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Abstract. An assessment of climate change impacts at different levels of global warming is crucial to inform
the political policy discussion about mitigation targets, as well as for the economic evaluation of climate change
impactse. g. in economic models such as . Integrated Assessment Models that only often use global mean temperature change
as indicator (∆GMT) as a sole measure of climate change and, therefore, need to describe impacts as a function
of ∆GMT. There is already a well-established framework for the scalability of regional temperature and precip-
itation changes with global mean temperature change (∆GMT). It is less clear to what extent more complex, biological or
physiological impacts such as crop yield changes can also be described in terms of ∆GMT; even though such
impacts may often be more directly relevant for human livelihoods than changes in the physical climate. Here
we show that crop yield projections can indeed be described in terms of ∆GMT to a large extent, allowing for
a fast estimation of crop yield changes for emission scenarios not originally covered by climate and crop model
projections. We use an ensemble of global gridded crop model simulations for the four major staple crops to
show that the scenario dependence is a minor component of the overall variance of projected yield changes at
different levels of ∆GMT. In contrast, the variance is dominated by the spread across crop models. Varying
CO2 concentrations are shown to explain only a minor component of crop yield variability at different levels of
global warming. In addition, we show find that the variability of crop yields is expected to increase with increasing
warming in many world regions. We provide, for each crop model, geographical patterns of mean yield changes
that allow for a simplified description of yield changes under arbitrary pathways of global mean temperature and
CO2 changes, without the need for additional climate and crop model simulations.

1 Introduction

Climate change exerts a substantial and direct impact on food
security and hunger risk by altering the global patterns of
precipitation and temperature which determine the location
of arable land (Parry et al., 2005; Rosenzweig et al., 2014) as5

well as the quality (Müller et al., 2014) and quantity (Müller
and Robertson, 2014; Lobell et al., 2012; van der Velde et al.,
2012) of crops comprising most of the world food supply.
By itself, climate change is expected to reduce global pro-
duction of the four major crops wheat, maize, soy and rice10

on current agricultural areas (e.g., Rosenzweig et al., 2014;
Challinor and Wheeler, 2008; Peng et al., 2004). Facing an
increasing food demand due to population growth and eco-
nomic development, these reductions will have to be com-
pensated by 1) the direct physiological impacts of increased15

atmospheric CO2 concentrations (Kimball, 1983), which are
beyond local human control; as well as 2) advances in agri-
cultural management (e.g. fertilizer input or irrigation), tech-
nology, and breeding (Jaggard et al., 2010) or 3) expansion
of agricultural land (Frieler et al., 2015; Smith et al., 2010). 20

In conjunction with these long term changes, global warm-
ing is also expected to contribute to an increase in the fre-
quency and duration of extreme temperatures and precipita-
tion (droughts, floods, and heat waves), which may increase
the near term variability of crop yields and trigger short 25

term crop price fluctuations (Brown and Kshirsagar, 2015;
Mendelsohn et al., 2007; Tadesse et al., 2014).

Anthropogenic emissions of greenhouse gases are ex-
pected to influence crop yields via several pathways. On the
one hand, the associated climatic changes will modify the 30

length of the growing season (Eyshi Rezaei et al., 2014), wa-
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ter availability, and heat stress (Lobell et al., 2012; Müller
and Robertson, 2014; Schlenker and Roberts, 2009); and on
the other hand, higher concentrations of atmospheric CO2

are expected to increase the water use efficiency in C3 (e.g.
wheat, rice, soy) and C4 (maize) crops, and enhance the rate5

of photosynthesis in C3 crops (Darwin and Kennedy, 2000).
Global Gridded Crop Models (GGCMs) are particularly de-
signed to account for these effects. They provide a complex
process-based implementation of our current understanding
of the mechanisms underlying crop growth, and are the pri-10

mary tool for crop yield projections (e.g., Rosenzweig et al.,
2014) which in turn are a prerequisite for assessing poten-
tial changes in prices (Nelson et al., 2014) and food security
(Parry et al., 2005). However, these process-based crop yield
projections rely on spatially explicit realizations of the driv-15

ing weather variables such as temperature, precipitation, ra-
diation, and humidity, often at daily resolution, as provided
by computationally expensive Global Climate Model (GCM)
simulations. The GGCMs themselves also require significant
computational capacity. These requirements generally limit20

the number and duration length of emission scenarios that can
be consideredsimulated.

The so-called pattern scaling approach is a well-
established method to overcome these limits. Output from
GCMs has been shown to be, to some extent, scalable to25

different global mean temperature (GMT) trajectories not
originally covered by GCM simulations (Santer et al., 1990;
Mitchell, 2003; IPCC-TGICA, 2007; Giorgi, 2008; Solomon
et al., 2009; Frieler et al., 2012; Heinke et al., 2013). Scaled
climate projections have also been used as input for different30

impact models (Ostberg et al., 2013; Stehfest et al., 2014)
to gain flexibility with regard to achieve greater flexibility in terms of
the range of emission scenarios considered in climate impact
studies.

Building upon such a framework, we present a method35

to extend the capacity of crop yield impact projections by
relating simulated crop yield changes to two highly aggre-
gated quantities – global mean temperature change (∆GMT)
and atmospheric CO2 concentration (pCO2) – by means of
simplified function. ∆GMT and pCO2 are standard outputs40

of simple reduced-complexity climate models, which – while
lacking the spatial resolution of complex GCMs – allow for
highly efficient climate projections for any emissions sce-
nario by emulating the response of the complex GCMs mod-
els (Meinshausen et al., 2011). Here “emulating” means that45

the simplified representation is designed to reproduce the
global response of the complex model for the originally sim-
ulated scenarios but also allows for its inter- or extrapola-
tion to other scenarios. We test to what extent crop yield
changes, as one example of climate change impacts, can50

be described directly in terms of GMT and pCO2 changes.
Our approach is different from other emulators which use
spatially explicit climate projections as input for the simpli-
fied functions (Oyebamiji et al., 2015; Blanc, 2017). While
these approaches only emulate the responses of the complex55

crop model, the approach presented here implicitly provides
a simplified description of both the GCMs’ regional patterns
of climate change and the associated response of the crop
models. Such a direct description an approach provides high com-
putational efficiency, making the approach it applicable, for ex- 60

ample, in Integrated Assessment Models. In principle, other
emulators could be used in this setting, however requiring an
additional step of first scaling the climate climatic changes to
the specific emission scenario.

