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Abstract. This study introduces the Systematic Correlation Matrix Evaluation (SCoMaE) method, a bottom-up approach which

combines expert judgment and statistical information to systematically select transparent, non redundant indicators for a com-

prehensive assessment of the state of the Earth system. The methods consists of three
:::
two

:
basic steps: 1) Calculation of a

correlation matrix among variables relevant for a given research question,
::
and

:
2) Systematic evaluation of the matrix, to iden-

tify clusters of variables with similar behavior and respective mutually independent indicators, and .
::::::::
Optional

::::::
further

:::::::
analysis5

::::
steps

:::::::
include:

:
3) Interpretation of the identified clusters, enabling a learning effect from the selection of indicators. Optional

further analysis steps include: ,
:
4) Testing the robustness of identified clusters with respect to changes in forcing or boundary

conditions, 5) Enabling a comparative assessment of varying scenarios by constructing and evaluating a common correlation

matrix, or 6) Inclusion of expert judgment such as to prescribe indicators, to allow for considerations other than statistical con-

sistency. The exemplary application of the SCoMaE method to Earth system model output forced by different CO2 emission10

scenarios reveals the necessity of re-evaluating indicators identified in a historical scenario simulation for an accurate assess-

ment of an intermediate-high, as well as a business-as-usual, climate change scenario simulation, which
:
.
::::
This

:
arises from

changes in prevailing correlations in the Earth system under varying climate forcing. For a comparative assessment of the three

climate change scenarios, we construct and evaluate a common correlation matrix, in which we identify robust correlations

between variables across the three considered scenarios.15

1 Introduction

An indicator is a quantitative value, measured or calculated, that describes relevant aspects of the state of a defined system.

A useful indicator should fulfill certain characteristics that depend on the purpose of the indicator (Gallopín, 1996). Environ-

mental indicators are developed based on quantitative measurements or statistics of environmental conditions in order to allow

for a comparison of states of the environment across time or space (Ebert and Welsch, 2004). For environmental indicators of20

climate change Radermacher (2005) defined statistical measurability, political and societal relevance and scientific consistency,

i.e. a scientifically meaningful link between indicator and the state to be described, as three main characteristics that should be
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considered as important during the indicator selection process. Moreover, other characteristics can be defined as desirable for

such indicators, such as a high signal-to-noise ratio of the measurement, the relevance for ethical considerations, or the fact

that the chosen indicators should not provide redundant information.

For the assessment of ongoing climate change, models representing the physical and biogeochemical processes of the Earth

system, so called Earth system models (ESMs), are one of the essential tools, because the inertia of the climate system to (car-5

bon) perturbations requires projections of future climate states. Early climate models applied simple zero to two dimensional

calculations to assess the effect of atmospheric CO2 on the climate by using global mean surface air temperature (SAT) as an

indicator (e.g., Arrhenius, 1896; Callendar, 1938; Sellers, 1969). This commonly used climate change indicator, SAT, fulfills

all three above mentioned characteristics: Several long term temperature records as well as proxies for assessing SAT exist,

which makes this indicator well measured (Statistical measurability). SAT is closely linked to other climate variables, e.g.10

evaporation, sea level rise, or biological productivity. Although SAT may not be the most relevant variable for society, using

this indicator as a proxy for climate impacts is scientifically consistent (Seneviratne et al., 2016). Its political, economical

and ethical relevance evolved over time and is now evident in discussions concerning e.g. global warming (Ott et al., 2004)

or the 2-degree temperature increase target, which was endorsed by the Conference of the Parties in 2015 (UNFCCC, 2015).

:::::::
Working

:::::
group

::
II
:::
of

:::
the

:::::::::::::::
Intergovernmental

:::::
Panel

:::
on

:::::::
Climate

::::::
Change

:::::::
(IPCC)

:::::::::::::::::::::::
(Houghton et al., 2001) used

:::::
SAT

::
as

:::
the

:::::
main15

::::::
climate

::::::
change

::::::::
indicator,

:::
due

:::
to

::
its

::::::::::::
predominance

::
in

:::
the

:::::::
existing

:::::::
literature

::::
and

::
its

:::::
large

:::::::
scientific

::::::::::
consistency

::
as

:::::
such.

As
:::
But

::
as Earth system models

:::
and

:::::::::::
observational

::::
data

:::
sets

:
continuously increase in complexity there are more and more output

variables available that could potentially serve as indicators for the state of the climate system. Which ones should we regard

for a comprehensive assessment
::::
select

:::
for

:
a
:::::
fully

::::::::::::
comprehensive

::::::::::
assessment

::
of

:::::::
changes

::
in

:::
the

::::::
climate

::::::
system, ideally, without

providing redundant information? A common bottom-up approach for measuring such complex systems is to start from a broad20

set of (Earth system) variables and consecutively select more appropriate ones depending on the research question (e.g. Pintér

et al. (2005); Kopfmüller et al. (2012)). For natural science-based
:::::::::
science-led

:
climate change assessments reports, such as

published by Working Group I of the Intergovernmental Panel on Climate Change (IPCC), the task of selecting scientifically

consistent indicators to inform policy and the general public is a highly non-trivial task. In
:::::
IPCC,

::
in addition to SAT, nowadays

many additional
::::
more indicators are selected to evaluate changes in different components of the Earth system, e.g., precipita-25

tion, or often precipitation extremes, the Arctic summer sea ice or the rate of ocean acidification etc. As such they are discussed

in e.g. the IPCC’s summary for policy makers of the recent assessment report of climate change (Stocker et al., 2013).

However, given a certain data set, already the selection of an indicator is a normative choice and there
:::
The

:::::::
selection

::
of

::
a

::::::
limited

::::::
number

::
of

:::::::::
indicators

:::
that

:::::::
support

::::::::
scientific,

::
or

:::::::
political

:::::::
decision

::::::
making

::
is
::
a

:::::
major

::::::::
challenge

:::
for

::::::
experts,

::::
who

::
in

::::
this

::::
case

::::
have

::
to

:::::
decide

:::
on

:::
the

:::::::
relative

:::::::::
importance

:::
of

:
a
:::::::
variable

::
in

:::::::
relation

::
to

::::::
others

::::::::::::::::::::::
(Rametsteiner et al., 2011).

:::::
There

:
exist no unambigu-30

ous rules for the selection process (Krellenberg et al. (2010) and Böhringer and Jochem (2007), respectively). Any selection

process of indicators and construction process of metrics
::::::::::::::::::::::::
Böhringer and Jochem (2007).

::::
Any

::::::::
indicator

::::::::
selection

::
or

:::::::
metrics

::::::::::
construction from Earth system variables,

:
implies a value and weighting decision,

:::
and

::
is applying a weight of zero on any dis-

regarded variable. While the value judgment ideally requires the inclusion of potential end-users or stakeholders, the weighting

requires a well-informed and broad participation of scientific disciplines, i.e., expert judgment (Radermacher, 2005).
::::::::
However,35
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:::::::
selecting

:::
one

::::::::
indicator,

:::::
while

:::::::::::
disregarding

:::
the

::::
other

::
is

:
a
:::::::::
normative

::::::
choice

:::::::::::::::::::::
(Krellenberg et al., 2010),

:::::
which

:::
can

:::::::::::::
(unknowingly)

::
be

::::::
biased

::
by

::::
e.g.

::::::::
technical

:::::::::
knowledge

::::::::::::::::::::::
(Rametsteiner et al., 2011).

:::::::::::
Furthermore,

::::::::::::::::::::::::::
Rametsteiner et al. (2011) point

::::
out,

::::
that

:::
the

:::::
ad-hoc

:::::::
defined

::::::::
indicators

::::::
should

::
be

:::::::
subject

::
to

::::::::::
reevaluation

::::
over

::::
time.

In this study we go beyond the usual scientific approach of applying expert judgment to select indicators for addressing a given

research hypothesis, and
::::
want

::
to

:
introduce a bottom-up method that combines expert judgment with statistical information on5

the data set to systematically select scientifically consistent indicators
:::::::
indicator

:::::::
selection

:::::::
method,

::::
that

:::
uses

::::::::
statistical

::::::::::
information

::::
about

::::::::
variables

::
in

:::::::
addition

:::
to

:::::
expert

::::::::::
judgement,

::::::
thereby

:::::::::
attempting

:::
to

::::::
reduced

::::
bias

::
in
:::
the

::::::::
selection

:::::::
process. Systematic Cor-

relation Matrix Evaluation (SCoMaE) uses information on correlations between variables to identify "clusters" of variables

that show similar behavior, and hence can be represented by one key indicator. .
::::
We

::::
then

::::::::::::
systematically

:::::
select

:::::::::::
scientifically

::::::::
consistent

::::::::
indicators

::
to
::::::::

represent
:::::
these

:::::::
clusters.

:
The identified indicators are independent and do not provide redundant infor-10

mation. A set of independent indicators hence allows for a more comprehensive natural science-based
:::::::::
science-led

:
assessment

of the system under consideration
:
, than a set of correlated indicators. Furthermore, SCoMaE allows for a learning process by

providing new information about correlations between the given variables, and hence can help to increase the process
::::::::
increases

::
the

::::::
system

:
understanding.

To illustrate the SCoMaE method, we apply it to the output of an Earth system model of intermediate complexity, the University15

of Victoria Earth system climate model (UVic ESCM). We select indicators from Earth system variables for a comprehensive

assessment of our simulated climate system , given three forcing scenarios, namely a historical scenario, an intermediate high

CO2 emission scenario, and a business as usual emission scenarios (see Appendix 2.1)
::::::::::
exemplarily

:::::
select

::::::::
indicators

:::
to

::::::
answer

::
the

:::::::::
following

::::::
defined

:::::::
research

::::::::
question:

:::::
’How

:::
are

:::::::
changes

::
in

::
the

:::::::
climate

::::::
system

::::::::
influenced

:::
by

:::
the

::::::::
sensitivity

:::
of

::
the

::::::
marine

::::
and

::::::::
terrestrial

::::::::
biological

::::::
system

:::
to

::::::::::
temperature

:::
and

::::::
CO2?’. This example enables us to 1) illustrate how a correlation matrix can20

be constructed given a specific research question, 2) identify a comprehensive indicator setfor the historical forcing scenario,

3) show that an indicator set derived from a historical
:::
one forcing scenario is not necessarily appropriate to describe future

states of the climate system under global warming
:
a
:::::::
changed

:::::::
forcing

:::::::
scenario, 4) identify a common indicator set valid for all

three
:::::::
multiple

:
forcing scenarios, and finally 5) illustrate how the method could be used in an iterative process including expert

judgment or previous knowledge of the given system. These steps will serve as the guideline of this paper.25

2
:::::::
Defining

:::
the

::::::::
research

::::::::
question

:::
for

:::
the

::::::::
SCoMaE

::::::::
example

::::
case

::
To

::::::::
illustrate

:::
the

::::::::
SCoMaE

:::::::
method,

::
we

:::::::::::
exemplarily

:::::
select

::::::::
indicators

::
to

::::::
answer

:::
the

::::::::
research

::::::::
question:

:::::
’How

:::
are

:::::::
changes

::
in

:::
the

::::::
climate

::::::
system

:::::::::
influenced

:::
by

:::
the

::::::::
sensitivity

:::
of

:::
the

::::::
marine

:::
and

::::::::
terrestrial

:::::::::
biological

::::::
system

::
to

::::::::::
temperature

::::
and

::::::
CO2?’.

