
 

Response to comment by J. Heitzig 
 
I like this model a lot. You may improve its exposision marginally and make it less 
time-dependent by introducing a fifth state variable, cd = deep ocean carbon stock, and 
rewrite eq. (8) as two ODEs, one for cd (containing the two integrals) and one for ca. This 
way the model’s remaining time dependency is only on the two "control" variables E(t) and 
LUC(t) and it may thus be analysed more easily using tools from bifurcation analysis or 
topology of sustainable management (see this special issue). 
 
We thank the commenter for the constructive proposal to improve the readability of the 
model and its potential for analysis. In the revised version of the manuscript, we will 
implement a slightly modified version of the commenter’s​ ​proposal. We would prefer not to 
introduce a state variable that corresponds to a quantity (deep ocean carbon) that is outside 
the boundaries of our system of analysis (which is upper ocean, atmosphere and marine 
carbon). Instead, we will introduce a new state variable that counts the total amount of 
carbon over our three carbon stocks. The rate of increase of this quantity will be a differential 
equation given by the rate of carbon emissions minus the rates of the solubility and 
biological pumps (Eq. 9 in the revised manuscript). Conservation of carbon within the three 
internal stocks will then give a simple algebraic equation (Eq. 8 in the revised manuscript) to 
replace the former Eq. 8. 
 
 
  



 

Response to review by C. D. Jones 
 
We thank the reviewer for their considered and constructive comments. Please find below 
our responses to the reviewer’s comments. We also attach our proposed revised manuscript, 
with changes marked. 
 
This is a nicely designed study, and well presented manuscript which attempts to develop 
and document a simple (“stylized”) model of the global climate-carbon cycle system, but in a 
way which enables analytical analysis of its behaviour and feedback mechanisms. The 
intended aim is to facilitate improved understanding of the system dynamics and more 
readily quantify which processes contribute to certain feedbacks and long-term responses. 
 
Overall, I very much like the approach and the intention – such modelling studies can 
develop improved insight and can strip back confounding and complicating issues of model 
complexity to reveal more fundamental underlying behaviour. I have a few comments below 
and a few queries about the extent to which the intentions have been realised – I think these 
can be readily addressed with revised text and some more context/explanation. 
 
We thank the reviewer for his support. 
 
Overarching comments: 
1. There are numerous simple/stylized carbon cycle models in the literature. You cite 
Raupach (2013) which I like very much. There is also one I developed and have published 
with several times, including as recently as last year (Jones et al., Tellus, 2003; Jones et al., 
Tellus, 2006; Jones et al., ERL, 2016). Then there is the MAGICC model often used in IAMs, 
the Joos IRF, and also the Oscar model which some of the current authors know very well. 
So I wonder if a bit more explanation is needed for why a new model is required – could you 
start from one of the existing ones and achieve the same thing? I guess your main driver is 
the ability to analytically derive the feedback functions – but it’s not clear to me the same is 
not possible from these previous models (I haven’t tried it with the Jones et al simple model, 
but may do!) – Mike Raupach derived eigenmodes, so I would imagine feedback metrics 
could follow also, but again I haven’t tried. 
 
A key motivation for the proposed model is that it contains mechanistic representations 
(albeit highly aggregated and stylised) of key climate-carbon processes. In contrast, few, if 
any, of the models cited above explicitly include a solubility or biological ocean pump. In 
comparison to many of the cited models, we also substantially simplify the representation of 
the terrestrial carbon cycle, in order to simplify the analysis. We suspect that a similar 
analytical feedback analysis could in theory be applied to most of the simple models that the 
reviewer cites, but the partitioned terrestrial carbon stocks in most of these models would 
complicate the analysis, and parametric fits to the ocean carbon cycle would make the 
results less meaningful. We will make clearer the added value of the model in the revised 
version (see list beginning bottom page 3). 
 
2. On a similar line – I was looking forward to seeing the analytical derivation of feedback 
factors, but then realised this was not as “tractable” as your title suggests, and you have to 



 

make a lot of assumptions in your sections 4.2 and 4.3. This seems a shame – if this is the 
case, have you not lost your unique and attractive feature? The resulting expressions are 
still useful, but not as analytical as you suggest. I also wondered, on seeing the expressions 
in table 3, if you had compared these to the expressions of Ric Williams et al – who have 
done a similar based assessment of terms controlling ocean heat/carbon uptake and TCRE. 
(See e.g., Richard G Williams et al 2016 Environ. Res. Lett. 11 015003) 
 
We agree with the reviewer that while our feedback results are analytical (in the sense of 
closed-form mathematical expressions) they are not exact. It would be an interesting 
challenge to develop a model for which exact results could be achieved, but we suspect this 
would be at the cost of a mechanistic representation. In the revised version of the 
manuscript, we will clarify our use of the term of ‘analytical’. 
 
Williams et al. (2016) split apart three key factors influencing TCRE: (1) influence of CO2 
emissions on radiative forcing from CO2; (2) influence of radiative forcing from CO2 on total 
radiative forcing; and (3) influence of total radiative forcing on temperature. They then use 
time series output from ESMs to drive each of these factors and calculate TCRE over time. 
For example, land and ocean uptake (which influence factor 1) are based directly on ESM 
output. In contrast, we formulate mechanistic models for land and ocean uptake. Our 
treatment of factor 3 is similarly highly stylised and we do not explicitly model ocean heat 
uptake. Regarding factor 2, we only consider CO2 forcing. 
 
In one subsection, Williams et al. analytically calculate an equilibrium TCRE. They use a 
similar formulation for ocean chemistry based on the Revelle (buffer) factor as ours. 
However as theirs is an equilibrium calculation, they unlike us do not consider time scales 
introduced by mechanisms such as the solubility and biological pumps. They also neglect 
land carbon uptake on this long time scale. 
 
3. You discuss (page 18, line 16) that you might want to develop this model further to include 
other mechanisms and forcings. Modellers have attempted a two-box approach for the 
ocean – by splitting upper and deep ocean before. But I would suggest maybe a two-box 
approach for the land also – not splitting veg vs soil, but maybe by tropics and extra-tropics 
as these can have very different responses (even by sign) to changes in climate. IPCC AR5 
fig 6.22 shows the latitudinal distribution of “gamma” – there is a clear change of sign 
towards high latitudes, and so a tropics/high-latitude 2-box approach might be a nice (and 
novel) development 
 
To compartmentalise land carbon by tropics and extra-tropics is an interesting suggestion 
which could be followed in future studies. We will raise this idea in the revised version of the 
manuscript, see section 6. In doing so, one would define carbon pools not by residence 
times but by climate sensitivities. This is really interesting but requires some more thinking.  
 
In addition, to our understanding the results in IPCC AR5 fig 6.22 are based on ESM runs 
that do not contain any representation of permafrost carbon, hence this strong difference 
between arctic and extra-arctic beta values seems to more reflect the vegetation response to 
climate change. It would be interesting to see such sensitivity study using a fully coupled 



 

ESM run including permafrost carbon. For now, we therefore refrain from including these 
sensitivity gradients in our model. 
 
 
4. In a few places, you discuss non-linearities – this is good, and important to bring out. It’s 
not necessarily true that land dominates the non-linearity, but this does show up in your 
rapid-forcing transient runs. If you ran longer, or with slower changing forcing, the ocean 
would have more chance to exhibit these too – see, e.g. Schwinger et al (J. Climate, 2014). 
Hence both land and ocean can have pronounced non-linearities and for this reason, C4MIP 
took the decision to move back towards the Friedlingstein definition of feedbacks as the 
difference between COUPLED and BGC runs (see Jones et al., GMD, 2016 – 
documentation of C4MIP). Hence this differs from the Arora et al definition of using the RAD 
forced run. 
 
We agree with the reviewer: since we chose to investigate effects on a 100-year 
policy-relevant time scale, many ocean effects are rendered insignificant. We will discuss in 
the revised version of the manuscript that the dominance of the land in our nonlinearity 
results is likely due to the time scale simulated (see section 5.3). 
 
We thank the reviewer for drawing attention to the need for clarity in feedback definitions. 
Most of the the previous studies to which we compare our numerical feedback results use 
the Arora definition of feedbacks (Arora 2013 and Zickfeld 2011), the exception is 
Friedlingstein 2006. We have used the Arora definition to be consistent with the majority of 
cited previous studies, and will clarify which definition we use in the revised manuscript. We 
are prepared to also calculate the climate-carbon feedbacks under the Friedlingstein 
definition if the reviewer wishes, however we feel this would further complicate an already 
large table. 
 
5. My final request would be to ask if you can more directly or relevantly bring this back to 
complex models – how does this approach help us develop/evaluate/constrain them further? 
For example you claim in the discussion that the carbon-climate feedbacks are “less 
sensitive” than the carbon-concentration ones. And that this is due to “the shape of 
K(Ca,DT)”. So how does that help with my ESM? What controls the shape of this in ESMs? 
And can we measure and constrain it from obs? If so, then your analysis brings a way in 
which we might narrow the spread in model projections, or at least evaluate a very relevant 
aspect of the models. If not, then all it does is leave us with a better feel of why the models 
continue to diverge – if you have any ideas how to make this jump that would be great to 
see. 
 
We thank the reviewer for this relevant comment. Of course, the divergence amongst ESMs 
could well be due to diverging parameterisations, as well as different functional forms. As the 
reviewer suggests, an interesting area for future work would be to study what effects 
different forms for key functions such as ​K​ have on feedback strengths. Other steps to aid 
development of ESMs could include analysing the effective shape of functional forms such 
as ​K​ in ESMs or how to constrain these functional forms from data. These are beyond the 



 

scope of the present work but in the revised manuscript we will point to these possible future 
directions in section 6. 
 
