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Abstract. An assessment of climate change impacts at different levels of global warming is crucial to inform
the political discussion about mitigation targets, as well as for the economic evaluation of climate change impacts
e.g. in economic models such as Integrated Assessment Models (IAMs) that internally that only use global mean tem-
perature change as indicator of climate change. There is already a well-established framework for the scalability
of regional temperature and precipitation changes with global mean temperature change (∆GMT). It is less clear
to what extent more complex, biological or physiological impacts such as crop yield changes can also be de-
scribed in terms of ∆GMT; even though such impacts may often be more directly relevant for human livelihoods
than changes in the physical climate. Here we show that crop yield projections can indeed be described in terms
of ∆GMT to a large extent, allowing for a fast interpolationestimation of crop yield changes tofor emission scenarios
not originally covered by climate and crop model projections. We use an ensemble of global gridded crop model
simulations for the four major staple crops to show that the scenario dependence is a minor component of the
overall variance of projected yield changes at different levels of ∆GMT. In contrast, the variance is dominated
by the spread across crop models. Varying CO2 concentrations are shown to explain only a minor component of
the remaining crop yield variability at different levels of global warming. In addition, we show that the variability of
crop yields is expected to increase with increasing warming in many world regions. We provide, for each crop
modeland climate model, patterns of mean yield changes that allow for a simplified description of yield changes under
arbitrary pathways of global mean temperature and CO2 changes, without the need for additional climate and
crop model simulations.

1 Introduction

Climate change exerts a substantial and direct impact on food
security and hunger risk by altering the global patterns of
precipitation and temperature which determine the location
of arable land (Parry et al., 2005; Rosenzweig et al., 2014) as5

well as the quality (Müller et al., 2014) and quantity (Müller
and Robertson, 2014; Lobell et al., 2012; van der Velde et al.,
2012) of crops comprising most of the world food supply.
Climate change alone By itself, climate change is expected to re-
duce global production of the four major crops wheat, maize,10

soy and rice on current agricultural areas (e.g., Rosenzweig
et al., 2014; Challinor and Wheeler, 2008; Peng et al., 2004).
Facing an increasing food demand due to population growth
and economic development, these reductions will have to be
overcompensated compensated by 1) the direct physiological im-15

pacts of increased atmospheric CO2 concentrations (Kim-
ball, 1983), which are beyond local human control; as well
as 2) advances in agricultural management (e.g. fertilizer in-
put or irrigation), technology, and breeding (Jaggard et al.,
2010) or 3) expansion of agricultural land (Frieler et al., 20

2015; Smith et al., 2010).
In conjunction with these long term changes, global warm-

ing is also expected to contribute to an increase in the fre-
quency and duration of extreme temperatures and precipita-
tion (droughts, floods, and heat waves), which may increase 25

the near term variability of crop yields and trigger short
term crop price fluctuations (Brown and Kshirsagar, 2015;
Mendelsohn et al., 2007; Tadesse et al., 2014).

The emission Anthropogenic emissions of greenhouse gases
is are expected to influence crop yields via several chan- 30

nelspathways. On the one hand, the associated climate cli-
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matic changes will modify the length of the growing season
(Eyshi Rezaei et al., 2014), water availability, and heat stress
(Lobell et al., 2012; Müller and Robertson, 2014; Schlenker
and Roberts, 2009); and on the other hand, higher concentra-
tions of atmospheric CO2 are expected to increase the water5

use efficiency in C3 (e.g. wheat, rice, soy) and C4 (maize)
crops, and enhance the rate of photosynthesis in C3 crops
(Darwin and Kennedy, 2000). Global Gridded Crop Mod-
els (GGCMs) are particularly designed to account for these
effects. They provide a complex process-based implementa-10

tion of our current understanding of the mechanisms under-
lying crop growth, and are the primary tool for crop yield
projections (e.g., Rosenzweig et al., 2014) which in turn are
a prerequisite for assessing potential changes in prices (Nel-
son et al., 2014) and food security (Parry et al., 2005).15

However, these process-based crop yield projections rely
on spatially explicit realizations of the driving weather vari-
ables such as temperature, precipitation, radiation, and hu-
midity, often at daily resolution, as provided by computation-
ally expensive Global Climate Model (GCM) simulations.20

The GGCMs themselves also require significant computa-
tional capacity. These requirements generally limit the num-
ber and duration of emission scenarios that can be consid-
ered.

The so-called pattern scaling approach is a well-25

established method to overcome these limits. Output from
GCMs has been shown to be, to some extent, scalable to dif-
ferent global mean temperature (GMT) trajectories not orig-
inally covered by GCM simulations (Santer et al., 1990; IPCC-TGICA,

2007; Mitchell, 2003; Giorgi, 2008; Solomon et al., 2009; Frieler et al., 2012; Heinke30

et al., 2013)(Santer et al., 1990; Mitchell, 2003; IPCC-TGICA,
2007; Giorgi, 2008; Solomon et al., 2009; Frieler et al.,
2012; Heinke et al., 2013). Scaled climate projections have
also been used as input for different impact models (Ostberg
et al., 2013; Stehfest et al., 2014) to gain flexibility with re-35

gard to the range of emission scenarios considered.
Building upon such a framework, we present a method to

extend the capacity of crop yield impact projections by relat-
ing simulated crop yields yield changes to two highly aggre-
gated quantities – global mean temperature change (∆GMT)40

and atmospheric CO2 concentration (pCO2) – by means of
simplified function. ∆GMT and pCO2 are the standard output

standard outputs of simple climate models, which allow
for highly efficient climate projections for any emissions
scenario by emulating the response of the complex GCMs45

(Meinshausen et al., 2011). Here “emulating” means that the
simplified representation is designed to reproduce the complex

model response response of the complex model for the origi-
nally simulated scenarios but also allows for its inter- or ex-
trapolation to other scenarios. In this way our We test to what ex-50

tent crop yield changes, as one example of climate change
impacts, can be described directly in terms of GMT and
pCO2 changes. Our approach is different from other em-
ulators building on regional which use spatially explicit climate
projections as input for the simplified functions emulating com-55

plex crop models’ responses to these forcings (Blanc, 2017)(Oyebamiji et al.,
2015; Blanc, 2017). While these approaches only emulate
the crop model responsesresponses of the complex crop model,
the approach presented here implicitly provides a simplified
description of both the GCMs’ regional patterns of climate 60

change and the associated response of the crop models.
We test to what extent climate change impacts such as crop yields can be directly

described in terms of GMT (and pCO2) changes without an intermediate scaling of the

regional climate changes. Such a direct description of the simulated impacts

– in contrast to scaling the climate changes for specific emission scenarios and then 65

using the scaled climate projections as input for impact model simulations – has the

advantage of saving computation timeprovides high computational ef-
ficiency, making the approach e.g. applicablewithin applicable, for
example, in Integrated Assessment Modelsand even when no impact

model is accessible. In principle, scaled but spatially explicit climate projections 70

could also be used as input for spatial explicit crop model emulators (Blanc, 2017)

to reach high efficiency. However, in this case the scaling of other emulators
could be used in this setting, however requiring an addi-
tional step of first scaling the climate changes to the climate

information has to be carefully adjusted to provide the kind of climate information re- 75

quired by the impact model impact emulator and this two-step approach also mean two

approximations that may lead to higher deviations than the one-step approach proposed

herespecific emission scenario.
The emulator introduced here allows for multi-impact-model

multi-crop-model projections for arbitrary emission scenar- 80

ios as long as crop-model ensemble projections are available
for a limited set of scenarios. This offers a practical way of
keeping track of a relevant but often-ignored source of uncer-
tainty which is manifested in the considerable spread across
different crop models and other process-based impact models 85

(Rosenzweig et al., 2014; Schewe et al., 2014). This uncer-
tainty is particularly critical when estimating socio-economic
consequences (e.g., Nelson et al., 2014).

