Changes in crop yields and their variability at different
levels of global warming

Sebastian Ostberg', Jacob Schewe', Katelin Childers', and Katja Frieler’

'Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
2Geography Department, Humboldt-Universitéit zu Berlin, Berlin, Germany

Fb“cj Correspondence: Sebastian Ostberg (ostberg @ pik-potsdam.de)

Abstract. An assessment of climate change impacts at different levels of global warming is crucial to inform
the pelitical discussion about mitigation largels, as well as for the economic evaluation of climate change impacts
£.g-in-ecenomic Todelssuch-as-Integrated-Assessment-Modelsthat-onty-use-global-meamtemperature-change
-as-indieatorof-climate change. There is already a well-established framework for the scalability of regional
temperature and precipitation changes with global mean temperature change (AGMT). It is less clear to what
extent more complex, biological or physiological impacts such as crop yield changes can also be described in
terms of AGMT, even though such impacts may often be more directly relevant for human livelihoods than
changes in the physical climate. Here we show that crop yield projections can indeed be described in terms
of AGMT 1o a large extent, allowing for a fast estimation of crop yield changes for emission scenarios not
originally covered by climate and crop model projections. We use an ensemble of global gridded crop model

overall variance of projected yield changes at different levels of AGMT. In contrast e variance is dominated by

find

simulations for the four major staple crops to show that the scenario depen;l:ﬁ;;wowonfp‘onent ofthe— ¢ | g

the spread across crop models. Varying CO; concentrations are shown to explai
yield variability at different levels of global warming. In addition, we(sho

only a minor component of crop
that the variability of crop yields is

expected to increase with increasing warming in many world regions. W& provide, for each crop model, patterns
of mean yield changes that allow for a simplified description of yield changes under arbitrary pathways of global l,

mean temperature and CO5 changes, without the need for additional climate and crop model simulations.

1 Introduction

Climate change exerls a substantial and direct impact on food
security and hunger risk by altering the global patterns of
precipitation and temperature which determine the location
s of arable land (Parry et al., 2005; Rosenzweig et al., 2014) as
well as the quality (Miiller et al., 2014) and quantity (Miiller
and Robertson, 2014; Lobell et al., 2012; van der Velde et al.,
2012) of crops comprising most of the world food supply.
By itself, climate change is expected to reduce global pro-
1w duction of the four major crops wheat, maize, soy and rice
on current agricultural areas (e.g., Rosenzweig et al., 2014;
Challinor and Wheeler, 2008; Peng et al., 2004). Facing an
increasing food demand due to population growth and eco-
nomic development, these reductions will have to be com-
15 pensated by 1} the direct physiological impacts of increased
atmospheric CO4 concentrations (Kimball, 1983), which are

beyond local human control; as well as 2) advances in agri-
cultural management (e.g. fertilizer input or irrigation), tech-
nology, and breeding (Jaggard et al., 2010) or 3) expansion
of agricultural land (Frieler et al., 2015; Smith et al., 2010).
In conjunction with these long term changes, global warm-
ing is also expected to contribute to an increase in the fre-
quency and duration of extreme temperatures and precipita-
tion (droughts, floods, and heat waves), which may increase
the near term variability of crop yields and trigger short
term crop price fluctuations (Brown and Kshirsagar, 2015;
Mendelsohn et al., 2007; Tadesse et al., 2014).
Anthropogenic emissions of greenhouse gases are ex-
pected to influence crop yields via several pathways. On the
one hand, the associated climatic changes will modify the
length of the growing season (Eyshi Rezaei et al., 2014), wa-
ter availability, and heat stress (Lobell et al., 2012; Miiller
and Robertson, 2014; Schlenker and Roberts, 2009); and on
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2 Ostberg et al.: Changes in crop yields and their variability at different levels of global warming

the other hand, higher concentrations of atmospheric CO2
are expectled to increase the water use efficiency in C3 (e.g.
wheat, rice, soy) and C4 (maize) crops, and enhance the rate
of photosynthesis in C3 crops (Darwin and Kennedy, 2000).
s Global Gridded Crop Models (GGCMs) are particularly de-
signed to account for these effects. They provide a complex
process-based implementation of our current understanding
of the mechanisms underlying crop growth, and are the pri-
mary tool for crop yield projections (e.g., Rosenzweig et al.,
10 2014) which in turn are a prerequisite for assessing poten-
tial changes in prices (Nelson et al., 2014) and food security
(Parry et al., 2005). However, these process-based crop yield
projections rely on spatially explicit realizations of the driv-
ing weather variables such as temperature, precipitation, ra-
15 diation, and humidity, often at daily resolution, as provided
by computationally expensive Global Climate Model (GCM)
simulations. The GGCMs themselves also require significant
computational capacity. These requirements generally limit
the number and duration of emission scenarios that can be
20 considered. ?