::::::
While

::
for

::::
this

:::::::
question

:::
we

:::::
chose

::
to
::::::::

evaluate
::::::::
perturbed

:::::::::
parameter

:::::::::
simulations

:::
of

::
an

:::::::::::
intermediate

:::::::
complex

:::::
Earth

::::::
system

::::::
model

::::
(see

::::::
section

:::
2.1

:::
and

:::
2.3

:::
for

:::::::
details),

::
it

::
is

:::::::
possible

::
to

:::::
apply

:::
this

:::::::
method

::
to

:::::
other

::::
data

:::
sets

::
to
:::::::

answer
:::::::
different

:::::::::
questions.

::::
Here

:::
are

::
a30

:::
few

:::::::::
exemplary

:::::::::
alternative

::::
ways

::
to

::::::
define

:::::::
research

::::::::
questions

:::
and

:::
use

:::
the

::::::::
SCoMaE

:::::::
method

::
to

:::::::::
investigate.

:

::
1)

:::
Our

::::::::::
application

::
is

::::::::::
comparable

::::
with

:
a
::::::::::
multi-model

:::::::::
ensemble,

::::::
where

::::
each

::
of

:::
the

::::::::
perturbed

:::::::::
parameters

::
is
::
a
::::::
slightly

::::::::
different

::::::
version

::
of

:::
the

::::::
default

::::::
model.

:::
We

:::::
could

:::::
hence

::
do

:::
the

::::
very

:::::
same

::::::
analysis

:::
as

::::::::
described

::
in

::::::
Section

::
3,

::::
with

:::
e.g.

:::
the

::::::::
different

::::::
models
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:::
and

::::::::
scenarios

::::::::
simulated

::
in

:::
the

:::::::
Coupled

::::::
Model

::::::::::::::
Intercomparsion

::::::
Project

:
5
:::::::::
(CMIP5).

:::
The

:::::::
research

::::::::
question

:::::
’How

::
are

:::::::::
simulated

::::::
changes

:::
in

:::
the

::::::
climate

::::::
system

:::::::::
influenced

::
by

:::::::::::
multi-model

:::::
model

:::::::::
variability

:::::
under

:::::::
climate

:::::::
change?’

:::::
could

:::
be

::::::::
answered

::
by

::::
this

::::::
setting.

::
2)

::
To

::::::
select

::::::::
indicators

::
to

::::::
answer

::::
the

:::::::
research

:::::::
question

:::::::
’Which

:::::::
changes

::
in

:::
the

:::::::::
simulated

:::::
Earth

::::::
system

:::
are

:::::
robust

::::::::::
throughout

::::::::::::
state-of-the-art

:::::
Earth

::::::
system

::::::::
models?’,

:::
we

:::::
again

:::::
could

::::
use

:::
the

::::::
CMIP5

::::::::
datasets.

:::::
Here,

:::
one

::::::
would

:::::::
probably

:::::
want

::
to

::::::::
calculate5

:::::::::
correlations

:::::::
between

::::
time

:::::
series

::
of

::::::::
different

::::::::
variables.

::::
This

:::::
would

::::
give

::::::::::
information

::::
about

::::::
similar

::::::::::
frequencies

::
of

:::::
those

::::::::
variables,

:::::
which

::
in

::::
turn

::::
hints

:::
to

::::::
similar

:::::::::
underlying

:::::::::
processes.

::::
One

:::::
could

::::::::
compare

:::::::::
Correlation

::::::::
Matrices

::
of

::::
one

:::::
model

::::::
during

::::::::
different

::::::
forcing

::::::::
scenarios,

:::
as

::::::::
described

::
in

:::::::
sections

:::
3.3

::::
and

:::
3.4,

:::
or

:::::
check

:::
the

:::::::::
robustness

::
of

:::
the

:::::::::::
correlations

::
in

:::
one

::::
time

::::::
period

::::::
across

::::::
models.

::
3)

::
In

::::
that

:::::
sense

::::::::
SCoMaE

:::::
could

::::
also

::
be

:::::::
applied

::
to

::::::::
calculate

::::::::::
correlations

::
of

:::::::::::
observational

:::::
time

:::::
series.

:::::
Since

:::::
there

::
is

::
a

:::::
much10

:::::
higher

:::::
signal

:::
to

::::
noice

:::::
ratio

:::::
within

::::
this

::::
data,

::
it
::
is

:::::::
possible

::
to

::::::::::
concentrate

:::
the

:::::::
research

::::::::
question

::
on

::::::::::
pre-defined

::::
time

:::::
scales

::::
and

::::
filter

:::
the

::::
time

:::::
series

::
of

:::
the

:::::::
variables

::::::
before

:::::::
applying

:::
the

::::::::
SCoMaE

::::::
method

::
to

:::
the

::::
time

:::::
series

::
of

:::
the

:::::::
varying

:::::::
observed

::::
time

::::::
series.

:::
The

::::::::
indicators

::::::
would

::::::::::
accordingly

::
be

:::::::
selected

::
to

::::::
answer

:::
the

:::::::::
underlying

:::::::
research

:::::::
question

:::::::
’Which

:::
are

::
the

:::::::::::
independent

::::::::
processes

:::
that

:
I
::::
need

::
to
:::::
study

:::
for

::
a

::::::::::::
comprehensive

:::::::::
assessment

:::
of

:::::::
changes

::
in

:::
the

::::::
climate

::::::
system

::
of

::
a

::::
given

:::::::::
frequency

::::::
band?’.

::::::
Coming

:::::
back

::
to

::::
our

:::::::::
exemplary

:::::::::
application

:::
of

:::
the

::::::::
SCoMaE

:::::::
method,

:::
we

::::
now

:::::
want

::
to

::::::
shortly

:::::::
explain

:::
the

::::::
model

::
set

:::
up

::::
and15

::::::::::
simulations.

2.1
:::::
Model

::::::::::
description

::::
This

:::::
paper

::::::::
illustrates

:::
the

::::::::
SCoMaE

::::::
method

:::
for

:::
the

:::::::
example

::
of

::::::
model

:::::::::
simulations

:::::::::
performed

::::
with

:::::::
version

:::
2.9

::
of

:::
the

:::::::::
University

::
of

:::::::
Victoria

::::
Earth

:::::::
System

:::::::
Climate

:::::
Model

::::::
(UVic

:::::::
ESCM),

::
an

:::::
Earth

::::::
system

::::::
model

::
of

::::::::::
intermediate

::::::::::
complexity

:::::::::::::::
(Eby et al., 2013).

:
It
::::::::
includes

:::::::
schemes

:::
for

::::::
ocean

::::::
physics

:::::
based

:::
on

:::
the

::::::::
Modular

::::::
Ocean

::::::
Model

:::::::
Version

:
2
::::::::
(MOM2)

:::::::::::::::::
(Pacanowski, 1995),

::::::
ocean20

:::::::::::::
biogeochemistry

:::::::::::::::::
(Keller et al., 2012),

:::
and

:
a
::::::::
terrestrial

::::::::::
component

::::::::
including

:::
soil

:::
and

:::::::::
vegetation

::::::::
dynamics

:::::::::::::::::::
(Meissner et al., 2003).

:
It
::
is

:::::::
coupled

::
to

:
a
:::::::::::::
thermodynamic

::::::
sea-ice

:::::
model

:::::::::::::::::::
(Bitz et al., 2001) with

:::::
elastic

:::::::::::
visco-plastic

:::::::
rheology

:::::::::::::::::::::::::
(Hunke and Dukowicz, 1997).

:::
The

::::::::::
atmosphere

::
is

:::::::::
represented

:::
by

:
a
:::
two

:::::::::::
dimensional

::::::::::
atmospheric

::::::
energy

:::::::
moisture

:::::::
balance

:::::
model

::::::::::::::::::::::::
(Fanning and Weaver, 1996).

:::
All

:::::
model

::::::::::
components

:::::
have

:
a
::::::::
common

::::::::
horizontal

:::::::::
resolution

::
of

:::
3.6

::

◦
::::::::
longitude

:::
and

:::
1.8

::

◦
::::::
latitude

::::
and

:::
the

::::::
oceanic

::::::::::
component

:::
has

:
a
:::::::
vertical

:::::::::
resolution

::
of

:::
19

::::::
levels,

::::
with

::::::
vertical

:::::::::
thickness

::::::
varying

::::::::
between

:::
50

::
m

::::
near

:::
the

:::::::
surface

::
to

::::
500

::
m

::
in

:::
the

:::::
deep25

:::::
ocean.

:::::
Wind

:::::::::
velocities

::::
used

:::
to

::::::::
calculate

::::::::
advection

:::
of

::::::::::
atmospheric

::::
heat

::::
and

::::::::
moisture

:::
as

::::
well

::
as

::::
the

:::::::::
air-sea-ice

:::::
fluxes

:::
of

::::::
surface

::::::::::
momentum,

::::
heat

:::
and

:::::
water

::::::
fluxes,

:::
are

:::::::::
prescribed

::
as

:::::::
monthly

::::::::::::
climatological

::::
wind

:::::
fields

:::::
from

:::::::::::
NCAR/NCEP

:::::::::
reanalysis

:::
data

:::::::::::::::
(Eby et al., 2013).

:::::
Wind

:::::::::
anomalies,

::::::
which

:::
are

:::::::::
determined

:::::
from

::::::
surface

:::::::
pressure

:::::::::
anomalies

::::
with

::::::
respect

::
to
::::::::::::
pre-industrial

::::::
surface

::
air

:::::::::::
temperature,

:::
are

:::::
added

::
to

:::
the

:::::::::
prescribed

::::
wind

::::::
fields.

:
A
:::
list

:::
of

::
the

::::::::
globally

:::::::::
aggregated

:::::
output

::::::::
variables

::
is

:::::
given

::
in

:::::
Table

:::
A1.

:
30

2.2
::::::

Spin-up
::::
and

::::::::
Scenario

:::::::
Forcing

:::
For

:::
the

::::::
default

:::::
model

::::::::::
simulation,

:::
the

:::::
UVic

::::::
ESCM

::::
was

::::
spun

:::
up

::::
with

:::::::::::
pre-industrial

:::::
(year

:::::
1765)

:::::::
seasonal

:::::::
forcing

:::
for

::::
over

:::
ten

:::::::
thousand

:::::
years.

:::
All

::::::::::
simulations

::::
were

:::::::::
integrated

::::
from

:::
850

::::
until

:::::
2005

::::
using

::::::::
historical

:::::::::
fossil-fuel

::::::::
emissions

:::
and

:::::::
land-use

::::::::
changes,
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Table 1.
:::
List

::
of

::::::::
perturbed

:::::
model

::::
input

::::::::
parameters

::::::::::
Abbreviation

::::
short

:::::::::
explanation

::
of

:::::::
parameter

::::::::::
perturbation

::
Kv

:::
low

::::
lower

:::::
bound

::
of
::::::
vertical

:::::
ocean

::::::::
diffusivity

::
Kv

::::
high

: :::::
higher

:::::
bound

::
of

:::::
vertical

:::::
ocean

::::::::
diffusivity

::
no

:::::
marine

::
T

:::
sens

: ::
no

:::::
marine

::::::::
biological

::::::::
sensitivity

::
to

:::::::::
temperature

::
no

:::
terr.