We test the approach using an ensemble of yield pro-
jections of the four major cereal crops (crops maize, rice, soy, 90

and wheat), generated within the first phase (“Fast Track”)
of the Inter-sectoral Impact Model Intercomparison Project
(ISIMIP, Warszawski et al., 2014). For a number of ∆GMT
intervals we compare the spread in yield outcomes induced
by the choice of emission scenario with that induced by the 95

choice of GGCM and GCM, respectively. A low scenario-
induced spread means that GCM- and GGCM-specific yield
projections can be approximated by a simplified relationship
with global mean temperature change without accounting for
the underlying emission scenario, which is a prerequisite 100

to applying the simplified relationship to other emission
scenarios. The test is done at each grid cell point and sepa-
rately for simulations of purely rain-fed yields and fully ir-
rigated yields. Multi-model ensembles of crop yields over
such a wide range of crops, CO2 concentrations, and irri- 105

gation options are a new prospect and the ISIMIP data pro-
vides a uniquely broad suite of crop yield impact simulations
encompassing output from five GGCMs, forced with output
from up to five GCMs, and four Representative Concentra-
tion Pathways (RCPs, van Vuuren et al., 2011). 110
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In Section 2 we describe the ISIMIP data and the meth-
ods used to test for scenario dependence and adjustment for
different levels of COpCO2. Section 3 is dedicated to the pre-
sentation of the projected average changes in crop yields at
different levels of global warming and an attribution of the5

variance of these long term changes to different sources of
uncertainty, i.e., different GCMs, different GGCMs, and dif-
ferent emission scenarios (subsection 3.1). The simulated impacts

of climate and CO2 changes on global and regional crop yields are shown to be re-

lated to global mean temperature change, and to be largely independent of the emis-10

sions scenario. In addition, we test to what degree the scenario-
dependence of crop yields at different levels a specific level
of global warming can be explained by different levels of
COpCO2 (subsection 3.2). Thus, finally Finally, we provide in-
dividual maps of yield changes at different levels of global15

mean temperature GMT and the additional effect of variations in
COpCO2 concentration at given global mean temperature at the respec-
tive GMT levels. We propose three methods to generate these
patterns based on the available complex model simulations,
and describe the related approaches to estimate GGCM- and20

GCM-specific yield changes for new ∆GMT trajectories not
originally covered by GCM-crop-model simulations. In Sec-
tion 4 we present a quantification of the projection errors as
compared to actual simulations by the complex gridded crop
modelmodels. Finally, in Section 5 we quantify the residual25

inter-annualvariance of the simulated crop yields in terms of
global mean temperature change for each combination GMT change across
all combinations of crop and climate models. Section 6 pro-
vides a summary.

2 Data and Methods30

2.1 Crop yield simulations

We use projections from five different GGCMs (GEPIC,
LPJ-GUESS, LPJmL, PEGASUS, and pDSSAT) that partici-
pated in in the first simulations the first simulation round of ISIMIP
(Rosenzweig et al., 2014; Warszawski et al., 2014) in or-35

der to test for a dependence of projected yield changes on
the global mean temperature GMT pathway (see Table 1 for their
basic characteristics). Each crop model was forced by cli-
mate projections of from five different GCMs (HadGEM2-ES,
IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2M,40

NorESM1-M) generated for four RCPs (RCP2.6, RCP4.5,
RCP6.0, RCP8.5) in the context of the Coupled Model In-
tercomparison Project, phase 5 ((CMIP5, Taylor et al., 2012).
CMIP5 was an effort by the climate modelling community
to provide a new suite of climate simulations in time for the45

Intergovernmental Panel on Climate Change (IPCC) Fifth
Assessment Report (AR5). The RCPs cover the range
from climate mitigation (RCP2.6, RCP4.5) to business-as-
usual (RCP6.0) and high emissions scenarios (RCP8.5).
Climate projections have been bias-corrected to better match50

observed historical averages of the considered climate vari-
ables. For the future, the bias-correction preserves abso-

lute changes in monthly temperature and relative changes
in monthly values of the other variables simulated by the
GCMs while also correcting the daily variability about the 55

monthly mean (Hempel et al., 2013). Separate simulations
are available for each of the four major crops: wheat, maize,
rice and soy, on a global 0.5 x 0.5 degree grid, covering the
time period from 1971–2099. The considered crop is as-
sumed to grow everywhere on the global land area, only re- 60

stricted by soil characteristics and climate but independent of
present or future land use patterns (“pure crop” simulations).
Each model has provided a pair of simulations (“runs”) for
each climate change scenario: 1) a rain-fed run and 2) a
full-irrigation run assuming no water constraints. This design 65

provides full flexibility with regard to the application of fu-
ture land use and irrigation patterns. While the “default” crop
yield simulations (YCO2YvarCO2) account for the fertilization
effects due to the increasing levels of atmospheric COpCO2, the
ISIMIP setting also includes a sensitivity experiment where 70

the impact models were forced by the same climate change
projections from HadGEM2-ES, RCP8.5 but CObut pCO2 concentration

was kept fixed at a “present day” reference level that differs
from GGCM to GGCM (see Table 1). We will refer to this
run as “fixed CO2CO2” run and indicate the associated crop 75

yields by YnoCO2. YfixedCO2. As a special case, the “default”
simulations for pDSSAT do not use annual pCO2 changes.
Instead, pCO2 was changed every 30 years using the av-
erage pCO2 of the respective 30 year time slice.

For the analysis of the gridded data, 80

2.2 Effect of temperature change

We analyse the dependence of yield changes on ∆GMT
separately for rain-fed and full-irrigation simulations, and
for each cropare considered separately. Considering e. g., wheat yield changes

under full irrigation. Since the timing of global warming differs 85

between GCMs and scenarios, we group all available data
into ∆GMT intervals (bins) separated by 0.5◦C steps with
0.5◦C width (±0.25◦C around the central temperature),
where ∆GMT is relative to the present day (1980–2010 av-
erage) reference level. For all annual data falling into a given 90

interval and at one specific each grid point we apply a separate
one-way analysis of variance (ANOVA fixed effects model)
to individually calculate the variance explained by 1) differ-
ent GGCMs, 2) the GCMs, and 3) the RCPs. The quantifi-
cation of the RCP-dependence of the relationship between 95

global warming and yield changes change is limited to a warm-
ing range up to 2 to 3◦C above present depending on the
GCM because only one RCP (RCP8.5) reaches temperatures
above this threshold. However, we also provide the patterns
of yield changes change for the higher concentration scenario. 100

In the main text, all figures except Figure 1 9 & 10 refer to a
∆GMT level of 2.5◦C(see Figure 1 for the associated years included) but

the Supplement contains the figures for the other levels, and all figures ex-
cept 3, 4, and 11 refer to crop model simulations driven
by HadGEM2-ES climate. See Figure 1 for the years asso- 105
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Table 1. Basic crop model characteristics with respect to 1) the implementation of CO2 CO2 fertilization effect (as affecting radiation use
efficiency (RUE), transpiration efficiency (TE), leaf level photosynthesis (LLP), or canopy conductance (CC)), 2) the accounting for nutrient
constraints with respect to the CO2 fertilization effect and associated assumption with respect to fertilizer application (N = nitrogen, P = phosphorus,
K = potassium), 3) implemented adaptation measures, and 4) starting conditions.