Minor comments: 
1. Page 4. Your NPP function of CO2 claims to include the effects of climate change – but 
surely these also depend on the climate sensitivity. For models with high/low climate 
sensitivity, there is a different trade-off of the effects of CO2 and climate. So I don’t follow 
how the impact on NPP can be made without reference back to the temperature as well as 
the CO2 
 
We agree with the reviewer that an accurate treatment of NPP would separately 
parameterise the effects of CO2, temperature, rainfall, nutrient availability, and so on. We 
fold all these effects into a CO2 dependence through Keeling’s formula. The references in 
section 2.1 that we cite for Keeling’s formula support this simplification. A key assumption to 
support this folding, as the reviewer implies, is that we fix climate sensitivity to a constant 
value -- in the revised manuscript we will state this assumption in section 2.1. 
 
2. Page 7. I couldn’t quite see if you had a link between ocean heat and ocean carbon 
uptake – I don’t think so. Should these be related? There might be a false extra degree of 
freedom in your model – I would expect for example rapidly mixed oceans to have high rates 
of both heat and carbon uptake – and vice versa for poorly mixing oceans. But if you have 
independent mechanisms of carbon uptake and transient response to climate do you miss 
this link? 
 
The reviewer is correct that in our model ocean heat uptake (as represented by climate 
sensitivity) and ocean carbon uptake are parameterised independently. We also agree with 
the reviewer that higher ocean mixing rates ought to speed up both carbon and heat uptake.  
We have chosen to focus our model development and analysis on the carbon cycle; future 
work could involve incorporating mechanisms related to ocean heat uptake such as ocean 
circulation, and then specifying common drivers on ocean heat and carbon uptake could be 
worthwhile. We discuss in Section 6 that energy balance is a potential route for further model 
development. 
 
3. Table 1: please be careful to stress “climate sensitivity” as “transient climate response” – 
you do say so, but using the wrong name makes it look like a very low value (1.8K) 
 
We thank for the reviewer for the cautionary note. We will stress that the climate sensitivity in 
our model is transient climate response in the revised version (see section 3). 
 
4. Page 14, line 23 – just to check here you mean “1% increase up to double CO2” and not a 
step-change to double CO2.  
 
We thank the reviewer for prompting us to clarify this matter. In fact this simulation has a 1% 
increase up to ​quadrupling​ CO2. We will clarify this matter in the revised manuscript (see 
section 4.3).  



 

Response to review by M. Heimann 
 
We thank the reviewer for their considered and constructive comments. Please find below 
our responses to the reviewer’s comments. We also attach our proposed revised manuscript, 
with changes marked. 
 
General comments 
The authors introduce a new variant of a simple analytical, highly parameterised global 
carbon cycle - climate model, which is used to formally analyse the four major feedback 
loops in the system, i.e. the land and ocean concentration carbon feedbacks and the land 
and ocean climate carbon feedbacks. The simplicity of the approach allows the authors to 
derive analytical approximations to the definitions of various feedbacks metrics at play in the 
global carbon cycle - climate system. 
 
Simple analytical global carbon cycle models and simple climate models have been used 
many times in the past. Also the literature contains several simple coupled carbon cycle - 
climate models (e.g. Gregory et al., 2009 or Meinshausen et al., 2011). It is not clear 
however, what this particular new variant adds to our understanding of the global carbon 
cycle - climate system. The motivation outlined in the introduction is not very convincing. 
 
We thank the reviewer for prompting us to make explicit what our work “adds to our 
understanding of the global carbon cycle - climate system”. As we state in the revised 
version of the abstract, three specific results of our work are: 

- that different feedback formalisms measure fundamentally the same climate-carbon 
cycle processes; 

- that temperature dependence of the solubility pump, biological pump, and CO2 
solubility all contribute approximately equally to the ocean climate-carbon feedback; 
and 

- that concentration-carbon feedbacks may be more sensitive to future climate change 
than climate-carbon feedbacks. 

These results would not have been possible without the simple, mechanistically-based 
model that we develop in this manuscript. 
 
Regarding the previous models that the reviewer cites: There is no explicit representation of 
biophysical processes in the model of Gregory et al. (2009), which consists of fits to fluxes 
between ocean, atmosphere and land carbon stocks predicted by C4MIP models, or the 
ocean carbon cycle component of Meinshausen et al. (2011), which is a parametric fit to 
predicted impulse response functions. That our model is a mechanistically based 
representation of the carbon cycle, even if that representation is highly aggregated and 
simplified, allows us to deliver the insights above. We concede however that our motivation 
of the model in the Introduction was not particularly detailed on these points. In the revised 
manuscript we will expand upon the model’s motivation in the second paragraph of the 
Introduction, as well as refining the more detailed description at the start of section 2. 
 
The dynamic characteristics of the chosen “mechanistic” model formulation clearly is 
determined by the simple model structure and the chosen parametrisations of the exchange 



 

fluxes. Also the stated “biophysical or biogeochemical interpretation of the model 
parameters”, given that these represent global averages is plausible but not very compelling. 
E.g. why should the global CO2 fertilisation effect work in reality in a way as parameterized 
here with a simple β-factor formulation? Or global respiration with a simple Q10 temperature 
response?  
 
We use the term “mechanistic” to convey that we have in our model representations of 
real-world processes, such as photosynthesis, respiration, ocean-atmosphere diffusion and 
the solubility and biological pumps. Our model is not a precise, first-principles mechanistic 
description of these processes at the microscopic scale, but then again all models are 
simplifications of reality; we merely choose to perform the simplification at a more 
aggregated level than most Earth System Models. The β-factor (or ‘Keeling formula’) and 
Q10 temperature responses are previously used parameterisations of the response to 
climate change of globally aggregated NPP and respiration, respectively. We will clarify our 
use of the term ‘mechanistic’ in the revised manuscript (see second paragraph of the 
introduction). 
 
Perhaps the main value of the simple model is educational, as it can easily be programmed 
by students and one can show in this simple model system how the feedback metrics are 
computed. But as a tool for policymakers nor for generating new carbon cycle science, this 
model does not provide added value to the already existing simple models. A simple model 
“tuned” to emulate one or several of the more complex models would be more useful.  
 
Gregory et al. (2009) and Meinshausen et al. (2011), as well as others, already provide 
simple models ‘“tuned” to emulate one or several of the more comprehensive models. We 
believe there is scope for a model such as ours, in which we do not force our model to 
closely fit historical data (or future projections) but rather parameterise each process with the 
best available (globally aggregated) knowledge about that process. See our response to the 
next comment below for further information. 
 
Perhaps a missed opportunity for demonstrating the validity of the model is a more careful 
calibration and evaluation. Clearly the “mechanistic” model parameter values are not based 
on first principles, but contain large uncertainties. E.g. the Q10 value used here (1.72) is 
highly uncertain (see e.g. Mahecha et al., 2010). Why not tune the model parameters so that 
the current global carbon budget is properly matched? The model substantially 
underestimates the historical ocean carbon uptake (Table 2), and, when driven with the 
historical emissions from the Global Carbon Project (Le Quere et al., 2017), the numerical 
version of the model underestimates the current ocean uptake. In addition, a graph showing 
the model performance against the atmospheric CO2 record from ice cores and direct 
observations could demonstrate that at least on multi-decadal time scales the model 
performs reasonably. Figure 2 clearly is not sufficient as it does not show any observations. 
Another useful model evaluation would be to follow the impulse response simulation protocol 
defined by Joos et al. (2013) and compare the dynamics of this model with the impulse 
response simulations of more comprehensive models as shown in that paper. 
 



 

We thank the reviewer for these comments and suggestions on model calibration and 
evaluation. Following the reviewer’s suggestion, in the revised version of the paper we will 
include historical carbon fluxes and temperature anomalies alongside model predictions (see 
revised Fig 2). 
 
We have attempted to ‘tune’ several different combinations of parameters to match current 
carbon stocks (one example is K_C = 0.25, Q_R = 2.5 and w_0 = 0.2). However the tuned 
parameter sets lie well outside the best available independent estimates of those parameters 
(see references in Table 1). This is not surprising since we do not expect a mechanistically 
based of model of this simplicity to precisely reproduce historical carbon stocks. 
 
Rather than forcing the model to fit historical data, we choose to parameterise each process 
with the best available knowledge about that process. Gaps between our model and 
observations then point to what other processes should be included in a more complex 
model to improve accuracy. This is in line with our stated model purposes of understanding 
and learning, rather than emulation and prediction. In the revised manuscript, we will clarify 
our choices taken during the parameterisation of our model (see section 3). 
 
Specific comments 
1. As shown in Table 3, the results of the analytical approximations of the feedback metrics 
compared to the numerical simulations is pretty poor. Does this not invalidate the 
simplifications made in deriving the analytical approximations? 
 
We concede that in the submitted version of the manuscript, while the land feedback metrics 
were accurate, the agreement between the numerical and analytical results for ocean 
feedback metrics was poor. Deriving approximate metrics for ocean feedbacks is 
challenging, as the deep ocean does not reach equilibrium on the time scale of our 
simulation. We have taken the opportunity to derive alternative approximations to the ocean 
feedback metrics (see description in section 4.2). The approximated ocean climate-carbon 
feedback is now more accurate. The ocean concentration-carbon feedback remains in poor 
agreement. As we will explain in the revised manuscript (see second paragraph of section 
5.2), this is partly due to an approximation made in analytically estimating the deep ocean 
uptake, but partly also due to numerical concentration-carbon feedback calculations 
requiring climate-carbon feedbacks to be switched off. 
 
2. The comparison of the feedback metrics with the results of Zickfeld et al. (2011) and 
Friedlingstein et al. (2006) in Table 3 shows that the simple model with the chosen 
parameter values responds substantially different - the discrepancies range up to a factor of 
2. This is clearly at odds to what is claimed in section 5.1 and 5.2. 
 