The emulator introduced here allows for multi-crop-model 65

projections for arbitrary emission scenarios as long as crop-
model ensemble projections are available for a limited set
of scenarios. This offers a practical way of keeping track of
a relevant but often-ignored source of uncertainty which is
manifested in the considerable spread across different crop 70

models and other process-based impact models (Rosenzweig
et al., 2014; Schewe et al., 2014). This uncertainty is particu-
larly critical when estimating socio-economic consequences
(e.g., Nelson et al., 2014).

We test the approach using an ensemble of yield projec- 75

tions of the four major crops maize, rice, soy, and wheat,
generated within the first phase (“Fast Track”) of the Inter-
sectoral Impact Model Intercomparison Project (ISIMIP,
Warszawski et al., 2014). For a number of ∆GMT intervals
we compare the spread in yield outcomes induced by the 80

choice of emission scenario with that induced by the choice
of GGCM and GCM, respectively. A low scenario-induced
spread means that GCM- and GGCM-specific yield projec-
tions can be approximated by a simplified relationship with
global mean temperature change without accounting for the 85

underlying emission scenario, which is a prerequisite to ap-
plying the simplified relationship to other emission scenar-
ios. The test is done at each grid point and separately for sim-
ulations of purely rain-fed yields and fully irrigated yields.
Multi-model ensembles of crop yields over such in the ISIMIP data 90

archive provide a uniquely broad suite of crop yield simu-
lations over a wide range of crops, CO2 concentrations, and
irrigation options are a new prospect and the ISIMIP data provides a uniquely

broad suite of crop yield impact simulations encompassing output from
five GGCMs, forced with output from up to five GCMs, and 95

four Representative Concentration Pathways (RCPs, van Vu-
uren et al., 2011).

In Section 2 we describe the ISIMIP data and the meth-
ods used to test for scenario dependence and adjustment for
different levels of pCO2. Section 3 is dedicated to the pre- 100

sentation of the projected average changes in crop yields at
different levels of global warming and an attribution of the
variance of these long term changes to different sources of
uncertainty, i.e., different GCMs, different GGCMs, and dif-
ferent emission scenarios (subsection 3.1). In addition, we 105

test to what degree the scenario-dependence of crop yields at
a specific level of global warming can be explained by dif-
ferent levels of pCO2 (subsection 3.2). Finally, we provide
individual maps of yield changes at different levels of GMT
and the additional effect of variations in pCO2 at the respec- 110
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tive GMT levels. We propose three methods to generate these
patterns based on the available complex model simulations,
and describe the related approaches to estimate GGCM- and
GCM-specific yield changes for new ∆GMT trajectories not
originally covered by GCM-crop-model simulations. In Sec-5

tion 4 we present a quantification of the projection errors as
compared to actual simulations by the complex gridded crop
models. Finally, in Section 5 we quantify the residual inter-
annual variance of the simulated crop yields in terms of GMT
change across all combinations of crop and climate models.10

Section 6 provides a summary.

2 Data and Methods

2.1 Crop yield simulations

We use projections from five different GGCMs (GEPIC,
LPJ-GUESS, LPJmL, PEGASUS, and pDSSAT) that par-15

ticipated in the first simulation round phase of ISIMIP (Rosen-
zweig et al., 2014; Warszawski et al., 2014) in order to test
for a dependence of projected yield changes on the GMT
pathway (see Table 1 for their basic characteristics). Each
crop model was forced by climate projections from five20

different GCMs (HadGEM2-ES, IPSL-CM5A-LR, MIROC-
ESM-CHEM, GFDL-ESM2M, NorESM1-M) generated for
four RCPs (RCP2.6, RCP4.5, RCP6.0, RCP8.5) in the con-
text of the Coupled Model Intercomparison Project, phase
5 (CMIP5, Taylor et al., 2012). CMIP5 was an effort by25

the climate modelling community to provide a new suite of
climate simulations in time for the Intergovernmental Panel
on Climate Change (IPCC) Fifth Assessment Report (AR5).
The RCPs cover the range from climate mitigation (RCP2.6,
RCP4.5) to business-as-usual (RCP6.0) and high emissions30

scenarios (RCP8.5). Climate projections have been bias-
corrected to better match observed historical averages of
the considered climate variables. For the future, the bias-
correction preserves absolute changes in monthly tempera-
ture and relative changes in monthly values of the other vari-35

ables simulated by the GCMs while also correcting the daily
variability about the monthly mean (Hempel et al., 2013).
Separate simulations are available for each of the four major
crops: wheat, maize, rice and soy, on a global 0.5 x 0.5 degree
grid, covering the time period from 1971–2099. The consid-40

ered crop is assumed to grow everywhere on the global land
area, only restricted by soil characteristics and climate but in-
dependent of present or future land use patterns (“pure crop”
simulations). Each model has provided a pair of simulations
(“runs”) for each climate change scenario: 1) a rain-fed run45

and 2) a full-irrigation run assuming no water constraints.
This design provides full flexibility with regard to the ap-
plication of future land use and irrigation patterns. While the
“default” crop yield simulations crop yield (YvarCO2) account in “default”
simulations accounts for the fertilization effects due to the50

increasing levels of pCO2, the ISIMIP setting also includes
a sensitivity experiment where the impact crop models were

forced by the same climate change projections but pCO2 was
kept fixed at a “present day” reference level that differs from
GGCM to GGCM (see Table 1). We will refer to this run as 55

“fixed CO2” run and indicate the associated crop yields by
YfixedCO2. As a special case, the “default” simulations for
pDSSAT do not use annual pCO2 changes. Instead, pCO2

was changed every 30 years using the average pCO2 of the
respective 30 year time slice. 60

2.2 Effect of temperature change

We analyse the dependence of yield changes on ∆GMT sep-
arately for rain-fed and full-irrigation simulations, and for
each crop. Since the timing of global warming While yields in a given
grid cell of course depend on the local temperature, long- 65

term changes in local temperature are in turn a manifes-
tation of global greenhouse-gas related warming (Frieler
et al., 2012). The aim here is testing to what extent lo-
cal long-term changes in yields can be described in terms
of a single global measure of warming, ∆GMT. Since the 70

time of attaining a given ∆GMT differs between GCMs and
scenarios, we group all available data into ∆GMT intervals
(bins) separated by 0.5◦C steps with 0.5◦C width (±0.25◦C
around the central temperature), where ∆GMT is calculated
relative to the present day (1980–2010 average) reference 75

level. For all annual data falling into a given interval and
at each grid point we apply a separate one-way analysis of
variance (ANOVA fixed effects model) to individually calcu-
late the yield variance explained by 1) different GGCMs, 2)
the GCMs, and 3) the RCPs. The quantification of the RCP- 80

dependence of the relationship between global warming and
yield change is limited to a warming range warming levels up to
2 to 3◦C above present depending on the GCM because only
one RCP (RCP8.5) reaches temperatures above this thresh-
old. However, we also provide the patterns of yield change 85

for the higher concentration scenario. In the main text, all
figures except 9 & 10 refer to a ∆GMT level of 2.5◦C, and
all figures except 3, 4, and 11 refer to crop model simulations
driven by HadGEM2-ES climate. See Figure 1 for the years
associated with ∆GMT=2.5◦C in HadGEM2-ES. The Sup- 90

plement contains analogous figures for other GMT levels and
GCMs.