modelModel CO2 fertilization Fertilizer useNutrient limitation AdaptationStarting conditions

GEPIC
(Liu et al.,
2007; Liu,
2009)

RUE, TE
pCO2 of the fixed
CO2 run: 364 ppm

Limitation of potential biomass increase due to N stress

(flexible N application based on N stress >10%

up to an upper national application limit ac-
cording to FertiStat (FAO, 2007)).Fixed present day

FAO FertiStat database (FAO, 2007), fixed
present-day P application rates following
FAO FertiStatdatabase (FAO, 2007) FertiStat.

decadal adjustment of planting dates (incl.
switch between winter and spring wheat);
total heat units to reach maturity remain con-
stantdecadal adjustment of winter and spring wheat sow-

ing areas based on temperature present day

LPJ-GUESS
(Lindeskog
et al., 2013)

LLP, CC
pCO2 of the fixed
CO2 run: 379 ppm

no consideration of spatial and temporal changes in

soil nutrient limitation cultivar adjustments are represented by variable adjust-
ment of total heat units to reach maturity (?),

adjustments are based on the average climate over

the preceeding during the preceding 10 years un-

calibratedto keep growing season length con-
stant

LPJmL
(Bondeau
et al., 2007)

LLP, CC
pCO2 of the fixed
CO2 run: 370 ppm

soil nutrient limiting factors are not accounted for no
consideration of soil nutrient limitation

fixed sowing dates (Waha et al., 2012), ; to-
tal heat units to reach maturity remain con-
stantpresent day (Leaf Area Index (LAI), the Harvest In-

dex (HI), and a scaling factor that scales leaf-level photo-

synthesis to stand level are adjusted to reproduce observed

yields on country levels.)

PEGASUS
(Deryng et al.,
2011)

RUE, TE
pCO2 of the fixed
CO2 run: 369 ppm

fixed N, P, K application rates (IFA, 2002) adjustment of planting dates, ; variable heat
units to reach maturity present day

pDSSAT

pDSSAT

(Jones et al.,
2003; Elliott
et al., 2014)

RUE, LLP, CC
pCO2 of the fixed
CO2 run: 330 ppm

fixed N present day present-day application
rates

no adjustment of planting dates; total heat
units to reach maturity remain constantpresent

day

ciated with ∆GMT=2.5◦C in HadGEM2-ES. The Supple-
ment contains analogous figures for other GMT levels and
GCMs.

We do not impose a specific functional relationship be-
tween global mean temperature change and changes GMT change and5

change in crop yields. Yield changes for any global mean temperature

change for any GMT level between the central levels of the
considered bins could be derived by a simple linear interpo-
lation between the patterns of neighbouring bins but without
assuming a linear relationship between global mean warming10

and yield changes change across the full range of warming.

2.3 Effect of pCO2 change

The direct effect of CO2 fertilization on crop yields is ex-
pected to introduce some scenario dependence in the rela-
tionship between GMT change and yield changeschange. We15

test to what degree the scenario dependence of the relation-
ship can be explained by introducing atmospheric CO2 levels pCO2

as an additional predictor for within-bin fluctuation of yields.
To this end, we evaluate two different approaches to estimate
the direct CO2 CO2 effect on crop yields within the different 20

GMT bins, described in detail in Section 3.2below. The two ap-
proaches differ in terms of the crop model simulations that
they require: approach (a) only requires the default crop
yield simulations with increasing pCO2 whereas approach
(b) requires a pair of simulations with increasing pCO2 and 25

with fixed pCO2 at present-day reference level.
To evaluate and compare the performance of the two approaches we consider large

scale regional average yields based on fixed present day (1998-2002)land use and irri-

gation patterns from MIRCA2000 (Portmann et al., 2010) and assess the reproducibility

of the original RCP2.6, RCP4.5, 30

2.3.1 Approach (a)

For all years falling into a specific ∆GMT bin, approach (a)
fits the following linear regression model to the response
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Figure 1. GMT projections from HadGEM2-ES for the four RCPs.
The horizontal line and shading indicate the 2.5◦C bin. The orig-
inal annual GMT values (thin lines) are smoothed (thick lines) in
order to obtain a contiguous time interval for each ∆GMT bin.
The smoothing is based on a Singular Spectrum Analysis with a
time window of 20 years (R-Package Rssa). E.g(R-Package Rssa, Ko-
robeynikov, 2010; Golyandina and Korobeynikov, 2014; Golyan-
dina et al., 2015). , years Years where the thick line falls within
the shaded area are associated with ∆GMT = 2.5◦C, and the cor-
responding time interval is delineated by the dashed vertical lines.

of yields in the default simulation to the increase in pCO2:

∆YvarCO2(i, t) = ∆Yclim(i) + a1(i) · (pCO2(t)− 370ppm)

+ ε(i, t), (1)

where ∆YvarCO2(i, t) is the absolute yield change in grid
point i and year t with respect to the historical reference5

period (1980–2010) and pCO2(t) is the atmospheric CO2

concentration of the corresponding year. In this statisti-
cal model, ∆Yclim(i) represents an estimate of the purely
climate-induced yield change at the respective bin temper-
ature, but assuming a fixed year-2000 pCO2 of 370 ppm10

(i.e. without CO2 fertilization), a1(i) represents the added
effect of CO2 fertilization, and ε(i, t) vN(0,σ2) repre-
sents the residual error.

2.3.2 Approach (b)

Approach (b) fits the following linear regression model to15

the yield difference between the default and fixed-CO2

simulation for all years falling into a specific ∆GMT bin:

YvarCO2(i, t)−YfixedCO2(i, t) =

a1(i) · (pCO2(t)−pCO2ref) + ε(i, t), (2)20

where YvarCO2(i, t) and RCP6.0 projections based on the emulated yield

patterns (section 4) YfixedCO2(i, t) is the absolute yield in grid

point i and year t of the default and fixed-CO2 simula-
tion, respectively, pCO2(t) is the atmospheric CO2 con-
centration of the default simulation during the respective 25

year and pCO2ref is the crop-model specific pCO2 value
of the fixed-CO2 simulation (see Table 1). In this statisti-
cal model, a1(i) represents the CO2 fertilization effect and
ε(i, t) vN(0,σ2) represents the residual error. No inter-
cept is estimated in this model because yields from the 30

default and fixed-CO2 runs are expected to be identical
if pCO2(t) = pCO2ref . The purely climate-induced yield
change at a fixed year-2000 pCO2 of 370 ppm ∆Yclim(i)
can then be derived as:

∆Yclim(i) = ∆YfixedCO2(i) + a1(i) · (pCO2ref − 370ppm),

(3) 35

where ∆YfixedCO2(i) is the average yield change in the
respective warming bin of the fixed CO2 simulation with
respect to the historical reference period and a1(i) ·
(pCO2ref − 370ppm) corrects for the different pCO2ref

used by each GGCM. 40

2.4 Emulator of temperature and CO2 effects

Based on the spatial patterns of purely climate-induced
yield change ∆Yclim(i) and added CO2 fertilization effect
a1(i), which are derived separately for each rain-fed and
irrigated crop and specific to each crop model and GCM, 45

we propose the following two-step interpolation method to
compute crop yield changes for any given pair of ∆GMT
and pCO2, using either the coefficients from approach (a)
or (b):

1. linear interpolation of ∆Yclim(i) between the two 50

neighbouring warming bins to the desired ∆GMT
value,

2. addition of the CO2 pattern described by a1(i) ·
(pCO2− 370ppm), where a1(i) is also interpolated
linearly between the respective coefficients from the 55

neighbouring warming bins.

