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Abstract 10 
 
An assessment of climate change impacts at different levels of global warming is crucial to inform 
the political discussion about mitigation targets, as well as for the economic evaluation of climate 
change impacts e.g. in economic models such as Integrated Assessment Models (IAMs) that 
internally only use global mean temperature change as indicator of climate change. There is 15 
already a well-established framework for the scalability of regional temperature and precipitation 
changes with global mean temperature change (∆GMT). It is less clear to what extent more 
complex, biological or physiological impacts such as crop yield changes can also be described in 
terms of ∆GMT; even though such impacts may often be more directly relevant for human 
livelihoods than changes in the physical climate. Here we show that crop yield projections can 20 
indeed be described in terms of ∆GMT to a large extent, allowing for a fast interpolation of crop 
yield changes to emission scenarios not originally covered by climate and crop model projections. 
We use an ensemble of global gridded crop model simulations for the four major staple crops to 
show that the scenario dependence is a minor component of the overall variance of projected 
yield changes at different levels of ∆GMT. In contrast, the variance is dominated by the spread 25 
across crop models. Varying CO2 concentrations are shown to explain only a minor component of 
the remaining crop yield variability at different levels of global warming. In addition, we show that 
the variability of crop yields is expected to increase with increasing warming in many world 
regions. We provide, for each crop model and climate model, patterns of mean yield changes that 
allow for a simplified description of yield changes under arbitrary pathways of global mean 30 
temperature and CO2 changes, without the need for additional climate and crop model 
simulations. 
 

1. Introduction 
 35 
Climate change exerts a substantial and direct impact on food security and hunger risk by altering 
the global patterns of precipitation and temperature which determine the location of arable land 
(Parry et al 2005, Rosenzweig et al 2014) as well as the quality (Müller et al 2014) and quantity 
(Müller and Robertson 2014, Lobell et al 2012, van der Velde et al 2012) of crops comprising most 
of the world food supply. Climate change alone is expected to reduce global production of the four 40 
major crops wheat, maize, soy and rice on current agricultural areas (e.g., Rosenzweig et al 2014, 
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Challinor and Wheeler 2008, Peng et al 2004). Facing an increasing food demand due to 
population growth and economic development, these reductions will have to be overcompensated 
by 1) the direct physiological impacts of increased atmospheric CO2 concentrations (Kimball 1983), 
which are beyond local human control; as well as 2) advances in agricultural management (e.g. 45 
fertilizer input or irrigation), technology, and breeding (Jaggard et al 2010) or 3) expansion of 
agricultural land (Frieler et al 2015, Smith et al 2010).  
 
In conjunction with these long term changes, global warming is also expected to contribute to an 
increase in the frequency and duration of extreme temperatures and precipitation (droughts, 50 
floods, and heat waves), which may increase the near term variability of crop yields and trigger 
short term crop price fluctuations (Brown & Kshirsagar, 2015; Mendelsohn, Basist, Dinar, 
Kurukulasuriya, & Williams, 2007; Tadesse, Algieri, Kalkuhl, & von Braun, 2014). 
 
The emission of greenhouse gases is expected to influence crop yields via several channels. On the 55 
one hand the associated climate changes will modify the length of the growing season (Eyshi 
Rezaei et al 2014), water availability, and heat stress (Lobell, Sibley, & Ivan Ortiz-Monasterio, 
2012; Müller & Robertson, 2014; Schlenker & Roberts, 2009); and on the other hand higher 
concentrations of atmospheric CO2 are expected to increase the water use efficiency in C3 (e.g. 
wheat, rice, soy) and C4 (maize) crops, and enhance the rate of photosynthesis in C3 crops (Darwin 60 
and Kennedy 2000). Global Gridded Crop Models (GGCMs) are particularly designed to account for 
these effects. They provide a complex process-based implementation of our current 
understanding of the mechanisms underlying crop growth, and are the primary tool for crop yield 
projections (e.g., Rosenzweig et al 2014) which in turn are a prerequisite for assessing potential 
changes in prices (Nelson et al 2014) and food security (Parry et al 2005).     65 
 
However, these process-based crop yield projections rely on spatially explicit realizations of the 
driving weather variables such as temperature, precipitation, radiation, and humidity, often at 
daily resolution, as provided by computationally expensive Global Climate Model (GCM) 
simulations. The GGCMs themselves also require significant computational capacity. These 70 
requirements generally limit the number and duration of emission scenarios that can be 
considered. The so-called pattern scaling approach is a well-established method to overcome 
these limits. Output from GCMs has been shown to be, to some extent, scalable to different global 
mean temperature (GMT) trajectories not originally covered by GCM simulations (Santer, Wigley, 
Schlesinger, & Mitchell, 1990, Carter, Hulme, & Lal, 2007, Mitchell 2003, Giorgi 2008, Solomon et 75 
al 2009, Frieler et al 2012, Heinke et al 2013). Scaled climate projections have also been used as 
input for different impact models (Ostberg et al 2013, Stehfest et al 2014) to gain flexibility with 
regard to the range of emission scenarios considered. 
 