We do not impose a specific functional relationship be-
tween GMT change and change in crop yields. Yield change
for any GMT level between the central levels of the consid- 95

ered bins could be derived by a simple linear interpolation
between the patterns of neighbouring bins but without as-
suming a linear relationship between global mean warming
and yield change across the full range of warming.

2.3 Effect of pCO2 change 100

The direct effect of CO2 fertilization on crop yields is ex-
pected to introduce some scenario dependence in the rela-
tionship between GMT change and yield change. We test to
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Table 1. Basic crop model characteristics with respect to 1) the implementation of CO2 fertilization effect (as affecting radiation use effi-
ciency (RUE), transpiration efficiency (TE), leaf level photosynthesis (LLP), or canopy conductance (CC)), 2) the accounting for nutrient
constraints and associated assumption with respect to fertilizer application (N = nitrogen, P = phosphorus, K = potassium), 3) implemented
adaptation measures.

Model CO2 fertilization Nutrient limitation Adaptation

GEPIC
(Liu et al.,
2007; Liu,
2009)

RUE, TE
pCO2 of the fixed
CO2 run: 364 ppm

flexible N application up to an upper national
application limit according to FAO FertiStat
database (FAO, 2007), fixed present-day P
application rates following FertiStat.

decadal adjustment of planting dates (incl.
switch between winter and spring wheat); to-
tal heat units to reach maturity remain con-
stant

LPJ-GUESS
(Lindeskog
et al., 2013)

LLP, CC
pCO2 of the fixed
CO2 run: 379 ppm

no consideration of soil nutrient limitation adjustment of total heat units to reach matu-
rity based on the average climate during the
preceding 10 years to keep growing season
length constant

LPJmL
(Bondeau
et al., 2007)

LLP, CC
pCO2 of the fixed
CO2 run: 370 ppm

no consideration of soil nutrient limitation fixed sowing dates (Waha et al., 2012); total
heat units to reach maturity remain constant

PEGASUS
(Deryng et al.,
2011)

RUE, TE
pCO2 of the fixed
CO2 run: 369 ppm

fixed N, P, K application rates (IFA, 2002) adjustment of planting dates; variable heat
units to reach maturity

pDSSAT
(Jones et al.,
2003; Elliott
et al., 2014)

RUE, LLP, CC
pCO2 of the fixed
CO2 run: 330 ppm

fixed N present-day application rates no adjustment of planting dates; total heat
units to reach maturity remain constant
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Figure 1. GMT projections from HadGEM2-ES for the four RCPs.
The horizontal line and shading indicate the 2.5◦C bin. The orig-
inal annual GMT values (thin lines) are smoothed (thick lines) in
order to obtain a contiguous time interval for each ∆GMT bin.
The smoothing is based on a Singular Spectrum Analysis with a
time window of 20 years (R-Package Rssa, Korobeynikov, 2010;
Golyandina and Korobeynikov, 2014; Golyandina et al., 2015).
Years where the thick line falls within the shaded area are asso-
ciated with ∆GMT = 2.5◦C, and the corresponding time interval is
delineated by the dashed vertical lines.

what degree the scenario dependence of the relationship can
be explained by introducing pCO2 as an additional predictor
for within-bin fluctuation of yields. To this end, we evaluate
two different approaches to estimate the direct CO2 effect on
crop yields within the different GMT bins, described in detail 5

below. The two approaches differ in terms of the crop model
simulations that they require: approach (a) only requires the
default crop yield simulations with increasing pCO2 whereas
approach (b) requires a pair of simulations with increasing
pCO2 and with fixed pCO2 at present-day reference level. 10

2.3.1 Approach (a)

For all years falling into a specific ∆GMT bin, approach (a)
fits the following linear regression model to the response of
yields in the default simulation to the increase in pCO2:

∆YvarCO2(i, t) = ∆Yclim(i) + a1(i) · (pCO2(t)− 370ppm) 15

+ ε(i, t), (1)

where ∆YvarCO2(i, t) is the absolute yield change in grid
point i and year t with respect to the historical reference pe-
riod (1980–2010) and pCO2(t) is the atmospheric CO2 con-
centration of the corresponding year. In this statistical model, 20

two parameters are determined by regression: ∆Yclim(i)
represents an estimate of the purely climate-induced yield
change at the respective bin temperature, but assuming a
fixed year-2000 pCO2 of 370 ppm (i.e. without CO2 fertil-
ization), and a1(i) represents the added effect of CO2 fertil- 25

ization, and . Finally, ε(i, t) vN(0,σ2) represents the residual
error.
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2.3.2 Approach (b)

Approach (b) fits the following linear regression model to the
yield difference between the default and fixed-CO2 simula-
tion for all years falling into a specific ∆GMT bin:

YvarCO2(i, t)−YfixedCO2(i, t) =5

a1(i) · (pCO2(t)−pCO2ref) + ε(i, t), (2)

where YvarCO2(i, t) and YfixedCO2(i, t) is the absolute yield
in grid point i and year t of the default and fixed-CO2 simu-
lation, respectively, pCO2(t) is the atmospheric CO2 con-
centration of the default simulation during the respective10

year and pCO2ref is the crop-model specific pCO2 value
of the fixed-CO2 simulation (see Table 1). In this statistical
model, a1(i) is determined by regression and represents
the CO2 fertilization effect, and ε(i, t) vN(0,σ2) represents
the residual error. No intercept is estimated in this model15

because yields from the default and fixed-CO2 runs are ex-
pected to be identical if pCO2(t) = pCO2ref . The purely
climate-induced yield change at a fixed year-2000 pCO2 of
370 ppm ∆Yclim(i) can then be derived as:

∆Yclim(i) = ∆YfixedCO2(i) + a1(i) · (pCO2ref − 370ppm),

(3)20

where ∆YfixedCO2(i) is the average yield change in the re-
spective warming bin of the fixed CO2 simulation with re-
spect to the historical reference period and a1(i)·(pCO2ref−
370ppm) corrects for the different pCO2ref used by each
GGCM.25

2.4 Emulator of temperature and CO2 effects

Based on the spatial patterns of purely climate-induced yield
change ∆Yclim(i) and added CO2 fertilization effect a1(i),
which are derived separately for each rain-fed and irrigated
crop and specific to each crop model and GCM, we propose30

the following two-step interpolation method to compute crop
yield changes for any given pair of ∆GMT and pCO2, using
either the coefficients from approach (a) or (b):

1. linear interpolation of ∆Yclim(i) between the two
neighbouring warming ∆GMT bins to the desired ∆GMT35

value,

2. addition of the CO2 pattern described by a1(i) ·
(pCO2− 370ppm), where a1(i) is also interpolated
linearly between the respective coefficients from the
neighbouring warming ∆GMT bins.40

The application of these two steps using coefficients from
method (a) above will be called emulator approach (a); their
application using coefficients from regression method (b)
will be called emulator approach (b). In addition, we pro-
pose a third, very basic emulator approach (c) where the yield45

change for any given ∆GMT is derived from a simple linear

interpolation of the average yield change in the neighbouring
warming bins of the default simulations ∆YvarCO2(i) with
respect to the historical reference period, without using the
associated pCO2 as additional predictor. 50

The linear interpolation of any of the previous coefficients
between two neighbouring warming bins is illustrated for a
∆GMT of 2.3◦C as follows:

coef(i,2.3◦C) = (1− δ) · coef(i,2◦C) + δ · coef(i,2.5◦C),

δ = (2.3◦C− 2◦C)/(2.5◦C− 2◦C), (4) 55

where coef can be ∆Yclim(i), a1(i), or ∆YvarCO2(i).
Using GGCM projections for the HadGEM2-ES climate

input to train the emulators, we test which of the emulator
approaches, (a), (b) or (c), provides the best reproducibility
for yield changes simulated under the four RCPs (Section 4). 60

While approach (b) requires a pair of crop model simulations
– one with time-varying pCO2 and one with fixed present-
day pCO2 – approach (a) and (c) only require the default
simulations with time-varying pCO2. Thus, a comparison of
the three approaches could provide some important guidance 65

regarding future crop model experiments required to allow
for the proposed highly efficient emulation of crop model
simulations. Since simulated crop yields are subject to con-
siderable inter-annual variability, we also test what effect the
amount of available training data has on the reliability of the 70

derived regression coefficients. For that purpose, we train the
emulators using either all available simulation data from the
four RCPs or only simulation data from RCP8.5 and com-
pare the fraction of the land surface for which derived fits
are statistically significant as well as the difference between 75

simulated and emulated yield changes. Due to the 30-year
time slices of constant pCO2 used by pDSSAT in the default
run, approach (a) cannot be applied to this model using only
RCP8.5 data. Since only RCP8.5 reaches ∆GMT> 3.5◦C
this limits the temperature range of emulator approach (a) 80

for pDSSAT even when using all available training data.
We evaluate and compare the performance of the three em-

ulator approaches at the grid scale as well as the scale of large
regions. Grid point yields (in t/ha) are multiplied by the fixed
year-2000 crop-specific growing area from the MIRCA2000 85

dataset (Portmann et al., 2010) to derive regional total crop
production (in t). MIRCA2000 provides gridded growing ar-
eas for a total of 26 rain-fed and irrigated crops based on a
combination of census, remote sensing and other geographic
data sources. 90

3 Mean Yield Change with Global Mean Temperature
Change

3.1 Patterns of relative changes at different levels of
global warming and main sources of variance

In general, increasing global mean temperatures correspond 95

to an expansion of arable land to higher latitudes with con-
current yield reductions in equatorial regions. The highest
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Figure 2. Average wheat yield change at ∆GMT=2.5◦C as a percentage of the mean historical yield (1980–2010 average) under rain-fed
conditions for each crop model forced by HadGEM2-ES. The average is calculated across all RCPs which reach the global mean warming
interval from 2.25 to 2.75◦C, namely RCP4.5, RCP6.0, and RCP8.5. Note that pDSSAT is run over a limited domain excluding areas north
of 60◦N. Regions with marginal historical yields (defined as lying below the 2.5% quantile of historical yields on year-2000 cropland) are
masked to avoid exaggerated relative yield increases. Analogous figures for different crops, for irrigated conditions, as well as for absolute
yield change (in t/ha) are available in the Supplement.

positive changes in projected yields under rain-fed conditions
at 2.5◦C ∆GMT are typically in the northern high latitudes
and mountainous regions for all crops (Figure 2 for wheat,
figures for other crops in the Supplement). These locations
were previously inhibited by a short growing season, which5

extends with increasing air temperature (Ramankutty et al.,
2002). Yield gains also occur over previously moisture lim-
ited regions, such as the northwestern U.S. and north-eastern
China, in agreement with the findings of Ramankutty et al.
(2002). In contrast, near the equator most crop yields de-10

crease, especially maize and wheat. Since most cultivated
land currently lies in low and middle latitudes, potential yield
changes in those regions contribute a higher relative impor-
tance for today’s food production system than changes in
high latitudes.15

While variations exist in the magnitude of projected yield
changes, there is a high degree of consistency in the direction

of yield change across ensemble members, especially over
the high latitudes, where most of the largest projected yield
changes occur, but where yields are in general smaller (Fig- 20

ure 3). Utilizing output from all available combinations of
GCM, GGCM, and RCP scenario, more than three-quarters
of the ensemble members indicate increasing crop yields
over the upper mid latitudes in the northern hemisphere for
all crops at 2.5◦C. 25

The simulated yield values at each grid point and within
each GMT bin are subject to variation due to the selection of
impact model, GCM forcing, and emissions scenario. When
considering all of these factors, the variance attributable to
the impact model selection is much greater than that associ- 30

ated with the GCM or scenario choice in most regions (Fig-
ure 4). This holds for rain-fed as well as irrigated simula-
tions. The predominance of the impact model component in
total variance is particularly evident in the middle to high
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Figure 3. Percentage of crop model simulations (combination of a single GCM, GGCM, and RCP scenario) indicating an increase (blue)
or decrease (red) in yield of greater than 5% at each grid point at 2.5± 0.25◦C ∆GMT as compared to the historical period for maize, rice,
soybeans, and wheat under rain-fed conditions. White indicates either a less than 5% change or disagreement between the models in the
direction of yield change. Note that only four out of five GGCMs provided results for rice. An analogous figure for irrigated conditions is
available in the Supplement.

latitudes for all four considered crops, where impact model
variance accounts for up to 90% of the grid point variance at
2.5◦C.