We thank the reviewer for prompting us to clarify what we judge as ‘agreement’ between the 
results of our simple model and the results of previous simulations. First, we note that the 
results of complex models display considerable spread (as also noted by the reviewer in the 
following point below). While some of our results differ by nearly a factor of 2 from the mean 
results of Friedlingstein et al, all our feedback metric results are within their reported spread 
(Table 3). Second, we consider it remarkable that such a simple model can reproduce the 



 

results of highly complex models so closely, and would not consider a discrepancy of a 
factor of 2 an invalidation of the simple model. We will discuss these discrepancies more 
carefully in the revised manuscript (see first paragraph of section 5.2). 
 
3. On the other hand, also the comprehensive models show a large spread in the feedback 
metrics. A more useful analysis/comparison would be possible if the model parameters were 
tuned to emulate the various comprehensive models. 
 
This is an interesting idea, but beyond the scope of our study. As discussed above, our goal 
is not to emulate or evaluate ESMs, but rather to develop process-based understanding. 
 
4. The statements in section 5.2 and 5.3 about the behaviour of the carbon cycle - climate 
system and the feedback metrics under increasing emissions clearly refer to this particular 
simple model. While plausible, the real world may behave differently. 
 
We thank the reviewer for raising this concern. It is correct that our model can only anticipate 
changes in the carbon cycle arising from those processes that it has modelled -- and may 
therefore neglect other important future changes in the carbon cycle. We will acknowledge 
this caveat in the manuscript (see second-last paragraph of section 5.2). 
 
5. The direct ocean concentration-carbon feedback given as exact in Table A1 and 
approximated in Table 3 (5th line from bottom) differ very much: Evaluated with the standard 
model parameters at a value of ca corresponding to 800 ppm the exact formula gives 0.0152 
PgC/(ppm yr) while the approximation gives 0.396 PgC/(ppm yr). (I assumed in the exact 
formula that the symbol w is actually w0). Also the solid red curve showing BO in Figure A1a 
is missing. Obviously there is some error in the listed formulas or the chosen approximation 
is very poor. 
 
We respectfully disagree with the reviewer’s calculations. By our calculations, under the 
conditions the reviewer indicated the approximation gives 0.0398 PgC/(ppm yr). While this is 
not as severe as the 20-30 times the reviewer suggested, it is still a significant difference at 
2 to 3 times the exact expression. We took the opportunity to derive a more precise 
approximation (see Table 3 and the last sentence of section 4.3) that gives a value 0.0240 
PgC/(ppm yr). 
 
We thank the reviewer for noticing the omitted curve in Figure A1; this will be rectified in the 
revised manuscript (see our proposed revision). 
 
Technical corrections 
Technically, the formulas in the manuscript contain a some inconsistencies and not correctly 
defined symbols. 
• p. 4, line 25: In the exponent of QR the symbol T should be replaced by ∆T. 
 
Thank you, in the revised manuscript we will correct this mistake. 
 



 

• p.5, line 13: The way the Revelle factor is used here is weird: Formally, using the notation 
here, it is defined as: 

R = ∂cm
∂p(c ,0)m cm0

p(c ,0)m0
 

Inserting the definition p(cm, ∆T) given here (eq (5)) this expression does not evaluate to the 
constant r as it should according to the text. 
 
We respectfully disagree with the reviewer’s general definition of Revelle factor. According to 
Sabine et al. (2004) [see citation in our manuscript] and the AR4 [see 
https://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch7s7-3-4-2.html​], the general 
definition of Revelle factor is in our notation 

R = ∂cm
∂p(c ,0)m cm

p(c ,0)m
 

that is, the mixed-layer ocean carbon stock in the right-hand quotient should not be fixed at 
pre-industrial CO2 levels. Substituting our model’s expression for partial pressure of CO2 
[equation 5 in our manuscript] gives R = r for all c​m​ > c​m0​ as expected. 
 
• p. 6, line 25: The atmosphere equation, written as an integral equation is weird. Why not 
write it similar to the biosphere and ocean mixed layer equation as normal first order 
differential equation? 
<equation omitted> 
where e(t) are the emissions (in PgC/yr); E(t) in equation (8) are the integrated emissions 
(this is nowhere defined in the text, and wrongly described on p.5 line 7). 
 
We agree that the form of the atmosphere equation is unusual! In line with the suggestion of 
the comments provided by Heitzig (see above), we will rewrite equation 8 as an algebraic 
equation for conservation of carbon amongst our stocks, alongside a new differential 
equation to account for aggregate carbon flows into or out of our three stocks. This 
formulation will remove all integral equations. 
 
We thank the reviewer for identifying that E(t) is incorrectly defined. We will correct this 
mistake in the revised manuscript (see definition preceding the new equation 9 and section 
3). 
 
• p. 7, eq 9: For consistency with the text the symbol T in the differential quotient on the left 
should be replaced by ∆T. 
 
Thank you, in the revised manuscript we will make this change to improve the clarity of the 
manuscript (see equation 10 in the revised manuscript). 
 
• Table 3, 4th and 3rd line from bottom: The references to the Figures A1a and A1b are not 
correct. 
 
Thank you for noting this mistake. We will correct the figure numbering in the revised 
manuscript. 
 
 

https://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch7s7-3-4-2.html


 

• Table A1: What is the meaning of w (without subscript)? Presumably it should be w0?  
 
We thank the reviewer for noting this mistake. We confirm the w in Table A1 should be w0. 
We will correct this mistake in the revised manuscript. 
 
  



 

Authors’ overall comment 
 
We thank the reviewers for their considered and constructive comments that have improved 
the manuscript. 
 
Reviewer Jones wrote “[t]his is a nicely designed study, and well presented manuscript” and 
“I very much like the approach and the intention”. In line with the reviewer’s suggestions, we 
now compare our model against additional existing models, clarify our use of the terms 
“mechanistic” and “analytical”, include additional speculations on future work, and responded 
to some specific requests for clarification. 
 
Reviewer Heimann raised concerns about the novelty of our model compared to previous 
models and about how accurately our numerical and analytical results compare to previous 
ESM results as well as to each other. We believe there exists a gap in the literature for our 
mechanistically-based but highly stylized model, as we have sought to make clearer in the 
revised manuscript. For a model as extremely simple as ours, and given the wide spread in 
the results of ESMs, we believe our results are sufficiently accurate. In line with Heimann’s 
very perceptive technical corrections we have modified our feedback calculations to bring 
them into closer agreement than in the initially submitted version. 
 
We also appreciate Heitzig’s comment to modify the mathematical presentation of the 
model. We have modified the model to achieve Heitzig’s overall goal of presenting the model 
solely in terms of differential, instead of integro-differential, equations, although not exactly 
by the route he suggested. 
 
Please find attached our proposed revised manuscript, with changes tracked. 
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Abstract. Changes to climate-carbon cycle feedbacks may significantly affect the Earth System’s response to greenhouse

gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth System

Models (ESMs). Here, we construct a stylized global climate-carbon cycle model, test its output against complex comprehensive

ESMs, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain

aid understanding of carbon-cycle feedbacks and the operation of the carbon cycle. We use our results to analytically study the relative strengths5

of different Specific results include that: different feedback formalisms measure fundamentally the same climate-carbon cycle

feedbacks and how they may change in the future, as well as to compare different feedbackformalismsprocesses; temperature dependence of the solubility

pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate-carbon feedback; and

concentration-carbon feedbacks may be more sensitive to future climate change than climate-carbon feedbacks. Simple

models such as that developed here also provide ‘workbenches’ for simple but mechanistically based explorations of Earth10

system processes, such as interactions and feedbacks between the Planetary Boundaries, that are currently too uncertain to be

included in complex comprehensive ESMs.

1 Introduction

The exchanges of carbon between the atmosphere and other components of the Earth system, collectively known as the carbon

cycle, currently constitute important negative (dampening) feedbacks on the effect of anthropogenic carbon emissions on15

climate change. Carbon sinks in the land and the ocean each currently take up about one quarter of anthropogenic carbon

emissions each year (Le Quéré et al., 2016). These feedbacks are expected to weaken in the future, amplifying the effect of

1



anthropogenic carbon emissions on climate change (Ciais et al., 2013). The degree to which they will weaken, however, is

highly uncertain, with Earth System Models predicting a wide range of land and ocean carbon uptakes even under identical

atmospheric concentration or emission scenarios (Joos et al., 2013).

Here, we develop a stylised model of the global carbon cycle and its role in the climate system to explore the potential

weakening of carbon cycle feedbacks on policy-relevant time scales (<100 years) up to the year 2100. Whereas complex com-5

prehensive Earth System Models (ESMs) are generally used for projections of climate, models of the Earth System of low

complexity are useful for improving mechanistic understanding of Earth system processes and for enabling learning (Randers

et al., 2016; Raupach, 2013). Compared to complex comprehensive Earth System Models, our model has far fewer parameters,

can be computed much more rapidly, can be more rapidly understood by both researchers and policy-makers, and is even

sufficiently simple that analytical results about feedback strengths can be derived. Compared to previous stylised models10

(Gregory et al., 2009; Joos et al., 1996; Meinshausen et al., 2011a, c; Gasser et al., 2017a), our model features simple

mechanistic representations, as opposed to parametric fits to ESM output, of aggregated carbon uptake both on land and

in the ocean. Our stylised and mechanistically based climate-carbon cycle model also offers a workbench for investigating

the influence of mechanisms that are at present too uncertain, poorly defined or computationally intensive to include in current

Earth System Models. Such stylised models are valuable for exploring the uncertain, but potentially highly impactful Earth15

system dynamics such as interactions between climatic and social tipping elements (Lenton et al., 2008; Kriegler et al., 2009;

Schellnhuber et al., 2016) and the planetary boundaries (Rockström et al., 2009; Steffen et al., 2015).