::
T

:::
sens

: ::
no

:::::::
terrestrial

::::::::
vegetation

::::::::
sensitivity

::
to

:::::::::
temperature

::
veg

:::
q10

::::
low

::::
lower

:::::
bound

::
of

::
the

::::::::
vegetation

::::
Q10

:::::::
sensitivity

:

::
veg

:::
q10

::::
high

:::::
higher

:::::
bound

::
of

::
the

::::::::
vegetation

::::
Q10

::::::::
sensitivity

::
soil

::::
q10

:::
low

::::
lower

:::::
bound

::
of

:::
the

:::
soil

:::
Q10

::::::::
sensitivity

:::
soil

:::
q10

::::
high

::::
higher

:::::
bound

::
of

:::
the

:::
soil

::::
Q10

:::::::
sensitivity

:

:::
CO2::::

fert.
:::
zero

: :
no

::::
CO2:::::::::

fertilization
:::::
effect

::::
CO2 :::

fert.
:::
low

: ::::
lower

:::::
bound

::
of

::::
CO2 :::::::::

fertilization
::::
effect

:

:::
CO2::::

fert.
:::
high

: ::::
higher

:::::
bound

::
of

::::
CO2:::::::::

fertilization
::::
effect

:

:::::
transp.

::::
CO2::::

sens
:::
zero

: :
no

::::
CO2::::::::

sensitivity
::
of

:::::::::
transpiration

:

::::
transp.

::::
CO2::::

sens
:::
low

::::
lower

:::::
bound

::
of

::::
CO2 ::::::::

sensitivity
::
of

:::::::::
transpiration

:

:::::
transp.

::::
CO2:::

sens
::::

high
: ::::

higher
:::::
bound

::
of

::::
CO2::::::::

sensitivity
::
of

:::::::::
transpiration

:

:::
CN

::::
CO2 :::

sens
: ::::::::::

stoichiometric
:::::::

changes
::
in

::::::
response

::
to

:::::::
changing

:::::
ocean

:::::::
carbonate

::::::::
chemistry

::
as

:::
well

:::
as

:::::::
radiative

::::::
forcing

::::
from

:::::
solar

::::::::
variability

:::
and

:::::::
volcanic

:::::::
activity

::::::::
following

::::::::::::::
Eby et al. (2013).

:::::::::
Following

::::::::::::::::
Keller et al. (2014),

:::::::::
continental

:::
ice

::::::
sheets

::::
were

::::
held

::::::::
constant

::
to

::::::::
facilitate

:::
the

:::::::::::
experimental

::::::
setting

::::
and

::::::::
analyses.

::::::::
Warming

:::::
from

:::::
black

:::::::
carbon,

::::::
indirect

:::::
ozone

:::::::
effects,

:::
and

:::::::
cooling

::::
from

:::::::
indirect

:::::::
sulphate

::::::
aerosol

::::::
effects

::::
were

:::
not

::::::::
included.

:::::
From

:::::
2005

::::::
onward

::::
until

:::::
2100

:::
the

::::::::::::
Representative

::::::::::::
Concentration

:::::::
Pathway

::::::
(RCP)

:::
4.5

::::
and

:::
8.5

::::::::
scenarios

::::
from

::::::::::::::::::::::::::
Meinshausen et al. (2011) were

:::::::::::
implemented

::
as

:::
an

::::::::::
intermediate

:::
and

::::
high

:::::
CO2 ::::::::

emissions
::::::
driven

:::::::
scenario,

:::::::::::
respectively.5

:::
For

:::
the

:::::::::
sensitivity

:::::::
analysis

:::::::::
performed

::::
with

::::
the

:::::
UVic

::::::
ESCM

:::::::
different

::::::
model

:::::
input

:::::::::
parameters

::::
and

:::::::::::::::
parameterizations

:::::
were

::::::::
perturbed,

::::
and

::
for

:::::
some

::
of

:::::
them

:
it
::::
was

::::::::
necessary

::
to

:::
do

:
a
::::
new

:::::
model

:::::::
spin-up

::
to

:::::
again

:::::
reach

::::::::::
steady-state

:::::::::
conditions,

::::
apart

:::::
from

:::
that

:::
the

::::::
forcing

::::
was

:::
the

::::
same

:::
for

:::
all

::::::::::
simulations.

2.3
:::::::::

Parameter
::::::::::::
Perturbations

::
In

:::
the

::::::::
following

:::::::
sections

:::
the

:::::
single

:::::::::
parameter

::::::::::
perturbation

:::::::::::
experiments,

:::::
which

:::
are

::::
used

::
in

:::
the

:::::::
example

::::
and

:::::
shown

::
in
::::::
Figure

::
110

::
are

:::::::::
explained

::
in

:::::
detail.

::::
We

:::::
chose

::::
these

::::::::::
parameters

::
to

:::::::
explore

:::
the

::::::::
sensitivity

:::
of

:::
the

::::
UVic

::::::
ESCM

:::
to

::::::::::
uncertainties

::
in
:::::::::

terrestrial

:::
and

::::::
marine

::::::::
biological

:::::::::::
productivity

::::
with

::::::
respect

::
to

::::::::::
temperature

:::
and

:::::
CO2,

::::
since

:::::
these

::::::::
processes

::::
will

::::::::
influence

:::
the

:::::
future

::::::
carbon

:::::
cycle.

::
In

::::::::
addition,

:::
we

::::::::
perturbed

:::::
ocean

:::::::
vertical

:::::::::
diffusivity,

:::::
since

:::
this

::
is

::
a

:::::::
physical

::::::
process

::::::::::
influencing

::::::
marine

::::::
carbon

:::::::
uptake.

:::
All

:::::::::
parameters

::::
were

:::::::::
perturbed

:::::
within

:::::::::
physically

::::::::::
meaningful

::::::
ranges,

::::::
which

:::
was

:::::::::
evaluated

:::::
based

::
on

:::::
their

:::::::::
agreement

::::
with

:::
the

::::
time

:::::
series

::
of

:::
the

::::::::
historical

:::::
global

:::::
mean

:::
air

::::::::::
temperature

::::::
(Figure

::::
S5).

:::
See

:::::
Table

::
1

::
for

::
a
:::::
quick

::::::::
overview

::
of

:::
the

::::::::::
simulations.15
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:::::::
Vertical

::::::
Ocean

:::::::::
Diffusivity

:::::::::
Small-scale

::::::::
physical

::::::
mixing

::::::::
(vertical

:::::::::
diffusivity

::
or

:::::::::
diapycnal

:::::::
mixing)

::
in

:::
the

::::::
ocean

::
is

::::::::::::
parameterized

:::
in

::
all

::::::
global

:::::::
models

::::::
because

::
of

::::
their

:::::::::
resolution.

:::::
Thus,

:::
this

:::::::::
important

::::::
process,

::::::
which

::::
plays

::
a

:::
key

:::
role

::
in

::::::::::
determining

:::::
ocean

:::::::::
circulation

::::
and

:::::::::::::
biogeochemical

:::::
cycles

::
as

::::
well

::
as

::::::
ocean

::
to

:::::::::
atmosphere

::::
heat

::::
and

::::::
carbon

:::::
fluxes,

::
is
:::
set

::
by

::::::::
necessity

:::
as

:
a
:::::
single

::::::
global,

::
or
:::::::

several
:::::::
regional,

::::::
values

:::
that

::::
falls

::::::
within

:::
the

::::
range

:::
of

:::::::::::
observational

::::::::
estimates

::
of

:::::::
vertical

:::::::::
diffusivity.

::
To

::::
test

:::
how

::::
this

::::::
affects

::
all

::::::
model

:::::
results

:::
we

::::::
varied5

:::
this

::::::::::::::
parameterization

::
by

:::::::::
increasing

:::
and

:::::::::
decreasing

::
it

::
by

::::
50%

::::
(Kv

:::
low

::::
and

:::
Kv

:::::
high),

:::::
which

::
is

::::::
within

:::
the

::::
range

:::
of

:::::::::::
observational

:::::::
estimates

::::::::::::::::::::::::
(Duteil and Oschlies, 2011).

:::
For

::::
these

:::::::::
sensitivity

:::::::
analysis

:::
the

::::::
model

:::
was

:::::::
spun-up

::::
with

:::
the

::::::::::::
corresponding

::::::
setting

:::
for

:::::
10000

:::::
years,

::::
until

::
a
::::
new

:::::::::
equilibrium

:::::::
climate

::::
state

::::
was

:::::::
reached.

::::::
Lower

::::::
Bounds

:::
of

:::::::::
Biological

:::::::::::
Temperature

::::::::::
Sensitivity10

::::::::
Although

::::::::
biological

:::::::::
processes

:::
are

:::::::
known

::
to

:::
be

::::::::
sensitive

::
to

:::::::::::
temperature,

:::::
there

::
is

::
a
:::::::::
significant

:::::::
amount

::
of

::::::::::
uncertainty

:::
in

:::
how

:::::::
biology

::::
will

::::::::
respond

::
to

::::::::
warming

::::::
caused

:::
by

:::::::
climate

::::::
change

:::::::::::::::::::::::::::::::::::::::::::::::
(Friedlingstein et al., 2006; Taucher and Oschlies, 2011).

::::::::::
Furthermore,

:::::
there

:::
are

:::::
many

:::::::
different

:::::
ways

::
to

:::::
model

:::
the

::::::
effects

::
of

::::::::::
temperature

:::
on

::::::
biology

::::
and

:
it
::
is

::::::::
unknown

:::::
which

::
is
::::
best

:::
for

::::
Earth

::::::
system

::::::
model

::::::::::
applications.

:::
To

:::::::::
investigate

:::
the

:::::
lower

::::::
bounds

::
of

:::
the

::::::::
sensitivity

::
of

:::::::::
biological

::::::::
processes

::
to

:::::
direct

::::::::::
temperature

:::::
effects

:::
we

:::::::
conduct

::::::::::
simulations

::::::
where

:::::
direct

::::::::::
temperature

::::::
effects

:::
on

:::::::
biology

:::
are

:::
not

::::::::
included.

::
In

:::::
order

::
to
::::::

ensure
::::

that
::::::
global15

:::::::::::::
biogeochemical

:::::
fluxes

:::
are

::
as

:::::
close

::
to

::::::::::
present-day

::::
ones

::
as

::::::::
possible,

::::::::::::
flux-weighted

:::::
global

::::::::
averages

:::
for

:::::::::::::::::::
temperature-dependent

::::
rates

::::
were

:::
set

::
for

:::
all

:::::::::::::::::::
temperature-dependent

::::::::
functions

:::
(see

::::::::::::::::::::::::::
Taucher and Oschlies (2011) for

:::::::
details).

::::
This

::::::::
approach

:::
was

:::::::
applied

::::::::
separately

::
to

::::::
marine

::::
and

::::::::
terrestrial

::::::::::
ecosystems:

::
a)

::
No

::::::
marine

:::::::::
biological

::::::::
sensitivity

::
to
:::::::::::
temperature:

:::
The

::::::
results

::
of

:::
this

:::::::
analysis

::::
can

::
be

::::
used

::
to

:::::::
estimate

:
a
:::::
lower

::::::::
boundary

:::
for

::::
how

::::::
marine

:::::::
plankton

::::
and

::::
how

::::
their

:::::
effect

:::
on

:::::::::::::
biogeochemical

:::::
cycles

::::
will

:::::::
respond

:::::::
directly

::
to

::::::
global

:::::::
warming

::::
(no

::::::
marine

::
T

:::::
sens).20

:::
For

:::
this

:::::::::
sensitivity

:::::::
analysis

:::
the

::::::
model

::::
was

:::::::
spun-up

::::
with

:::
the

::::::::::::
corresponding

::::::
setting

:::
for

::::::
10000

:::::
years,

::::
until

::
a
::::
new

::::::::::
equilibrium

::::::
climate

::::
state

::::
was

:::::::
reached.

::
b)

:::
No

::::::::
terrestrial

:::::::::
vegetation

:::::::::
sensitivity

::
to

:::::::::::
temperature:

:::
The

::::::
results

:::
of

:::
this

:::::::
analysis

::::
can

::
be

::::
used

:::
to

:::::::
estimate

:
a
::::::

lower
::::::::
boundary

::
for

::::
how

:::::::::
terrestrial

::::::::
vegetation

::::
and

::
its

:::::
effect

:::
on

:::
the

::::::
carbon

:::::
cycle

:::
will

:::::::
respond

:::::::
directly

::
to

::::::
global

:::::::
warming

::::
(no

:::
terr.