Building upon such a framework, we present a method to extend the capacity of crop yield impact 80 
projections by relating simulated crop yields to two highly aggregated quantities – global mean 
temperature change (ΔGMT) and atmospheric CO2 concentration (pCO2) – by means of simplified 
function. ∆GMT and pCO2 are the standard output of simple climate models, which allow for 
highly efficient climate projections for any emissions scenario by emulating the response of the 
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complex GCMs (Meinshausen et al 2011). Here “emulating” means that the simplified 85 
representation is designed to reproduce the complex model response for the originally simulated 
scenarios but allows for its inter- or extrapolation to other scenarios. In this way our approach is 
different from other emulators building on regional explicit climate projections as input for the 
simplified functions emulating complex crop models’ responses to these forcings (Blanc, 2017). 
While these approaches only emulate the crop model responses, the approach presented here 90 
implicitly provides a simplified description of the GCMs’ regional patterns of climate change and 
the associated response of the crop models.    
 
We test to what extent climate change impacts such as crop yields can be directly described in 
terms of GMT (and pCO2) changes without an intermediate scaling of the regional climate changes. 95 
Such a direct description of the simulated impacts – in contrast to scaling the climate changes for 
specific emission scenarios and then using the scaled climate projections as input for impact 
model simulations – has the advantage of saving computation time, making the approach e.g. 
applicable within Integrated Assessment Models and even when no impact model is accessible. In 
principle, scaled but spatially explicit climate projections could also be used as input for spatial 100 
explicit crop model emulators (Blanc, 2017) to reach high efficiency. However, in this case the 
scaling of the climate information has to be carefully adjusted to provide the kind of climate 
information required by the impact model impact emulator and this two-step approach also mean 
two approximations that may lead to higher deviations than the one-step approach proposed 
here.    105 
 
The emulator introduced here allows for multi-impact-model projections for arbitrary emission 
scenarios as long as ensemble projections are available for a limited set of scenarios. This offers a 
practical way of keeping track of a relevant but often-ignored source of uncertainty which is 
manifested in the considerable spread across different crop models and other process-based 110 
impact models (Rosenzweig et al 2014, Schewe et al 2014). This uncertainty is particularly critical 
when estimating socio-economic consequences (e.g., Nelson et al 2014). 
 
We test the approach using an ensemble of yield projections of the four major cereal crops (maize, 
rice, soy, and wheat), generated within the first phase (“Fast Track”) of the Inter-sectoral Impact 115 
Model Intercomparison Project (ISIMIP, Warszawski et al., 2014). For a number of ΔGMT intervals 
we compare the spread in yield outcomes induced by the choice of emission scenario with that 
induced by the choice of GGCM and GCM, respectively. A low scenario-induced spread means that 
GCM- and GGCM-specific yield projections can be approximated by a simplified relationship with 
global mean temperature change without accounting for the underlying emission scenario. The 120 
test is done at each grid cell and separately for simulations of purely rain-fed yields and fully 
irrigated yields. Multi-model ensembles of crop yields over such a wide range of crops, CO2 
concentrations, and irrigation options are a new prospect and the ISIMIP data provides a uniquely 
broad suite of crop yield impact simulations encompassing output from five GGCMs, forced with 
output from up to five GCMs, and four Representative Concentration Pathways (RCPs, van Vuuren 125 
et al 2011a).   
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In Section 2 we describe the ISIMIP data and the methods used to test for scenario dependence 
and adjustment for different levels of CO2. Section 3 is dedicated to the presentation of the 
projected average changes in crop yields at different levels of global warming and an attribution of 130 
the variance of these long term changes to different sources of uncertainty, i.e., different GCMs, 
different GGCMs, and different emission scenarios (Section 3.1). The simulated impacts of climate 
and CO2 changes on global and regional crop yields are shown to be related to global mean 
temperature change, and to be largely independent of the emissions scenario. In addition, we test 
to what degree the scenario-dependence of crop yields at different levels of global warming can 135 
be explained by different levels of CO2 (section 3.2).   Thus, finally we provide individual maps of 
yield changes at different levels of global mean temperature and the additional effect of variations 
in CO2 concentration at given global mean temperature levels. We propose three methods to 
generate these patterns based on the available complex model simulations, and describe the 
related approaches to estimate GGCM- and GCM-specific yield changes for new ∆GMT trajectories 140 
not originally covered by GCM-crop-model simulations.  In section 4 we present a quantification of 
the projection errors as compared to actual simulations by the complex gridded crop model. 
Finally, in section 5 we quantify the residual variance of the simulated crop yields in terms of 
global mean temperature change for each combination of crop and climate models. Section 6 
provides a summary.  145 
 