The so-called pattern scaling approach is a well-
established method to overcome these limits. Output from
GCMs has been shown to be, to some extent, scalable to
different global mean temperature (GMT) trajectories not

25 originally covered by GCM simulations (Santer et al., 1990;
Mitchell, 2003; IPCC-TGICA, 2007; Giorgi, 2008; Solomon
et al., 2009; Frieler et al., 2012; Heinke et al., 2013). Scaled
climate projections have also been used as input for different
impact models (Ostberg et al., 2013; Stehfest et al., 2014) to

yew®' “w gain flexibility with regard to the range of emission scenarios

Soosidersd,

Building upon such a framework, we present a method
to extend the capacity of crop yield impact projections by
relating simulated crop yield changes to two highly aggre-

a5 gated quantities — global mean temperature change (AGMT)
and atmospheric CO3 concentration (pCOs) - by means of
simplified function. AGMT and pCO- are standard outputs
7  of simple climate models, which allow for highly efficient
" climate projections for any emissions scenario by emulat-
a0 ing the response of the complex GCMs (Meinshausen et al.,
2011). Here “emulating” means that the simplified represen-
tation is designed to reproduce the response of the complex
model for the originally simulated scenarios but also allows
for its inter- or extrapolation to other scenarios. We test to
s what extent crop yield changes, as one example of climate
change impacts, can be described directly in terms of GMT
and pCOs changes. Our approach is different from other em-
ulators which use spatially explicit climate projections as
input for the simplified functions (Oyebamiji et al., 2015;
so Blanc, 2017). While these approaches only emulate the re-
sponses of the complex crop model, the approach presented
here implicitly provides a simplified description of both the
GCMs’ regional patterns of climate change and the associ-
ated response of the crop models. Such escription
ss provides high computational efficiency, making the-appreach
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applicable, for example, in Integrated Assessment Models. In

principle, other emulators could be used in this setting, how-
ever requiring an additional step of first scaling the climatgic

changes to the specific emission scenario.

The emulator introduced here allows for multi-crop-model
projections for arbitrary emission scenarios as long as crop-
model ensemble projections are available for a limited set
of scenarios. This offers a practical way of keeping track of
a relevant but often-ignored source of uncertainty which is
manifested in the considerable spread across different crop
models and other process-based impact models (Rosenzweig
et al., 2014; Schewe et al., 2014). This uncertainty is particu-
larly critical when estimating socio-economic consequences
(e.g., Nelson et al., 2014),

We test the approach using an ensemble of yield projec-
tions of the four major crops maize, rice, soy, and ‘wheat,
generated within the first phase (“Fast Track™) of the Inter-
sectoral Impact Model Intercomparison Project (ISIMIP,
Warszawski et al., 2014). For a number of AGMT intervals
we compare the spread in yield outcomes induced by the
choice of emission scenario with that induced by the choice
of GGCM and GCM, respectively. A low scenario-induced
spread means that GCM- and GGCM-specific yield projec-
tions can be approximated by a simplified relationship with
global mean temperature change without accounting for the
underlying emission scenario, which is a prerequisite to ap-
plying the simplified relationship to other emission scenar-
ios. The test is done at each grid point and separately for sim-
ulations of purely rain-fed yields and fully irrigated yields.
Multi-model ensembles of crop yields over such a wide range

of crops, CO, concentrations, and irrigation options are-a i

new-prospeet-and the ISIMIP data provideg a uniquely broad
suite of crop yield impact simulations encompassing output
from five GGCMs, forced with output from up to five GCMs,
and four Representative Concentration Pathways (RCPs, van
Vuuren et al., 2011).

In Section 2 we describe the ISIMIP data and the meth-
ods used to test for scenario dependence and adjustment for
different levels of pCOs. Section 3 is dedicated to the pre-
sentation of the projected average changes in crop yields at
different levels of global warming and an attribution of the
variance of these long term changes to different sources of
uncertainty, i.e., different GCMs, different GGCMs, and dif-
ferent emission scenarios (subsection 3.1). In addition, we
test to what degree the scenario-dependence of crop yields at
a specific level of global warming can be explained by dif-
ferent levels of pCOs2 (subsection 3.2). Finally, we provide
individual maps of yield changes at different levels of GMT
and the additional effect of variations in pCO» at the respec-
tive GMT levels. We propose three methods to generate these
patterns based on the available complex model simulations,
and describe the related approaches to estimate GGCM- and
GCM-specific yield changes for new AGMT trajectories not
originally covered by GCM-crop-model simulations. In Sec-
tion 4 we present a quantification of the projection errors as
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compared to actual simulations by the complex gridded crop

models. Finally, in Section 5 we quantify the residual inter-

annual variance of the simulated crop yields in terms of GMT

change across all combinations of crop and climate models.
s Section 6 provides a summary.