The application of these two steps using coefficients from
method (a) above will be called emulator approach (a);
their application using coefficients from regression method
(b) will be called emulator approach (b). In addition, we 60

propose a third, very basic emulator approach (c) where
the yield change for any given ∆GMT is derived from a
simple linear interpolation of the average yield change in
the neighbouring warming bins of the default simulations
∆YvarCO2(i) with respect to the historical reference pe- 65

riod, without using the associated pCO2 as additional pre-
dictor.

The linear interpolation of any of the previous coeffi-
cients between two neighbouring warming bins is illus-
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trated for a ∆GMT of 2.3◦C as follows:

coef(i,2.3◦C) = (1− δ) · coef(i,2◦C) + δ · coef(i,2.5◦C),

δ = (2.3◦C− 2◦C)/(2.5◦C− 2◦C), (4)

where coef can be ∆Yclim(i), a1(i), or ∆YvarCO2(i).
Using GGCM projections for the HadGEM2-ES climate5

input to train the emulators, we test which of the emula-
tor approaches, (a), (b) or (c), provides the best repro-
ducibility for yield changes simulated under the four RCPs
(Section 4). While approach (b) requires a pair of crop
model simulations – one with time-varying pCO2 and one10

with fixed present-day pCO2 – approach (a) and (c) only
require the default simulations with time-varying pCO2.
Thus, a comparison of the three approaches could provide
some important guidance regarding future crop model ex-
periments required to allow for the proposed highly ef-15

ficient emulation of crop model simulations. Since simu-
lated crop yields are subject to considerable inter-annual
variability, we also test what effect the amount of available
training data has on the reliability of the derived regression
coefficients. For that purpose, we train the emulators using20

either all available simulation data from the four RCPs or
only simulation data from RCP8.5 and compare the frac-
tion of the land surface for which derived fits are statis-
tically significant as well as the difference between simu-
lated and emulated yield changes. Due to the 30-year time25

slices of constant pCO2 used by pDSSAT in the default
run, approach (a) cannot be applied to this model using
only RCP8.5 data. Since only RCP8.5 reaches ∆GMT>
3.5◦C this limits the temperature range of emulator ap-
proach (a) for pDSSAT even when using all available train-30

ing data.
We evaluate and compare the performance of the three

emulator approaches at the grid scale as well as the scale
of large regions. Grid point yields (in t/ha) are multiplied
by the fixed year-2000 crop-specific growing area from the35

MIRCA2000 dataset (Portmann et al., 2010) to derive re-
gional total crop production (in t). MIRCA2000 provides
gridded growing areas for a total of 26 rain-fed and irri-
gated crops based on a combination of census, remote
sensing and other geographic data sources.40

3 Mean Yield Change with Global Mean Temperature
Change

3.1 Patterns of relative changes at different levels of
global warming and main sources of variance

In general, increasing global mean temperatures correspond45

to an expansion of arable land to higher latitudes with con-
current yield reductions in equatorial regions. The highest
positive changes in projected yields under rain-fed condi-
tions at 2.5◦C ∆GMT are typically in the northern high
latitudes and mountainous regions for all crops (Figure 2Fig-50

ure 2 for wheat, figures for other crops in the Supplement).

These locations were previously inhibited by a short grow-
ing season, which extends with increasing air temperature
(Ramankutty et al., 2002). Yield gains also occur over pre-
viously moisture limited regions, such as the northwestern 55

U.S. and north-eastern China, in agreement with the find-
ings of Ramankutty et al. (2002). In contrast, near the equa-
tor most crop yields decrease, especially maize and wheat.
Since most cultivated land currently lies in low and middle
latitudes, potential yield changes in those regions contribute 60

a higher relative importance for today’s food production sys-
tem than changes in high latitudes.

While variations exist in the magnitude of projected yield
changes, there is a high degree of consistency in the direc-
tion of yield change across ensemble members, especially 65

over the high latitudes, where most of the largest projected
yield changes occur, but where yields are in general smaller
(Figure 3Figure 3). Utilizing output from all available combi-
nations of one GCM, GGCM, and RCP scenario, more than
three-quarters of the ensemble members indicate increasing 70

crop yields over the upper mid latitudes in the northern hemi-
sphere for all crops at 2.5◦C.

The simulated yield values at each grid point and within
each GMT bin are subject to variation due to the selection of
impact model, GCM forcing, and emissions scenario. When 75

considering all of these factors, the variance attributable to
the impact model selection is much greater than that associ-
ated with the GCM or scenario choice in most regions (Figure

4Figure 4). This holds for rainfed rain-fed as well as irrigated
simulationsand at all global mean warming bins above 1◦C. The predomi- 80

nance of the impact model component in total variance is par-
ticularly evident in the middle to high latitudes for all four ce-

real considered crops, where impact model variance accounts
for up to 90% of the grid point variance at 2.5◦C.

3.2 Direct impacts of increasing pCO2pCO2 85

In addition to air temperature warming, pCO2 pCO2 has a di-
rect influence on crop yields. As it varies within the different
∆GMT bins, it is expected to induce part of the fluctuations
of the yield changes at given GMT levels. We find that this
CO2 effect is not scenario dependent (see Figure 5 CO2 effect shows little 90

scenario dependence (see Figure 5 for the global average
effect within the LPJmL simulations at ∆GMT=2.5◦C), con-
sistent with a short response time of plants to pCO2 changes.

pCO2 changes. As expected, the CO2-induced yield dif-
ferences increase with heightened atmospheric CO2 CO2 level 95

under all emissions scenarios, implying a stronger CO2 CO2

fertilization impact with increased pCO2. A least squares fit to the yield

differences versus greenhouse gas level within each ∆GMT bin allows for a quantifi-

cation of the direct CO2 effect at each level of warming based on global pCO2, rather

than the emissions pathway. The underlying assumption is that the effect of the temper- 100

ature variation within the 0.5◦C range of each ∆GMT bin will be minimal compared

to the effect of the CO2 variation across all RCPspCO2.
To quantify the extent of the CO2 induced scenario dependence and its potential

reduction at each grid point , we use two methods to determine the CO2 effect on crop
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Figure 2. Average potential wheat yield change at ∆GMT=2.5◦C as a percentage of the mean historical yield (1980–2010 average) under
rain-fed conditions for each crop model forced by HadGEM2-ES. The average is calculated across all RCPs which reach the global mean
warming interval from 2.25 to 2.75◦C, namely RCP4.5, RCP6.0, and RCP8.5. Note that pDSSAT is run over a limited domain excluding
areas north of 60◦N. Regions with marginal historical yields (defined as lying below the 2.5% quantile of historical yields on year-2000
cropland) are masked to avoid exaggerated relative yield increases. Analogous figures for different crops, for irrigated conditions, as well
as for absolute yield change (in t/ha) are available as supplementary online materialin the Supplement.

yields within each global mean temperature bin: By linear regression of absolute yield

changes with respect to the historical reference period (∆YCO2) on

At the grid point level, two approaches have been
used to separate purely climate-change-induced from
CO2concentration within the individual global mean warming bins, i.e. by fitting the5

following model where i indicates the individual year within the relevant ∆GMT bin,

and εi vN(0,σ2) represents the residual error. The statistical model allows for the

estimation of the purely climate-induced yield change ∆YCLIM at a fixed year-2000

concentration of CO2 of 370 ppm. By linear regression of the within-bin differences

between the default crop simulations (YCO2) and the fixed CO2 run (YnoCO2) on10

the underlying CO2 concentration in the default simulation: where i indicates the in-

dividual year and εi vN(0,σ2)represents the residual error. In this case the purely

climate-induced yield change ∆YCLIM(∆GMT) is given by the yield change in the

fixed CO2 run, ∆YnoCO2-induced yield change (following Equa-
tion 1 to Equation 3). Figure 6 shows the climate-change-15

induced yield change at ∆GMT), and an additive correction a0. This

correction accounts for the different levels of pCO2 in the fixed-CO2 run across differ-

ent models; it is zero if the pCO2 in the fixed-CO2 run is 370 ppm.