Analyses of climate-carbon cycle feedbacks conventionally distinguish four different feedbacks (Fig. 1) (Friedlingstein,

2015; Ciais et al., 2013). (i) In the land concentration-carbon feedback, higher atmospheric carbon concentration generally

leads to increased carbon uptake due to the fertilisation effect, where increased CO2 stimulates primary productivity. (ii) In20

the ocean concentration-carbon feedback, physical, chemical and biological processes interact to sink carbon. Atmospheric

CO2 dissolves and dissociates in the upper layer of the ocean, to be then transported deeper by physical and biological pro-

cesses. The concentration-carbon feedbacks are generally negative, dampening the effects of anthropogenic emissions. (iii)

In the land climate-carbon feedback, higher temperatures, along with other associated changes in climate, generally lead to

decreased storage on land at the global scale, for example due to the increase in respiration rates with temperature. (iv) In the25

ocean climate-carbon feedback, higher temperatures generally lead to reduced carbon uptake by the ocean, for example due to

decreasing solubility of CO2. The climate-carbon feedbacks are generally positive, amplifying the effects of carbon emissions.

We begin by introducing our stylised carbon cycle model and testing its output against historical observations and future predic-

tions projections of Earth System Models. Having thus established the model’s performance, we introduce different formalisms

used to quantify climate-carbon cycle feedbacks and describe how they can be computed both numerically and analytically30

from the model. We use our results to analytically study the relative strengths of different climate-carbon cycle feedbacks and

how they may change in the future, as well as to compare different feedback formalisms. We conclude by speculating on how

this stylised model could be used as a ‘workbench’ for studying a range of complex Earth system processes, especially those

related to the biosphere.
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Figure 1. Climate-carbon cycle feedbacks and state variables as represented in the stylized model introduced in this paper. Carbon stored on

land in vegetation and soils is aggregated into a single stock ct. Ocean mixed layer carbon, cm, is the only explicitly modelled ocean stock

of carbon; though to estimate carbon-cycle feedbacks we also calculate total ocean carbon (Eq. (7)).

2 Model formulation

There is a well-developed literature on stylized models used for gaining a deeper understanding of Earth system dynamics

and even for successfully emulating the outputs of complex comprehensive coupled atmosphere-ocean and carbon cycle mod-

els (Meinshausen et al., 2011a, c; Gasser et al., 2017a). Many such models are based on Budyko-Sellers (Budyko, 1969; Sellers, 1969) type energy balance models and come in

two flavors: models of mathematical interest motivated by the Earth system dynamics, and models focused on capturing essential features of the Earth system to reproduce broad5

empirical patterns. The former tend to focus on characterizing stability (e.g. Cahalan and North, 1979), and the existence of multiple equilibria given particular feedbacks (ice cap

albedo) (e.g. North, 1990; Dıaz et al., 1997) or details of possible bifurcation structures Arcoya et al. (1998) in such models. Examples of the latter include studies of snowline

stability (Mengel et al., 1988).

In the spirit of the energy-balance models described above, we constructed (Anderies et al., 2013; Gregory et al., 2009; Joos et al., 1996;

Meinshausen et al., 2011a, c; Gasser et al., 2017a). We developed a combination of existing models and new formulations10

to construct a global climate-carbon cycle model with the following characteristics:

1. The model includes processes relevant to the carbon cycle and its interaction with climate on the policy-relevant time

scale of the present to the year 2100. Stylised carbon cycle models often do not, for example, include explicit repre-

sentations of the solubility or biological pumps.

2. The model produces quantitatively plausible output for carbon stocks and temperature changes.15

3. All parameters have a direct biophysical or biogeochemical interpretation, although these parameters may be at an aggre-

gated scale (for example, a parameter for the net global fertilisation effect, rather than leaf physiological parameters). We
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avoid models or model components constructed by purely parametric fitsto Earth System Models , such as impulse response

functions(Kamiuto, 1994; Gasser et al., 2017b; Joos et al., 1996; Harman et al., 2011), to historical data or projections of Earth System Mod-

els (Kamiuto, 1994; Gasser et al., 2017b; Joos et al., 1996; Harman et al., 2011; Gregory et al., 2009; Meinshausen

et al., 2011a).

4. The model is sufficiently simple that calculation of the model’s feedback strengths is readily analytically tractable. This5

tractability may come at the expense of complexity, for example multiple terrestrial carbon compartments, or accuracy

at millennial or longer time scales (Lenton, 2000; Randers et al., 2016).

Building on the work of Anderies et al. (2013), we constructed a simple model with globally aggregated stocks of: atmo-

spheric carbon in the form of carbon dioxide, ca; terrestrial carbon, including vegetation and soil carbon, ct; and dissolved

inorganic carbon (DIC) in the ocean mixed layer, cm. The model’s fourth state variable is global mean surface temperature10

relative to pre-industrial, ∆T = T −T0. Compared to Anderies et al. (2013), our model includes more realistic representation

of terrestrial and ocean processes but without increase in model complexity, as well as time lags for climate response to CO2.

We now describe the dynamics of the land carbon stock, the ocean carbon stock, and atmospheric carbon and temperature in

our model.

2.1 Land15

Net primary production (NPP) is the net uptake of carbon from the atmosphere by plants through photosynthesis. NPP is ex-

pected to increase with concentration of atmospheric carbon dioxide ca. A simple parameterisation of this so-called fertilisation

effect is ‘Keeling’s formula’ for global NPP (Bacastow et al., 1973; Alexandrov et al., 2003):

NPP(ca) = NPP0

(
1 +KC log

ca
ca0

)
(1)

Throughout this article, the subscript ‘0’ denotes the value of the quantity at a pre-industrial equilibrium, and ‘log’ denotes nat-20

ural logarithm. Keeling’s formula incorporates all climate change-related effects on global NPP occurring simultaneously with

carbon dioxide changes, for example, precipitation and temperature effects, in addition to fertilisation effects. The curvature

of the log function represents limitations to NPP such as changing carbon-use efficiency (Körner, 2003) or nutrient limitations

(Zaehle et al., 2010). Constant climate sensitivity is also a key assumption, otherwise the relative weight of climate and

CO2 effects on NPP would change.25

At the same time, carbon loss from the world’s soils through respiration, R, is expected to increase at higher global mean

surface temperature, ∆T . We approximate the net temperature response of global soil respiration using the Q10 formalism

R(∆T ) =R0Q
∆T/10
R ct/ct0 (Xu and Shang, 2016), whereQR is the proportional increase in respiration for a 10 K temperature

increase. We assume that pre-industrial soil respiration is balanced by pre-industrial net primary productivity, R0 = NPP0. To

avoid introducing multiple pools of carbon into the model, we also have to assume that global soil respiration is proportional30

to total land carbon (rather than soil carbon). Respiration in our model implicitly also includes other carbon-emitting processes

such as wildfires or insect disturbances.
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It follows that the change in global terrestrial carbon storage is

dct
dt

= NPP0

(
1 +KC log

ca
ca0

)
− NPP0

ct0
QR

T/10∆T/10ct−LUC(t).

In this expression we have also included loss of terrestrial carbon due to land use emissions LUC(t). We rearrange this expres-

sion to give

dct
dt

=
NPP0

ct0
Q

∆T/10
R [K(ca,∆T )− ct]−LUC(t) (2)5

where the terrestrial carbon carrying capacity is

K(ca,∆T ) =
1 +KC log ca

ca0

Q
∆T/10
R

ct0. (3)

For model simplicity, we do not explicitly model factors affecting terrestrial carbon uptake such as seasonality, species

interactions, species functionality, migration, and regional variability.

2.2 Ocean10

In the upper ocean mixed layer, mixing processes allow exchange of carbon dioxide with the atmosphere. The solubility and

biological pumps then transport carbon from the mixed layer into the deep ocean. Since the residence time of deep ocean carbon

is several centuries, we explicitly only model the dynamics of upper ocean carbon while the deep ocean is treated merely as an

extremely large carbon reservoir. We include the effects of ocean carbon chemistry, the solubility and biological pumps, and

ocean-atmosphere diffusion on upper ocean mixed layer carbon.15

Ocean uptake of carbon dioxide from the atmosphere is chemically buffered by other species of dissolved inorganic carbon

such as HCO−3 and CO2−
3 , which are produced when dissolved CO2 reacts with water. The reaction of CO2 with water,

producing these other species, reduces the partial pressure of CO2 in water allowing for more ocean CO2 uptake before

equilibrium with the atmosphere is achieved. The Revelle factor, r, is defined as the the ratio of the proportional change in

carbon dioxide content to the proportional change in total dissolved inorganic carbon (Sabine et al., 2004; Goodwin et al.,20

2007). For simplicity, we assume a constant Revelle factor, except for the temperature dependence, DT , of the solubility of

CO2 in sea water. Therefore CO2 diffuses between the atmosphere and ocean mixed layer at a rate proportional to

ca− p(cm,∆T ), (4)

where

p(cm,∆T ) = ca0

(
cm
cm0

)r
1

1−DT∆T
, (5)25

since at pre-industrial equilibrium p(cm0,0) = ca0.

There are two main mechanisms by which carbon is transported out of the upper ocean mixed layer into the deep ocean

stocks: the solubility and biological pumps. In the solubility pump, overturning circulations exchange mixed layer and deep
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ocean water. We assume that the large size of the deep ocean means its carbon concentrations are negligibly changed over the

100-year time scales relevant for the model. The net transport of carbon to the lower ocean by the solubility pump can therefore

be represented by

w0(1−wT∆T )(cm− cm0) ,

where w0 is the (proportional) rate at which mixed layer ocean water is exchanged with the deep ocean and wT parameterises5

weakening of the overturning circulation that is expected to occur with future climate change (Collins et al., 2013).

The biological pump refers to the sinking of biomass and organic carbon produced in the upper ocean to deeper ocean layers

(Volk and Hoffert, 1985). In the models on which the IPCC reports are based, a weakening of the biological pump is predicted

under climate change, mostly due to a decrease in primary production, in turn due to increases in thermal stratification of ocean

waters (Bopp et al., 2013). We represent this climate-induced weakening in a single approximately linear factor, so that the rate10

of carbon transported out of the upper ocean mixed layer by the biological pump to lower deep sea layers is given by

B(∆T ) =B0(1−BT∆T ).