2. Data and Methods 
 
We use projections from five different GGCMs (GEPIC, LPJ-GUESS, LPJmL, PEGASUS, and pDSSAT) 
that participated in in the first simulations round of ISIMIP (Rosenzweig et al 2014, Warszawski et 150 
al 2014) in order to test for a dependence of projected yield changes on the global mean 
temperature pathway (see Table 1 for their basic characteristics). Each crop model was forced by 
climate projections of five different GCMs (HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, 
GFDL-ESM2M, NorESM1-M) generated for four RCPs in the context of the Coupled Model 
Intercomparison Project, phase 5 (CMIP5). Climate projections have been bias-corrected to better 155 
match observed historical averages of the considered climate variables (Hempel et al 2013). 
Separate simulations are available for each of the four major crops: wheat, maize, rice and soy, on 
a global 0.5 x 0.5 degree grid. The considered crop is assumed to grow everywhere on the global 
land area, only restricted by soil characteristics and climate but independent of present or future 
land use patterns (“pure crop” simulations). Each model has provided a pair of simulations 160 
(“runs”) for each climate change scenario: 1) a rain-fed run and 2) a full-irrigation run assuming no 
water constraints. This design provides full flexibility with regard to the application of future land 
use and irrigation patterns. While the “default” crop yield simulations (YCO2) account for the 
fertilization effects due to the increasing levels of atmospheric CO2, the ISIMIP setting also 
includes a sensitivity experiment where the impact models were forced by climate change 165 
projections from HadGEM2-ES, RCP8.5 but CO2 concentration was kept fixed at a “present day” 
reference level that differs from GGCM to GGCM (see Table 1). We will refer to this run as “fixed 
CO2” run and indicate the associated crop yields by YnoCO2.  
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 170 
 
Table 1: Basic crop model characteristics with respect to 1) the implementation of CO2 fertilization 
effect (as affecting radiation use efficiency (RUE), transpiration efficiency (TE), leaf level 
photosynthesis (LLP), or canopy conductance (CC)), 2) the accounting for nutrient constraints with 
respect to the CO2 fertilization effect and associated assumption with respect to fertilizer 175 
application (N = nitrogen, P = phosphorus, K = potassium), 3) implemented adaptation measures, 
and 4) starting conditions. 
 
 model CO2 

fertilization 
Fertilizer use Adaptation 

 
Starting 

conditions  
GEPIC (Liu, 
Williams, 
Zehnder, & 
Yang, 2007; Liu, 
2009) 

RUE, TE 
 

pCO2 of the 
fixed CO2 run: 

364 ppm 

Limitation of 
potential biomass 
increase due to N 
stress (flexible N 
application based 
on N stress >10% 
up to an upper 
national 
application limit 
according to 
FertiStat (FAO, 
2007))  
Fixed present day P 
application rates 
following FAO 
FertiStat database 
(FAO, 2007) 

decadal 
adjustment of 
planting dates; 
total heat units to 
reach maturity 
remain constant  
 
decadal 
adjustment of 
winter and spring 
wheat sowing 
areas based on 
temperature  

present day 

LPJ-GUESS 
(Lindeskog, 
Arneth, 
Bondeau, Waha, 
Seaquist, et al., 
2013) 

LLP, CC 
 

pCO2 of the 
fixed CO2 run: 

379 ppm 

no consideration of 
spatial and 
temporal changes 
in nutrient 
limitation 

cultivar 
adjustments are 
represented by 
variable heat 
units to reach 
maturity 
(Lindeskog, 
Arneth, Bondeau, 
Waha, Schurgers, 
et al., 2013), 
adjustments are 
based on the 
average climate 
over the 
preceeding 10 
years 

uncalibrated 
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LPJmL (Bondeau 
et al., 2007) 

LLP, CC 
 

pCO2 of the 
fixed CO2 run: 

370 ppm 

soil nutrient 
limiting factors are 
not accounted for 

fixed sowing 
dates (Waha, van 
Bussel, Müller, & 
Bondeau, 2012), 
total heat units to 
reach maturity 
remain constant 
  

present day  
(Leaf Area Index 
(LAI), the Harvest 
Index (HI), and a 
scaling factor that 
scales leaf-level 
photosynthesis to 
stand level are 
adjusted to 
reproduce 
observed yields 
on country levels.) 

PEGASUS 
(Deryng, Sacks, 
Barford, & 
Ramankutty, 
2011) 

RUE, TE 
 

pCO2 of the 
fixed CO2 run: 

369 ppm 

fixed N, P, K 
application rates 
(IFA, 2002)  

adjustment of 
planting dates, 
variable heat 
units to reach 
maturity 

present day 

pDSSAT RUE, LLP, CC 
 
pCO2 of the 
fixed CO2 run: 
330 ppm 

fixed N present day 
application rates 

no adjustment of 
planting dates; 
total heat units to 
reach maturity 
remain constant 