::
T
:::::
sens).

::::
For

:::
this

:::::::::
sensitivity

::::::
analysis

:::
the

::::::
model

:::
was

:::::::
spun-up

::::
with

:::
the

::::::::::::
corresponding

::::::
setting

:::
for

:::::
10000

:::::
years,

::::
until

::
a
::::
new

:::::::::
equilibrium

:::::::
climate25

::::
state

:::
was

:::::::
reached.

:::::::::
Vegetation

::::
and

:::
Soil

::::::::::
Sensitivity

::
to

::::::::::::
Temperature

::
To

::::::
further

:::::::::
investigate

:::
the

:::::::::
sensitivity

::
of

::::::::
terrestrial

:::::::
biology

::
to

::::::::::
temperature

:::
we

::::::
varied

:::
the

::::::::
vegetation

::::
and

:::
soil

::::
Q10

::::::
values,

::::::
which

::
are

::::::::::::::::::::
observationally-derived

::::::::::
coefficients

::::
that

:::
are

:::::
used

::
to

::::::
model

:::
the

:::::::::
biological

:::::::
system

:::
rate

:::
of

::::::
change

:::
in

::::::::
response

::
to

::
a
:::
1030

::

◦C
:::::::::::

temperature
:::::::
increase.

:::::
Low

::::
and

::::
high

::::
Q10

::::::
values

::
of

::::
1.5

:::
and

::::
3.0

::::::
(model

::::::
default

:::
is

::::
2.0),

::::::
which

:::
are

::::::
within

:::
the

:::::
range

:::
of

:::::::::::
observational

::::::::
estimates

:::::::::::::::::::::
(Lloyd and Taylor, 1994),

:::::
were

:::
set

::
to

:::::::::
investigate

:::::
how

:::::::
different

:::::::::
terrestrial

::::::::
biological

::::::::::
sensitivities

:::
to

::::::::::
temperature

:::::
affects

::::
the

:::::
model

::::::
results

::::
(veg

::::
q10

::::::::
low/high

:::
and

::::
soil

:::
q10

:::::::::
low/high).

::::
For

:::
this

:::::::::
sensitivity

:::::::
analysis

:::
the

::::::
model

::::
was

::::::
spun-up

:::::
with

:::
the

::::::::::::
corresponding

::::::
setting

:::
for

::::::
10000

:::::
years,

::::
until

:
a
::::
new

::::::::::
equilibrium

::::::
climate

::::
state

::::
was

:::::::
reached.
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::::
CO2:::::::::::

Fertilization
::
of

::::::::::
Vegetation

::::::::
Increasing

::::::::::
atmospheric

:::::
CO2 :

is
:::::::
thought

::
to

:::::::
stimulate

::::::::
terrestrial

::::::
carbon

::::::
uptake,

:::::::
through

:::
the

::::::
process

::
of

::::
CO2::::::::::

fertilization
::::::::::::::::::::::::::::::::
(Matthews, 2007; Keenan et al., 2013).

::::
This

:::::::
negative

::::::
carbon

:::::
cycle

::::::::
feedback

:::::::
results

::
in

:::::::
reduced

:::::::::::
atmospheric

::::
CO2:::::::::::::

concentrations,
::::

and
:::
has

::::::
likely

:::::::::
accounted

:::
for

::
a

:::::::::
substantial

::::::
portion

::
of

:::
the

:::::::::
historical

::::::::
terrestrial

::::::
carbon

::::
sink

:::::::::::::::::::::::
(Friedlingstein et al., 2006).

::::::::
However,

:::
the

::::::
future

:::::::
strength

::
of

:::::
CO2

:::::::::
fertilization

:::
in

:::::::
response

:::
to

::::::::
continued

:::::::
carbon

::::::::
emissions

::
is
::::::

highly
:::::::::

uncertain.
:::
In

::::
order

:::
to

:::
test

::::
the

::::::
impact

::
of

::::
this

::::::::::
uncertainty5

::
for

::::::
future

::::::
climate

:::::::
change

::::::::::
simulations,

:::
we

::::::::
followed

:::
the

::::::::
approach

:::
of

::::::::::::::::
Matthews (2007) by

:::::::
scaling

:::
the

::::
CO2:::::::::

sensitivity
:::
of

:::
the

::::::::
terrestrial

::::::::::::
photosynthesis

::::::
model.

:::
We

:::::::::
performed

::
a
:::::::::
simulation

::::
with

::
no

:::::
CO2 ::::::::::

fertilization
:::::
effect

:::::
(CO2 :::

fert.
::::::

zero),
::
as

::::
well

::
as

::::
two

:::::::::
simulations

::::::
where

:::
we

:::::
varied

::::
the

:::::::
strength

::
of

:::
the

::::
CO2::::::::::

fertilization
::::::

effect
::
by

:::::::::
increasing

::::
and

:::::::::
decreasing

::
it

::
by

:::::
50%

:::::
(CO2 ::::

fert.

::::::::
high/low)

::::::
relative

::
to

:::
the

::::::
default

::::::
model.

:::
No

:::::::::
additional

::::::
model

::::::
spin-up

::::
was

:::::::
needed,

::::
since

:::
the

:::::::::
simulated

::::
CO2 ::::::::::

fertilization
:::::
effect

::::
only

:::::::
happens

::::
when

:::
the

:::::::::::
atmospheric

::::
CO2:::::::::::

concentration
::::::
begins

::
to

::::::::
increase,

:::
e.g.,

:::::
from

:::
the

::::::::::
preindustrial

::::::
period

:::::::
onward.10

::::
CO2:::::::::

Sensitivity
::
of

:::::::::::::
Transpiration

:::::::::::
Transpiration

::
by

:::::
plants

::
is
::::::
highly

:::::::
sensitive

::
to

::::::::
increases

::
in

::::::::::
atmospheric

:::::
CO2,

::::
since

::::::
plants

::::
tend

::
to

::::
open

::::
their

:::::::
stomata

:::
less

:::::
often

::
in

:::::
higher

::::
CO2::::::::::::

environments,
::
in

:::::
order

::
to

:::::
reduce

:::::
water

::::
loss

::
to

:::
the

::::::::::
atmosphere.

:::
The

:::::::
strength

::
of

::::
this

:::::
effect

:::
and

::
its

:::::::
impacts

::
on

:::::::
climate

::
are

::::::
highly

::::::::
uncertain

:::
and

:::
has

::::
been

::::::
studied

::::
both

::::::::::
observation

:::
and

::::::
model

:::::
based

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Keenan et al., 2013; Van Der Sleen et al., 2014; Mengis et al., 2015).15

::
To

::::
test

::::
how

:::::::
strongly

::::
this

::::::
affects

::::::::::
simulations

:::
of

:::::
future

:::::::
climate,

::::
the

:::::::
amount

::
of

:::::::::::
transpiration

:::
for

:::
all

:::::
plant

:::::::::
functional

:::::
types

:::
was

::::::
scaled

::::
after

::::::::::::::::::
Mengis et al. (2015).

::
In

::::
this

::::::::
approach

:::
the

::::
CO2::::::::::

fertilization
::::::

effect
::
is

:::
not

::::::::
changed.

:::::
Three

::::::::::
simulations

:::::
were

:::::::::
performed:

:::
For

:::
the

::::
first

:::::::::
simulation,

:::::::::::
transpiration

:::
did

:::
not

::::::
change

:::::::
relative

::
to

:::
the

::::::::::
preindustrial

:::::
level

::::::
(transp.

::::
CO2::::

sens
:::::
zero).

::::
For

::
the

:::::
other

::::
two

::::::::::
simulations,

:::
the

::::::
scaled

::::::::::
transpiration

::::
was

::::::::
increased

::::
and

::::::::
decreased

:::
by

::::
50%

::
of

:::
the

:::::::
amount

::::
that

:::
the

:::::
model

::::::
would

:::::::
simulate

::::
with

:::
the

::::::
default

::::::
setting

::::::
(transp.

::::
CO2::::

sens
:::::::::
high/low)

::
as

::::
CO2:::::::

changes.
:::
No

:::::::::
additional

:::::
model

:::::::
spin-up

:::
was

:::::::
needed,

:::::
since20

::
the

:::::
effect

:::
of

:::::::
changing

::::
CO2:::

on
::::::::::
transpiration

::::
only

::::::::
becomes

::::::
evident

:::::
when

:::
the

::::::::::
atmospheric

::::
CO2::::::::::::

concentration
:::::
begins

::
to

::::::::
increase,

:::
e.g.,

:::::
from

:::
the

::::::::::
preindustrial

::::::
period

:::::::
onward.

::::::::::::
Stoichiometric

::::::::
Changes

::
in

:::::::::
Response

::
to

:::::::::
Changing

::::::
Ocean

:::::::::
Carbonate

::::::::::
Chemistry

:::::::::
Mesocosm

::::::
studies

:::
that

:::::::::
artificially

:::::::
increase

:::
the

:::::::
amount

::
of

::::
CO2::

in
::::::::
seawater

::::
(e.g.,

:::::::
climate

::::::
change

:::::::::::
experiments)

::::
have

:::::::::
suggested25

:::
that

:::
the

::::
C:N

::::::
content

::
of

::::::
marine

:::::::
plankton

::::
may

::
be

::::::::
sensitive

:
to
:::::::
changes

::
in

::::::::
carbonate

:::::::::
chemistry.

::::
The

::::::::
mesocosm

:::::
study

::
of

:::::::::::::::::::::::::::
Riebesell et al. (2007) suggested

:::
that

::
as

::::
CO2::::::::

increases
:::
the

:::
C:N

:::::::
content

::
of

::::::::::::
phytoplankton

:::
may

:::::::::
increases,

:::::
which

::
is

:
a
::::::
change

:::
that

::::::
would

:::::
affect

::
the

:::::::
amount

::
of

::::::
carbon

:::::::
exported

::
to

:::
the

::::
deep

:::::
ocean

:::
by

::::::::
biological

::::::::
processes

::::
and

::::
have

::
an

:::::
effect

:::
on

:::::
other

::::::
marine

:::::::::::::
biogeochemical

::::::
cycles.

::
To

:::
test

::::
how

::::
this

:::::
affects

:::
all

:::::
model

::::::
results

:::
we

:::::::::::
implemented

:::
the

:::::::::::::::
mesocosm-derived

::::::::::
relationship

:::::::
between

:::
the

:::::::::::
atmospheric

::::
CO2:::::::::::

concentration
::::
and

::
the

::::
C:N

:::::::
content

::
of

::::::::
plankton

::
as

::
in

::::::::::::::::::::::
Oschlies et al. (2008) (CN

::::
CO2:::::

sens).
::::

No
::::::::
additional

::::::
model

::::::
spin-up

::::
was

:::::::
needed,

:::::
since

:::
the30

:::::
effect

::
of

::::::::
changing

::::
CO2::

on
::::::::

plankton
::::::::::::
stoichiometry

::::
only

:::::::
becomes

:::::::
evident

:::::
when

:::
the

::::::::::
atmospheric

::::
CO2::::::::::::

concentration
::::::
begins

::
to

:::::::
increase,

::::
e.g.,

::::
from

:::
the

:::::::::::
preindustrial

:::::
period

:::::::
onward.