As on land, we assume a pre-industrial equilibrium where the biological pump was balanced by transport of carbon back to the

mixed layer by ocean circulation. We neglect deposition of organic carbon to the sea floor and the long time-scale variations

in the biological pump that may have contributed to glacial-interglacial cycles (Sigman and Boyle, 2000). We therefore add an15

additional term B(∆T )−B(0) to the transport of carbon from the ocean mixed layer to the deep ocean. Organic carbon that

does not sink to the deep ocean is rapidly respired back to forms of inorganic carbon; the ocean mixed layer stock of organic

carbon is therefore small, around 3 PgC (Ciais et al., 2013), and we do not count it in the model’s carbon balance.

By combining the expressions for the solubility and biological pumps with ocean-atmosphere carbon dioxide diffusion, we

obtain the rate of change of ocean mixed layer DIC, cm:20

dcm
dt

=
Dcm0

rp(cm0,0)
(ca− p(cm,∆T ))−w0(1−wT∆T )(cm− cm0)−B(∆T ) +B(0), (6)

The coefficient of the first term was chosen such that 1/D is the time scale on which carbon dioxide diffuses between the

atmosphere and the ocean mixed layer (that is, derivative of the first term with respect to cm, evaluated at the pre-industrial

equilibrium, is D).

The carbon content of the deep ocean does not explicitly enter Eq. (6). To evaluate ocean carbon feedbacks, however, we25

require the change in total ocean carbon content cM compared to pre-industrial conditions. We calculate this as ocean mixed

layer carbon plus carbon transported to the deep ocean by the solubility and biological pumps:

∆cM = ∆cm +

t∫
[w0(1−wT∆T )(cm(t)− cm0) +B(∆T )−B(0)]dt (7)

We do not explicitly model factors such as the thickness of ocean stratification layers, spatial variation of stratification, nutri-

ent limitations to NPP, or changes in ocean circulation due to wind forcing, freshwater forcing or sea-ice processes (Bernardello30

et al., 2014).
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2.3 Atmosphere

Carbon is conserved within the We define cs to be the total carbon in our ‘system’ comprised by the ocean mixed layer, atmospheric

and terrestrial carbon stocks. , that is,

ca + ct + cm = cs. (8)

The only processes that affect the total carbon in the model are human emissions of fossil carbon into the atmosphere, e(t), and5

export of carbon into the deep ocean by the solubility and biological pumps, giving

ca + ct + cm
dcs

dt
= ca0 + ct0 + cm0 +Ee(t)−

t∫
w0(1−wT∆T )(cm− cm0)dt−

t∫
(B(∆T )−B(0))dt., (9)

in which the initial value of cs is ca0 + ct0 + cm0. To obtain the dynamics of atmosphere carbon stocks, we therefore solve

the differential equation (9) and then use the carbon balance equation (8) to find ca.

Increasing atmospheric carbon dioxide levels ca cause an change in global mean surface temperature, ∆T , compared to its10

pre-industrial level. To model the response of ∆T , we follow the formulation of Kellie-Smith and Cox (2011), which includes

a logarithmic response as per the Arrhenius law and a delay of time scale τ . Physically, this time delay is primarily due to the

heat capacity of the ocean.

dT

dt

d∆T

dt
=

1

τ

(
λ

log2
log

(
ca
ca0

)
−∆T

)
. (10)

The climate sensitivity λ specifies the increase of temperature in response to a doubling of atmospheric carbon dioxide levels.15

The climate sensitivity accounts for energy balance feedbacks such as from clouds and albedo. We use the transient climate

sensitivity (Collins et al., 2013) as this specifies the response of the climate system over an approximately 100-year time scale

(see section 3).
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Table 1. Model parameters.

Name Symbol Value Reference/Notes

Pre-industrial atmospheric carbon ca0 589 PgC Ciais et al. (2013)

Pre-industrial soil and vegetation

carbon

ct0 1875 PgC 1325 PgC of soil organic carbon in top metre of soil (Köchy et al., 2015)

plus midrange of vegetation carbon estimate by the Ciais et al. (2013).

Pre-industrial ocean mixed layer

carbon

cm0 900 PgC Ciais et al. (2013)

Climate sensitivity (TCR) λ 1.8 K Multi-model mean transient climate response (Flato et al., 2013)

Climate lag τ 4 yr Calculations on ocean heat uptake, the primary cause of climate lag,

indicate a response time (e-folding time) of 4 yr for time scales up to

centuries, before deep ocean heat uptake dominates at millennial time

scales (Gregory et al., 2015). This result is consistent with simulations

that indicate that maximum warming after a CO2 pulse is reached after

only a decade (Ricke and Caldeira, 2014) and with results from impulse

response model experiments (Joos et al., 2013).

Atmosphere-ocean mixed layer

CO2 equilibration rate

D 1 yr−1 Time scale of approximately 1 year, although highly spatially dependent

(Jones et al., 2014).

Revelle (buffer) factor r 12.5 Williams et al. (2016)

Solubility temperature effect DT 4.23%/K Takahashi et al. (1993); Ciais et al. (2013, p498)

Pre-industrial biological pump B0 13 PgC/yr Ciais et al. (2013)

Temperature dependence of biolog-

ical pump

BT 3.2%/K 12% decrease (Bopp et al., 2013, Fig 9b) after approximately 3.7 K

climate change (Collins et al., 2013)

Solubility pump rate w0 0.1 yr−1 DIC flux rate from ocean mixed layer divided by DIC stock in mixed

layer (Ciais et al., 2013)

Weakening of overturning circula-

tion with climate change

wT 10%/K Approximate fit to values reported by Collins et al. (2013, p1095)

Terrestrial respiration temperature

dependence

QR 1.72 Raich et al. (2002); Xu and Shang (2016). Based on soil respiration,

which contributes the majority of terrestrial ecosystem respiration.

Pre-industrial NPP NPP0 55 PgC/yr Wieder et al. (2015); Sitch et al. (2015)

Fertilisation effect KC 0.3 Estimated by substituting recent NPP ≈ 60 PgC/yr (Wieder et al., 2015;

Sitch et al., 2015) and recent terrestrial carbon stocks, ct ≈ ct0 + 240

(Ciais et al., 2013), into Eq. (1). Alexandrov et al. (2003) found that

values between 0.3 and 0.4 are compatible with results from a process-

based global NPP model.
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Table 2. Model validation. Historical changes are carbon stocks in 2011 relative to stocks in 1750 (Ciais et al., 2013) and temperatures in

2012 relative to temperatures in 1880 (Hartmann et al., 2013). Predicted future changes are carbon stocks in 2100 compared to 2012 (Collins

et al., 2013) and global mean surface temperatures (GMST) averaged over 2081–2100 relative to 1986–2005 (Collins et al., 2013), under the

range of RCP scenarios.

Ocean carbon changes (PgC) Land carbon changes (PgC) GMST change, ∆T (K)

IPCC AR5 Model result IPCC AR5 Model result IPCC AR5 Model result

Historical 155± 30 95 −30± 45 26 0.85 [0.65 to 1.06] 0.82

RCP2.6 150 [105 to 185] 174 65 [-50 to 195] 67 1.0 [0.3 to 1.7] 0.5

RCP4.5 250 [185 to 400] 243 230 [55 to 450] 135 1.8 [1.1 to 2.6] 1.2

RCP6 295 [265 to 335] 278 200 [-80 to 370] 168 2.2 [1.4 to 3.1] 1.7

RCP8.5 400 [320 to 635] 340 180 [-165 to 500] 207 3.7 [2.6 to 4.8] 2.4

3 Model parameterisation and validation

Our climate-carbon cycle model has twelve parameters, four state variables and three nontrivial initial conditions (by definition,

the initial value of ∆T is 0). We choose to parameterise each process with the best available knowledge about that pro-

cess, rather than try to force the model to fit historical data. This is in line with our stated model purposes of understanding

and learning, rather than prediction. Parameters for the response of climate to carbon dioxide (λ, τ ) and two parameters of5

the response of the ocean to changing temperature (BT and wT ) were set based on the output of atmosphere-ocean global

circulation models. For the climate sensitivity λ, transient climate response was used. All other parameters are based on

historical observations of the global carbon cycle (Table 1).

Unless otherwise noted, we perform emissions-based model runs using harmonized historical data and future RCP scenarios

on fossil fuel emissions [E(t)e(t)] and land use emissions [LUC(t)] (Meinshausen et al., 2011b). While the focus of our study is10

on future climate change, from the present day until 2100, we begin simulations in 1750 to compare our model against historical

observations. Time series of the model output are displayed in Fig. 2. Model solutions were approximated in continuous time.
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Figure 2. Model output under forcing from different RCP scenarios: (a) land carbon stock change, (b) ocean carbon stock changes, (c)

atmospheric carbon stock change, and (cd d) global mean surface temperature change. Historical changes in carbon stocks are from Le

Quéré et al. (2016) and historical temperature anomalies are from NOAA (2018). The historical temperature dataset of NOAA (2018),

which is relative to the period 1901-2000, has been offset to match the model’s average temperature anomaly over the same period.

4 Feedback analysis

Our climate-carbon cycle model is sufficiently simple that the strengths of its feedbacks can be estimated analytically. Such

computations are useful since the resulting symbolic expressions can be used to identify how parameters of interest affect

feedback strengths and model dynamics. In this section we introduce definitions of feedback strengths, calculate climate-

carbon cycle feedbacks analytically and numerically, and estimate feedback nonlinearities.5

4.1 Definitions

There are multiple measures of carbon cycle feedbacks currently in use. We here review three of the most common measures.