present day 

 
 180 
For the analysis of the gridded data, rain-fed and full-irrigation simulations for each crop are 
considered separately. Considering e.g., wheat yield changes under full irrigation, we group all 
available data into ∆GMT intervals (bins) separated by 0.5°C steps with 0.5°C width (±0.25°C), 
where ∆GMT is relative to the present day (1980-2010 average) reference level. For all annual data 
falling into a given interval and at one specific grid point we apply a separate one-way analysis of 185 
variance (ANOVA fixed effects model) to individually calculate the variance explained by 1) 
different GGCMs, 2) the GCMs, and 3) the RCPs. The quantification of the RCP-dependence of the 
relationship between global warming and yield changes is limited to a warming range up to 3°C 
above present because only one RCP (RCP8.5) reaches temperatures above this threshold. 
However, we also provide the patterns of yield changes for the higher concentration scenario. In 190 
the main text all figures except Figure 1 refer to a ∆GMT level of 2.5°C (see Figure 1 for the 
associated years included) but the Supplement contains the figures for the other levels.  
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 195 
Figure 1. GMT projections from HadGEM2-ES for the four RCPs. The horizontal line and shading 
indicate the 2.5°C bin.  The original annual GMT values (thin lines) are smoothed (thick lines) in 
order to obtain a contiguous time interval for each ∆GMT bin. The smoothing is based on a 
Singular Spectrum Analysis with a time window of 20 years (R-Package Rssa). E.g., years where the 
thick line falls within the shaded area are associated with ΔGMT=2.5°C, and the corresponding 200 
time interval is delineated by the dashed vertical lines. 
 
 
 
We do not impose a specific functional relationship between global mean temperature change 205 
and changes in crop yields. Yield changes for any global mean temperature level between the 
central levels of the considered bins could be derived by a simple linear interpolation between the 
patterns of neighboring bins but without assuming a linear relationship between global mean 
warming and yield changes across the full range of warming.   
 210 
The direct effect of CO2 fertilization on crop yields is expected to introduce some scenario 
dependence in the relationship between global mean temperature change and yield changes. We 
test to what degree the scenario dependence of the relationship can be explained by introducing 
atmospheric CO2 levels as an additional predictor for within-bin fluctuation of yields. To this end, 
we evaluate two different approaches to estimate the direct CO2 effect on crop yields within the 215 
different global mean temperature bins, described in detail in Section 3.2  
 
To evaluate and compare the performance of the two approaches we consider large scale regional 
average yields based on fixed present day (1998-2002) land use and irrigation patterns from 
MIRCA2000 (Portmann et al 2010) and assess the reproducibility of the original RCP2.6, RCP4.5, 220 
and RCP6.0 projections based on the emulated yield patterns (section 4).  
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3. Mean Yield Change with Global Mean Temperature Change 
 

3.1 Patterns of relative changes at different levels of global warming and main 225 
sources of variance 
 
In general, increasing global mean temperatures correspond to an expansion of arable land to 
higher latitudes with concurrent yield reductions in equatorial regions. The highest positive 
changes in projected yields under rain-fed conditions at 2.5°C ΔGMT are typically in the northern 230 
high latitudes and mountainous regions for all crops (Figure 2). These locations were previously 
inhibited by a short growing season, which extends with increasing air temperature (Ramankutty 
et al 2002). Yield gains also occur over previously moisture limited regions, such as the 
northwestern U.S. and north-eastern China, in agreement with the findings of Ramankutty et al 
(2002). In contrast, near the equator most crop yields decrease, especially maize and wheat. Since 235 
most cultivated land currently lies in low and middle latitudes, potential yield changes in those 
regions contribute a higher relative importance for today's food production system than changes 
in high latitudes. 
 
 240 

 
 

 
 
Figure 2. Average potential wheat yield change at ΔGMT=2.5°C as a percentage of the mean 245 
historical yield (1980-2010 average) under rain-fed conditions for each crop model forced by 
HadGEM2-ES. The average is calculated across all RCPs which reach the global mean warming 
interval from 2.25 to 2.75°C, namely RCP4.5, RCP6.0, and RCP8.5. Note that pDSSAT is run over a 
limited domain excluding areas north of 60°N. Analogous figures for different crops, for irrigated 
conditions, as well as for absolute yield change (in t/ha) are available as supplementary online 250 
material.  
 
While variations exist in the magnitude of projected yield changes, there is a high degree of 
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consistency in the direction of yield change across ensemble members, especially over the high 
latitudes, where most of the largest projected yield changes occur, but where yields are in general 255 
smaller (Figure 3).  Utilizing output from all available combinations of one GCM, GGCM, and RCP 
scenario, more than three-quarters of the ensemble members indicate increasing crop yields over 
the upper mid latitudes in the northern hemisphere for all crops at 2.5°C.  
 
 260 
 
 
 
 
 265 
 
 
 
 
 270 
 
 
 
 
 275 
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 280 
Figure 3. Percentage of crop model simulations (combination of a single GCM, GGCM, and RCP 
scenario) indicating an increase (blue) or decrease (red) in yield of greater than 5% at each grid 
point at 2.5°C warming scenario as compared to the historic period for a) maize, b) rice, c) 
soybeans, and d) wheat under rain-fed conditions. White indicates either a less than 5% change or 
disagreement between the models in the direction of yield change. An analogous figure for 285 
irrigated conditions is available as supplementary online material.  
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The simulated yield values at each grid point and within each GMT bin are subject to variation due 
to the selection of impact model, GCM forcing, and emissions scenario. When considering all of 290 
these factors, the variance attributable to the impact model selection is much greater than that 
associated with the GCM or scenario choice in most regions (Figure 4). This holds for rainfed as 
well as irrigated simulations and at all global mean warming bins above 1°C. The predominance of 
the impact model component in total variance is particularly evident in the middle to high 
latitudes for all four cereal crops, where impact model variance accounts for up to 90% of the grid 295 
point variance at 2.5°C.  
 