2 Data and Methods
Phas&
2.1 Crop yield simulations

We use projections from five/ different GGCMs (GEPIC,
LPJ-GUESS, LPImL, PEGASUS, and pDSSAT) that par-
10 ticipated in the first simulatior-reund-of ISIMIP (Rosen-
zweig et al., 2014; Warszawski et al., 2014) in order to test
for a dependence of projected yield changes on the GMT
pathway (see Table 1 for their basic characteristics). Each
crop model was forced by climate projections from five
15 different GCMs (HadGEM2-ES, IPSL-CM5A-LR, MIROC-
ESM-CHEM, GFDL-ESM2M, NorESM1-M) generated for
four RCPs (RCP2.6, RCP4.5, RCP6.0, RCP8.5) in the con-
text of the Coupled Model Intercomparison Project, phase
5 (CMIP5, Taylor et al., 2012). CMIP5 was an effort by
20 the climate modelling community to provide a new suite of
climate simulations in time for the Intergovernmental Panel
on Climate Change (IPCC) Fifth Assessment Report (AR5).
The RCPs cover the range from climate mitigation (RCP2.6,
RCP4.5) to business-as-usual (RCP6.0) and high emissions
a5 scenarios (RCP8.5). Climate projections have been bias-
corrected to better match observed historical averages of
the considered climate variables. For the future, the bias-
correction preserves absolute changes in monthly tempera-
ture and relative changes in monthly values of the other vari-

a0 ables simulated by the GCMs while also correcting the daily
variability about the monthly mean (Hempel et al., 2013).
Separate simulations are available for each of the four major
crops: wheat, maize, rice and soy, on a global (.5 x 0.5 degree
grid, covering the time period from 1971-2099. The consid-
as ered crop is assumed Lo grow everywhere on the global land
area, only restricted by soil characteristics and climate but in-
dependent of present or future land use patterns (“pure crop”
simulations). Each model has provided a pair of simulations
(“runs™) for each climate change scenario: 1) a rain-fed run
a0 and 2) a full-irrigation run assuming no water constraints.
This design provides full flexibility with regard to the appli-
ion_of future use and irrigation patterns. While Fhe
Ldefa urﬂlulalion Y araa) account for the
/ferli[ization effects due to the increasing levels of pCQa., the
as ISIMIP setting also includes a sensitivity experiment where

the 4% models were forced by the same climate change
projections but pCO» was kept fixed at a “present day” refer-
ence level that differs from GGCM to GGCM (see Table 1).
We will refer to this run as “fixed CO»" run and indicate the
so associated crop yields by Yixeacosz- As a special case, the
“default” simulations for pDSSAT do not use annual pCO»

while The CW'P Ji(’,\é (\(VMCM) - "Clé’:icuvtﬁ" Simulah ons

changes. Instead, pCO2 was chahged every 30 years using
the average pCO» of the respective 30 year time slice.

v 4 e ' ] ot
w fest for AGMT (which is, of course,"global guantity)

Lime of a.‘H“aininj

A 3iveh AGHT
2.2 Effect of temperature change

We analyse the dependence J of yield changes on AGMT
separately for rain-fed and Fll-irrigation simulations, and
for each crop. Since the fiming—of—global-warming dif-
fers between GCMs and scenarios, we group all available
data into AGMT intervals (bins) separated by 0.5°C steps
with 0.5°C width (:f:O.gS"‘C o.kmd the central temperature),
where AGMT isTefafive to %?e present day (1980-2010 av-
erage) reference level. For all annual data falling into a given

interval and at each grid point we apply a separate one-
way analysis of variance (ANOVA fixed effects model) to

individually calculate the variance explained by 1) different
GGCMs, 2) the GCMs, and 3) the RCPs. The quantification
of the RCP-dependence of the relationship between global
warming and yield change is limited to a warming range up to
2 to 3°C above present depending on the GCM because only

one RCP (RCP8.5) reaches temperatures above this thresh-
old. However, we also provide the patterns of yield change
for the higher concentration scenario. In the main text, all
figures except 9 & 10 refer to a AGMT level of 2.5°C, and
all figures except 3, 4, and 11 refer to crop model simulations
driven by HadGEM2-ES climate. See Figure 1 for the years
associated with AGMT=2.5°C in HadGEM2-ES. The Sup-
plement contains analogous figures for other GMT levels and
GCMs.

We do not impose a specific functional relationship be-
tween GMT change and change in crop yields. Yield change
for any GMT level between the central levels of the consid-
ered bins could be derived by a simple linear interpolation
between the patterns of neighbouring bins but without as-
suming a linear relationship between global mean warming
and yield change across the full range of warming.

2.3 Effect of pCO, change

The direct effect of CO4 fertilization on crop yields is ex-
pected to introduce some scenario dependence in the rela-
tionship between GMT change and yield change. We test to
what degree the scenario dependence of the relationship can
be explained by introducing pCQO» as an additional predictor
for within-bin fluctuation of yields. To this end, we evaluate
two different approaches to estimate the direct CO5 effect on
crop yields within the different GMT bins, described in detail
below. The two approaches differ in terms of the crop model
simulations that they require: approach (a) only requires the
default crop yield simulations with increasing pCO, whereas
approach (b) requires a pair of simulations with increasing
pCO; and with fixed pCO, at present-day reference level.
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4 Ostberg et al.: Changes in crop yields and their variability at different levels of global warming

Table 1. Basic crop medel characteristics with respect to 1) the implementation of CO; fertilization effect (as affecting radiation use effi-
ciency (RUE), transpiration efficiency (TE), leaf level photosynthesis (LLP), or canopy conductance (CC)), 2) the accounting for nutrient
constraints and associated assumption with respect to fertilizer application (N = nitrogen, P = phosphorus, K = potassium), 3) implemented
adaptation measures.

