily due to two approximations: one in the numerical simulation and one in5

the analytical approximation. The numerical approximation is that disconnecting climate feedbacks in the biogeochemically

coupled simulation leaves less carbon available to be sunk into the ocean, placing the ocean feedback at a different point in the

highly nonlinear (as parameterised by the Revelle factor) ocean carbon uptake dynamics. The analytical approximation is that

Eq. (21) underestimates carbon sunk into the deep ocean.

We used parameters (Table 1) based on the best available data about each process (see Section 3). With a set of10

parameters based instead on fit to historical changes (Table A2), the numerically estimated feedbacks became slightly

stronger: that is, the already positive climate-carbon feedbacks became more positive and the already negative concentration-

carbon feedbacks more negative. The numerical feedback estimates retained however good agreement with analytical

estimates as well as with previous numerical estimates by Friedlingstein et al. (2006) and Zickfeld et al. (2011). One

exception was the ocean concentration-carbon feedback, where the analytical estimate remained outside Friedlingstein15

et al.’s range as noted above but the direct numerical estimate moved to also be outside their range. We conclude that

our results are relatively insensitive to parameter values, though mechanistically based parameter values perform slightly

better than fitted parameter values.

The Focusing on the analytical expressions, we observe that the approximate analytical expressions for the three different

feedback measures all have similar dependences on state variables and parameters. All measures of the land climate-carbon20

feedback have dependence of the form ct0 logQR/Q
∆T/10
R . The ocean climate-carbon feedbacks all have terms of the form

B0BT and w0DT cm/r. The land concentration-carbon feedback has the form ct0KC/ca and the ocean concentration-carbon

feedbacks have the form w0cm/rca. We conclude that for each type of carbon cycle feedback, all three feedback formalisms

detect similar features of the climate-carbon system.

The analytical expressions provide rapid insight into how feedback strengths depend on state variable and parameter values25

that could otherwise only be studied numerically or by qualitative reasoning. The analytical forms show that increasing Revelle

factor r, as is likely to occur in an increasingly acidic ocean (Sabine et al., 2004), will decrease the strengths of ocean climate-

carbon and concentration-carbon feedbacks. Weakening overturning circulation, via w0, would also decrease the strength of

the ocean carbon cycle feedbacks. On land, the parameters QR and KC control the terrestrial carbon cycle feedbacks.

We can compare likely trends in feedback strengths from the analytical expressions for the direct feedback parameters. Ac-30

cording to our model, the destabilising ocean climate-carbon feedback is almost constant, while the ocean concentration-carbon

feedback weakens with cm (since cm/ca ∼ c1−rm ). Similarly, according to our model the destabilising land climate-carbon feed-

back will weaken less than the stabilising concentration-carbon feedback (under CO2 doubling, ∼Q−∆T/10
R weakens by 9%

at the new temperature equilibrium while ∼ 1/ca weakens by 50%). This difference between the land climate-carbon and

concentration-carbon feedbacks stems from the differing curvatures of K(ca,∆T ) as a function of ∆T (close to linear) and ca35
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(concave). We conclude that under continued carbon emissions, according to our model, both land and ocean feedbacks will

overall become more positive.

Where multiple processes contribute in parallel to a feedback, inspection of analytical forms can indicate the relative con-

tributions of the different processes to the feedback. In the ocean component of the model, CO2 solubility, the biological

pump, and the solubility pump are all temperature-dependent and therefore contribute to the ocean climate-carbon feedback.5

Remarkably, all three processes contribute temperature dependences of a similar magnitude; we therefore list all three in the

approximate analytical gain and time-integrated feedback parameter in Table 3. The three terms represent temperature depen-

dence of the biological pump, CO2 solubility, and the solubility pump, respectively.