 
 

 300 
 
Figure 4. Fraction of total variance attributable to the impact models (GGCMs, left), climate 
models (GCMs, middle), and scenarios (RCPs, right) for each crop. Figure shown for rain-fed runs 
at ΔGMT=2.5°C warming; an analogous figure for irrigated runs is provided as supplementary 
online material.  305 
 
 

3.2 Direct impacts of increasing pCO2 
In addition to air temperature warming, pCO2 has a direct influence on crop yields. As it varies 
within the different ΔGMT bins, it is expected to induce part of the fluctuations of the yield 310 
changes at given GMT levels. We find that this CO2 effect is not scenario dependent (see Figure 5 
for the global average effect within the LPJmL simulations), consistent with a short response time 
of plants to pCO2 changes. 
 
 315 
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Figure 5. Difference in global mean yield change (sum of rainfed and irrigated, and weigthed by 
present-day growing areas) between the default (YCO2) and fixed CO2 simulations (YnoCO2), for each 
crop over the range of pCO2 associated with the ΔGMT =2.5°C bin. Results are as simulated by 320 
LPJmL forced with output from HadGEM2-ES. Each color represents an emission scenario and 
black dotted lines indicate the linear best fit for each crop.  
 
 
As expected, the differences increase with heightened atmospheric CO2 level under all emissions 325 
scenarios, implying a stronger CO2 fertilization impact with increased pCO2. A least squares fit to 
the yield differences versus greenhouse gas level within each ΔGMT bin allows for a quantification 
of the direct CO2 effect at each level of warming based on global pCO2, rather than the emissions 
pathway. The underlying assumption is that the effect of the temperature variation within the 
0.5°C range of each ΔGMT bin will be minimal compared to the effect of the CO2 variation across 330 
all RCPs. 
 
To quantify the extent of the CO2 induced scenario dependence and its potential reduction at 
each grid point, we use two methods to determine the CO2 effect on crop yields within each 
global mean temperature bin:  335 
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(a) By linear regression of absolute yield changes with respect to the historical reference period 

(ΔYCO2) on CO2 concentration within the individual global mean warming bins, i.e. by fitting the 
following model 

ΔYCO2,  i = ΔYCLIM + a1* (pCO2, i – 370 ppm) + ɛi,    (1) 340 
 

where i indicates the individual year within the relevant ∆GMT bin, and ɛi ~ N(0, σ2) represents 
the residual error.  The statistical model allows for the estimation of the purely climate-induced 
yield change ΔYCLIM at a fixed year-2000 concentration of CO2 of 370 ppm. 

 345 
(b) By linear regression of the within-bin differences between the default crop simulations (YCO2) 

and the fixed CO2 run (YnoCO2) on the underlying CO2 concentration in the default simulation:  
 
(YCO2, i – YnoCO2, i ) = a0 + a1 * (pCO2,i – 370 ppm) + ɛi,    (2) 
 350 

where  i indicates the individual year and ɛi~ N(0, 2) represents the residual error. In this case 
the purely climate-induced yield change ∆YCLIM(∆GMT) is given by the yield change in the fixed 
CO2 run, ∆YnoCO2(∆GMT), and an additive correction a0. This correction accounts for the 
different levels of pCO2 in the fixed-CO2 run across different models; it is zero if the pCO2 in 
the fixed-CO2 run is 370 ppm.  355 
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 360 
 

  
Figure 6. Climate change-induced yield changes at ΔGMT= 2.5°C of global warming and year 
2000 pCO2 level (370ppm). Left column: Patterns of ΔYCLIM derived at each grid point by method 
(a) (see equation (1)). Right column: Patterns of ∆YnoCO2(2.5°C)+ a0, derived by method (b) (see 365 
equation (2)). Both types of patterns are derived from LPJmL simulations forced by HadGEM2-ES 
assuming rain-fed conditions and are expressed in percentage of change relative to the historical 
average yield at each grid point. Rows: Different crop types. Top panel shows relative differences, 
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bottom panel shows absolute differences. Analogous figures for irrigated conditions and for 
different GGCMs are available as supplementary online material.  370 
 
 
  

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-69
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 4 August 2017
c© Author(s) 2017. CC BY 4.0 License.



16 
 

 

375 

 
 
Figure 7. CO2-induced yield changes at 2.5°C of global warming. Analogous to Fig. 6 but for the 
bin-specific CO2 scaling coefficients a1. Rows: Different crop types. Top panel shows relative 
differences, bottom panel shows absolute differences. Analogous figures for irrigated conditions 380 
and for different GGCMs are available as supplementary online material. 
 
