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ABSTRACT

The unprecedented use of Earth’s resources by humans, in combination with increasing natural
variability in natural processes over the past century, is affecting evolution of the Earth system. To better
understand natural processes and their potential future trajectories requires improved integration with
and quantification of human processes. Similarly, to mitigate risk and facilitate socio-economic
development requires a better understanding of how the natural system (e.g., climate variability and
change, extreme weather events, and processes affecting soil fertility) affects human processes. Our
understanding of these interactions and feedback between human and natural systems has been
formalized through a variety of modelling approaches. However, a common conceptual framework or
set of guidelines to model human-natural systems feedbacks is lacking. The presented research lays out a
conceptual framework that includes representing model-coupling configuration in combination with the
frequency of interaction and coordination of communication between coupled models. Four different
approaches used to couple representations of the human and natural system are presented in relation to
this framework, which vary in the processes represented and in the scale of their application. From the
development and experience associated with the four models of coupled human-natural systems, the
following eight lessons were identified that if taken into account by future coupled human-natural
systems model developments may increase their success: 1) leverage the power of sensitivity analysis
with models, 2) remember modelling is an iterative process, 3) create a common language, 4) make code
open-access, 5) ensure consistency, 6) reconcile spatio-temporal mismatch, 7) construct homogeneous
units and 8) incorporate feedback increases non-linearity and variability. Following a discussion of
feedbacks, a way forward to expedite model coupling and increase the longevity and interoperability of
models is given, which suggests the use of a wrapper container software, a standardized applications
programming interface (API), the incorporation of standard names, mitigate sunk costs by creating
interfaces to multiple coupling frameworks, and adoption of reproducible workflow environments to

wire the pieces together.
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1. INTRODUCTION

Models designed to improve our understanding of human-environment interactions simulate
interdependent processes that link human activities and natural processes, but usually with a focus on the
human or natural system. When simulating the land system, such models tend to incorporate either
detailed decision-making algorithms with simplified ecosystem responses (e.g., land-use models) or
simple mechanisms to drive land-cover patterns that affect detailed environmental processes (e.g.,
ecosystem models). These one-sided approaches are prone to generating biased results, which can be
improved by capturing the feedbacks between human and natural processes (Verburg 2006, Evans et al.,
2013; Rounsevell et al., 2014). Hence, improving our understanding of the interdependent dynamics of
natural systems and land change through modelling remains a key opportunity and important challenge
for Earth systems research (NRC 2013).

Land use describes how humans use the land and the activities that take place at a location (e.g.,
agricultural or forest production), whereas land-cover change describes the transition of the physical
surface cover (e.g., crop or forest cover) at a location. These distinct concepts are inextricably linked,
and modellers sometimes conflate them or, when represented separately, fail to link them. Because of
the tradition of division between human and natural sciences (Liu et al., 2007), land-change science and
social science have focused on how socioeconomic drivers interact with environmental variability to
affect new quantities and patterns of land use (Turner II et al. 2007) while natural science has focused on

modelling natural-system responses to prescribed land-cover changes (e.g., Lawrence et al., 2012).
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An important limitation of most natural system models' is that the impacts of human action are
represented through changes in land cover that rarely involve mechanistic descriptions of the human
decision processes driving them. These models are typically applied at coarse resolutions and ignore the
influence of critical land management activities on natural processes and micro-to-regional climate
associated with fine-resolution factors such as landscape configuration (e.g., Running and Hunt 1993;
Smith et al. 2001, 2014; Robinson et al. 2009), fragmentation and edge effects (e.g., Parton et al. 1987;
Lawrence et al. 2011), and horizontal energy transfers (e.g., Coops and Waring 2001). The
consequences of excluding these factors on the representation of natural processes can be significant
because they aggregate to affect global processes.

Conversely, efforts to model and represent changes in how land is used by humans (i.e., land-use
change models, LUCMs) have been developed to understand how human processes impact the
environment, but in ways that often over-simplify the representation of natural processes (Evans et al.
2013). While such models vary in their level of process detail, they usually include some representation
of the economic and social interactions associated with alternative land-use types. Over the past 5-10
years, the representation of natural systems has been improved in LUCMs by systematically increasing
the complexity of natural processes represented from inventory approaches to rule-based approaches
(e.g., Manson 2005), statistical models (e.g., Deadman et al. 2004), dynamic linking to ecosystem

models (e.g., Matthews 2006, Yadav et al. 2008, Luus et al. 2013), or coupling of integrated assessment