3.2 Direct impacts of increasing pCO2

In addition to air temperature warming, pCO2 has a direct5

influence on crop yields. As it varies within the different
∆GMT bins, it is expected to induce part of the fluctuations
of the yield changes at given GMT levels. We find that this
CO2 effect shows little scenario dependence (see Figure 5
for the global average effect within the LPJmL simulations10

at ∆GMT=2.5◦C), consistent with a short response time of
plants to pCO2 changes. As expected, the CO2-induced yield
differences increase with heightened atmospheric CO2 level
under all emissions scenarios, implying a stronger CO2 fer-
tilization impact with increased pCO2.15

At the grid point level, two approaches have been used to
separate purely climate-change-induced from CO2-induced
yield change (following Equation 1 to Equation 3). Fig-
ure 6 shows the climate-change-induced yield change at
∆GMT=2.5◦C for LPJmL under rain-fed conditions, using20

all available runs that fall into the warming bin to estimate
∆Yclim(i). Figures for irrigated conditions and the other
GGCMs are available in the Supplement. The two methods
result in broadly similar patterns, with yield increases in the
upper mid- and high latitudes, mixed regions with decreases25

and increases in the lower mid-latitudes and mostly decreases
in the tropics. However, the magnitude of change differs be-
tween the two approaches: approach (a) generally estimates

larger changes outside the tropics while yield decreases in
the tropics are larger in approach (b). There are also some 30

regions where both approaches disagree regarding the direc-
tion of change, such as the high latitudes of both Western
North America and Eastern Russia for wheat and parts of
Southeast and South Asia for all crops. Patterns of climate-
induced yield change match better between both approaches 35

under irrigated conditions (see Supplement).
In GEPIC, both approaches disagree on the direction of

change for maize yields over large parts of Europe. In LPJ-
GUESS, both approaches disagree on the direction of change
in most of the tropics for all crops. While tropical yield 40

change is predominantly negative in approach (b) mirror-
ing results of the other crop models, approach (a) estimates
mostly positive climate effects on tropical crops. In pDSSAT,
approach (a) generally produces larger areas with negative
yield change than approach (b). At the same time, positive 45

yield effects in approach (a) have a larger magnitude than
those in approach (b) in many regions. In PEGASUS, both
approaches disagree on the direction of change over large
parts of the U.S. for maize and soybeans, and large parts of
China for wheat. 50

The estimates of CO2-induced yield change also differ be-
tween the two approaches (Figure 7 for LPJmL results un-
der rain-fed conditions). We expect CO2 fertilization to have
a positive or at least neutral effect on yields, and this is
confirmed by approach (b) for all GGCMs and crops. Only 55

GEPIC simulations show negative CO2 effects on soybean
and wheat yields in a few regions for approach (b). This can
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(RCPs, right) for each crop. Figure shown for rain-fed runs at ∆GMT = 2.5± 0.25◦C warming; an analogous figure for irrigated runs is
provided in the Supplement.

be explained by nutrient interactions in the model: CO2 fer-
tilization leads to yield increases first but also increases nu-
trient depletion in the soil compared to the fixed-CO2 run.
If fertilizer application is insufficient to replenish nutrient
stocks this can lead to lower yields despite the beneficial ef-5

fect of higher pCO2. With approach (a), on the other hand,
areas of negative estimated CO2 effects are widespread in
all GGCMs and all crops. Generally, the magnitudes of the
estimated CO2 effect are also much larger, often surpass-
ing those of approach (b) even in regions where the direc-10

tion of change matches. Given that approach (a) contradicts
our expectation of how CO2 fertilization should affect yields
in many regions we conclude that approach (a) is not reli-
able in separating the effects of climate change on yield from
those of pCO2 change. By design, climate-induced and CO2-15

induced yield changes add up to the full yield change (see
Equation 1) which is why the difference between the pat-
terns of estimated CO2 effect explains why climate-change
patterns from Figure 6 also differ substantially between both
approaches in some regions. Approach (a) has a structural20

disadvantage to approach (b) in that it estimates both the
climate-induced and CO2-induced effect on yields from the

same linear regression model (Equation 1). Besides changes
in pCO2 annual yields in each warming bin are subject to
substantial inter-annual climate variability which means that 25

individual years with a higher pCO2 do not necessarily have
a higher yield. In contrast, approach (b) only estimates the
CO2-induced yield change from the regression model (Equa-
tion 2) while both the default and the fixed-CO2 run are sub-
ject to identical climate variability. There is inter-annual vari- 30

ability in the CO2-induced yield change as well (see Figure 5
for the global average effect), however, it is much smaller
than the total yield variability. While approach (a) and (b)
should provide similar estimates of the CO2-induced yield
change given a large sample, our sample size is limited by 35

the number of years falling into each ∆GMT bin (Table 2).
This number varies between seven years in the 4.5 and 5.0◦C
bin and up to 66 years in the 1.0◦C bin when yield data from
all RCPs are used to train the emulator. The number of years
varies between seven and 13 years if only data from RCP8.5 40

are used. Given the limited sample size and possibly large
variability, the derived fits are often not statistically signifi-
cant. For approach (a) we found that derived fits were rarely
significant on more than 25% of the crop-specific growing
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Figure 5. Difference in global mean yield change (sum of rain-fed and irrigated, and weighted by year-2000 growing areas) between
the default (YvarCO2) and fixed CO2 simulations (YfixedCO2), for each crop over the range of pCO2 associated with the ∆GMT=2.5◦C
bin. Results are as simulated by LPJmL forced with output from HadGEM2-ES. Each color represents an emission scenario. Points mark
individual years while dotted lines and shaded areas indicate the linear best fit and its 95% confidence interval for each scenario. The black
dotted line indicates the linear best fit through all available scenarios. Analogous figures for other GGCMs and warming bins are available
in the Supplement.

area (Portmann et al., 2010) using a p-value of 0.05 (fig-
ure available in the Supplement). Values were even lower
if only RCP8.5 was used for the regression. In contrast, fits
derived by approach (b) were mostly statistically significant
(p < 0.05) on more than 70% of the growing area, often on5

more than 90% of the area. We also found only a small neg-
ative effect in terms of statistical significance if only RCP8.5
was used in approach (b).