Consider an emission of E PgC over some time period to the atmosphere. In the absence of carbon cycle feedbacks, the

atmospheric carbon content would increase by ∆coff
a ≡ E. With a feedback switched on, the atmospheric carbon content would

actually change by ∆con
a . The feedback factor is (Zickfeld et al., 2011)10

F =
∆con

a

∆coff
a

. (11)
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Out of the total atmospheric carbon change ∆con
a , the carbon cycle feedback contributes (Hansen et al., 1984)

∆cfeedback
a = ∆con

a −∆coff
a . (12)

Gain is the change in a feedback to atmospheric carbon content caused by changes in atmospheric carbon content:

g =
∆cfeedback

a

∆con
a

. (13)

Gain and feedback factor are related by5

F =
1

1− g
. (14)

An alternative formalism, introduced by Friedlingstein et al. (2006), allows feedbacks to be characterised from carbon cycle

model output. Climate models are not required, except as a forcing to the carbon cycle model. The formalism relates the

changes in terrestrial and marine carbon stocks to changes in global mean temperature and atmospheric carbon dioxide as

follows:10

∆ct = βL∆ca + γL∆T (15)

∆cM = βO∆ca + γO∆T. (16)

Here the βL and βO feedback parameters are the land and ocean, respectively, carbon sensitivities to atmospheric carbon

dioxide changes ∆ca. Likewise, γL and γO are the land and ocean, respectively, carbon sensitivities to temperature changes

∆T . Note that cM denotes the total marine carbon stock, both mixed layer and deep ocean. The differences ∆ca, etc., are15

usually calculated over the duration of a simulation. To isolate the β and γ feedback parameters, simulations are conducted

with biogeochemical coupling only and with radiative coupling only (Gregory et al., 2009).

In both the formalisms introduced thus far, the feedback measures are calculated by examining the changes in carbon stocks

at the end point of model simulations. In contrast, Boer and Arora (2009) estimate sensitivities Γ and B of the instantaneous

carbon fluxes from atmosphere to land and ocean:20

dct
dt

=BL∆ca + ΓL∆T (17)

dcM
dt

=BO∆ca + ΓO∆T. (18)

These feedback parametersB and Γ are usually computed for all time points during a simulation, again using biogeochemically

coupled and radiatively coupled simulations.

The two sets of parameters (B,Γ) and (β,γ) are related by25

β∆ca =

∫
B∆cadt (19)

γ∆T =

∫
Γ∆Tdt. (20)

Accordingly, Boer and Arora (2013) refer toB and Γ as direct feedback parameters and to β and γ as time-integrated feedback

parameters.

11



4.2 Analytical feedback strengths based on equilibrium changes

Analytical approximations to the strengths of carbon cycle feedbacks in our model require choosing a time scale on which

the feedbacks will be calculated. Numerically estimated feedback factors [Eq. (11)] and time-integrated feedback parameters

[Eqs. (15-16)] are conventionally calculated using carbon stock changes over 100 years or more. Responses on the longest

time scales of our model are therefore most relevant if our analytical approximates are to approximate numerically calculated5

values. While recognising that the Earth’s climate system is presently far from equilibrium, we use changes in the equilibrium

state of the model to approximate model responses over long time scales.

We analytically calculate the gains associated with each of the feedback loops in Fig. 1 as follows. We calculate the sensitivity

(mathematically, partial derivative) of the equilibrium value of each quantity in the feedback loop with respect to the preceding

quantity in the loop. We form the product of the derivatives (as per the chain rule of differentiation) to estimate the gain of that10

feedback loop. For example, to calculate the land climate-carbon gain we calculate the sensitivity of equilibrium temperature

with respect to changes in atmospheric carbon content (∂T ∗/∂ca), multiplied by the sensitivity of equilibrium terrestrial carbon

with respect to changes in temperature (∂c∗t /∂T ), multiplied by the sensitivity of equilibrium atmospheric carbon with respect

to changes in terrestrial carbon (∂c∗a/∂ct).

Land climate-carbon equilibrium gain g∗TL ≡
∂T ∗

∂ca

∂c∗t
∂T

∂c∗a
∂ct

15

Land concentration-carbon equilibrium gain g∗L ≡
∂c∗t
∂ca

∂c∗a
∂ct

Ocean climate-carbon equilibrium gain g∗TO ≡
∂T ∗

∂ca

∂c∗m
∂T

∂cM
∂cm

∂cM

∂T

∂c∗a
∂cM

Ocean concentration-carbon equilibrium gain g∗O ≡
∂c∗m
∂ca

∂cM
∂cm

∂cM

∂ca

∂c∗a
∂cM

The subscript T denotes that the feedback involves temperature. Asterisks (*) denote equilibrium quantities. From these gains,

the feedback factors F ∗TL, F ∗L, F ∗TO and F ∗O can be calculated using Eq. (14). We label these gains and feedbacks factors g∗20

and F ∗, respectively, to denote they are based on an equilibrium approximation, not directly from transient simulations as

estimated by Zickfeld et al. (2011). We calculate
∂c∗m
∂ca

∂cM
∂cm

rather than simply
∂c∗M
∂ca

as it is cm that is a state variable in our model, from which we then estimate

cM .

The derivatives of c∗a are trivial to calculate: by carbon balance, ∂c
∗
a

∂ct
=

∂c∗a
∂cM

=−1. To calculate ∂c∗m
∂T we set 0 = dcm

dt ≡ f(c∗m, ca,T ),

use the chain rule to obtain 0 = ∂f
∂c∗m

∂c∗m
∂T + ∂f

∂T , and then solve for
∂c∗m
∂T in terms of the partial derivatives of f . Similar procedures provide

∂c∗m
∂ca

and the derivatives of T∗ and25

c∗t . the derivatives of c∗T , we set 0 = dct
dt , solve for ct and calculate the necessary derivatives. A similar procedure provides

∂T∗

∂ca
.

The remaining derivative is ∂cM/∂cmderivatives are ∂cM
∂T and ∂cM

∂ca
. Carbon sunk into the deep ocean is substantial and cannot

be neglected. Deep ocean carbon storage equilibrates on time scales of millennia or more, however, far longer than the time

scales of interest in this model (we therefore write ∂cM/∂cm not ∂c∗M/∂cmderivatives of cM rather than c∗M ). We therefore cannot30

use the same equilibrium approach as for the other variables. Instead, we use derive approximations to Eq. (7) with the following

approximationsas follows. First, we neglect the temperature dependence of the biological pump and the rate of the overturning circulation, as for this derivative we are
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primarily interested in the effects of changing carbon stocks, not temperatures. Second, let us assume a scenario where the trajectory of ocean mixed layer DIC cm observe

that in the SRES A2 scenario used below both cm(t) and ∆T (t) can be approximated by a linear increase from cm0 to cm as

linear increases, starting at cm = cm0 and ∆T = 0 respectively, over a time interval tlin. We estimate this time interval by

tlin = (cm(tend)− cm0)/c′m(tend) using the value cm and gradient c′m at the end of the simulation period. Using this approximation and

Eq. ,5

∂cM
∂cm

≈ 1 +M

whereM = w0tlin/2. The value ofM will be strongly scenario-dependentWe obtain

∆cM ≈ cm− cm0 +w0(
1

2
− 1

3
wT∆T )(cm− cm0)tlin−

1

2
B0BT∆Ttlin. (21)

We use this equation to calculate the derivatives ∂cM
∂T and ∂cM

∂ca
. Evaluating these derivatives will involve the derivatives

∂cm
∂T and ∂cm

∂ca
. Since partial pressures across the air-sea interface equilibrate rapidly on the time scale of the model10

(D = 1yr−1, Table 1), we assume that ca ≈ p(cm,∆T ), rearrange for cm and then calculate the appropriate derivatives

from the resulting equation.

We analytically estimate equilibrium versions of the time-integrated feedback parameters of Friedlingstein et al. (2006)

using a similar approach:

γ∗L =
∂c∗t
∂T

15

β∗L =
∂c∗t
∂ca

γ∗O =
∂c∗m
∂T

∂cM
∂cm

∂cM

∂T

β∗O =
∂c∗m
∂ca

∂cM
∂cm

∂cM

∂ca
.

Since the ocean component of the model has multiple processes that respond to temperature, some analytical forms were too

complicated for easy visual inspection (Table A1). We derived approximate analytical feedbacks by comparing the magnitudes20

of terms in the numerator and denominator of the feedback measures , and by expanding numerators by expanding in power series of

DTT and ca/ca0.
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4.3 Analytical feedback strengths based on carbon fluxes

We estimate the direct feedback parameters as follows:

Γ∗L =
dct
dt

∣∣∣∣
ca=ca0

1

∆T

B∗L =
dct
dt

∣∣∣∣
∆T=0

1

ca− ca0

Γ∗O =
dcM
dt

∣∣∣∣
ca=ca0

1

∆T
5

B∗O =
dcM
dt

∣∣∣∣
∆T=0

1

ca− ca0
.

Here dct/dt and dcM/dt denote the atmosphere-land and atmosphere-ocean fluxes. The subscript ∆T = 0 denotes a biogeo-

chemically coupled (and radiatively decoupled) simulation and ca = ca0 denotes a radiatively coupled (and biogeochemically

decoupled) simulation. We use the

The values of the feedback parameters are strongly scenario-dependent (Arora et al., 2013). To calculate the direct feedback10

parameters, we assume a standard CO2-quadrupling concentration pathway in order to compare our results with Arora et al.

(2013). This scenario has ca(t) = ca0a
t where a= 1.01. In this scenario, 1

ca
dca
dt = loga and, ignoring an initial exponential

transient, dTdt = λ loga/ log2.

For the atmosphere-land carbon flux, the calculation is straightforward under the following assumptions. We assume that

NPP0/ct0� loga so that ct tracks its carrying capacity ct ≈K [Eq. (2)]. We also ignore land use change, so that dctdt ≈
dK
dt .15

Then we calculate dK
dt |ca=ca0 = ∂K

∂T
dT
dt and dK

dt |∆T=0 = ∂K
∂ca

dca
dt .