Model CO., fertilization Nutrient limitation Adaptation
GEPIC RUE, TE flexible N application up to an upper national ~ decadal adjustment of planting dates (incl,
(Liu et al, pCO: of the fixed application limit according to FAO FertiStat  switch between winter and spring wheat); to-
2007, Liu, COz run: 364 ppm database (FAO, 2007), fixed present-day P  tal heat units to reach maturity remain con-
2009) application rates following FertiStat. stant
LPI-GUESS LLP, CC no consideration of soil nutrient limitation adjustment of total heat units to reach matu-
(Lindeskog pCOz of the fixed rity based on the average climate during the
etal., 2013} CO- run: 379 ppm preceding 10 years to keep growing season
length constant
LPImL LLP, CC no consideration of soil nutrient limitation fixed sowing dates (Waha et al., 2012); total
(Bondeau pCO2 of the fixed heat units to reach maturity remain constant
et al., 2007) CO3 run: 370 ppm
PEGASUS RUE, TE fixed N, P, K application rates (IFA, 2002) adjustment of planting dates; variable heat
(Deryng et al., pCOz of the fixed units to reach maturity
2011) CO3 run: 369 ppm
pDSSAT RUE, LLP, CC fixed N present-day application rates no adjustment of planting dates; total heat
(Jones et al., pCO:z of the fixed units to reach maturity remain constant
2003; Elliott COg run: 330 ppm
ct al., 2014)
Ave BN clim and QAq the
2.3.1 Approach (a) Hwe vawiables /qundas determi _Mé
by regression .
For all years falling into a specific AGMT bin, approach (':? Plesse
& ' P fits the following linear regression model to the response of \:_,i
RCP 2.6 yields in the default simulation to the increase in pCOa: s {j
—— RCP45
_ 4| — BCPaD AYiarcoz(i ) = AYoim (i) + a1 (i) - (pCO2(t) — 370ppm) s
3 —— RCP85 .
e +€(4,1), (1)
S 3
E 2 54 0.95°Celsius where.AYVﬂ:.cog (i,t). is the absolute yie_]d c‘hange in grid
5 S point ¢ and year ¢ with respect to the historical reference
£ 2 period (1980-2010) and pCO2(#) is the atmospheric CO-
O concentration of the corresponding year. In this statisti-
1 cal model, AY;,(7) represents an estimate of the purely
climate-induced yield change at the respective bin temper-
ature, but assuming a fixed year-2000 pCO; of 370 ppm (i.e.
0 without CO» fertilization), a; (#) represents the added effect
eye - . 2
2000 2020 2040 2060 2080 2100 of CO; fertilization, and ¢(7,t) ~~ N(0,0°) represents the 15

Figure 1. GMT projections from HadGEM2-ES for the four RCPs.
The horizontal line and shading indicate the 2.5°C bin. The orig-
inal annual GMT values (thin lines) are smoothed (thick lines) in
order to obtain a contiguous time interval for each AGMT bin.
The smoothing is based on a Singular Spectrum Analysis with a
time window of 20 years (R-Package Rssa, Korobeynikov, 2010;
Golyandina and Korobeynikov, 2014; Golyandina et al., 2015).
Years where the thick line falls within the shaded area are asso-
ciated with AGMT=2.5°C, and the corresponding time interval is
delineated by the dashed vertical lines.

residual error.

2.3.2 Approach (b}

Approach (b) fits the following linear regression model to the
yield difference between the default and fixed-CO, simula-
tion for all years falling into a specific AGMT bin:

Yiarcoa(i,t) — Yixedcoz(#,t) =

0.1<’L') ! (pCOQ(t) o pCOQrcf) + é(i,t), (2)

where Yyarco2(i,t) and Yixeaco2(4,t) is the absolute yield
in grid point ¢ and year ¢ of the default and fixed-CQO, simu-

Pls ¢|qﬁ{3 aq is deterimined 53 mjyescs'm.



Ostberg et al.: Changes in crop yields and their variability at different levels of global warming 5

lation, respectively, pCO2(t) is the atmospheric CO; con-
centration of the default simulation during the respective
year and pCO2, is the crop-model specific pCO2 value
of the fixed-CO» simulation (see Table 1). In this statis-
tical model, aq(i) represents the COs fertilization effect
and e(i,t) «~ N(0,0?) represents the residual error. No in-
tercept is estimated in this model because yields from the
default and fixed-CO, runs are expected to be identical
if pCO2(t) =pCO02,,. The purely climate-induced yield
10 change at a fixed year-2000 pCO- of 370 ppm AY4im (¢) can
then be derived as:

@

A}/(:lim (3) = A},ﬁxcdcog(i) +ay (7) * (pcozrcf - 370ppm):
(3)

where AYjycacoz(i) is the average yield change in the re-
spective warming bin of the fixed CO2 simulation with re-

15 spect to the historical reference period and ay (i) - (pCO2, s —
370ppm) corrects for the different pCO2,; used by each
GGCM.