5.3 Feedback nonlinearity

As shown in Sec. 4.5, our analytical feedback expressions enable a new way of estimating feedback nonlinearities that is not10

possible from direct numerical simulation. Since the sum of the four nonlinearities is negative (Table 3), we conclude that

summing feedbacks found by individual decoupled simulations will overestimate the atmospheric carbon levels, that is, un-

derestimate land and ocean sinks. This result matches the findings of Zickfeld et al. (2011) and Matthews (2007). Terrestrial

feedbacks contributed 83% of the total nonlinearity in our model, compared to 80% reported by Zickfeld et al. (2011). Fur-

thermore, we can distinguish the nonlinearities in the climate-carbon and concentration-carbon feedbacks. We found that the15

nonlinearity in the terrestrial carbon-climate feedback was almost four times larger than any other (Table 3). By inspecting the

analytical derivation of the gains we conclude that this dominance is likely due to a combination of three reasons: First, due to

the sensitivity of temperature to carbon dioxide, ∂T/∂ca = λ/ca log2, the carbon-climate feedbacks are much more sensitive

to ca than the concentration-carbon feedbacks are to ∆T . Second, the nonlinearity in the land climate-carbon feedback is larger

than the ocean climate-carbon feedback because its feedback factor is larger and therefore more sensitive to changes in gain20

(see Eq. (13)). Third, the century time-scale of the simulation prevented ocean carbon dynamics, which generally take place

on longer time scales, from being exhibited. We conclude that care must be taken when summing results for feedbacks from

decoupled simulations, especially for simulations involving land feedbacks.

6 Conclusions

Earth System Models span a wide variety range of complexity. Here, we constructed a highly stylised, globally aggregated25

climate-carbon cycle model. Despite the model’s simplicity—just four state variables—the model emulated globally aggre-

gated historical trends and future projections of Earth System Models. The model’s simple form allowed climate-carbon cycle

feedbacks to be estimated analytically, providing mechanistic insight into these processes. For example, we showed that carbon-

climate feedbacks are less sensitive than carbon-concentration feedbacks; on land, this is due to the shape of K(ca,∆T ). The

simple but accurate climate-carbon cycle model could be a starting point for model-based investigations of Earth system pro-30

cesses that are too poorly understood to be incorporated in more comprehensive models.
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Stylized models such as ours have significant value in policy contexts. When confronted with difficult policy decisions

involving long time periods and significant uncertainty, collaborative work with scientists allows policy makers to identify and

clarify the impacts of various policy actions. In this context, the utility of a model is to increase stakeholders’ understanding of

a system and its dynamics under various conditions (Voinov and Bousquet, 2010; Anderies, 2005). This is in stark contrast to

the use of more comprehensive models to predict impacts of policies where mechanisms underlying dynamics and trade-offs5

are not transparent, and quick explorations with stakeholders are not practical. The utility of a stylised model is in facilitating

a learning process rather than in ’accurately’ predicting outcomes.

We foresee at least two strands of valuable future research based on the climate-carbon cycle model developed in this paper.

First, our climate-carbon cycle model could be extended by including further processes relevant on different time-scales of

interest for Earth system analysis. This would enable a more in-depth analytical analysis of the feedback strengths and gains10

relating to other aspects of Earth system dynamics, such as the Earth’s energy balance, carbon storage in the tropics compared

to extra-tropics, albedo changes, the cryosphere, nutrient cycles, and even societal feedbacks. The task of characterizing the

Anthropocene as an epoch could thus move beyond qualitative comparison of human-impact trends to an improved characteri-

sation of the feedbacks that maintain different Earth system ‘regimes’. The effects on feedback strengths of different functional

forms, such as the fertilisation effect KC , and how to constrain these functional forms from data could also be investigated and15

could yield insight into the continued divergence of ESM projections.