While the atmosphere-ocean flux could be read off directly from the first term of Eq. (6), this form is however not particularly

useful. As it involves a small difference between two large quantities, ca and p(cm,∆T ), the size of the difference can only be

estimated from numerical results and gives no immediate insight into how it depends on parameters. Furthermore, we seek to

compare our analytical results to the results presented by Arora et al. (2013), in which the feedback parameters are presented20

as functions of ca or ∆T only (not cm).

We instead derive an approximation based on time scale separation as follows. The characteristic time scales scale of atmosphere-

ocean diffusion , is much faster than the solubility pump, biological pump and or human emissions into the atmosphere are D,

w0, B0/cm0 and loga respectively. These rates are ordered D� w0� loga,B0/cm0. (D� w0,B0/cm0, loga). Since atmosphere-ocean diffu-

sion is the fastest process, ocean mixed layer carbon content rapidly gains an equilibrium cm = p−1(ca,∆T ) with respect to25

atmospheric carbon content, where p−1(ca,∆T ) is the solution to ca = p(cm,∆T ). Ocean and atmosphere partial pressures are kept out of

equilibrium by the next fastest process: the solubility pump. On the time scale of our model, the atmosphere-ocean flux is therefore controlled

by the solubility pumpand biological pumps, with diffusion providing a rapid coupling between ocean mixed layer and at-

mosphere. An approximation for the atmosphere-ocean flux is therefore dcM/dt≈ w0(1−wT ∆T )(p−1(ca,∆T )− cm0)dcM/dt≈
w0(1−wT∆T )(p−1(ca,∆T )−cm0)−B0BTT , which upon substitution into the definitions of B∗O and Γ∗O gives the forms in30

Table A1. Taylor series expansions and L’Hôpital’s rule were then used to derive the approximate forms in Table 3.
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4.4 Numerical estimation of feedback strengths

In addition to the analytical approximations to carbon cycle feedbacks derived from our model, we also estimate feedback

factors from direct numerical simulations of our model. To compare the results of our model to previous studies, we use the

following scenarios. To compare our results with the time-integrated feedback parameters reported by Friedlingstein et al.

(2006) and the feedback factors and gains of Zickfeld et al. (2011), we employ the SRES A2 emissions scenario used in those5

articles. To compare our results with the direct feedback parameters of Arora et al. (2013), we use the doubling CO2 concentration

same scenario used in that article in which CO2 concentration increases 1% per year until it quadruples (approximately

140 years). For each scenario, we perform three four simulations:

1. Fully coupled simulation.

2. Completely uncoupled simulation, giving coff
a (t) = ca0 +

∫ t
E(t)dt for the emissions-driven scenario and the specified10

concentration pathway for concentration-driven scenario.

3. Biogeochemically coupled simulation. We switch off feedbacks involving temperature response to atmospheric CO2, by

setting λ= 0. Since our model contains no radiative forcing other than changes in CO2, temperature ∆T = 0 in this

simulation. From this simulation we estimate the carbon-concentration feedback factors via land FL = ∆con
a /∆c

off
a =

1−∆ct/∆c
off
a and ocean FO = ∆con

a /∆c
off
a = 1−∆cM/∆c

off
a , time-integrated feedback parameters βL = ∆ct/∆ca and15

βO = ∆cM/∆ca, and direct feedback parameters BL(t) = dct
dt /(ca− ca0) and BO(t) = dcM

dt /(ca− ca0).

4. Radiatively coupled simulation. We switch off feedbacks involving the carbon cycle, by setting KC = 0 and changing

the ca in Eq. (6) to ca0. From this simulation we estimate the carbon-climate feedback factors FTL = 1−∆ct/∆c
off
a and

FTO = 1−∆cM/∆c
off
a , time-integrated feedback parameters γL = ∆ct/∆T and γO = ∆cM/∆T following Arora et al.

(2013), and direct feedback parameters ΓL(t) = dct
dt /∆T and ΓO(t) = dcM

dt /∆T .20

4.5 Feedback nonlinearity

Zickfeld et al. (2011) found, in emissions-driven scenarios, that the fully coupled simulation sunk more terrestrial and marine

carbon than the sum of the biogeochemically and radiatively coupled scenarios. They refer to this difference as the non-linearity

of the feedback, with the land sink contributing 80% of the nonlinearity and the ocean sink 20%. Our analytical expressions

for the feedbacks can be used to obtain an alternative measure of feedback nonlinearity.25

We evaluate the nonlinearity in the ocean and land climate-carbon feedbacks byF ∗TO(ca, cm, ct,∆T )−F ∗TO(ca0, cm0, ct0,∆T )

and F ∗TL(ca, cm, ct,∆T )−F ∗TL(ca0, cm0, ct0,∆T ), respectively, where the F ∗(ca0, cm0, ct0,∆T ) are analytical approxima-

tions of feedback factors from a radiatively coupled simulation (all carbon stocks are fixed at pre-industrial levels). We eval-

uate the nonlinearities in the ocean and land concentration-carbon feedbacks by F ∗O(ca, cm, ct,∆T )−F ∗O(ca, cm, ct,0) and

F ∗L(ca, cm, ct,∆T )−F ∗L(ca, cm, ct,0), respectively, where the F ∗(ca, cm, ct,0) are analytical approximations of feedback fac-30

tors from a biogeochemically coupled simulation (temperature is fixed at its pre-industrial level). These expressions indicate
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Table 3. Feedback analysis. Gains (g), feedback factors (F ), time-integrated feedback parameters (γ and β) and direct feedback parameters

(Γ and B) were calculated analytically and numerically. Analytical ocean feedbacks are approximations of the exact forms in Table A1 (see

Sec. 4.2. Exact forms were used to calculate numerical values. In this table, p≡ p(cm,T ). Units of the climate-carbon integrated feedback

parameters are PgC/K and concentration-carbon integrated feedback parameters are PgC/ppm. Ranges for analytical results are written in

the form (value at start of simulation) to (value at end of simulation). Emissions scenarios are as indicated; land use emissions were assumed

to be zero. From the results of simulations using the SRES A2 scenario we use tlin ≈ 100 corresponding to a period between the years

2000 and 2100.

Feedback measure Land climate- Ocean climate- Land conc.- Ocean conc.-

carbon feedback carbon feedback carbon feedback carbon feedback

Gain, analytical expression
λct0

(
1 +KC log ca

ca0

)
logQR

10caQ
∆T/10
R log2

λDDT (1 +M)cm

rca(1−DT ∆T ) log2
− ct0KC

caQ
∆T/10
R

−
(1 +M)cm

rp

λtlin
ca log2

(
B0BT

2
+
cmDTw0

2r
−cmw0tlin

2car

+
w0wT (cm − cm0)

3

)
Feedback factor (numerical scenario: SRES A2) (> 1 amplifies climate change; < 1 dampens climate change)

- estimate from analytical gain 1.81 to 1.18 1.07 to 1.03 1.01 to 1.09 0.51 to 0.81 0.59 to 0.80 0.89 to 0.84

- from simulation 1.15 1.10 0.74 0.67

- Zickfeld et al. (2011) 1.25 1.22 0.66 0.71

Time-integrated feedback parameter (numerical scenario: SRES A2) (< 0 amplifies climate change; > 0 dampens climate change)

- analytical expression − ct0 logQR

10Q
∆T/10
R

−
D(1 +M)cmDT

r(1−DT ∆T ) ct0KC

ca

(1 +M)cm

rp

−B0BT
tlin
2

− cmDTw0tlin
2r

cmw0tlin
2car

− tlin
3
w0wt(cm − cm0)

- estimate from analytical form -102 to -86 -15 to -21 -3 to -67 2.04 to 0.60 0.51 1.48 to 0.51 0.26 to 0.42

- from simulation -74 -48 0.73 1.04

- Zickfeld et al. (2011) -129 -32 1.12 0.86

- Friedlingstein et al. (2006) -79 (-20 to -177) -30 (-14 to -67) 1.35 (0.2 to 2.8) 1.13 (0.8 to 1.6)

Direct feedback parameter (numerical scenario: CO2 doubling) (< 0 amplifies climate change; > 0 dampens climate change)

- analytical expression −ct0λ logQR loga

10∆T log2
−w0cm0DT

r
−B0BT

ct0KC loga

ca − ca0

w0cm0ca

rca0(ca− ca0)

w0cm0c
1
r
−1

a

rc
1
r
a0

- estimate from analytical form Fig. A1a Fig. A1b Fig. A1a Fig. A1b

- from simulation Fig. A1a Fig. A1b Fig. A1a Fig. A1b

- Arora et al. (2013) see text

Nonlinearity -0.43 -0.06 -0.11 0.03 0.02 0.03

16



the effect of temperature and atmospheric carbon on the concentration-carbon and climate-carbon feedbacks, respectively, We

used the SRES A2 scenario.

5 Results and Discussion

5.1 Model evaluation

Most predictions of our model are within the range of model predictions produced for the IPCC’s Fifth Assessment Report5

(Table 2). Our model estimates around 55 PgC more historical land carbon uptake than the IPCC multi-model mean, possibly

due to our simplification to a single land carbon pool. Because it omits radiative forcing due to greenhouse gases other than

CO2, our model consistently underestimates future temperature changes, although in all except the RCP8.5 scenario the pro-

jections are within the IPCC model range. The purpose of our model is not to precisely predict future climate change, but to

serve as an approximate, mechanistically based emulator of the carbon cycle component of Earth System Models (see Sec. 2).10

We conclude that the model emulates historical observations and future projections of Earth System Models with sufficient

accuracy for this purpose.

5.2 Feedback analysis

Both All feedback measures calculated directly from our model simulations and measures estimated from analytical approximations match well with stylised

model simulations, as well as most of our analytically estimated feedback measures, are within a factor of 2 of the mean15

output from Earth System Models reported by Friedlingstein et al. (2006) and Zickfeld et al. (2011) [Table 3; compare also

Fig. A1 with figures 4-5 of Arora et al. (2013) for direct feedback parameters]. This agreement is a remarkably good agreement

considering the highly stylised nature of our model. Furthermore, all of the numerically time-integrated feedback param-

eters from our stylised model are within the multi-model range reported by Friedlingstein et al. (2006). This agreement

serves as additional validation of our model as well as validation of the approximations used to calculate analytical feedback20

factors.