:
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Figure 1. Illustration of the Correlation Matrix Construction for the example of
::::::::
exemplary

:::
case

:::::
study,

:::
and

::
the

:::::
model

:::::
output

:::::::
variables

:
surface

air temperature (SAT) and northern hemisphere (NH) sea ice area. Temporal
:
In
:::

the
::::
first

::::
step,

:::::::
temporal differences of the simulations are

calculated between 2005-2015 and 2090-2100. These
::::::
Second,

::::::
changes

::
in
:::

the
:::::::

variables
:::::::

induced
::
by

:::
the

::::::::
parameter

::::::::::
perturbations

:
are then

correlatedand
:
.
::::
Last, this

::::::::
correlation information is used for the entry

::
as

:::
one

::
of

::::
many

:::::
entries

:
in the correlation matrix.

3 The Systematic Correlation Matrix Evaluation (SCoMaE) method

3.1 Step 1: Calculate the Correlation Matrix

Throughout this study, a variable is defined as a model output or observational time series, whereas we refer to it as an indicator

if a variable was selected to represent a certain aspect of the considered system. To obtain a comprehensive, non redundant set

of indicators to describe a given system, the first step is to construct a correlation matrix, i.e. a matrix including the correlation5

information of all the relevant Earth system variables to each other. The construction of the correlation matrix strongly depends

on the research question and needs to be adjusted accordingly. The selection of which variables are the relevant variables for

the given research question and hence should be included in the matrix, as well as the choice on how the correlations should be

calculated is very important for the outcome of the study. Correlations could for example be calculated between time series of

variables or their derivatives, absolute temporal changes, or spatial patterns. Alternatively, output from ensemble simulations10

could be used to calculate correlations between variables
:::::::
changes

:::::::
variables

::::
due

::
to

:::
the

:::::::
different

::::::::
ensemble

::::::::
members. The matrix

is then evaluated based on the significance information of these correlations (see Step 2).
:::::
Note,

:::
that

:::
for

:::
this

:::::::::::
preselection

::
of

:::
the

:::::::
possibly

:::::::
relevant

:::::::
variables

:::
to

::::::
answer

:::
the

:::::
given

::::::::
question,

::
as

::::
well

::
as

:::
for

:::
the

:::::::::::
construction

::
of

:::
the

:::::::::
correlation

:::::::::::
information

::
in

:::
the

::::::
matrix,

:
a
::::::
certain

::::
level

:::
of

:::::
expert

:::::::::
judgement

::
is

::::::
needed.

15
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To illustrate the construction of the matrix based on our example simulations
:
, we show how the correlation between

:::::::
changes

::
in global mean ’surface air temperature’ (A_sat) and ’northern hemisphere sea ice area’ (O_iceareaN) in the Representative

Concentration Pathway (RCP) 8.5 emission scenario (Meinshausen et al., 2011)
:::
due

::
to

:::
the

::::::::
parameter

::::::::::::
perturbations translates

to the corresponding correlation matrix entry (Figure 1). In our example we want to study the correlations between
:::::::
changes

::
of model output variables, given their reaction to varying

:::::::
induced

::
by

:::::::
varying

:::::
poorly

::::::::::
constrained

:
model input parameters con-5

cerning poorly constrained parameter processes in the model impacting the simulated
:::
the carbon cycle.

:
In

:::
the

:::::::::
following

:::
we

:::
will

::::
refer

::
to
:::::
these

::
as

::::::::::
’correlation

::
of

:::::::
variable

::::::::
changes’.

Assuming that the signal of interest is of a similar kind as the state differences between the start and the end of a climate change

simulation, we start by calculating the temporal differences between 2005–2015 and 2090–2100 from a number of parameter

perturbation simulations that serve as our ensemble in this example (see Appendix
::::::
Section 2.3 for explanations of the param-10

eter perturbations). This enables us to learn whether the different output variables show a similar behavior for the respective

parameter perturbation. Then the correlation
:::::::
Pearson

:::::::::
correlation

::::::::::
coefficients between these changes are calculated and tested

by performing a two sided test on a 5% significance level, with N = 16, the number of perturbed parameter simulations, and

accordingly tcrit = 2.145.

In our example, there is a negative correlation evident between temporal changes in
::
of

:::::::
variable

:::::::
changes

::::::
evident

::::::::
between ’sur-15

face air temperature’ (A_sat) and ’northern hemisphere sea ice area’ (O_iceareaN). This illustrates that these model output

variables show
::::::::
consistent opposite reactions towards the parameter perturbations, i.e. if the perturbation causes surface air

temperatures to increase, it also causes northern hemispheric sea ice to decrease. This information is then written into the

correlation matrix. By studying the constructed correlation matrix(see Figure 3), and studying single correlations
::
of

:::::::
changes

between model output variables, we can learn about basic correlations
:::::::
processes

:
within the simulated climate system, and test20

if these agree with our expectations. To simplify the visual analysis of our example we sorted the variables in the matrices

according to their strength in correlation towards
::
of

:::::::
variable

:::::::
changes

::::::
relative

::
to

:::::::
changes

::
in

:
the commonly used climate change

indicator
:
, surface air temperature ,

:
(A_satin our model, in )

::
in
:
the historical scenario.

3.2 Step 2: Cluster identification and indicator selection

To obtain a set of indicators for the assessment of changes in the regarded system, we systematically evaluate the previously25

constructed correlation matrix (see Figure 2 for an illustration of this procedure). To obtain a comprehensive, non-redundant

indicator set, we follow these steps: 1) The first indicator is the variable with the highest number of significant correlations

towards other variables. 2) All variables with a significant correlation are clustered under this indicator. 3) These clustered

variables are then excluded from the selection of the next indicator. 4) The next indicators is again the variable with the highest

number of significant correlations towards all the remaining variables. 5) This indicator selection procedure is repeated until all30

variables are clustered and are represented by an indicator. If a variable is not significantly correlated to any of the remaining

variables, this variable is considered to be a single indicator. These single indicators are needed for a fully comprehensive as-

sessment, since they show a different behavior from all previously selected indicators and hence provide additional information.

9
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Figure 2. Illustration of the indicator selection process
:
, on the example of the correlation matrix for the historical scenario

:::
(see

:::::
Figure

::
3

::
for

:
a
:::::
more

::::::
detailed

:::::
display

::
of
:::
the

::::::::
correlation

::::::
matrix).

:::
The

::::::::
correlation

::::::
matrix,

:::
was

:::::::::
constructed

::
as

:::::::
explained

::
in

:::::
Figure

::
1,

:::
but

::
for

:::
the

:::::::
temporal

::::::::
differences

::::::
between

:::::::::
1850-1860

:::
and

::::::::
1995-2005.

:
See Section 3.2 for a detailed step-by-step description of the evaluation process.

::::::
Prefixes

::
A,

::
O,

:
L
:::
and

::
F,

::::
stand

:::
for

:::::::::
atmosphere,

:::::
ocean,

::::
land

:::
and

:::::
fluxes,

:::::::::
respectively,

:::
for

::::
detail

:::::::::
description

::
of

::
the

:::::
model

:::::
output

:::::::
variables

:::
see

::::
Table

:::
A1

In our examplewe applied this procedure
:
,
:::
we

:::::::
applied

:::
the

::::::::
SCoMaE

:::::::
method

:
to the correlation matrix of

:::::::::
concerning

:::
46

:::::::::
commonly

::::
used

::::::::
variables

::
for

::::
the

:::::::::
assessment

::
of

:::::::
climatic

:::::::
changes

::
in
:

the historical forcing scenarioas
:
,
:
simulated by the UVic

ESCM (See Appendix
::::::
Section 2.1 for details on the simulations). We find that the first indicator

:::
for

:::
our

:::::::
research

::::::::
question

::
in

::
the

::::::::
historical

::::::
period

:
is precipitation over ocean areas (F_precipO) (Figure 3 and S5). By following the respective column of

F_precipO (17th from the right) in the correlation matrix we can see that
:::::::
changes

::
in

:
this model output variable is

::
are

:
signifi-5

cantly correlated to
::::::
changes

:::
in all variables that are also significantly correlated to

::::::
changes

::
in

:::::::
’surface

:::
air

:::::::::::
temperature’ A_sat

10



(1st from the bottom), with the exception of ’mean ocean temperature’ (O_temp, 16th from the bottom), but in addition also

links
:::::::
changes

::
in

:
global and terrestrial precipitation and evapotranspiration (F_precip/L

:
,
:::::::::
F_precipL and F_evap/L,

:
,
::::::::
F_evapL,

respectively, and 35th and 37th from the bottom) as well as the
::::::
changes

:::
in ’surface net upward longwave radiation’ (F_uplwr,

40th from the bottom). These variables
:::
The

:::::::
changes

::
of

:::::
these

::::::::
variables

::::
due

::
to

:::::::::
parameter

:::::::::::
perturbations are not significantly

correlated to
::::::
changes

::
in

:
’surface air temperature’ (A_sat). Hence based on purely statistical considerations

:
, using ’precipita-5

tion over ocean’ (F_precipO) as an indicator for the
::::::
research

::::::::
question

::
in

:::
the

:
historical period, would be preferable to global

mean ’surface air temperature’ (A_sat), the main
::::::
ad-hoc indicator for historical climate change, since it potentially holds more

information.

’Surface albedo on land’ (A_albsurL) is identified as the second indicator. It is
::
Its

:::::::
changes

:::
due

::
to
:::
the

:::::::::
parameter

:::::::::::
perturbations

::
are, after excluding all variables correlated to

::::::
changes

:::
in ’precipitation over ocean’ (F_precipO), significantly correlated to10

::::::
changes

::
in
:
’net surface downward shortwave radiation’ (F_dnswr), ’ocean oxygen’ (O_o2) and ’sea surface salinity’ (O_salsur).

The third indicator is ’ocean surface alkalinity’ (O_alksur), which shows the same response to the parameter perturbations as

’ocean surface phosphate concentrations’ (O_po4sur). When excluding all variables that are correlated to either
:::::::
clustered

:::::
under

::
the

:
one of the three above mentioned indicators, three variables remain unclustered: ’Mean ocean temperature’ (O_temp), ’max-

imum meridional overturning’ (O_motmax), and ’ocean phytoplankton’ (O_phyt). These variables are hence single indicators,15

which are needed for a comprehensive assessment of the system under consideration (Figure 3b).

(See Section 1 and Figures S1 and S2 in the supplementary material, for the results of these analyses for the intermediate-high

(RCP4.5) and the business as usual (RCP8.5) scenarios, respectively. )

3.3 Step 3 (optional): Comparison of indicators for the different forcing scenarios

In order to learn how well the previously identified indicators for one scenario explain a different scenario with changed forc-20

ing, we prescribe the use of the previously identified indicator set. The SCoMaE accordingly first uses these indicators and

then analyses if and which additional indicators are needed for a fully comprehensive assessment of the new scenario.

For the example we prescribed the indicators identified for the historical scenario to assess the intermediate-high (RCP4.5) and25

the business as usual (RCP8.5) emission scenarios (Figure 4). The results show, that if we were to only utilize the indicators

from the historical scenario for the assessment of the two RCP scenarios, we would not be able to assess all changes in the

climate system as represented by our model: For the RCP4.5 scenario, we would obtain additional information by considering

the variables ’net top of atmosphere radiation’ (F_netrad) and ’ocean surface heat flux’ (F_heat), which are clustered together,

and ’net upward longwave radiation’ (F_uplwr) and ’ocean surface salinity’ (O_salsur), which form another indicator cluster30

(Figure 4).