4 Validation of three emulator approaches

Using GGCM projections for the HadGEM2-ES climate in-10

put, we test which of the approaches, (a), (b) or (c), pro-
vides the best reproducibility for all four RCPs. For that pur-
pose, we apply each emulator with time series of ∆GMT and
pCO2 from the RCPs and compare emulated yield changes

in each grid point and as well as total crop production for 15

10 large world regions to those simulated by the GGCM. For
pDSSAT, the pCO2 time series used in that model’s default
run is also used with the emulator.

Figure 8 shows results for the LPJmL model, when apply-
ing the emulators trained on all available data to reproduce 20

rain-fed yields under RCP4.5. Figures for other RCPs, irri-
gated yields and other GGCMs are available in the Supple-
ment.

Approach (a) generally leads to the largest differences rel-
ative to the simulated yield change (Figure 8, left column). 25

In particular Maize, rice, and soybean yields are underesti-
mated for much of North America, and overestimated in Eu-
rope, temperate South America, and Australia. Wheat yields
are overestimated, e.g., in Canada.
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Figure 6. Climate change-induced yield changes at ∆GMT=2.5◦C of global warming and year 2000 pCO2 level (370 ppm). Left column:
Patterns of ∆Yclim(i) derived at each grid point i by approach (a) (see Equation 1). Right column: Corresponding patterns of ∆Yclim(i),
derived by approach (b) (see Equation 3). Both types of patterns are derived from LPJmL simulations forced by HadGEM2-ES assuming rain-
fed conditions and expressed as absolute differences compared to the historical period (1980–2010). Rows: Different crop types. Analogous
figures for irrigated conditions, for different GGCMs, and using relative instead of absolute yield changes are available in the Supplement.

Table 2. Number of years of yield data available in each ∆GMT bin for HadGEM2-ES. Only RCP8.5 reaches warming levels above 3◦C.

Data used ∆GMT bin

0.5◦C 1.0◦C 1.5◦C 2.0◦C 2.5◦C 3.0◦C 3.5◦C 4.0◦C 4.5◦C 5.0◦C

all available scenarios 47 66 44 38 52 20 8 8 7 7
RCP8.5 only 10 13 12 10 9 8 8 8 7 7
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Figure 7. CO2-induced yield changes at 2.5◦C of global warming for LPJmL forced by HadGEM2-ES assuming rain-fed conditions.
Analogous to Figure 6, but showing the scaling coefficients a1(i) from approach (a) (left column) and approach (b) (right column), multiplied
by the average pCO2 change compared to year 2000 (370 ppm) across all years falling into the GMT bin. Rows: Different crop types.
Analogous figures for irrigated conditions, for different GGCMs, and using relative instead of absolute yield changes are available in the
Supplement.



12 Ostberg et al.: Changes in crop yields and their variability at different levels of global warming

x

MAD: 0.08 t/ha

x

y

MAD: 0.05 t/ha

M
ai

ze

x

y

MAD: 0.05 t/ha

M
ai

ze

x

MAD: 0.07 t/ha

x

y

MAD: 0.05 t/ha

R
ic

e

x

y

MAD: 0.04 t/ha

R
ic

e

x

MAD: 0.05 t/ha

x

y

MAD: 0.04 t/ha

S
oy

be
an

s

x
y

MAD: 0.04 t/ha

S
oy

be
an

s

x

MAD: 0.05 t/ha

Approach a)

x

y

MAD: 0.03 t/ha

W
he

at

Approach b)

x

y

MAD: 0.03 t/ha

W
he

at
Approach c)

<−0.30 −0.15 0.00 0.15 >0.30
Difference from simulated yield (t/ha/yr)

Figure 8. Validation of the three emulator approaches. Maps show the difference (emulated minus simulated) between the simulated LPJmL
yields forced by HadGEM2-ES climate for RCP4.5 under rain-fed conditionsfor , averaged over all years falling into the ∆GMT bin of
2.5◦C (2066–2094), and the emulated yields for the same years based on approach (a) (left column), approach (b) (middle column), and
approach (c) (right column). Rows: Different crops. MAD: mean absolute difference, regardless of sign, averaged across all grid points.
Analogous figures for irrigated conditions and for different GGCMs are available in the Supplement.

Approach (b) also leads to some substantial deviations
from the yields simulated by LPJmL, mainly in the north-
ern hemisphere (Figure 8, middle column). Spatial patterns
of over and underestimation are broadly similar to approach
(a), but the magnitude of the difference is generally slightly5

lower. In the tropics, approach (b) often leads to a higher
deviation from the simulated yields than approach (a), par-
ticularly for rice and soybeans in South America.

Finally, approach (c) leads to a similar pattern of devia-
tions from the simulated yields as approach (b) for maize10

(Figure 8, right column). For the other crops, approach (c)
often leads to an overestimation of yields whereas approach
(b) tends to underestimate simulated yields. The average mean
absolute deviation between emulated and simulated yields
(designated as MAD in Figure 8) is similar for approach (b)15

and (c). Approach (c) performs slightly better than approach
(b) for rice, and both approach (b) and (c) perform better than
approach (a) for all four crops. Differences between the three
emulators are smaller when reproducing RCP6.0 and RCP8.5
(figures available in the Supplement).20

The difference between emulator approach (b) and (c) is
even smaller in the other crop models than in LPJmL (figures
available in the Supplement). Overall, MAD between emu-
lated and simulated yields is up to 50% higher than LPJmL
in PEGASUS, roughly twice as high in GEPIC and up to 25

three times as high in pDSSAT. In LPJ-GUESS, MAD be-
tween emulated and simulated yields is similar for all three
emulator approaches, even though the spatial patterns of over
and underestimation differ.

Using only RCP8.5 instead of all available data to train the 30

emulators has a detrimental effect on the performance, espe-
cially for approach (a). MAD between emulated and simu-
lated yields increases by a factor of more than three, even
close to four for some GGCMs and crops, under RCP4.5.
MAD for approach (b) and (c) also increases by a factor 35

of more than two, although not as sharply as for approach
(a) (figures available in the Supplement). Performance loss
is lower for RCP6.0, with MAD generally less than twice
as high. The emulator trained on RCP8.5 alone shows better
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performance in emulating RCP8.5 simulated yields than the
emulator trained on all available data.