2.4 Emulator of temperature and CO, effects

Based on the spatial patterns of purely climate-induced yield
change AY i (i) and added CO; fertilization effect a, (i),
which are derived separately for each rain-fed and irrigated
crop and specific to each crop model and GCM, we propose
the following two-step interpolation method to compute crop
yield changes for any given pair of AGMT and pCO-, using
= either the coefficients from approach (a) or (b):

2

S

1. linear interpolation of AYy;n(#) between the two
neighbouring waeming bins to the desired AGMT
value, -}ewkcv‘a-hlﬂ- c,ha»?z,

2. addition of the COs pattern described by a;(%)-
% (pCO2 — 370ppm), where a;(é) is also interpolated
linearly between the respective coefficients from the
neighbouring wm—hf&&f’m“- c,\nm?&
The application of these two steps using coefficients from
method (a) above will be called emulator approach (a); their
application using coefficients from regression method (b)
will be called emulator approach (b). In addition, we pro-
pose a third, very basic emulator approach (c) where the yield
change for any given AGMT is derived from a simple linear
interpolation of the average yield change in the neighbouring
«0 warming bins of the default simulations AY,arco2(i) with
respect to the historical reference period, without using the
associated pCO; as additional predictor.
The linear interpolation of any of the previous coefficients
between two neighbouring warming bins is illustrated for a
s AGMT of 2.3°C as follows:

3

&

cocf(i,2.3°C) = (1 — 8) - coef(i,2°C) + 8 - coef(3,2.5°C),
§ = (2.3°C — 2°C)/(2.5°C — 2°C), @)

where cocf can be AYim(¢), a1 (2), or AY .rc00(i).

Using GGCM projections for the HadGEM2-ES climate
input to train the emulators, we test which of the emulator
approaches, (a), (b) or (c), provides the best reproducibility
for yield changes simulated under the four RCPs (Section 4),
While approach (b) requires a pair of crop model simulations
— one with time-varying pCO, and one with fixed present-
day pCO; — approach (a) and (c) only require the default
simulations with time-varying pCOs. Thus, a comparison of
the three approaches could provide some important guidance
regarding future crop model experiments required to allow
for the proposed highly efficient emulation of crop model
simulations. Since simulated crop yields are subject to con-
siderable inter-annual variability, we also test what effect the
amount of available training data has on the reliability of the
derived regression coefficients. For that purpose, we train the
emulators using either all available simulation data from the
four RCPs or only simulation data from RCP8.5 and com-
pare the fraction of the land surface for which derived fits
are statistically significant as well as the difference between
simulated and emulated yield changes. Due to the 30-year
time slices of constant pCOs used by pDSSAT in the default
run, approach (a) cannol be applied to this model using only
RCP8.5 data. Since only RCP8.5 reaches AGMT> 3.5°C
this limits the temperature range of emulator approach (a)
for pDSSAT even when using all available training data.

We evaluate and compare the performance of the three em-
ulator approaches at the grid scale as well as the scale of large
regions. Grid point yields (in t/ha) are multiplied by the fixed
year-2000 crop-specific growing area from the MIRCA2000
dataset (Portmann et al., 2010) to derive regional total crop
production (in t). MIRCA2000 provides gridded growing ar-
eas for a total of 26 rain-fed and irrigated crops based on a
combination of census, remote sensing and other geographic
data sources.

3 Mean Yield Change with Global Mean Temperature
Change

3.1 Patterns of relative changes at different levels of
global warming and main sources of variance

In general, increasing global mean temperatures correspond
1o an expansion of arable land to higher latitudes with con-
current yield reductions in equatorial regions. The highest
positive changes in projected yields under rain-fed conditions
at 2.5°C AGMT are typically in the northern high latitudes
and mountainous regions for all crops (Figure 2 for wheat,
figures for other crops in the Supplement). These locations
were previously inhibited by a short growing season, which
exlends with increasing air temperature (Ramankutty et al.,
2002). Yield gains also occur over previously moisture lim-
ited regions, such as the northwestern U.S. and north-eastern
China, in agreement with the findings of Ramankutty et al.
(2002). In contrast, near the equator most crop yields de-
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Maize

Rice

Soybeans

5‘{“ i 4

Wheat

1
Q- .

. Negative for »>75% of combinations Positive for »75% of combinations

I:l Negative for >50% of combinations I:I Positive for >50% of combinations

Figure 3. Percentage of crop model simulations (combination of a single GCM, GGCM, and RCP scenario) indicaling an increase (blue)
or decrease (red) in yield of greater than 5% at each grid point at 2.5 4 0.25°C AGMT as compared to the historical period for maize, rice,
soybeans, and wheat under rain-fed conditions. White indicates either a less than 5% change or disagreement between the models in the
direction of yield change. Note that only four out of five GGCMs provided results for rice. An analogous figure for irrigated conditions is

available in the Supplement.

CO,, effect shows little scenario dependence (see Figure 5
for the global average effect within the LPIJmL simulations
at AGMT=2.5°C), consistent with a short response time of
plants to pCO2 changes. As expected, the CO»-induced yield
differences increase with heightened atmospheric CQO» level
under all emissions scenarios, implying a stronger CO» fer-
tilization impact with increased pCOs.