The two methods result in broadly similar patterns for the climate change-induced relative yield 
changes (i.e., excluding direct CO2 fertilization effects), with yield increases in the high latitudes 
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and decreases in the tropics and subtropics, broadly speaking (Fig. 6). However, the magnitudes of 385 
the changes are much larger with method (a) (Fig. 6, lower panel). Some regional differences also 
occur between the two methods, such as for rice where there is disagreement on the direction of 
yield changes in southeast Asia.  
 
In relative terms (estimated climate change-induced yield change divided by simulated present-390 
day yield), both methods show very large values of frequently alternating sign in areas such as the 
Arabian peninsula or the northern Sahel (Fig. 6, upper panel). This is likely due to the very low 
present-day yield potential in these regions, leading to division by values close to zero. In the 
regional evaluation of the different emulator methods below, we will account for these regional 
differences in baseline yields by weighting potential yield changes by present-day growing areas.  395 
 
The estimates of CO2-induced yield changes also differ between the two methods (Figure 7). 
Method (b) results in a positive CO2 effect in most regions, except for some low-yielding areas and 
the potentially important cases of soybean in southern and eastern South America, and rice in 
north-west India and Pakistan, where it results in a negative effect of rising pCO2 on yield. With 400 
method (a) on the other hand, areas of negative estimated CO2 effect are much more widespread, 
and generally the magnitudes of the estimated CO2 effect are again much larger than with 
method (b). As a preliminary conclusion, the results obtained with method (b) for the separate 
effects of climate change and pCO2 change on potential yields appear more realistic than those 
obtained with method (a).  405 
 
 
 
 
 410 
 

4. Validation of three emulator approaches 
 
Based on the climate-induced patterns (assuming fixed year 2000 levels of CO2) of relative yield 
changes and the associated within-bin relationship between CO2 and crop yields identified in 415 
section 3, we propose the following two-step interpolation method to compute crop yield changes 
for any given pair of ΔGMT and pCO2, using either of the above regression methods (a) or (b): 
 

1. Linear interpolation between the temperature-specific, CO2-adjusted yield patterns of 
neighboring ∆GMT bins (a0(ΔGMT) from method (a) or YnoCO2(∆GMT) + a0(ΔGMT)  from 420 
method (b)) to the desired ΔGMT value 

2. Addition of the CO2 pattern described by a1 * (CO2 – 370ppm), where the pattern of scaling 
coefficients a1 is also interpolated linearly between the scaling coefficients from neighboring 
temperature bins 

 425 
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The application of these two steps using regression method (a) will be called emulator approach 
(a); their application using regression method (b) will be called emulator approach (b). In a third, 
very basic emulator approach (c), crop yield change patterns for a given ΔGMT level are derived 
from an interpolation  between  the  two neighboring  ΔGMT bins’ average patterns; where these 
average patterns are derived from the RCP8.5 projections of the individual climate and crop model 430 
simulations accounting for the CO2 fertilization effect. E.g. to derive the crop yield change pattern 
for a global mean warming of 2.3°C:  
 

ΔY (2.3°C) = (1 – δ) ˂ΔYCO2˃2°C + δ ˂ΔYCO2˃2.5°C 

δ = (2.3°C – 2°C)/(2.5°C – 2°C). 435 

 
Using GGCM projections for the HadGEM2-ES climate input, we test which of the approaches, (a), 
(b) or (c), provides the best reproducibility for RCP2.6, RCP4.5, and RCP6.0 when estimates of the 
climate-induced and CO2-induced effects are based on RCP8.5 projections. While approach (b) 
requires a pair of crop model simulations – one with time-varying pCO2 and one with fixed pCO2, 440 
approach (a) only requires the default simulations with time-varying pCO2. Approach (c) assumes 
that yield changes can be estimated using only ΔGMT as a predictor without consideration of the 
associated pCO2. Thus, a comparison of the three approaches could provide some important 
guidance regarding future crop model experiments required to allow for the proposed highly 
efficient emulation of crop model simulations.  445 
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 450 

Figure 8. Validation of the three emulator approaches. Difference between the simulated yields 
(at a global mean warming of 2.5°C and a mean level of CO2 of 530 ppm as associated with 
RCP4.5) and the emulated yields based on approach (a) (left column), approach (b) (middle 
column), and approach (c) (right column). Top panel shows relative differences, bottom panel 
shows absolute differences. Analogous figures for irrigated conditions and for different GGCMs are 455 
available as supplementary online material. 
 
 
 

 
 
 

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-69
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 4 August 2017
c© Author(s) 2017. CC BY 4.0 License.



20 
 

Approach (a) generally leads to the largest differences relative to the simulated yield change (Fig. 460 
8, left column). In particular Maize, rice, and soybean yields are underestimated for much of North 
America, and overestimated in Europe and South America. Wheat yields are overestimated e.g. in 
Canada. These discrepancies are mainly due to the climate-change effect estimated by approach 
(a) (cf. Figure 6), whereas the CO2 fertilization effect even points in the opposite direction in many 
of these regions (cf. Figure 7). In fact, we note again that approach (a) estimates the CO2 465 
fertilization effect to be negative in some regions (Figure 7), which is not consistent with theory 
and empirical evidence.  
 