An exception to the close agreement is the ocean concentration-carbon feedback, with analytically estimated feedback

factor and time-integrated feedback parameter indicating a weaker negative feedback than the numerical estimates from

our stylised model or ESMs. This mismatch is primarily due to two approximations: one in the numerical simulation

and one in the analytical approximation. The numerical approximation is that disconnecting climate feedbacks in the25

biogeochemically coupled simulation leaves less carbon available to be sunk into the ocean, placing the ocean feedback

at a different point in the highly nonlinear (as parameterised by the Revelle factor) ocean carbon uptake dynamics. The

analytical approximation is that Eq. (21) underestimates carbon sunk into the deep ocean.

The approximate analytical expressions for the three different feedback measures all have similar dependences on state

variables and parameters. All measures of the land climate-carbon feedback have dependence of the form ct0 logQR/Q
∆T/10
R .30

The ocean climate-carbon feedbacks all have the form w0DT cm0/r (since 1 +M ∼ w0 and ocean mixed layer carbon cm ≈ cm0 to within 10 % over the
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duration of the simulation)terms of the form B0BT and w0DT cm/r. The land concentration-carbon feedback has the form ct0KC/ca

and the ocean concentration-carbon feedbacks have the form w0cm/rca(since p(cm,∆T )≈ ca). We conclude that for each type of

carbon cycle feedback, all three feedback formalisms detect similar features of the climate-carbon system.

The analytical expressions provide rapid insight into how feedback strengths depend on state variable and parameter values

that could otherwise only be studied numerically or by qualitative reasoning. The analytical forms show that increasing Revelle5

factor r, as is likely to occur in an increasingly acidic ocean (Sabine et al., 2004), will decrease the strengths of ocean climate-

carbon and concentration-carbon feedbacks. Weakening overturning circulation, via w0, would also decrease the strength of

the ocean carbon cycle feedbacks. On land, the parameters QR and KC control the terrestrial carbon cycle feedbacks.

We can compare likely trends in feedback strengths from the analytical expressions . In the oceanfor the direct feedback

parameters. According to our model, the destabilising ocean climate-carbon feedback is almost constant, while the ocean10

concentration-carbon feedback weakens with cm (since cm/p(cm,∆T )∼ c1−r
m cm/ca ∼ c1−rm ). Similarly, according to our model

the destabilising land climate-carbon feedback will weaken less than the stabilising concentration-carbon feedback (under CO2

doubling, ∼Q−∆T/10
R weakens by 9% at the new temperature equilibrium while ∼ 1/ca weakens by 50%). This difference

between the land climate-carbon and concentration-carbon feedbacks stems from the differing curvatures of K(ca,∆T ) as

a function of ∆T (close to linear) and ca (concave). We conclude that under continued carbon emissions, according to our15

model, both land and ocean feedbacks will overall become more positive.

Where multiple processes contribute in parallel to a feedback, inspection of analytical forms can indicate the relative contri-

butions of the different processes to the feedback. In the ocean component of the model, CO2 solubility, the biological pump,

and the solubility pump are all temperature-dependent and therefore contribute to the ocean climate-carbon feedback. Terms in the

numerators of the exact forms of gTO and γO (Table A1) correspond to these three processes. Substituting parameters and typical values for state variables into these three terms20

show that the Remarkably, all three processes contribute temperature dependences of a similar magnitude; we therefore list

all three in the approximate analytical gain and time-integrated feedback parameter in Table 3. The three terms represent

temperature dependence of the biological pump, CO2 solubilitycontributes most to these climate-carbon feedbacks, and the solubility pump,

respectively.

5.3 Feedback nonlinearity25

As shown in Sec. 4.5, our analytical feedback expressions enable a new way of estimating feedback nonlinearities that is

not possible from direct numerical simulation. Since the sum of the four nonlinearities is negative (Table 3), we conclude

that summing feedbacks found by individual decoupled simulations will overestimate the atmospheric carbon levels, that is,

underestimate land and ocean sinks. This result matches the findings of Zickfeld et al. (2011) and Matthews (2007). Terrestrial

feedbacks contributed 9183% of the total nonlinearity in our model, compared to 80% reported by Zickfeld et al. (2011).30

Furthermore, we can distinguish the nonlinearities in the climate-carbon and concentration-carbon feedbacks. We found that the

nonlinearity in the terrestrial carbon-climate feedback was almost ten four times larger than any other (Table 3). By inspecting

the analytical derivation of the gains we conclude that this dominance is likely due to a combination of two three reasons:

First, due to the sensitivity of temperature to carbon dioxide, ∂T/∂ca = λ/ca log2, the carbon-climate feedbacks are much
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more sensitive to ca than the concentration-carbon feedbacks are to ∆T . Second, the nonlinearity in the land climate-carbon

feedback is larger than the ocean climate-carbon feedback because its feedback factor is larger and therefore more sensitive to

changes in gain (see Eq. (13)). Third, the century time-scale of the simulation prevented ocean carbon dynamics, which

generally take place on longer time scales, from being exhibited. We conclude that care must be taken when summing results

for feedbacks from decoupled simulations, especially for simulations involving land feedbacks.5

6 Conclusions

Earth System Models span a wide variety of complexity. Here, we constructed a highly stylised, globally aggregated climate-

carbon cycle model. Despite the model’s simplicity—just four state variables—the model emulated globally aggregated histor-

ical trends and future projections of Earth System Models. The model’s simple form allowed climate-carbon cycle feedbacks

to be estimated analytically, providing mechanistic insight into these processes. For example, we showed that carbon-climate10

feedbacks are less sensitive than carbon-concentration feedbacks; on land, this is due to the shape of K(ca,∆T ). The simple

but accurate climate-carbon cycle model could be a starting point for model-based investigations of Earth system processes

that are too poorly understood to be incorporated in more complex comprehensive models.

Stylized models such as ours have significant value in policy contexts. When confronted with difficult policy decisions

involving long time periods and significant uncertainty, collaborative work with scientists allows policy makers to identify and15

clarify the impacts of various policy actions. In this context, the utility of a model is to increase stakeholders’ understanding

of a system and its dynamics under various conditions (Voinov and Bousquet, 2010; Anderies, 2005). This is in stark contrast

to the use of more complex, detailed comprehensive models to predict impacts of policies where mechanisms underlying dynamics

and trade-offs are not transparent, and quick explorations with stakeholders are not practical. The utility of a stylised model is

in facilitating a learning process rather than in ’accurately’ predicting outcomes.20

We foresee at least two strands of valuable future research based on the climate-carbon cycle model developed in this

paper. First, our climate-carbon cycle model could be extended by including further processes relevant on different time-

scales of interest for Earth system analysis. This would enable a more in-depth analytical analysis of the feedback strengths

and gains relating to other aspects of Earth system dynamics, such as the Earth’s energy balance, carbon storage in the

tropics compared to extra-tropics, albedo changes, the cryosphere, nutrient cycles, and even societal feedbacks. The task of25

characterizing the Anthropocene as an epoch could thus move beyond qualitative comparison of human-impact trends to an

improved characterisation of the feedbacks that maintain different Earth system ‘regimes’. The effects on feedback strengths

of different functional forms, such as the fertilisation effect KC , and how to constrain these functional forms from data

could also be investigated and could yield insight into the continued divergence of ESM projections.

Second, the model could comprise a ‘workbench’ for the systemic understanding of planetary boundary interactions and,30

hence, generate crucial insights into the structure of the safe operating space for humanity delineated by the planetary bound-

aries (Rockström et al., 2009; Steffen et al., 2015). Such extensions should focus on linking the core abiotic and biotic dimen-

sions of the planetary boundaries framework. The present lack of well-developed model representations of the dynamics and
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Figure A1. Direct feedback parameters, (a) concentration-carbon climate-carbon feedbacks and (b) climate-carbon concentration-carbon feedbacks.

Table A1. Exact forms for ocean feedbacks.

Feedback measure Ocean climate-carbon feedback Ocean concentration-carbon feedback

Gain λ(1 +M)

ca log2

pcm0DDT
ca0r(1−DT ∆T )

−B0BT −w0wT (cm− cm0)

pDcm0
cmca0

+w(1−wT ∆T )
−
cm0D

ca0r

1 +M
pDcm0
cmca0

+w(1−wT ∆T )

λ

ca log2

[
B0BT tlin

2
+
tlin
3
w0wt(cm − cm0) − cm

car

(
1 +w0tlin

(
1

2
− wT ∆T

3

))
+

cmDT

r(1−DT ∆T )

(
1 +w0tlin

(
1

2
− wT ∆T

3

))]
Time-integrated −

pcm0DDT
ca0r(1−DT ∆T )

−B0BT −w0wT (cm− cm0)

pDcm0
cmca0

+w(1−wT ∆T )

cm0D

ca0r

1 +M
pDcm0
cmca0

+w

feedback parameter − cmDT

r(1−DT ∆T )

(
1 +w0tlin

(
1

2
− wT ∆T

3

))
cm
car

(
1 +w0tlin

(
1

2
− wT ∆T

3

))
−B0BT tlin

2
− tlin

3
w0wt(cm − cm0)

Direct feedback pa-

rameter

w0(1−wT ∆T )cm0

(
(1−DT ∆T )

1
r − 1

)
∆T

−B0BT

wcm0

((
ca
ca0

) 1
r − 1

)
ca − ca0

ecosystem structure of biosphere diversity, heterogeneity and resilience, despite ongoing efforts in this direction (Purves et al.,

2013; Bartlett et al., 2016; Sakschewski et al., 2016), emphasises the need for a more conceptual understanding of biosphere

integrity, its vulnerability to anthropogenic perturbation, and its role for Earth system resilience.
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