To get a more comprehensive indication of the perfor-
mance of the emulator for the whole 95-year time series
(instead of just the 2.5◦C bin) we use all three approaches5

to reproduce simulated changes in crop production under
RCP2.6, RCP4.5, RCP6.0, and RCP8.5, as derived for 10
large scale world regions(see for a map of the regions). Grid-point
yields are aggregated to the regions assuming fixed year-
2000 land use and irrigation patterns. Compared to gridded10

yields, using production gives less weight to areas where a
crop is not currently grown. Since none of the emulators is
expected to capture the relatively large inter-annual variabil-
ity of simulated yields we compare simulated and emulated
decadal production and calculate the RMSE over all decades15

of the relative difference between emulated and simulated
decadal production (in %) as a measure of the performance
of the emulator.

Of the two approaches that estimate warming and CO2-
induced effects separately, approach (b) generally provides20

a better performance than approach (a) (see Figure 9 for
LPJmL; Table 3 and the Supplement for all crop models; Fig-
ure 10 for a map of the regions). Performance of all emu-
lator approaches varies substantially between regions. There
are also considerable differences between crop models. For25

LPJmL, emulator approach (b) provides marginally better
performance for many regions than approach (c). However,
this is not consistent across the emulators for the other crop
models. Taking into account that approach (b) requires addi-
tional crop model simulations with fixed CO2 and that per-30

formance is mostly very similar for approach (b) and (c), the
very basic interpolation approach (c) appears to provide the
best compromise between emulator performance and com-
plexity. Note though that the average difference between em-
ulated and simulated production over the full 95-year time35

series is sometimes larger than the simulated production
change in 2091–2099, especially in the low warming scenar-
ios (marked by red crosses in Figure 9). Table 3 compares
the RMSE between emulated and simulated crop production
in the largest producing region of each crop for all five crop40

models.
Figure 10 illustrates the performance of emulator approach

(c) in reproducing decadal maize production as simulated by
LPJmL forced by HadGEM2-ES. Emulated yields generally
follow the simulated trends, although large errors exist, e.g.,45

in North America, which also stands out in Figure 9 and Fig-
ure 8. Analogous figures for all crops, emulator approaches
and crop models are available in the Supplement.

Similar to the grid point results, using only RCP8.5 to train
the emulators leads to a performance loss for all emulator50

methods and all RCPs except RCP8.5. This performance loss
is larger for approach (a) than approach (b) and (c), and is
generally highest for RCP4.5 (figures available in the Sup-
plement).

5 Increases in Regional Crop Yield Variance 55

In addition to estimating the yield change associated with a
rise in average temperature, it is important to consider the
implications of rising variance. Climate change is expected
to increase not only the average temperature, but to impact
the variance of temperature and precipitation, including an 60

increase in the frequency and duration of extreme events.
For this reason, when deriving simplified relationships be-
tween yield change and global climate change, it is crucial to
account not only for the mean effects of rising temperature,
but also their concurrent implications for crop yield variance. 65

Inter-annual yield variance can be computed for the same
warming bins as used above for the average yields, which
we do here for all four crops under the “no irrigation” sce-
nario. The variance is calculated separately for the years of
each RCP-GCM-GGCM combination falling into the 2.5◦C 70

warming bin and compared to the variance of the matching
GCM-GGCM combination over the historical period (1980–
2010).

The global figures show broadly similar patterns across all
four crops: increases in yield variability in much of the north- 75

ern hemisphere, particularly in North America, central Asia,
and China; as well as in the southern mid-latitudes (Fig-
ure 11). A majority of model combinations projects decreas-
ing variability in tropical regions (except for rice) as well as
parts of Eastern Europe; but nowhere do more than 75% of 80

the model combinations agree on a decrease in variability. In
several instances increased variability occurs in highly pro-
ductive regions such as in China for rice and the US, Brazil,
and Argentina for soy. Wheat also has an increased variabil-
ity in more than 50% of the crop model simulations over the 85

highly productive regions in China and the U.S. Such an in-
crease in variability, if realized, could manifest as impacts on
the price, whose volatility is tightly linked to rapid changes
in supply (Gilbert and Morgan, 2010).

6 Summary 90

Evaluating the impacts of climate change at different lev-
els of global warming, and thus evaluating mitigation tar-
gets, requires a functional link between ∆GMT and regional
impacts. Here we have shown that changes in crop yields,
as simulated by gridded global crop models, can be recon- 95

structed based on ∆GMT, with some limitations. The small
spread of simulated yield change across the RCP scenarios
as compared to the GCMs and impact models implies that
projected impacts at different ∆GMT levels are not sub-
stantially dependent on the choice of emissions pathway. 100

In this context, it has to be noted that the scenario setup
of the ISIMIP crop model simulations was chosen specifi-
cally to minimize scenario-dependency by asking modellers
to keep crop management fixed at present-day level or adjust
it only in response to climate without any regard to the time 105

horizons associated with adaptation or economic processes.
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Figure 9. Root mean square difference (in %) between emulated and simulated regional decadal production (yields multiplied by year-2000
growing areas, combined for irrigated and rain-fed crops) for LPJmL forced by HadGEM2-ES climate projections. The emulator was built
using all available data and used to reproduce yield changes in all four RCPs. For comparison, point symbols illustrate the average simulated
yield change for 2091–2099 (same horizontal axis), using red crosses or blue circles depending on whether the error between emulated and
simulated production is larger or smaller than the simulated change. Simulated yield changes outside the plot range are indicated by a
number in the plot margin. Analogous figures for the other crop models are available in the Supplement.
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Table 3. Root mean square difference between emulated and simulated decadal production (expressed in % of the simulated production as in
Figure 9) in the largest producing region of each crop, for all five crop models forced by HadGEM2-ES climate projections. Average across
all four RCPs. The values for all combinations of models, crops, and regions, and separately for each RCP, can be found in the Supplement.
Top: emulators trained on all available data; bottom: emulators trained on RCP8.5 only.