Approach (b) also leads to some substantial deviations from the potential yields simulated by 
LPJmL, in percentage terms, mainly in the northern hemisphere and in Australia (Figure 8, top 470 
panel, middle column). But large relative differences are mainly found outside the major growing 
regions of the respective crop, in areas where absolute potential yields are low today. 
Correspondingly, absolute differences between the LPJmL simulations and the emulator (b) are 
modest (Figure 8, bottom panel, middle column). An important exception is the underestimation 
of simulated maize and rice yields in southern North America. We note that LPJmL itself has 475 
limitations in simulating yield variability in this region (Frieler et al., 2017).  
 
Finally, approach (c) leads to a similar pattern of deviations from the simulated yield potential as 
approach (b), but with a slightly smaller magnitude (Figure 8, right column). Thus, considering 
overall performance at the grid point level for this particular case (2.5°C warming under RCP4.5), 480 
the simple emulator approach (c) produces results which are closest to the LPJmL simulation.  
 
To get a more comprehensive indicator of the performance of the emulator we use all three 
approaches to reproduce the changes in crop production under RCP2.6, RCP4.5, and RCP6.0, as 
derived for 10 large scale world regions (cf. Figure 2 in (Lotze-Campen et al., 2008) for a map of 485 
the regions), assuming fixed year-2000 land use and irrigation patterns. Compared to potential 
yields, using production gives less weight to areas where a crop is not currently grown. The 
climate-induced and CO2-induced patterns of change were derived from RCP8.5; and we used the 
RMSE between the relative changes in crop production derived from the original simulations and 
their emulated counterparts across the other three scenarios as a measure of the performance of 490 
the emulator.  
 
Of the two approaches that estimate warming and CO2-induced effects separately, approach (b) 
generally provides a better performance than approach (a) (see Figure 9 for LPJmL; Table 1 and 
supplementary online information for all crop models). Performance of all emulator approaches 495 
varies substantially between regions. There are also considerable differences between crop 
models. For LPJmL, emulator approach (b) generally provides marginally better performance for 
many regions than approach (c) when emulating RCP2.6 and RCP4.5. This advantage of approach 
(b) is not found in the other crop models. Taking into account that approach (b) requires additional 
crop model simulations with fixed CO2, the very basic interpolation approach (c) may provide the 500 
best compromise between emulator performance and complexity.  
 

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-69
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 4 August 2017
c© Author(s) 2017. CC BY 4.0 License.



21 
 

While none of the emulators is expected to capture the relatively large inter-annual variability of 
simulated yield changes, approach (c) allows to emulate the regionally averaged response of the 
process‐based crop models to climate forcing estimated for RCP2.6, RCP4.5, and RCP6.0 (Fig. 10 505 
for maize yields from LPJmL forced by HadGEM2-ES; analogous figures for other combinations are 
available as supplementary online material). Note though that the average deviation between 
emulated and simulated yields over the full 95-year time series is sometimes larger than the 
simulated yield change in 2091 – 2099, especially in the low warming scenarios (marked by red 
crosses in Fig. 9). 510 
 

 
Fig. 9. Average root mean square deviation between emulated and simulated regional decadal 
production (yields weighted by year-2000 growing areas, combined for irrigated and rainfed crops) 
for LPJmL forced by HadGEM2-ES climate projections. The emulator was built on the RCP8.5 515 

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-69
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 4 August 2017
c© Author(s) 2017. CC BY 4.0 License.



22 
 

projections and used to reproduce yield changes in all four RCPs. For comparison, blue circles 
illustrate the average simulated yield change for 2091 – 2099 (same horizontal axis; where the 
deviation between emulated and simulated yields is larger than the simulated yield change, red 
crosses are shown instead of blue circles). 
 520 

Table 1. Average root mean square deviation between emulated and simulated decadal 
production (as in Fig. 9) in the largest producing region of each crop, for all five crop models forced 
by HadGEM2-ES climate projections. Average over all four RCPs. The values for all combinations of 
models, crops, and regions, and separately for each RCP, can be found in the supplementary 
online material.  

 
 
 

 
Fig. 10. Comparison of simulated and emulated time series of regionally averaged crop production 525 
changes for LPJmL forced by HadGEM2‐ES climate projections. Regional averages are calculated 
based on fixed present day land use and irrigation patterns. Results are shown for Maize and 
emulator approach (c). 
 