At the grid point level, two approaches have been used to
separate purely climate-change-induced from COs-induced
yield change (following Equation 1 to Equation 3). Fig-
ure 6 shows the climate-change-induced yield change at
AGMT=2.5°C for LPJmL under rain-fed conditions, using
all available runs that fall into the warming bin to estimate
AY,im(?). Figures for irrigated conditions and the other
GGCMs are available in the Supplement. The two methods
result in broadly similar patterns, with yield increases in the
upper mid- and high latitudes, mixed regions with decreases
and increases in the lower mid-latitudes and mostly decreases
in the tropics. However, the magnitude of change differs be-
tween the two approaches: approach (a) generally estimates
larger changes outside the tropics while yield decreases in
the tropics are larger in approach (b). There are also some
regions where both approaches disagree regarding the direc-
tion of change, such as the high latiudes of both Western
North America and Eastern Russia for wheat and parts of
Southeast and South Asia for all crops. Patterns of climate-
induced yield change match better between both approaches
under irrigated conditions.

(see Supplzw\c'n‘f)

In GEPIC, both approaches disagree on the direction of
change for maize yields over large parts of Europe. In LPI-
GUESS, both approaches disagree on the direction of change
in most of the tropics for all crops. While tropical yield
change is predominantly negative in approach (b) mirror-
ing results of the other crop models, approach (a) estimates
mostly positive climate effects on tropical crops. In pDSSAT,
approach (a) generally produces larger areas with negative
yield change than approach (b). At the same time, positive
yield effects in approach (a) have a larger magnitude than
those in approach (b) in many regions. In PEGASUS, both
approaches disagree on the direction of change over large
parts of the U.S. for maize and soybeans, and large parts of
China for wheat.

The estimates of CO»-induced yield change also differ be-
tween the two approaches (Figure 7 for LPImL results un-
der rain-fed conditions). We expect CO» fertilization to have
a positive or at least neutral effect on yields, and this is
confirmed by approach (b) for all GGCMs and crops. Only
GEPIC simulations show negative CO, effects on soybean
and wheat yields in a few regions for approach (b). This can
be explained by nutrient interactions in the model: CO5 fer-
tilization leads to yield increases first but also increases nu-
trient depletion in the soil compared to the fixed-CO» run.
If fertilizer application is insufficient to replenish nutrient
stocks this can lead to lower yields despite the beneficial ef-
fect of higher pCO-. With approach (a), on the other hand,
areas of negative estimated CO. effects are widespread in
all GGCMs and all crops. Generally, the magnitudes of the
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4 Validation of three emulator approaches

Using GGCM projections for the HadGEM2-ES climate in-
put, we test which of the approaches, (a), (b) or (c), pro-
vides the best reproducibility for all four RCPs. For that pur-
s pose, we apply each emulator with time series of AGMT and
pCO; from the RCPs and compare emulated yield changes
in each grid point and as well as total crop production for
10 large world regions to those simulated by the GGCM. For
pDSSAT, the pCO, time series used in that model’s default
o run is also used with the emulator.

Figure 8 shows results for the LPJmL model, when apply-
ing the emulators trained on all available data to reproduce
rain-fed yields under RCP4.5. Figures for other RCPs, irri-
gated yields and other GGCMs are available in the Supple-

15 ment.

Approach (a) generally leads to the largest differences rel-
ative to the simulated yield change (Figure 8, left column).
In particular Maize, rice, and soybean yields are underesti-
mated for much of North America, and overestimated in Eu-

= rope, temperate South America, and Australia. Wheat yields
are overestimated, e.g., in Canada.

Approach (b) also leads to some substantial deviations
from the yields simulated by LPJmL, mainly in the north-
ern hemisphere (Figure 8, middle column). Spatial patterns

25 of over and underestimation are broadly similar to approach
(a), but the magnitude of the difference is generally slightly
lower. In the tropics, approach (b) often leads to a higher
deviation from the simulated yields than approach (a), par-
ticularly for rice and soybeans in South America.

a0 Finally, approach (c) leads to a similar pattern of devia-
tions from the simulated yields as approach (b) for maize
(Figure 8, right column). For the other crops, approach (c)
often leads to an overestimation of yields whereas approach
(b) tends to underestimate simulated yields. The average de-

a5 viation between emulated and simulated yields (designated
as MAD in Figure 8) is similar for approach (b) and (c). Ap-
proach (c) performs slightly better than approach (b) for rice,
and both approach (b) and (c) perform better than approach
(a) for all four crops. Differences between the three emula-

a0 tors are smaller when reproducing RCP6.0 and RCP8.5 (fig-
ures available in the Supplement).

The difference between emulator approach (b) and (c} is
even smaller in the other crop models than in LPImL (figures
available in the Supplement). Overall, MAD between emu-

a5 lated and simulated yields is up to 50% higher than LPJmL
in PEGASUS, roughly twice as high in GEPIC and up to
three times as high in pDSSAT. In LPJ-GUESS, MAD be-
tween emulated and simulated yields is similar for all three
emulator approaches, even though the spatial patterns of over

so and underestimation differ.