=2.5◦C for LPJmL under rain-fed conditions, using all
available runs that fall into the warming bin to estimate 20

∆Yclim(i). Figures for irrigated conditions and the other
GGCMs are available in the Supplement. The two meth-
ods result in broadly similar patternsfor the climate change-induced

relative yield changes (i.e., excluding direct CO2 fertilization effects), with yield
increases in the high latitudes and upper mid- and high latitudes, 25

mixed regions with decreases and increases in the lower
mid-latitudes and mostly decreases in the tropicsand subtrop-

ics, broadly speaking (Fig. 6). However, the magnitudes of the changes are

much larger with method magnitude of change differs between the
two approaches: approach (a) (Fig. 6, lower panel). Some regional dif- 30

ferences also occur between the two methodsgenerally estimates larger
changes outside the tropics while yield decreases in the
tropics are larger in approach (b). There are also some
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disagreement between the models in the direction of yield change. Note that only four out of five GGCMs provided results for rice. An
analogous figure for irrigated conditions is available as supplementary online materialin the Supplement.

regions where both approaches disagree regarding the di-
rection of change, such as for rice where there is disagreement on the

direction of yield changes in southeast Asia .

In relative terms (estimated climate change-induced yield change divided by simu-

lated present-day yield), both methods show very large values of frequently alternating5

sign in areas such as the Arabian peninsula or the northern Sahel (Fig. 6, upper panel).

This is likely due to the very low present-day yield potential in these regions, leading

to division by values close to zero. In the regional evaluation of the different emu-

lator methods below, we will account for these regional differences in baseline yields

by weighting potential yield changes by present-day growing areashigh latitudes10

of both Western North America and Eastern Russia for
wheat and parts of Southeast and South Asia for all crops.
Patterns of climate-induced yield change match better be-
tween both approaches under irrigated conditions.

In GEPIC, both approaches disagree on the direction15

of change for maize yields over large parts of Europe. In
LPJ-GUESS, both approaches disagree on the direction
of change in most of the tropics for all crops. While tropi-
cal yield change is predominantly negative in approach (b)
mirroring results of the other crop models, approach (a)20

estimates mostly positive climate effects on tropical crops.
In pDSSAT, approach (a) generally produces larger areas
with negative yield change than approach (b). At the same
time, positive yield effects in approach (a) have a larger
magnitude than those in approach (b) in many regions.25

In PEGASUS, both approaches disagree on the direction
of change over large parts of the U.S. for maize and soy-
beans, and large parts of China for wheat.

The estimates of CO2-induced yield changes CO2-induced yield
change also differ between the two methods (Figure 7). Method (b) 30

results in a positive CO2 effect in most regions, except for some low-yielding areas

and the potentially important cases of soybean in southern and eastern South Amer-

ica, and rice in north-west India and Pakistan, where it results in a negative effect of

rising pCO2 on yield. With method approaches (Figure 7 for LPJmL
results under rain-fed conditions). We expect CO2 fertiliza- 35

tion to have a positive or at least neutral effect on yields,
and this is confirmed by approach (b) for all GGCMs and
crops. Only GEPIC simulations show negative CO2 effects
on soybean and wheat yields in a few regions for approach
(b). This can be explained by nutrient interactions in the 40

model: CO2 fertilization leads to yield increases first but
also increases nutrient depletion in the soil compared to
the fixed-CO2 run. If fertilizer application is insufficient to
replenish nutrient stocks this can lead to lower yields de-
spite the beneficial effect of higher pCO2. With approach 45

(a), on the other hand, areas of negative estimated CO2 effect

are much more widespread , and generally CO2 effects are widespread
in all GGCMs and all crops. Generally, the magnitudes of
the estimated CO2 effect are again much largerthan with method CO2 effect
are also much larger, often surpassing those of approach 50

(b) . As apreliminary conclusion, the results obtained with method (b) for the sepa-

rate even in regions where the direction of change matches.
Given that approach (a) contradicts our expectation of how
CO2 fertilization should affect yields in many regions we
conclude that approach (a) is not reliable in separating the 55

effects of climate change and pCO2 change on potential yields appear more

realistic than those obtained with method (a).
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4 Validation of three emulator approaches

Based on the on yield from those of pCO2 change. By de-
sign, climate-induced patterns (assuming fixed year 2000 levels of CO2)

of relative yield changes and the associated within-bin relationship between CO2 and

crop yields identified in section 3, we propose the following two-step interpolation5

method to compute crop yield changes for any given pair of ∆GMT and pCO2,

using either of the above regression methods (a) or (b) : Linear interpolation be-

tween the temperature-specific, CO2-adjusted yield patterns of neighboring ∆GMT

bins (a0(∆GMT) from method and CO2-induced yield changes add
up to the full yield change (see Equation 1) which is why10

the difference between the patterns of estimated CO2 ef-
fect explains why climate-change patterns from Figure 6
also differ substantially between both approaches in some
regions. Approach (a) or YnoCO2(∆GMT) + a 0(∆GMT) from method

(b))to the desired ∆GMT value Addition of the CO2 pattern described by a 1 * (has15

a structural disadvantage to approach (b) in that it esti-
mates both the climate-induced and CO2-induced effect
on yields from the same linear regression model (Equa-
tion 1). Besides changes in pCO2 annual yields in each
warming bin are subject to substantial inter-annual climate20

variability which means that individual years with a higher

pCO2 do not necessarily have a higher yield. In contrast,
approach (b) only estimates the CO2– 370ppm) , where the pattern

of scaling coefficients a1 is also interpolated linearly between the scaling coefficients

from neighboring temperature bins The application of these two steps using regression 25

method (a)will be called emulator -induced yield change from the re-
gression model (Equation 2) while both the default and the
fixed-CO2 run are subject to identical climate variability.
There is inter-annual variability in the CO2-induced yield
change as well (see Figure 5 for the global average effect), 30

however, it is much smaller than the total yield variability.
While approach (a) ; their application using regression method (b) will be

called emulator approach and (b) . In a third, very basic emulator approach (c),

crop yield change patterns for a given should provide similar estimates
of the CO2-induced yield change given a large sample, our 35

sample size is limited by the number of years falling into
each ∆GMT level are derived from an interpolation between the two neighbor-

ing ∆GMT bins’ average patterns; where these average patterns are derived from the

bin (Table 2). This number varies between seven years in
the 4.5 and 5.0◦C bin and up to 66 years in the 1.0◦C bin 40

when yield data from all RCPs are used to train the emu-
lator. The number of years varies between seven and 13
years if only data from RCP8.5 projections of the individual climate and
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Figure 5. Difference in global mean yield change (sum of rainfed rain-fed and irrigated, and weigthed weighted by present-day year-2000 growing
areas) between the default (YCO2varCO2) and fixed CO2 CO2 simulations (YnoCO2fixedCO2), for each crop over the range of pCO2 pCO2

associated with the ∆GMT=2.5◦C bin. Results are as simulated by LPJmL forced with output from HadGEM2-ES. Each color represents
an emission scenarioand black . Points mark individual years while dotted lines and shaded areas indicate the linear best fit and its 95%
confidence interval for each cropscenario. The black dotted line indicates the linear best fit through all available scenarios. Analogous
figures for other GGCMs and warming bins are available in the Supplement.

crop model simulations accounting for the CO2 fertilization effect. E. g. to derive the

crop yield change pattern for a global mean warming of 2.3are used. Given
the limited sample size and possibly large variability, the
derived fits are often not statistically significant. For ap-
proach (a) we found that derived fits were rarely significant5

on more than 25% of the crop-specific growing area (Port-
mann et al., 2010) using a p-value of 0.05 (figure avail-
able in the Supplement). Values were even lower if only
RCP8.5 was used for the regression. In contrast, fits de-
rived by approach (b) were mostly statistically significant10

(p < 0.05) on more than 70% of the growing area, often on
more than 90% of the area. We also found only a small
negative effect in terms of statistical significance if only
RCP8.5 was used in approach (b).