Note, that Earth system variables clustered under the prescribed indicators differ among the different scenarios (compare Figure

3 and S1): In the historical scenario the indicator ‘precipitation over ocean’ (F_precipO) includes the output variables ‘net top

of atmosphere radiation’ (F_netrad), ‘ocean surface heat flux’ (F_heat), ‘ocean surface nitrate’ (O_no3sur), ‘top of atmosphere

11



Figure 3. top: Correlation matrix for the historical simulation scenario. The correlations are calculated according to
::::::
between

::::::
changes

::
in

:
the

example of Figure 1
::
46

:::::
model

:::::
output

:::::::
variables

::
for

:::::::
temporal

::::::::
differences

:::::::
between

::::::::
1850-1860

:::
and

::::::::
1995-2005

:
from the results of the perturbed

parameter simulations for each of the 46 model output variables, respectively
::
(as

::
in

:::::
Figure

::
1). Correlations significant on a 5% significance

level are marked with ’x’. The order of the variables was determined based on their correlation strength to surface air temperature (A_sat) in

the historical scenario. For details on
::::::
Prefixes

::
A,

::
O,

::
L

:::
and

:
F,
::::
stand

:::
for

:::::::::
atmosphere,

:::::
ocean,

::::
land

:::
and

:::::
fluxes,

:::::::::
respectively,

:::
for

::::
detail

:::::::::
description

:
of
:

the regarded model output variables see Table S1
::
A1.

bottom: Indicators as identified from our
::
the

:::::::
SCoMaE analysis based on

::
of the correlation matrix above as illustrated in Figure 2, ranked by

the amount of significant correlations.
:::
The

:::::::
indicators

:::
are

::
as

::::::
follows:

::::::::::
precipitation

:::
over

:::::
ocean

::::::::::
(F_precipO),

:::
land

::::::
surface

:::::
albedo

::::::::::
(A_albsurL),

::::
ocean

::::::
surface

:::::::
alkalinity

:::::::::
(O_alksur),

::::
mean

:::::
ocean

:::::::::
temperature

::::::::
(O_temp),

::::
ocean

:::::::::::
phytoplankton

:::::::
(O_phyt)

:::
and

:::::
ocean

:::::::::
overturning

::::::::::
(O_motmax).
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Figure 4.
:::::::
Indicators

::::::::
identified

::::
from

::
the

::::::
analysis

::
of
:::
the

::::::
RCP4.5

:::::
(blue)

:::
and

::::::
RCP8.5

::::
(red)

::::::::
correlation

:::::::
matrices

:::
with

:::
the

:::::::::
precondition

::
to
:::
use

:::
the

:::::::
historical

:::::::
indicators

::::
first.

:::
The

::::::::
indicators

::
are

::
as

::::::
follows:

::::::::::
precipitation

:::
over

:::::
ocean

::::::::::
(F_precipO),

:::
land

::::::
surface

:::::
albedo

::::::::::
(A_albsurL),

::::
ocean

::::::
surface

:::::::
alkalinity

:::::::::
(O_alksur),

::::
mean

:::::
ocean

:::::::::
temperature

::::::::
(O_temp),

:::::
ocean

:::::::::::
phytoplankton

:::::::
(O_phyt),

:::::
ocean

:::::::::
overturning

::::::::::
(O_motmax),

:::
net

:::::::
radiation

::
at

::
the

:::
top

::
of

:::
the

::::::::
atmosphere

:::::::::
(F_netrad),

::::
ocean

::::::
surface

:::::::
dissolved

::::::::
inorganic

:::::
carbon

::::::::
(O_dicsur)

:::
and

::::::::
downward

::::::::
shortwave

:::::::
radiation

::::::::
(F_dnswr).

outgoing longwave radiation’ (F_outlwr), and ‘net upward longwave radiation’ (F_uplwr), all of which are not included in

the ‘precipitation over ocean’ (F_precipO) indicator for the RCP4.5 scenario. Instead, the indicator ‘precipitation over ocean’

(F_precipO) for the RCP4.5 scenario includes ‘mean ocean temperature’ (O_temp), which it is not included for the historical

scenario.

The differences between the correlation matrices for the RCP8.5 scenario compared to the historical scenario are even larger5

(compare Figure 3 and S2). For the RCP 8.5 scenario eight out of 46 considered variables would not be included if we ap-

plied the indicators identified for the historical scenario. Instead we need three additional indicators for the assessment of the

system under consideration, namely ‘net top of atmosphere radiation’ (F_netrad), ‘ocean surface dissolved inorganic carbon’

(O_dicsur), and ‘net surface downward shortwave radiation’ (F_dnswr) (Figure 4). Note that six of the eight remaining vari-

ables that were initially included in the first indicator cluster for the historical scenario, namely ‘precipitation over ocean’10

(F_precipO), are no longer significantly correlated to it for the RCP8.5 scenario.

These differences in the correlation matrices for the different forcing scenarios indicate changes in prevailing correlations be-

tween Earth system variables with climate state
::
the

::::::::
imposed

::::::
climate

::::::
forcing. This illustrates that it a reevaluation of the chosen

indicators may be needed for a comprehensive assessment of different climate strategies yielding different climate states.

Indicators identified from the analysis of the RCP4.5 (blue) and RCP8.5 (red) correlation matrices with the precondition to15

use the historical indicators first.
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3.4 Step 4 (optional): Evaluation of a common correlation matrix

To advance this analysis such that changes in correlation matrices from different forcing scenarios can be taken into account, it

is possible to create a correlation matrix representing only those correlations that are significant in all forcing scenarios, a so-

called common correlation matrix. Applying the SCoMaE method to such a common correlation matrix identifies an indicator

set that can be used to assess and also compare multiple scenarios, and hence differs from the previously identified sets for the5

individual correlation matrices.

To obtain a common indicator set for the three exemplary forcing scenarios (historical, RCP4.5 and RCP8.5), we construct

a correlation matrix in which only correlations
::
of

:::::::
variable

:::::::
changes that are significant in all these scenarios are considered

(Figure 5). Furthermore the color shading indicates in which scenario the correlations
::::::
between

:::::::
variable

:::::::
changes

:
were found to10

be significant.

A first visual evaluation of the common correlation matrix shows more reddish than bluish shading, which indicates that the

correlation patterns for the historical and RCP4.5 scenarios are more similar, than for the historical and RCP8.5 scenarios (Fig-

ure 5). This means that for a lower future emission scenario, the indicators from the historical scenario are more suitable than

for a higher future emission scenario. This is true with the exception of the terrestrial and oceanic carbon fluxes (F_carba2l15

and F_carba2o, respectively), which are perturbed more by the land-use scheme implemented in the RCP4.5 scenario, since

this scenario includes a high amount of afforestation and reforestation. Furthermore, greenish shading shows correlations
::
of

::::::
variable

:::::::
changes

:
that are significant only in the RCP scenarios, indicating that those correlations

:
of

:::::::
variable

:::::::
changes

:
depend

on the increasing anthropogenic (mainly CO2) forcing, included only in these scenarios.

The first indicator obtained from the common SCoMaE analysis is ’atmospheric CO2’ (A_co2), which was also found to be20

the first indicator in the RCP8.5 scenario (Figures S7 and S8). It is
::
Its

:::::::
changes

:::
are

:
significantly correlated to

:::::::
changes

::
in

:
27

other output variables in all three scenarios, indicating that these correlations
::
of

:::::::
variable

:::::::
changes are robust and independent of

the different strength of CO2 forcing in the different scenarios. The fact that ’atmospheric CO2’ (A_co2) is the first indicator

with a large number of correlated variables, hints at its importance in determining the reaction of other Earth system variables

during climate change e.g. changes in temperatures, carbon fluxes and moisture fluxes over the ocean.25

The second indicator is ‘precipitation over land’ (F_precipL), which is clustered with ‘terrestrial evapotranspiration’ (F_evapL)

and ‘net upward longwave radiation’ (F_uplwr) (Figure S8
::
S6). This cluster accordingly represents changes in terrestrial mois-

ture fluxes and the resulting surface upward fluxes of longwave radiation. The latter relates to the surface air temperature,

which on land is strongly influenced by the amount of evapotranspiration, and the resulting evaporative cooling. Note, that the

fact that terrestrial moisture fluxes are clustered under a separate indicator, hints at a different sensitivity of these variables to30

climate change and the perturbed parameters. Since these three variables show significant correlations
::
of

:::::::
variable

:::::::
changes to

each other in all three scenarios, one could use any of them as the indicator for this cluster. The same is true for the next indica-

tors and their clusters, which are ‘air to sea carbon flux’ (F_carba2o) and ‘soil respiration’ (L_soilresp); ‘net top of atmosphere

radiation’ (F_netrad) and the ‘ocean surface heat flux’ (F_heat); and ‘net surface downward shortwave radiation’ (F_dnswr)
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Figure 5. a) Correlation matrix for all three scenarios,
::::::
merging the colors

::::::::
significance

:::::::::
information

::::
from

:::
all

::::
three

:::::::
scenarios.

::::::
Colors indicate

in which scenarios
::::::
scenario

:
the corresponding

::::::
changes

::
of

:
variables show

:::
due

::
to

:::::::
parameter

::::::::::
perturbations

::::::
showed

:
a significant correlation,

see colorbar for explanation. The ’x’s mark combinations of variables, where the correlation
::
of

::::::
variable

::::::
changes

:
is significant on a 5% sig-

nificance level in all three scenarios. For details on the regarded model output variables see Table S1
::
A1.

b) indicators as identified from the analysis based on the correlation matrix above against the number of significant correlations (blue) and

with the condition, that surface air temperature (A_sat) is prescribed as the first indicator (red).
:::
The

:::::::
indicators

:::
are

::
as

::::::
follows:

::::::::::
atmospheric

:::::
carbon

::::::
content

:::::::
(A_co2),

:::::::::
precipitation

::::
over

:::
land

::::::::::
(F_precipL),

:::::::::
atmosphere

::
to

::::
ocean

::::::
carbon

:::
flux

::::::::::
(F_carba2o),

::
net

:::
top

::
of

:::::::::
atmosphere

:::::::
radiation

:
(
::::::::
F_netrad),

:::
net

::::::
surface

::::::::
downward

::::::::
shortwave

:::::::
radiation

:::::::::
(F_dnswr),

:::::::::
atmosphere

:::
to

:::
land

::::::
carbon

::::
flux

:::::::::
(F_carba2l),

:::::
ocean

::::::
surface

::::::
nitrate

:::::::::
(O_no3sur),

:::
top

::
of

::::::::
atmosphere

:::::::
outgoing

::::::::
longwave

:::::::
radiation

:::::::::
(F_outlwr),

::::
ocean

::::::
oxygen

::::::
(O_o2),

:::::
ocean

::::::
surface

:::::::
alkalinity

:::::::::
(O_alksur),

:::::
ocean

::::::::::
phytoplankton

::::::::
(O_phyt),

::::
ocean

::::::
surface

::::::
salinity

::::::::
(O_salsur),

:::
sea

::::::
surface

:::::::
phosphate

::::::::::
(O_po4sur),

::::
ocean

:::::::::
overturning

::::::::::
(O_motmax),

::::::::::
precipitation

:::
over

:::::
ocean

::::::::::
(F_precipO),

::::
ocean

::::::
carbon

:::::::::
(O_totcarb),

:::
and

::::::
surface

::
net

::::::
upward

:::::::
longwave

:::::::
radiation

::::::::
(F_uplwr).
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and the ‘land surface albedo’ (A_albsurL).