Using only RCP8.5 instead of all available data to train the
emulators has a detrimental effect on the performance, espe-
cially for approach (a). MAD between emulated and simu-
lated yields increases by a factor of more than three, even

close to four for some GGCMs and crops, under RCP4.5.
MAD for approach (b} and (c) also increases by a factor
of more than two, although not as sharply as for approach
(a) (figures available in the Supplement). Performance loss
is lower for RCP6.0, with MAD generally less than twice
as high. The emulator trained on RCP8.5 alone shows better
performance in emulating RCP8.5 simulated yields than the
emulator trained on all available data.

To get a more comprehensive indication of the perfor-
mance of the emulator for the whole 95-year time series
(instead of just the 2.5°C bin) we use all three approaches
to reproduce simulated changes in crop production under
RCP2.6, RCP4.5, RCP6.0, and RCP8.5, as derived for 10
large scale world regions (see Figure 10 for a map of the
regions). Grid-point yields are aggregated to the regions
assuming fixed year-2000 land use and irrigation patterns.
Compared to gridded yields, using production gives less
weight to areas where a crop is not currently grown. Since
none of the emulators is expected to capture the relatively
large inter-annual variability of simulated yields we compare
simulated and emulated decadal production and calculate the
RMSE over all decades of the relative difference between
emulated and simulated decadal production (in %) as a mea-
sure of the performance of the emulator.

Of the two approaches that estimate warming and CQOs-
induced effects separately, approach (b) generally provides
a better performance than approach (a) (see Figure 9 for
LPJmL; Table 3 and the Supplement for all crop models).
Performance of all emulator approaches varies substantially
between regions. There are also considerable differences be-
tween crop models, For LPJmL, emulator approach (b) pro-
vides marginally better performance for many regions than
approach (c). However, this is not consistent across the em-
ulators for the other crop models. Taking into account that
approach (b) requires additional crop model simulations with
fixed COs and that performance is mostly very similar for ap-
proach (b) and (c), the very basic interpolation approach (c)
appears to provide the best compromise between emulator
performance and complexity. Note though that the average
difference between emulated and simulated production over
the full 95-year time series is sometimes larger than the simu-
lated production change in 2091-2099, especially in the low
warming scenarios (marked by red crosses in Figure 9). Ta-
ble 3 compares the RMSE between emulated and simulated
crop production in the largest producing region of each crop
for all five crop models.

Figure 10 illustrates the performance of emulator approach
(¢) in reproducing decadal maize production as simulated by
LPImL forced by HadGEM2-ES. Emulated yields generally
follow the simulated trends, although large errors exist, e.g.,
in North America, which also stands out in Figure 9 and Fig-
ure 8. Analogous figures for all crops, emulator approaches
and crop models are available in the Supplement.

Similar to the grid point results, using only RCP8.5 to train
the emulators leads to a performance loss for all emulator
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Figure 8. Validation of the three emulator approaches. Maps show the difference (emulated minus simulated) between the simulated LPTmL
yields forced by HadGEMZ2-ES climate for RCP4.5 under rain-fed conditions for all years falling into the AGMT bin of 2.5°C (2066-2094)
and the emulated yields for the same years based on approach (a) (left column), approach (b) (middle column), and approach (c) (right
column). Rows: Different crops. MAD: mean absolute difference, regardless of sign, averaged across all grid points. Analogous figures for
irrigated conditions and for different GGCMs are available in the Supplement.

methods and all RCPs except RCP8.5. This performance loss
is larger for approach (a) than approach (b) and (c), and is
generally highest for RCP4.5 (figures available in the Sup-
plement).

s 5 Increases in Regional Crop Yield Variance

In addition to estimating the yield change associated with a
rise in average temperature, it is important to consider the
implications of rising variance. Climate change is expected
to increase not only the average temperature, but to impact
1 the variance of temperature and precipitation, including an
increase in the frequency and duration of extreme events.
For this reason, when deriving simplified relationships be-
tween yield change and global climate change, it is crucial to
account not only for the mean effects of rising temperature,
15 but also their concurrent implications for crop yield variance.
Inter-annual yield variance can be computed for the same
warming bins as used above for the average yields, which
we do here for all four crops under the “no irrigation™ sce-

nario. The variance is calculated separately for the years of
each RCP-GCM-GGCM combination falling into the 2.5°C
warming bin and compared to the variance of the matching
GCM-GGCM combination over the historical period (1980-
2010).

The global figures show broadly similar patterns across all
four crops: increases in yield variability in much of the north-
ern hemisphere, particularly in North America, central Asia,
and China; as well as in the southern mid-latitudes (Fig-
ure 11). A majority of model combinations projects decreas-
ing variability in tropical regions (except for rice} as well as
parts of Eastern Europe; but nowhere do more than 75% of
the model combinations agree on a decrease in variability. In
several instances increased variability occurs in highly pro-
ductive regions such as in China for rice and the US, Brazil,
and Argentina for soy. Wheat also has an increased variabil-
ity in more than 50% of the crop model simulations over the
highly productive regicns in China and the U.S. Such an in-
crease in variability, if realized, could manifest as impacts on
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the price, whose volatility is tightly linked to rapid changes
in supply (Gilbert and Morgan, 2010).