4 Validation of three emulator approaches 15

Using GGCM projections for the HadGEM2-ES climate in-
put, we test which of the approaches, (a), (b) or (c), provides
the best reproducibility for RCP2.6, RCP4.5, and RCP6.0 when estimates of

the climate-induced and CO2-induced effects are based on RCP8.5 projections. While

approach (b) requires a pair of crop model simulations – one with time-varying pCO2 20

and one with fixed pCO2, approach (a) only requires the default simulations with time-

varying pCO2. Approach (c) assumes that yield changes can be estimated using only

all four RCPs. For that purpose, we apply each emula-
tor with time series of ∆GMT as a predictor without consideration of the

associated pCO2. Thus, a comparison of the three approaches could provide some im- 25

portant guidance regarding future crop modelexperiments required to allow for GMT
and pCO2 from the RCPs and compare emulated yield
changes in each grid point and as well as total crop pro-
duction for 10 large world regions to those simulated by
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Figure 6. Climate change-induced yield changes at ∆GMT=2.5◦C of global warming and year 2000 pCO2 level (370 ppm). Left column:
Patterns of ∆Yclim(i) derived at each grid point i by approach (a) (see Equation 1). Right column: Corresponding patterns of ∆Yclim(i),
derived by approach (b) (see Equation 3). Both types of patterns are derived from LPJmL simulations forced by HadGEM2-ES assuming
rain-fed conditions and expressed as absolute differences compared to the historical period (1980–2010). Rows: Different crop types.
Analogous figures for irrigated conditions, for different GGCMs, and using relative instead of absolute yield changes are available in
the Supplement.

Table 2. Number of years of yield data available in each ∆GMT bin for HadGEM2-ES. Only RCP8.5 reaches warming levels above
3◦C.

Data used ∆GMT bin

0.5◦C : 1.0◦C 1.5◦C 2.0◦C 2.5◦C 3.0◦C 3.5◦C 4.0◦C 4.5◦C 5.0◦C

all available scenarios 47 66 44 38 52 20 8 8 7 7
RCP8.5 only 10 13 12 10 9 8 8 8 7 7
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Figure 7. CO2-induced yield changes at 2.5◦C of global warming for LPJmL forced by HadGEM2-ES assuming rain-fed conditions.
Analogous to Figure 6, but showing the scaling coefficients a1(i) from approach (a) (left column) and approach (b) (right column),
multiplied by the average pCO2 change compared to year 2000 (370 ppm) across all years falling into the GMT bin. Rows: Different
crop types. Analogous figures for irrigated conditions, for different GGCMs, and using relative instead of absolute yield changes are
available in the Supplement.
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Figure 8. Validation of the three emulator approaches. Maps show the difference (emulated minus simulated) between the simulated
LPJmL yields forced by HadGEM2-ES climate for RCP4.5 under rain-fed conditions for all years falling into the ∆GMT bin of 2.5◦C
(2066–2094) and the emulated yields for the same years based on approach (a) (left column), approach (b) (middle column), and
approach (c) (right column). Rows: Different crops. MAD: mean absolute difference, regardless of sign, averaged across all grid points.
Analogous figures for irrigated conditions and for different GGCMs are available in the Supplement.

the GGCM. For pDSSAT, the proposed highly efficient emulation of crop

model simulations. pCO2 time series used in that model’s default
run is also used with the emulator.

Figure 8 shows results for the LPJmL model, when ap-
plying the emulators trained on all available data to re-5

produce rain-fed yields under RCP4.5. Figures for other
RCPs, irrigated yields and other GGCMs are available in
the Supplement.

Approach (a) generally leads to the largest differences rel-
ative to the simulated yield change (Fig. 8Figure 8, left col-10

umn). In particular Maize, rice, and soybean yields are under-
estimated for much of North America, and overestimated in
Europeand South America, temperate South America, and Aus-
tralia. Wheat yields are overestimated, e.g.in Canada. These discrep-

ancies are mainly due to the climate-change effect estimated by approach (a) (cf. Figure15

6), whereas the CO2 fertilization effect even points in the opposite direction in many of

these regions (cf. Figure 7). In fact, we note again that approach (a) estimates the CO2

fertilization effect to be negative in some regions (Figure 7), which is not consistent

with theory and empirical evidence, in Canada.

Approach (b) also leads to some substantial deviations 20

from the potential yields simulated by LPJmL, in percentage terms,

mainly in the northern hemisphere and in Australia (Figure 8, top

panel(Figure 8, middle column). But large relative differences are mainly

found outside the major growing regions of the respective crop, in areas where ab-

solute potential yields are low today. Correspondingly, absolute differences between 25

the LPJmL simulations and the emulator Spatial patterns of over and
underestimation are broadly similar to approach (a), but
the magnitude of the difference is generally slightly lower.
In the tropics, approach (b) are modest (Figure 8, bottom panel, middle

column). An important exception is the underestimation of simulated maize and rice 30

yields in southern North America. We note that LPJmL itself has limitations in sim-

ulating yield variability in this region (Frieler et al., 2017). often leads to a
higher deviation from the simulated yields than approach
(a), particularly for rice and soybeans in South America.

Finally, approach (c) leads to a similar pattern of devia- 35

tions from the simulated yield potential yields as approach (b) ,

but with a slightly smaller magnitude (Figure 8for maize (Figure 8, right
column). Thus, considering overall performance at the grid point level for this par-

ticular case (2.5◦C warming under RCP4.5) , the simple For the other crops,
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approach (c) often leads to an overestimation of yields
whereas approach (b) tends to underestimate simulated
yields. The average deviation between emulated and sim-
ulated yields (designated as MAD in Figure 8) is similar for
approach (b) and (c). Approach (c) performs slightly bet-5

ter than approach (b) for rice, and both approach (b) and
(c) perform better than approach (a) for all four crops. Dif-
ferences between the three emulators are smaller when
reproducing RCP6.0 and RCP8.5 (figures available in the
Supplement).10

The difference between emulator approach (c) produces re-

sults which are closest to the LPJmL simulation. b) and (c) is even smaller
in the other crop models than in LPJmL (figures available
in the Supplement). Overall, MAD between emulated and
simulated yields is up to 50% higher than LPJmL in PE-15

GASUS, roughly twice as high in GEPIC and up to three
times as high in pDSSAT. In LPJ-GUESS, MAD between
emulated and simulated yields is similar for all three emu-
lator approaches, even though the spatial patterns of over
and underestimation differ.20

Using only RCP8.5 instead of all available data to train
the emulators has a detrimental effect on the performance,
especially for approach (a). MAD between emulated and
simulated yields increases by a factor of more than three,
even close to four for some GGCMs and crops, under25

RCP4.5. MAD for approach (b) and (c) also increases by
a factor of more than two, although not as sharply as for
approach (a) (figures available in the Supplement). Perfor-
mance loss is lower for RCP6.0, with MAD generally less
than twice as high. The emulator trained on RCP8.5 alone30

shows better performance in emulating RCP8.5 simulated
yields than the emulator trained on all available data.