The remaining single indicators are ‘air to land carbon flux’ (F_carba2l), ‘ocean surface nitrate’ (O_no3sur), ‘top of atmosphere

outgoing longwave radiation’ (F_outlwr), ‘ocean oxygen’ (O_o2), ‘ocean surface alkalinity’ (O_alksur), ‘ocean phytoplankton’

(O_phyt), ‘sea surface salinity’ (O_salsur), ‘ocean surface phosphate’ (O_po4sur) and ‘maximum ocean meridional overturn-

ing’ (O_motmax).5

3.5 Step 5 (optional): Including expert judgment

If stakeholders or experts were to inform the indicator selection process, it is possible to prescribe indicators and then use the

SCoMaE analysis to identify additional uncorrelated variables, that are needed to obtain a comprehensive assessment of the

system. Also instead of using global mean time series, one could look at time series of regions or already processed variables,10

such as heat stress or cumulative emissions. This approach in combination with the SCoMaE analysis enables us to learn about

variables, which have previously been disregarded but potentially provide new information about the system, or to learn which

of the previously regarded indicators actually provide redundant information.

How would the common indicator set from our example change, if we were to include the condition that ‘surface air tem-15

perature’ should be the first indicator, instead of ‘atmospheric CO2’?

Prescribing ‘surface air temperature’ (A_sat) as the first indicator for the common correlation matrix, leads to the replacement

of ‘precipitation over land’ (F_precipL) by ‘precipitation over ocean’ (F_precipO) as the second indicator (Figure 5, bottom),

which
::
its

:::::::
changes

::
to

:::
the

:::::::::
parameter

:::::::::::
perturbations is correlated with 12 variables that are clustered under this indicator. Almost

all of these variables were initially clustered under ‘atmospheric CO2’ (A_co2), but are not significantly correlated to
:::::::
changes20

::
in ‘surface air temperature’ (A_sat). These variables mainly describe global and oceanic moisture fluxes, as well as carbon

fluxes or reservoirs on land: ‘precipitation over the ocean’ (F_precipO), ‘global evaporation’ (F_evap), ‘global precipitation’

(F_precip), ‘vegetation net primary productivity’ (L_vegnpp), ‘leaf area index’ (L_veglai), ‘vegetation carbon’ (L_vegcarb)

and the ‘surface upward sensible heat flux’ (F_upsens). The only exception to this behavior is ‘total ocean carbon’ (O_totcarb),

which in turn becomes a single indicator. In addition the second indicator, ‘precipitation over the ocean’ (F_precipO), now25

incorporates the previously identified clusters of the second and third indicators, namely the clusters of ‘precipitation over

land’ (F_precipL) and the ‘air to sea carbon flux’ (F_carba2o). Only ‘net upward longwave radiation’ (F_uplwr), which was

also clustered under ‘precipitation over land’ (F_precipL) becomes a single indicator, remaining unclustered when ‘surface air

temperature’ (A_sat) is prescribed as the primary indicator. In turn ‘air to land carbon flux’ (F_carba2l), which was a single

indicator in the default SCoMaE analysis, is now clustered under ‘surface air temperature’ (A_sat).30

The third and fourth indicators are ‘net top of atmosphere radiation’ (F_netrad) and ‘net surface downward shortwave radiation’

(F_dnswr), which were found with the same underlying clusters in the default analysis (compare Figures S8 and S9). Finally,

eight of the nine previously identified single indicators, remain unclustered and hence are still single indicators.

Although the total number of indicators has not changed, the identified clusters and their meaning differ: In the default analysis
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the first indicator represented changes in temperatures, carbon fluxes and global and oceanic moisture fluxes. If ’surface air

temperature’ (A_sat) is prescribed the global and oceanic moisture fluxes are moved to the second cluster, which in addition in-

corporates some Earth system variables from the previously identified second and third indicators. This is one example showing

how the SCoMaE method allows for the inclusion of expert judgment or preconditions, is able to account for changes in corre-

lation patterns, and allows one to determine which indicators are needed for a comprehensive and non-redundant assessment.5

(For more discussions see Section 2 and Figure S3 in the supplemental information.)

4 Discussion

4.1 Discussion of the results from the example

4.1.1 What could we learn from the example?

:::::
What

:::::
could

:::
we

:::::
learn

::::
from

::::
the

::::::::
example?10

As illustrated above, the SCoMaE method statistically evaluates the correlations between
::::::
changes

:::
of model output variables

and uses this information to cluster variables, while selecting a representative indicator for each cluster. The exemplary anal-

yses of the individual scenarios illustrates the dependence of the indicator selection on the imposed forcing scenario. These

results demonstrate that for our model it is insufficient to apply the historical indicator set to the future scenarios with either

higher CO2 forcing such as in the RCP8.5 scenario, or more limited CO2 forcing and reduced anthropogenic land use such as15

in the RCP4.5 scenario. Although our analysis is too limited to conclusively determine a best set of climate change indicators in

a purely scientific bottom-up approach, our results do suggest that a comprehensive assessment of future climatic states needs

a re-evaluation of the ad-hoc chosen indicators, due to changes in prevailing climate responses.

We demonstrate one possible approach for selecting a more comprehensive indicator set by constructing a common correlation

matrix to identify indicators that can be used for the assessment of all three scenarios. For the clusters of variables of the20

common indicator set, the correlations
::
of

:::::::
variable

:::::::
changes remain significant even under different atmospheric carbon or land

use forcing.

However, one should always ask if the identified clusters and indicators are scientifically meaningful? For the common cor-

relation matrix (as well as the RCP8.5 scenario), the first indicator, ‘atmospheric CO2’ (A_co2), groups together variables

describing changes in carbon fluxes, temperatures, and moisture fluxes over the ocean. This is scientifically meaningful, since25

changes in carbon fluxes will affect the atmospheric carbon content and hence atmospheric temperatures, both over land and

ocean. These temperature changes in turn have an effect on the moisture fluxes over the ocean, such as the evaporation over

ocean, which is physically driven by temperature changes. These categories are hence physically linked and it is to be expected

that they are correlated irrespective of the chosen forcing scenario.

The second indicator, ‘precipitation over land’ (F_precipL), represents the variability of moisture fluxes on land and the as-30

sociated cooling effect. The fact that these processes are clustered under a indicator that is distinct from global and oceanic
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moisture fluxes indicates different underlying processes for these moisture fluxes, namely the influence of biological transpira-

tion. This process is directly affected by the parameter perturbations concerning the sensitivity of transpiration to CO2 (Mengis

et al., 2015) and the CO2 fertilization effect (Matthews, 2007). Given the regarded parameter sensitivities of the model, the

distinction between terrestrial and marine moisture fluxes is scientifically meaningful.

Another identified cluster is ‘net top of atmosphere radiation’ (F_netrad) and ‘ocean surface heat flux’ (F_heat), which are5

directly linked in the model. Furthermore ‘net surface downward shortwave radiation’ (F_dnswr) and ‘land surface albedo’

(A_albsurL) are clustered, since changes in vegetation on land induced by the parameter perturbations, influence both the sur-

face albedo on land and the incoming shortwave radiation at the surface.

The ‘air to sea carbon flux’ (F_carba2o) and ‘soil respiration’ (L_soilresp) are clustered together for all three scenarios, but

show a negative correlation
:
of

:::::::
variable

:::::::
changes

:
in the historical scenario and positive correlations

::
of

:::::::
variable

:::::::
changes in the10

two RCP scenarios, indicating a dependency on the atmospheric carbon concentrations. The predominant parameterization for

those correlations
:
of

:::::::
variable

:::::::
changes is one that affects the CO2 fertilization (Figure S10

::
S7). Since this is not an intuitive con-

nection, we will shortly discuss this correlation in more detail: The strength of the CO2 fertilization determines the increase of

plant net primary production (NPP) to increasing atmospheric CO2 concentrations. For the historical scenario, in the case when

the CO2 fertilization parameterization is increased, soil respiration increases due to an increase in vegetation and hence the15

soil carbon pool. In the same case the air to sea carbon flux slightly decreases due to lower atmospheric carbon concentration

in case of increasing vegetation NPP and consequently land CO2 uptake. Hence the negative correlation
::
of

:::::::
variable

:::::::
changes

between the ‘air to sea carbon flux’ (F_carba2o) and ‘soil respiration’ (L_soilresp) for the CO2 fertilization perturbation in the

the historical scenario (Figure S10a
:::
S7a).

In contrast, in the future
:
,
::::
high

::::
CO2:::

and
::::::::::
temperature

:
scenarios both Earth system variables are higher

::::
show

:::::
larger

:::::::
changes with20

increased CO2 fertilization parameterization. For ’soil respiration’ (L_soilresp) the underlying process remains the same in this

case. However, the terrestrial carbon reservoir reaches a saturation state during the high emission scenarios. With increasing

CO2 fertilization strength the land carbon reservoir reaches this saturation state earlier, causing more carbon to remain in the at-

mosphere, which
::::::::
following

:::::::
Henry’s

:::
law results in an overall higher ‘air to sea carbon flux’ (F_carba2o) in the simulations with

higher CO2 fertilization, since the ocean equilibrates with the atmosphere. This explains the positive correlation
::
of

:::::::
variable25

::::::
changes

:
under the two RCP scenarios.

Two clusters are identified in both future emission scenarios, namely ‘ocean phytoplankton’ (O_phyt), which is clustered with

‘ocean surface phosphate’ (O_po4sur) and ‘ocean surface nitrate’ (O_no3sur), and ‘ocean oxygen’ (O_o2), which is clus-

tered with ‘ocean surface alkalinity’ (O_alksur) (compare Figures S6 and S7). These two clusters are only identified when

atmospheric CO2 concentrations are high, but do not hold for the historical scenario, where other relationships seem to be of30

greater importance. As a result, all of these variables are unclustered for the common indicator selection, causing the number

of selected indicators for a common indicator set to increase.
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4.1.1 Limitation of the analyses from the example

:::::::::
Limitation

::
of

:::
the

::::::::
analyses

:::::
from

:::
the

::::::::
example

For our case study, we chose to assess the uncertainty of the biological system towards increasing temperature and CO2, which

is reflected in the choice of the considered perturbed parameters. In addition to directly perturbing biological parameterizations,

we also perturbed some key physical parameters that indirectly influence the biological systems. All parameter perturbations5

were chosen because the parameterizations are poorly constrained and under future high CO2 and temperature forcing it will

be become increasingly important to take this uncertainty into account. These choices, however, bias the correlation analysis

of the model output variables towards their sensitivity to the selected perturbations (for a detailed discussion see Section 3 and

Figure S4 in the supplemental information). For a more comprehensive assessment of uncertainties, experiments with different

uncertainties in the simulated Earth system, such as cloud parameterizations or the model’s climate sensitivity would need to10

be considered. Such experiments would accordingly change the patterns of the correlation matrix.

It is important to stress the fact that the Earth system variables used in our example are annual global integrals or means and

thus, not necessarily representative of regional or temporal changes. While our approach was sufficient to demonstrate the

SCoMaE method, it is important to mention that global integrals and means are not always positively correlated to regional

changes and therefore, may misrepresent regional responses. Furthermore, we restricted our case study to investigate temporal15

changes between two fixed points in timeand thereby ,
::::::
which

:::::
limits

:::
our

:::::::
analysis

::
to

:::
this

::::
time

:::::::
horizon.

:::::::::
Therefore,

:::
we miss more

detailed information about the temporal development of the response of the model variables to changes in parameter values.

This approach was chosen since the UVic ESCM is a model with low internal variability and would hence, likely overestimate

information if we had evaluated temporal correlations. Investigating the model’s sensitivity to the parameter perturbations was

therefore deemed a better choice for illustrating the SCoMaE method. Any more thorough climate change assessment using20

the SCoMaE method would also need to investigate how variable correlations and indicator clusters might change spatially and

temporally.