6 Summary

Evaluating the impacts of climate change at different lev-
els of global warming, and thus evaluating mitigation tar-
gets, requires a functional link between AGMT and regional
impacts. Here we have shown that changes in crop yields,
as simulated by gridded global crop models, can be recon-
structed based on AGMT, with some limitations. The small
spread of simulated yield change across the RCP scenarios
as compared to the GCMs and impact models implies that
projected impacts at different AGMT levels are not sub-
stantially dependent on the choice of emissions pathway.
In this context, it has to be noted that the scenario setup
of the ISIMIP crop model simulations was chosen specifi-
cally to minimize scenario-dependency by asking modellers
to keep crop management fixed at present-day level or adjust
it only in response to climate without any regard to the time
horizons associated with adaptation or economic processes.
Four models are calibrated to match present-day yield levels
while LPJ-GUESS simulates potential yields assuming opti-
mal management. Only two of the crop models allow for an
adjustment of planting dates in response to climate change
(GEPIC and PEGASUS, see Table 1). Three of the models
keep the total heat unit sum to reach maturity constant, as-
suming no change in crop cultivar which effectively leads to
a shortening of the growing season. Representation of soil
nutrient limitation varies substantially between models, with
two models (LPJ-GUESS and LPJmL) considering no soil
nutrient limitation at all, while the nutrients considered and
the assumptions on fertilizer application differ between the
other three models. The effects of these assumptions on yield
changes simulated by the different crop models are not stud-
ied here since the focus of this study is on developing effi-
cient emulators, but these assumptions inform both the simu-
lated yield changes as well as the emulators which attempt to
imitate the behaviour of the crop models. The results of the
ISIMIP crop models have been studied in detail in Rosen-
zweig et al. (2014).

We have tested three different approaches for emulat-
ing crop yield change simulated by five GGCMs driven by
HadGEM2-ES climate projections for four RCPs. All ap-
proaches rely on AGMT as the main predictor of yield
change at the grid scale. Two of the approaches include pCO-
as an additional predictor. An approach (a) attributing the
yield variation within an individual AGMT bin of a simula-
tion with varying pCO; solely to the change in pCO» shows
the poorest overall performance. An approach (b) based on
the difference between runs with and without direct CO-
fertilization effects performs similarly well as a simple ap-
proach (c) using only AGMT as a single predictor. Consid-
ering the added complexity in approach (b) compared to (c),

Ostberg et al.: Changes in crop yields and their variability at different levels of global warming

the simple approach (c) appears in general preferable even
though it may not provide the best result in all regions. While
our tests indicate that the emulators perform better for some
crop models than for others we strongly advise against rely-
ing solely on results from any one particular model, but in-
stead to always consider the full range of uncertainty spanned
by the GGCMs. Similarly, different GCMs still account for
more than 15% of the total variance of the ISIMIP ensem-
ble at AGMT=2.5°C in a number regions (Figure 4) which
is why emulators should be constructed for all GCM:s.

Given the availability of crop model simulations in the
ISIMIP archive, emulators based on approach (a) and (c)
could be constructed for all five GGCMs for the remain-
ing four GCMs (IPSL-CMS5A-LR, MIROC-ESM-CHEM,
GFDL-ESM2M, NorESMI1-M). Emulators based on ap-
proach (b) could only be constructed for LPJmL and
pDSSAT (and PEGASUS if using only RCP8.5 for train-
ing). With its five GCMs, which were selected from the
CMIP5 ensemble based primarily on data availability at the
fime, the ISIMIP subset likely underestimates the total un-
certainty in future climate impacts attributable to GCMs for
many regions, however, the ISIMIP subset ggggntiallrsam—
ples as much uncertainty as is possible with only 5 GCMs

cSweeney and Jones, 2016). The generally good perfor-
mance of approach (c) suggests that simplified predictions
of large-scale agricultural yields may not require additional
crop model simulations with CO4 levels held at a historical
level if planning to extend the GCM coverage.

The impact model ensemble assembled in this study also
indicates that the variability of crop yields is projected to in-
crease in conjunction with increasing AGMT in many im-
portant regions for the four major staple crops. Such an in-
crease in yield volatility could have significant policy impli-
cations by affecting food prices and supplies, although man-
agement assumptions as well as model-structural limitations
of the GGCMs to account for crop stress factors may impact
the models” ability to project future changes in variability.

The scalability of mean yields is conducive to the devel-
opment of predictor functions relating AGMT, or other ag-
gregate climate variables readily available from simplified
climate models (such as pCO-) to regional or global mean
crop yield impacts. This lays the groundwork for a further
exploration of the economic impacts of climate change en-
countered at target warming levels or over policy relevant
regions.

Data availability. The coefficients estimated with Equations 1 to 3
are available as a Supplement, along with supplementary figures and
RMSE estimates, at https://doi.org/10.528 1/zenodo.1194045. The
GGCM simulations that the analysis in this paper is based on are
available through https://esg.pik-potsdam.de/search/isimip-ft/, with
additional documentation available on the ISIMIP website https:/
www.isimip.orgfoutputdata/caveats-fast-track/
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