To get a more comprehensive indicator indication of the per-
formance of the emulator for the whole 95-year time series
(instead of just the 2.5◦C bin) we use all three approaches35

to reproduce the simulated changes in crop production under
RCP2.6, RCP4.5, and RCP6.0, and RCP8.5, as derived for
10 large scale world regions (cf. Figure 2 in Lotze-Campen et al. (2008)

see Figure 10 for a map of the regions), . Grid-point yields
are aggregated to the regions assuming fixed year-200040

land use and irrigation patterns. Compared to potential gridded
yields, using production gives less weight to areas where a
crop is not currently grown. The climate-induced and CO2-induced pat-

terns of change were derived from RCP8.5; and we used the RMSE between the relative

changes in crop production derived from the original simulations and their emulated45

counterparts across the other three scenarios Since none of the emulators
is expected to capture the relatively large inter-annual vari-
ability of simulated yields we compare simulated and emu-
lated decadal production and calculate the RMSE over all
decades of the relative difference between emulated and50

simulated decadal production (in %) as a measure of the
performance of the emulator.

Of the two approaches that estimate warming and CO2-
induced effects separately, approach (b) generally provides
a better performance than approach (a) (see Figure 9 Figure 955

for LPJmL; Table 1 and supplementary online information Table 3 and the
Supplement for all crop models). Performance of all emu-
lator approaches varies substantially between regions. There
are also considerable differences between crop models. For
LPJmL, emulator approach (b) generally provides marginally 60

better performance for many regions than approach (c)when

emulating RCP2.6 and RCP4.5. This advantage of approach (b) is not found in .
However, this is not consistent across the emulators for
the other crop models. Taking into account that approach (b)
requires additional crop model simulations with fixed CO2 65

and that performance is mostly very similar for approach
(b) and (c), the very basic interpolation approach (c) may ap-
pears toprovide the best compromise between emulator per-
formance and complexity.

While none of the emulators is expected to capture the relatively large inter-annual 70

variability of simulated yield changes, approach (c) allows to emulate the region-

ally averaged response of the process-based crop models to climate forcing estimated

for RCP2.6, RCP4.5, and RCP6.0 (Fig. 10 for maize yields from LPJmL forced by

HadGEM2-ES; analogous figures for other combinations are available as supplemen-

tary online material). Note though that the average deviation differ- 75

ence between emulated and simulated yields production over
the full 95-year time series is sometimes larger than the sim-
ulated yield production change in 2091–2099, especially in the
low warming scenarios (marked by red crosses in Fig. 9) Fig-
ure 9). Table 3 compares the RMSE between emulated and 80

simulated crop production in the largest producing region
of each crop for all five crop models.

Figure 10 illustrates the performance of emulator ap-
proach (c) in reproducing decadal maize production as
simulated by LPJmL forced by HadGEM2-ES. Emulated 85

yields generally follow the simulated trends, although large
errors exist, e.g., in North America, which also stands out
in Figure 9 and Figure 8. Analogous figures for all crops,
emulator approaches and crop models are available in the
Supplement. 90

Similar to the grid point results, using only RCP8.5 to
train the emulators leads to a performance loss for all em-
ulator methods and all RCPs except RCP8.5. This perfor-
mance loss is larger for approach (a) than approach (b)
and (c), and is generally highest for RCP4.5 (figures avail- 95

able in the Supplement).

5 Increases in Regional Crop Yield Variance

In addition to estimating the yield changes change associated
with a rise in average temperature, it is important to con-
sider the implications of rising variance. Climate change is 100

expected to increase not only the average temperature, but
to impact the variance of temperature and precipitation, in-
cluding an increase in the frequency and duration of extreme
events. For this reason, when deriving simplified relation-
ships between potential yields yield change and global climate 105

change, it is crucial to account not only for the mean effects
of rising temperature, but also their concurrent implications
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Figure 9. Root mean square difference (in %) between emulated and simulated regional decadal production (yields multiplied by year-
2000 growing areas, combined for irrigated and rain-fed crops) for LPJmL forced by HadGEM2-ES climate projections. The emulator
was built using all available data and used to reproduce yield changes in all four RCPs. For comparison, point symbols illustrate the
average simulated yield change for 2091–2099 (same horizontal axis), using red crosses or blue circles depending on whether the
error between emulated and simulated production is larger or smaller than the simulated change. Analogous figures for the other crop
models are available in the Supplement.
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Table 3. Average root Root mean square deviation difference between emulated and simulated decadal production (expressed in % of the
simulated production as in Fig. 9Figure 9) in the largest producing region of each crop, for all five crop models forced by HadGEM2-ES
climate projections. Average over across all four RCPs. The values for all combinations of models, crops, and regions, and separately for
each RCP, can be found in the supplementary online materialSupplement. Top: emulators trained on all available data; bottom: emulators trained
on RCP8.5 only.

(a) Emulators trained on all available data

Model Wheat, Europe Rice, South Asia Maize, North America Soybeans, Latin America
method heightApproach a b c a b c a b c a b c

GEPIC 1.334 1.267 1.215 3.982 3.037 2.790 10.099 9.058 9.360 3.485 2.550 2.321
LPJ-GUESS 2.242 2.254 2.213 4.033 2.163 3.729 5.870 5.466 5.359 2.934 3.025 2.653
LPJmL 1.777 1.768 1.596 2.582 2.371 1.786 6.923 5.494 5.846 4.898 3.870 4.709
pDSSAT(1) 5.363 3.196 3.550 7.758 3.606 4.190 12.218 6.129 6.149 3.427 3.662 3.500
PEGASUS 6.061 4.908 4.937 n.a. n.a. n.a. 8.762 8.533 8.496 8.762 8.533 8.496

(b) Emulators trained on RCP8.5 only

Model Wheat, Europe Rice, South Asia Maize, North America Soybeans, Latin America

Approach a b c a b c a b c a b c

GEPIC 2.159 1.250 1.309 1.396 6.941 3.321 3.541 3.266 19.091 10.310 9.779 9.664 5.001 2.638 2.654 2.858
LPJ-GUESS 2.579 2.348 2.449 2.486 5.026 2.614 2.656 4.517 10.034 7.029 7.083 6.866 3.749 3.003 3.355 2.691
LPJmL 3.814 2.272 2.293 2.415 4.247 2.954 3.040 2.409 11.954 5.783 5.838 5.950 5.869 4.313 4.607 5.084
pDSSAT 4.863 n.a. 4.495 4.053 4.392 6.483 5.232 n.a. 4.230 4.971 12.752 8.065 n.a. 8.290 7.984 8.276 5.358 n.a. 4.246 4.809
PEGASUS 8.125 4.923 5.167 5.324 n.a. n.a. n.a. 14.097 11.829 11.801 11.825 11.542 6.370 6.413 7.182

(1) Emulator approach (a) for pDSSAT only covers warming up to 3.5◦C, i.e. up to 2070 under RCP8.5.
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Figure 10. Comparison of simulated and emulated time series of regionally averaged aggregated crop production changes for LPJmL forced
by HadGEM2-ES climate projections. Regional averages are calculated based on fixed present day land use and irrigation patterns. Results are shown for Maize
and emulator approach (c).