4.2 Discussion of the SCoMaE method

The construction of an individual or a common correlation matrix can be a useful tool for assessing the state of complex

systems. Individual correlation matrices allow one to obtain an initial overview of relationships between the different system25

variables, whereas a common correlation matrix shows how changes in the state of a system, imposed by e.g. varying forcing

scenarios, influences these relationships. The SCoMaE method then allows us to cluster the variables, based on statistical con-

siderations, to obtain a non-redundant indicator set to guide more detailed analysis.

However, in order to be useful one must carefully select which information to include in the correlation matrix, which is

something that strongly depends on the given research question. This can be illustrated by the implicit choices made for our30

exemplary case study, where we regarded correlations of
:::::::
variable

:::::::
changes

::
of

:
globally averaged model output variables given

various parameter perturbations. The first choice in this case study was to use global aggregates of the model output. However,

if the research focus would be set on, e.g., regional phenomena the correlations for the matrix could also be constructed either
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between regional aggregates, or based on the correlation strength for a given spatial pattern.

The second choice we made for the case study was to regard correlations between
::::::
changes

::
in
:
model output variables based on

their reaction to a parameter perturbation. Using a model with higher internal variability, it would also be possible to regard

temporal correlations of a chosen time period, or other derivatives of the model output variables such as heat stress or cumula-

tive time series. This would, in contrast to the purely process-based parameter perturbations, hold information about the time5

scales of the model output variables, which again might hints at common underlying processes in the model. Additionally, if

the considered time series show higher internal variability it might be conceivable to apply a specific temporal filter to the data

before calculating the correlation matrix. This might allow one to distinguish important processes on different time scales from

daily and seasonal to inter-annual or decadal.

10

In the following we want to discuss the contribution of the SCoMaE method to achieve the three characteristics for indicator

selection as introduced by Radermacher (2005). Constructing a correlation matrix enables scientists to comprehensively iden-

tify correlations in complex systems, such as the Earth system, both simulated and real. The application of SCoMaE allows

one to identify scientifically consistent sets of indicators, which are independent and do not provide redundant information, to

be used in a natural science-based
:::::::::
science-led

:
assessments. This method represents a bottom-up, natural science perspective15

on indicator selection. It thereby tackles one of the three characteristics as discussed by Radermacher (2005), namely that of

scientific consistency.

In our example the SCoMaE method is based on model data, and hence does not account for information about the statistical

measurability of the identified indicators. This makes it difficult to directly translate a model-based indicator set to a ’real

world’ application. This is for example the case for the first indicator in the historical scenario, ‘precipitation over ocean’20

(F_precipO), the lack of long term historical precipitation measurements over the ocean (New et al., 2001) would prevent this

indicator from being used in a ’real world’ application. It is however, noteworthy that there is value in the knowledge that this

variable could hold information about other Earth system variables, and hence it might be worth improving the observational

system.

The third characteristic mentioned by Radermacher (2005) is the political relevance of indicators. Since SCoMaE is a bottom-25

up, natural science-based
:::::::::
science-led

:
approach for indicator selection, it at first disregards political, ethical and economical

considerations. However, these considerations as well as measurability constraints can be included in the analysis. By prescrib-

ing a certain indicator, e.g. ‘surface air temperature’ (A_sat) in Section 3.5, SCoMaE allows us to include expert judgment and

enables us to identify the remaining indicators needed for a fully comprehensive assessment. An iterative learning process of

which indicators are needed and useful, would hence allow SCoMaE to identify a scientifically meaningful, measurable, and30

politically relevant indicators set (Oschlies et al., 2016; Singh et al., 2015).
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5 Conclusions

In this study we introduced a bottom-up, correlation-based approach to systematically identify indicator sets for the assessment

of complex systems. To demonstrate the power of the SCoMaE method, we applied it to correlation matrices constructed with

::::::
changes

:::
in Earth system variables of an intermediate complex Earth system model, with which we simulated three forcing

scenarios. We were able to identify indicators sets for an assessment of the historical as well as for an intermediate high and a5

business as usual future emission scenario. The comparison of the three correlation matrices yielded the opportunity to assess

changes in correlations between
::::::
changes

::
in

:
Earth system variables introduced by the imposed forcing. These changes in the

correlation patterns also motivated a re-evaluation of the selected indicator sets for the different scenarios. We show that it is

not sufficient to apply the indicator set identified for the historical scenario to the intermediate high nor the business as usual

future emission scenario. This result points to the fact, that the classical procedure of ad-hoc indicators, such as surface air10

temperature, may work well for certain environmental conditions or scenarios, but possibly not so well for others. That is, the

subjective choice of indicators may lead to unintended preferences in the interpretation of different scenarios. By combining

the three scenarios into a common correlation matrix, we could identify correlations between
::::::
changes

::
in

:
Earth system vari-

ables that are robust across the three forcing scenarios. Considering these correlations only, enabled us to identify a common

indicator set, which was scientifically consistent and allowed us to comparatively assess the three considered scenarios.15

This case study is one example out of many possible applications of the correlation matrix and SCoMaE method. The construc-

tion of the correlation matrix can be adjusted to the respective research question, which makes the SCoMaE method a generic

and flexible tool. An iterative application of the SCoMaE method offers the user the chance to comprehensively assess complex

systems such as the Earth system, while including political, ethical and economical considerations, as well as measurability

constrains.20
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Table A1.
:::
List

::
of

::::::
globally

::::::::
aggregated

:::::
model

:::::
output

:::::::
variables

::::::::
considered

::
in

:::
this

:::::
study.

:::
Part

::
1:

::::::::::
Atmosphere,

:::::
Fluxes,

::::
and

::::
Land

:::::
model

:::::
output

::::
name

: ::::::::
description

: ::
unit

:

::::::::
A_albsurL

: :::
land

::::::
surface

:::::
albedo

:
[
:
1]

::::::::
A_albsurO

: ::
sea

::::::
surface

:::::
albedo [

:
1]

:::::
A_co2

:::::::::
atmospheric

::::
CO2 [

:::
ppm]

::::
A_sat

: ::
air

:::::
surface

::::::::::
temperature [

::

◦C]

:::::
A_satL

:::
land

:::
air

:::::
surface

:::::::::
temperature

:
[
::

◦C]

::::::
A_satO

::::
ocean

::
air

::::::
surface

:::::::::
temperature [

::

◦C]

::::::
A_shum

: :::::
surface

::::::
specific

:::::::
humidity

:
[
:
1]

:::::::
A_totcarb

::::
total

:::::::::
atmospheric

:::::
carbon

:
[
::
Pg

::
C]

:::::::
F_carba2l

::
air

::
to

::::
land

:::::
carbon

:::
flux

:
[
::
Pg

::
C

::::
yr−1]

::::::::
F_carba2o

::
air

:
to
:::
sea

::::::
carbon

:::
flux [

::
Pg

::
C

::::
yr−1]

::::::
F_dnswr

: ::
net

::::::
surface

::::::::
downward

::::::::
shortwave

::::::
radiation

:
[
::
W

::::
m−2]

:::::
F_evap

::::
global

:::::::::
evaporation [

::
kg

:::
H2O

::::
m−2

:::
s−1]

::::::
F_evapL

: :::::::::
evaporation

:::
over

::::
land [

::
kg

:::
H2O

::::
m−2

:::
s−1]

::::::
F_evapO

: ::::::::
evaporation

::::
over

:::::
ocean [

::
kg

:::
H2O

::::
m−2

:::
s−1]

:::::
F_heat

::::
ocean

:::
heat

::::
flux [

::
W

::::
m−2]

::::::
F_netrad

: ::
net

:::
top

::
of

:::::::::
atmosphere

::::::
radiation

:
[
::
W

::::
m−2]

:::::::
F_outlwr

:::
top

:
of
:::::::::
atmosphere

:::::::
outgoing

:::::::
longwave

:::::::
radiation

:
[
::
W

::::
m−2]

::::::
F_precip

: :::::
global

:::::::::
precipitation

:
[
::
kg

:::
H2O

::::
m−2

:::
s−1]

::::::::
F_precipL

:::::::::
precipitation

::::
over

:::
land

:
[
::
kg

:::
H2O

::::
m−2

:::
s−1]

::::::::
F_precipO

: :::::::::
precipitation

:::
over

:::::
ocean [

::
kg

:::
H2O

::::
m−2

:::
s−1]

::::::
F_uplwr

: :::::
surface

:::
net

::::::
upward

:::::::
longwave

:::::::
radiation

:
[
::
W

::::
m−2]

:::::::
F_upsens

:::::
surface

::::::
upward

:::::::
sensible

:::
heat

:::
flux

:
[
::
W

::::
m−2]

::::::::
L_soilcarb

: :::
soil

:::::
carbon

:
[
::
Pg

::
C]

::::::::
L_soilresp

::
soil

:::::::::
respiration [

::
Pg

::
C

::::
yr−1]

:::::::
L_totcarb

:::
total

::::
land

:::::
carbon

:
[
::
Pg

::
C]

::::::::
L_vegcarb

: :::::::
vegetation

::::::
carbon [

::
Pg

::
C]

::::::
L_veglai

: :::
leaf

:::
area

:::::
index [

:
1]

:::::::
L_vegnpp

:::::::
vegetation

:::
net

::::::
primary

:::::::::
productivity [

::
Pg

::
C

::::
yr−1]
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Table A1.
:::
List

::
of

::::::
globally

::::::::
aggregated

:::::
model

:::::
output

:::::::
variables

::::::::
considered

::
in

:::
this

::::::::
study.Part

::
2:

::::
Land

:::
and

:::::
Ocean

:::::
model

:::::
output

::::
name

: ::::::::
description

: :::
unit

:

:::::::
O_alksur

::
sea

::::::
surface

:::::::
alkalinity [

::
mol

::::
m−3]

:::::::
O_dicsur

:::
sea

:::::
surface

::::::::
dissolved

:::::::
inorganic

:::::
carbon

:
[
::
mol

::::
m−3]

::::::::
O_dsealev

::::::
change

:
in
:::
sea

::::
level [

::
m]

:::::::::
O_iceareaN

:::::::
northern

::::::::
hemisphere

:::
sea

:::
ice

:::
area [

::
m2]

::::::::
O_iceareaS

: :::::::
southern

::::::::
hemisphere

:::
sea

:::
ice

:::
area

:
[
::
m2]

::::::::
O_motmax

: ::::::::
maximum

::::::::
meridional

:::::::::
overturning

:::::
stream

::::::
function

:
[
:::
m3

:::
s−1]

:::::::
O_no3sur

::::
ocean

::::::
surface

:::::
nitrate [

::
mol

::::
m−3]

::::
O_o2

: ::::
ocean

::::::
oxygen

:
[
::
mol

::::
m−3]

::::::::
O_oaragsur

: ::
sea

::::::
surface

:::::
omega

:::::::
aragonite

:
[1]

::::::::
O_ocalcsur

: ::
sea

::::::
surface

:::::
omega

:::::
calcite

:
[1]

::::::::
O_pco2sur

: ::
sea

::::::
surface

:::::
partial

:::
CO2:::::::

pressure [
::::
ppmv]

::::::
O_phsur

: ::
sea

::::::
surface

:::
pH [1]

:::::
O_phyt

::::
ocean

:::::::::::
phytoplankton [

:::
mol

:
N
::::
m−3]

:::::::
O_po4sur

:::
sea

:::::
surface

::::::::
phosphate

:
[
::
mol

::::
m−3]

::::::
O_salsur

: :::
sea

:::::
surface

::::::
salinity

:
[1]

::::::
O_temp

: ::::
mean

:::::
ocean

:::::::::
temperature [

::

◦C]

::::::::
O_tempsur

: ::
sea

::::::
surface

:::::::::
temperature [

::

◦C]

:::::::
O_totcarb

:::
total

::::
ocean

::::::
carbon [

::
Pg

::
C]
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