Second, the model could comprise a ‘workbench’ for the systemic understanding of planetary boundary interactions and,

hence, generate crucial insights into the structure of the safe operating space for humanity delineated by the planetary bound-

aries (Rockström et al., 2009; Steffen et al., 2015). Such extensions should focus on linking the core abiotic and biotic dimen-

sions of the planetary boundaries framework. The present lack of well-developed model representations of the dynamics and20

ecosystem structure of biosphere diversity, heterogeneity and resilience, despite ongoing efforts in this direction (Purves et al.,

2013; Bartlett et al., 2016; Sakschewski et al., 2016), emphasises the need for a more conceptual understanding of biosphere

integrity, its vulnerability to anthropogenic perturbation, and its role for Earth system resilience.
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Figure A1. Direct feedback parameters, (a) climate-carbon feedbacks and (b) concentration-carbon feedbacks.

Table A1. Exact forms for ocean feedbacks.

Feedback measure Ocean climate-carbon feedback Ocean concentration-carbon feedback

Gain
λ

ca log2

[
B0BT tlin

2
+
tlin
3
w0wt(cm − cm0)

− cm
car

(
1 +w0tlin

(
1

2
− wT ∆T

3

))
+

cmDT

r(1−DT ∆T )

(
1 +w0tlin

(
1

2
− wT ∆T

3

))]

Time-integrated feedback − cmDT

r(1−DT ∆T )

(
1 +w0tlin

(
1

2
− wT ∆T

3

))
cm
car

(
1 +w0tlin

(
1

2
− wT ∆T

3

))
feedback parameter

−B0BT tlin
2

− tlin
3
w0wt(cm − cm0)

Direct feedback parameter
w0(1−wT ∆T )cm0

(
(1−DT ∆T )

1
r − 1

)
∆T

−B0BT

w0cm0

((
ca
ca0

) 1
r − 1

)
ca − ca0
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Table A2. Testing parameters fitted to historical data. The following changes to parameter values were made to those listed in Table 1:

KC = 0.25, QR = 2.45, λ= 1.91 K, w0 = 0.185 yr−1. (a) Historical and projected changes of carbon stocks. See Table 2 for further

information on how the figures were calculated and sources for model comparison. (b) Feedback analysis. See Table 3 for further

information. Analytical forms are omitted here.

(a)

Ocean carbon changes (PgC) Land carbon changes (PgC) GMST change, ∆T (K)

IPCC AR5 Model result IPCC AR5 Model result IPCC AR5 Model result

Historical 155± 30 155 −30± 45 -30 0.85 [0.65 to 1.06] 0.85

RCP2.6 150 [105 to 185] 303 65 [-50 to 195] 2 1.0 [0.3 to 1.7] 0.3

RCP4.5 250 [185 to 400] 428 230 [55 to 450] 11 1.8 [1.1 to 2.6] 1.2

RCP6 295 [265 to 335] 484 200 [-80 to 370] 13 2.2 [1.4 to 3.1] 1.7

RCP8.5 400 [320 to 635] 591 180 [-165 to 500] -7 3.7 [2.6 to 4.8] 2.5

(b)

Feedback measure Land climate- Ocean climate- Land conc.- Ocean conc.-

carbon feedback carbon feedback carbon feedback carbon feedback

Feedback factor (numerical scenario: SRES A2)

- estimate from analytical gain 4.67 to 1.30 1.01 to 1.16 0.56 to 0.85 0.89 to 0.75

- from simulation 1.27 1.14 0.84 0.60

- Zickfeld et al. (2011) 1.25 1.22 0.66 0.71

Time-integrated feedback parameter (numerical scenario: SRES A2)

- estimate from analytical form -168 to -126 -3 to -100 1.70 to 0.38 0.26 to 0.70

- from simulation -119 -60 1.28 1.92

- Zickfeld et al. (2011) -129 -32 1.32 0.98

- Friedlingstein et al. (2006) -79 (-20 to -177) -30 (-14 to -67) 1.35 (0.2 to 2.8) 1.13 (0.8 to 1.6)

Nonlinearity -1.14 -0.14 0.04 0.04
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