Ostberg et al.: Changes in crop yields and their variability at different levels of global warming 17

for crop yield variance. Interannual Inter-annual yield variance
can be computed for the same 0.5◦ C warming bins as used
above for the average yields, which we do here for all major

four crops under the “no irrigation” scenario. To account for the

variability across scenarios and models which is attributable to direct CO2 effects, the5

The variance is calculated separately for the years of each
RCP-GCM-GGCM specific mean is subtracted at each 0.5combination
falling into the 2.5◦C ∆GMT step. The variance of the adjusted yields is then

compared to the warming bin and compared to thevariance of the
same matching GCM-GGCM combination over the historical10

period (1980–2010)period.
The global figures show broadly similar patterns across all

four crops: Increases increases in yield variability in much of
the northern hemisphere, particularly in North America, cen-
tral Asia, and China; as well as in the southern mid-latitudes15

(Figure 11 for 2.5◦CFigure 11). A majority of model combina-
tion projects decreasing variability in tropical regions (ex-
cept for rice) as well as parts of Eastern Europe; but nowhere
do more than 75% of the model combinations agree on a
decrease in variability. In several instances increased vari-20

ability occurs in highly productive regions such as in China
for rice and the US, Brazil, and Argentina for soy. Wheat
also has an increased variability in more than 7550% of the
crop model simulations over the highly productive regions in
China and the U.S. Such an increase in variability, if real-25

ized, could manifest as impacts on the price, whose volatility
is tightly linked to rapid changes in supply (Gilbert and Mor-
gan, 2010).

6 Summary

Evaluating the impacts of climate change at different lev-30

els of global warming, and thus evaluating mitigation tar-
gets, requires a functional link between ∆GMT and regional
impacts. Here we have shown that changes in crop yields,
as simulated by gridded global crop models, can be recon-
structed based on ∆GMT, with some limitations. The small35

spread of simulated yield change across the RCP scenar-
ios as compared to the GCMs and impact models implies
that projected impacts at different ∆GMT levels are not sub-
stantially dependent on the choice of emissions pathway. In
this context, it has to be noted that the scenario setup of40

the ISIMIP crop model simulations was chosen specifically
to minimize scenario-dependency by asking modellers to
keep crop management fixed at present-day level or ad-
just it only in response to climate without any regard to the
time horizons associated with adaptation or economic pro-45

cesses. Four models are calibrated to match present-day
yield levels while LPJ-GUESS simulates potential yields
assuming optimal management. Only two of the crop mod-
els allow for an adjustment of planting dates in response
to climate change (GEPIC and PEGASUS, see Table 1).50

Three of the models keep the total heat unit sum to reach
maturity constant, assuming no change in crop cultivar

which effectively leads to a shortening of the growing sea-
son. Representation of soil nutrient limitation varies sub-
stantially between models, with two models (LPJ-GUESS 55

and LPJmL) considering no soil nutrient limitation at all,
while the nutrients considered and the assumptions on fer-
tilizer application differ between the other three models.
The effects of these assumptions on yield changes sim-
ulated by the different crop models are not studied here 60

since the focus of this study is on developing efficient em-
ulators, but these assumptions inform both the simulated
yield changes as well as the emulators which attempt to
imitate the behaviour of the crop models. The results of the
ISIMIP crop models have been studied in detail in Rosen- 65

zweig et al. (2014).
We have tested three different approaches for emulating

crop yield changes simulated by GGCMs, two of which include pCO2 change
simulated by five GGCMs driven by HadGEM2-ES climate
projections for four RCPs. All approaches rely on ∆GMT 70

as the main predictor of yield change at the grid scale. Two
of the approaches include pCO2 as an additional predictor.
An approach (a) attributing the yield variation within an in-
dividual ∆GMT bin of a simulation with varying pCO2 pCO2

solely to the change in pCO2 pCO2 shows the poorest over- 75

all performance. An approach (b) based on the difference
between runs with and without direct CO2 CO2 fertilization
effects performs similarly well as a simple approach (c) us-
ing only ∆GMT as a single predictor. For local (grid level)crop yields,

Considering the added complexity in approach (b) com- 80

pared to (c), the simple approach (c) performs slightly better than

approach (b) for the LPJmL GGCM. On the other hand, appears in general
preferable even though it may not provide the best result
in all regions. While our tests indicate that the emulators
perform better for some crop models than for yield changes 85

weighted by actual growing areas and irrigation patterns and aggregated over large re-

gions (i.e., regional production) , approach (b) slightly outperforms approach others
we strongly advise against relying solely on results from
any one particular model, but instead to always consider
the full range of uncertainty spanned by the GGCMs. Simi- 90

larly, different GCMs still account for more than 15% of the
total variance of the ISIMIP ensemble at ∆GMT=2.5◦C in
a number regions (Figure 4) which is why emulators should
be constructed for all GCMs.

Given the availability of crop model simulations in the 95

ISIMIP archive, emulators based on approach (a) and (c) in

reproducing changes under low-warming RCPs. Considering the added complexity in

could be constructed for all five GGCMs for the remaining
four GCMs (IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL-
ESM2M, NorESM1-M). Emulators based on approach (b) 100

compared to (c), the simple could only be constructed for LPJmL
and pDSSAT (and PEGASUS if using only RCP8.5 for
training). With its five GCMs, which were selected from
the CMIP5 ensemble based primarily on data availability
at the time, the ISIMIP subset likely underestimates the 105

total uncertainty in future climate impacts attributable to
GCMs for many regions, however, the ISIMIP subset es-
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Figure 11. Percentage of crop model simulations (combination of a single GCM, GGCM, and RCP scenario) in the 2.5◦C warming bin
indicating an increase (blue) or decrease (red) in yield variance of greater than 5% at each grid point at 2.5◦C warming scenario as compared to the
historichistoricalperiod for a(1980–2010), for maize, b) rice, c) soy, and d) wheat under rain-fed conditions. White indicates either a less than
5% change or disagreement between the models in the direction of change. Note that only four out of five GGCMs provided results for
rice. An analogous figure for irrigated conditions is available in the Supplement.

sentially samples as much uncertainty as is possible with
only 5 GCMs (McSweeney and Jones, 2016). The gener-
ally good performance of approach (c) appears in general preferable.

This suggests that simplified predictions of large-scale agricul-

ture agricultural yields may not require additional crop model5

simulations with CO2 levels held at a historical level if plan-
ning to extend the GCM coverage.

The impact model ensemble available with ISIMIP data assem-
bled in this study also indicates that the variability of crop
yields is projected to increase in conjunction with increasing10

∆GMT in many important regions for the four major sta-
ple crops. Such a hike an increase in yield volatility could
have significant policy implications by affecting food prices
and supplies, although management assumptions as well
as model-structural limitations of the GGCMs to account15

for crop stress factors may impact the models’ ability to
project future changes in variability.

The scalability of each component (mean yields and yield variability)

mean yields is conducive to the development of predictor
functions relating ∆GMT, or other aggregate climate vari-20

ables readily available from simplified climate models (such
as pCO2) to regional or global mean crop yield impacts.
This lays the groundwork for a further exploration of the
economic impacts of climate change encountered at target
warming levels or over policy relevant regions.25

Data availability. The coefficients estimated with Equations 1
to 3 are available as a Supplement, along with supplementary
figures and RMSE estimates, at https://cloud.pik-potsdam.de/index.php/

s/5J8vDoQvycH2nuZ https://doi.org/10.5281/zenodo.1194045 . The
GGCM simulations that the analysis in this paper is based on are 30

available through https://esg.pik-potsdam.de/search/isimip-ft/, with
additional documentation available on the ISIMIP website https:
//www.isimip.org/outputdata/caveats-fast-track/
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