(a) Emulators trained on all available data

Model Wheat, Europe Rice, South Asia Maize, North America Soybeans, Latin America

Approach a b c a b c a b c a b c

GEPIC 1.334 1.267 1.215 3.982 3.037 2.790 10.099 9.058 9.360 3.485 2.550 2.321
LPJ-GUESS 2.242 2.254 2.213 4.033 2.163 3.729 5.870 5.466 5.359 2.934 3.025 2.653
LPJmL 1.777 1.768 1.596 2.582 2.371 1.786 6.923 5.494 5.846 4.898 3.870 4.709
pDSSAT(1) 5.363 3.196 3.550 7.758 3.606 4.190 12.218 6.129 6.149 3.427 3.662 3.500
PEGASUS 6.061 4.908 4.937 n.a. n.a. n.a. 8.762 8.533 8.496 8.762 8.533 8.496

(b) Emulators trained on RCP8.5 only

Model Wheat, Europe Rice, South Asia Maize, North America Soybeans, Latin America

Approach a b c a b c a b c a b c

GEPIC 2.159 1.309 1.396 6.941 3.541 3.266 19.091 9.779 9.664 5.001 2.654 2.858
LPJ-GUESS 2.579 2.449 2.486 5.026 2.656 4.517 10.034 7.083 6.866 3.749 3.355 2.691
LPJmL 3.814 2.293 2.415 4.247 3.040 2.409 11.954 5.838 5.950 5.869 4.607 5.084
pDSSAT n.a. 4.053 4.392 n.a. 4.230 4.971 n.a. 8.290 7.984 n.a. 4.246 4.809
PEGASUS 8.125 5.167 5.324 n.a. n.a. n.a. 14.097 11.801 11.825 11.542 6.413 7.182

(1) Emulator approach (a) for pDSSAT only covers warming up to 3.5◦C, i.e. up to 2070 under RCP8.5.
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Figure 10. Comparison of simulated and emulated time series of regionally aggregated crop production changes for LPJmL forced by
HadGEM2-ES climate projections. Results are shown for Maize and emulator approach (c). Analogous figures for the other crops, emulator
approaches and GGCMs are available in the Supplement.
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Figure 11. Percentage of crop model simulations (combination of a single GCM, GGCM, and RCP scenario) in the 2.5◦C warming bin
indicating an increase (blue) or decrease (red) in yield variance of greater than 5% compared to the historical period (1980–2010), for maize,
rice, soy, and wheat under rain-fed conditions. White indicates either a less than 5% change or disagreement between the models in the
direction of change. Note that only four out of five GGCMs provided results for rice. An analogous figure for irrigated conditions is available
in the Supplement.

Four models are calibrated to match present-day yield levels
while LPJ-GUESS simulates potential yields assuming opti-
mal management. Only two of the crop models allow for an
adjustment of planting dates in response to climate change
(GEPIC and PEGASUS, see Table 1). Three of the models5

keep the total heat unit sum to reach maturity constant, as-
suming no change in crop cultivar which effectively leads to
a shortening of the growing season. Representation of soil
nutrient limitation varies substantially between models, with
two models (LPJ-GUESS and LPJmL) considering no soil10

nutrient limitation at all, while the nutrients considered and
the assumptions on fertilizer application differ between the
other three models. The effects of these assumptions on yield
changes simulated by the different crop models are not stud-
ied here since the focus of this study is on developing effi-15

cient emulators, but these assumptions inform both the simu-
lated yield changes as well as the emulators which attempt to
imitate the behaviour of the crop models. The results of the
ISIMIP crop models have been studied in detail in Rosen-
zweig et al. (2014).20

We have tested three different approaches for emulat-
ing crop yield change simulated by five GGCMs driven by
HadGEM2-ES climate projections for four RCPs. All ap-
proaches rely on ∆GMT as the main predictor of yield
change at the grid scale. Two of the approaches include pCO225

as an additional predictor. An approach (a) attributing the
yield variation within an individual ∆GMT bin of a simula-
tion with varying pCO2 solely to the change in pCO2 shows
the poorest overall performance. An approach (b) based on

the difference between runs with and without direct CO2 30

fertilization effects performs similarly well as a simple ap-
proach (c) using only ∆GMT as a single predictor. Consid-
ering the added complexity in approach (b) compared to (c),
the simple approach (c) appears in general preferable even
though it may not provide the best result in all regions. While 35

our tests indicate that the emulators perform better for some
crop models than for others we strongly advise against rely-
ing solely on results from any one particular model, but in-
stead to always consider the full range of uncertainty spanned
by the GGCMs. Similarly, different GCMs still account for 40

more than 15% of the total variance of the ISIMIP ensem-
ble at ∆GMT=2.5◦C in a number regions (Figure 4) which
is why emulators should be constructed for all GCMs.

Given the availability of crop model simulations in the
ISIMIP archive, emulators based on approach (a) and (c) 45

could be constructed for all five GGCMs for the remain-
ing four GCMs (IPSL-CM5A-LR, MIROC-ESM-CHEM,
GFDL-ESM2M, NorESM1-M). Emulators based on ap-
proach (b) could only be constructed for LPJmL and
pDSSAT (and PEGASUS if using only RCP8.5 for training). 50

With its five GCMs, which were selected from the ISIMIP selec-
tion essentially samples as much of the CMIP5 ensemble
based primarily on data availability at the time, the ISIMIP subsetuncertainty
as is possible with such a limited subset, but still likely
underestimates the total uncertainty in future climate im- 55

pacts attributable to GCMs for many regions , however, the ISIMIP

subset essentially samples as much uncertainty as is possible with only 5 GCMs

(McSweeney and Jones, 2016). The generally good perfor-
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mance of approach (c) suggests that simplified predictions
of large-scale agricultural yields may not require additional
crop model simulations with CO2 levels held at a historical
level if planning to extend the GCM coverage.

The While the emulators are designed to reproduce5

changes in average yields the impact model ensemble as-
sembled in this study also indicates that the variability of
crop yields is projected to increase in conjunction with in-
creasing ∆GMT in many important regions for the four ma-
jor staple crops. Such an increase in yield volatility could10

have significant policy implications by affecting food prices
and supplies, although management assumptions as well as
model-structural limitations of the GGCMs to account for
crop stress factors may impact the models’ ability to project
future changes in variability.15

The scalability of mean yields is conducive to the devel-
opment of predictor functions relating ∆GMT, or other ag-
gregate climate variables readily available from simplified
climate models (such as pCO2) to regional or global mean
crop yield impacts. This lays the groundwork for a further20

exploration of the economic impacts of climate change en-
countered at target warming levels or over policy relevant
regions.

Data availability. The coefficients estimated with Equations 1 to 3
are available as a Supplement, along with supplementary figures and25

RMSE estimates, at https://doi.org/10.5281/zenodo.1194045. The
GGCM simulations that the analysis in this paper is based on are
available through https://esg.pik-potsdam.de/search/isimip-ft/, with
additional documentation available on the ISIMIP website https://
www.isimip.org/outputdata/caveats-fast-track/30
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