 530 

5. Increases in Regional Crop Yield Variance 
 

method a b c a b c a b c a b c
GEPIC 2.159 1.250 1.396 6.941 3.321 3.266 19.091 10.310 9.664 5.001 2.638 2.858
LPJ-GUESS 2.579 2.348 2.486 5.026 2.614 4.517 10.034 7.029 6.866 3.749 3.003 2.691
LPJmL 3.814 2.272 2.415 4.247 2.954 2.409 11.954 5.783 5.950 5.869 4.313 5.084
pDSSAT 4.863 4.495 4.392 6.483 5.232 4.971 12.752 8.065 7.984 8.276 5.358 4.809
PEGASUS 8.125 4.923 5.324 n.a. n.a. n.a. 14.097 11.829 11.825 11.542 6.370 7.182

Wheat, Europe Rice, South Asia Maize, North America Soy, Latin America
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In addition to estimating the yield changes associated with a rise in average temperature, it is 
important to consider the implications of rising variance. Climate change is expected to increase 
not only the average temperature, but to impact the variance of temperature and precipitation, 535 
including an increase in the frequency and duration of extreme events. For this reason, when 
deriving simplified relationships between potential yields and global climate change, it is crucial to 
account not only for the mean effects of rising temperature, but also their concurrent implications 
for crop yield variance. Interannual yield variance can be computed for the same 0.5° C warming 
bins as used above for the average yields, which we do here for all major crops under the “no 540 
irrigation” scenario. To account for the variability across scenarios and models which is 
attributable to direct CO2 effects, the RCP-GCM-GGCM specific mean is subtracted at each 0.5°C 
∆GMT step. The variance of the adjusted yields is then compared to the variance of the same 
GCM-GGCM combination over the historical (1980-2010) period. 
 545 
The global figures show broadly similar patterns across all four crops: Increases in yield variability 
in much of the northern hemisphere, particularly in North America, central Asia, and China; as well 
as in the southern mid-latitudes (Figure 11 for 2.5°C). A majority of model combination projects 
decreasing variability in tropical regions as well as parts of Eastern Europe; but nowhere do more 
than 75% of the model combinations agree on a decrease in variability. In several instances 550 
increased variability occurs in highly productive regions such as in China for rice and the US, Brazil, 
and Argentina for soy. Wheat also has an increased variability in more than 75% of the crop model 
simulations over the highly productive regions in China and the U.S. Such an increase in variability, 
if realized, could manifest as impacts on the price, whose volatility is tightly linked to rapid 
changes in supply (Gilbert and Morgan 2010). 555 
 
 

 
 
 560 
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Fig 11. Percentage of crop model simulations indicating an increase (blue) or decrease (red) in 
yield variance of greater than 5% at each grid point at 2.5°C warming scenario as compared to the 565 
historic period for a) maize, b) rice, c) soy, and d) wheat. 
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6. Summary 570 
 
Evaluating the impacts of climate change at different levels of global warming, and thus evaluating 
mitigation targets, requires a functional link between ∆GMT and regional impacts. Here we have 
shown that changes in crop yields, as simulated by gridded global crop models, can be 
reconstructed based on ∆GMT, with some limitations. The small spread of simulated yield change 575 
across the RCP scenarios as compared to the GCMs and impact models implies that projected 
impacts at different ΔGMT levels are not substantially dependent on the choice of emissions 
pathway.  
 
We have tested three different approaches for emulating crop yield changes simulated by GGCMs, 580 
two of which include pCO2 as an additional predictor. An approach (a) attributing the variation 
within an individual ∆GMT bin of a simulation with varying pCO2 solely to the change in pCO2 
shows the poorest overall performance. An approach (b) based on the difference between runs 
with and without direct CO2 fertilization effects performs similarly well as a simple approach (c) 
using only ∆GMT as a single predictor. For local (grid level) crop yields, approach (c) performs 585 
slightly better than approach (b) for the LPJmL GGCM. On the other hand, for yield changes 
weighted by actual growing areas and irrigation patterns and aggregated over large regions (i.e., 
regional production), approach (b) slightly outperforms approach (c) in reproducing changes under 
low-warming RCPs. Considering the added complexity in approach (b) compared to (c), the simple 
approach (c) appears in general preferable. This suggests that simplified predictions of large-scale 590 
agriculture yields may not require additional crop model simulations with CO2 levels held at a 
historical level. 
 
The impact model ensemble available with ISIMIP data also indicates that the variability of crop 
yields is projected to increase in conjunction with increasing ΔGMT in many important regions for 595 
the four major staple crops. Such a hike in yield volatility could have significant policy implications 
by affecting food prices and supplies. 
 
The scalability of each component (mean yields and yield variability) is conducive to the 
development of predictor functions relating ΔGMT, or other aggregate climate variable readily 600 
available from simplified climate models (such as pCO2) to regional or global mean crop yield 
impacts. This lays the groundwork for a further exploration of the economic impacts of climate 
change encountered at target warming levels or over policy relevant regions.   
 

Data availability 605 
The coefficients estimated with equations (1) and (2) are available in the supplementary online 
material, along with supplementary figures and RMSE estimates, at https://cloud.pik-
potsdam.de/index.php/s/5J8vDoQvycH2nuZ. The GGCM simulations that the analysis in this paper 
is based on are available through https://esg.pik-potsdam.de/search/isimip-ft/, with additional 
documentation available on the ISIMIP website https://www.isimip.org/outputdata/caveats-fast-610 
track/.  
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