1 Natural system model is used as an overarching term for Earth system, land surface, ecosystem,
and more specific models of natural processes (e.g., erosion). We use the following nomenclature: a)
Earth System models couple land and ocean biogeochemistry to atmospheric processes, and represent
surface-atmosphere interactions, such that CO, respiration (and other processes) affects the atmospheric
CO, concentration, which in turn affects vegetation growth; b) ecosystem models integrate
biogeochemistry, biophysical processes (e.g., latent and sensible heat fluxes), and vegetation structure to
simulate dynamic terrestrial vegetation growth (Kucharik et al. 2000); and c) land surface models
represent heat and moisture fluxes between the land surface and atmosphere and can include vegetation
properties using anything from simple parameters (e.g., Bonan 1996) to detailed ecosystem models.
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models and Earth-system models (e.g., Collins et al., 2015). Even with the impetus to better understand
human-environment interactions through model coupling, land-use science and the natural sciences have
historically been separate fields of scientific inquiry (Liu et al. 2007) that foster domain specific
methods and research questions. Novel integrative modelling methods are being developed to create
technical frameworks for, and intersecting applications between, these two communities (e.g., Theurich
et al. 2016, Lemmen et al. 2018, Peckham et al. 2013, Robinson et al. 2013, Collins et al. 2015, Barton
et al. 2016, Donges et al. 2018) that offer insight and an initial benchmark for identifying methods for
improvement.

The promise of greater integration between our representations of human and natural processes lies
partly in the spatially distributed representations of land use, land cover, vegetation, climate, and
hydrologic features. Models in land-change and natural sciences tend to contain a description of the land
surface (often gridded) and, while the representations of these systems may differ in their level of detail,
they are often complementary, thus facilitating a more complete representation and understanding of
land-surface change through integration. The coupling of land-change and natural-system models
promises a new approach to characterizing and understanding humans as a driving force for Earth-
system processes through the linked understanding of land use and land cover as an integrated land
system.

The potential gains from greater coupling are threefold. First, the use of many of the Earth’s
resources by humans alters the state and trajectory of the Earth system (Zalasiewicz et al. 2015, Waters
et al. 2016, Bai et al. 2015). Therefore, representing and quantifying the impact of humans on the natural
system can determine their magnitude relative to processes endogenous to the natural system as well as
provide insight into how to mitigate those impacts through changes in human behaviour. Second, the

natural system (e.g., climate variability and change, extreme weather events, processes affecting soil
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fertility) also affects human processes. Therefore, interactions and feedbacks within the social and in
socio-ecological systems must be better quantified (Verburg et al. 2016). Achieving substantive gains in
our understanding of coupled human-natural systems requires a critical assessment of the different
modelling approaches used to couple representations of human systems with natural systems that span
from local ecological and biophysical processes (e.g., erosion, hydrology, vegetation growth) through to
global processes (e.g., climate). Third, coupled models will be most useful if we can use them to test
possible interventions (e.g., policies or technologies) in the human or natural system and identify
feedbacks that amplify or dampen system responses, thus garnering a better understanding about how
human impacts on the environment can be mitigated and how humans might anticipate and adapt to
resulting changes in the natural system.

The coupled modelling approaches discussed here are used in other fields as well, for example in
integrated assessment modelling (IAM, see Verburg et al. 2016), which combines human and natural
systems and often explicitly incorporates feedbacks between the two systems. However many IAMs use
relatively simple representations of individual systems in order to analyze the nature of interactions
between them. In contrast, we focus on coupled modelling that combines specialized and more process-
rich representations of both and therefore may lead to different conclusions. Furthermore, new
technology for model sharing, model coupling, and high-performance computing make it possible to
connect specialized models, which was not possible when IAMs were first conceptualized 25 years ago.
Because of the greater degree of openness enabled by these technologies and their modular nature,
coupled models enable a greater degree of transparency in how we represent human-natural system
models. Whether their relative process richness enables a greater degree of model accuracy remains to

be tested.



145

150

155

160

165

We present multiple approaches to coupling land-change and natural-system models and reflect on
how their representations of feedbacks add value to scientific inquiry into the dynamics of coupled
human-natural systems. We highlight four example models that explicitly represent feedbacks between
land-change and natural systems, but vary in their scale of application and coupling architecture. We
then present the lessons learned from the modelling research teams, discuss the challenges of
representing feedbacks, and then outline a way forward to expedite model coupling initiatives and their

subsequent scientific advances.

1.1 Approaches to model coupling

When two models communicate in a coordinated fashion, they form a coupled model, where the
constituents are often termed components (Dunlap et al. 2013). One of the first examples of coupled
models was developed in the 1970s to describe the interaction of different physical processes
represented by numerical models for weather prediction (e.g. Schneider and Dickinson 1974). Model
coupling has been expanded since then to encompass domain coupling, i.e., the coordinated interaction
of models for different Earth-system domains or “spheres” (e.g., biosphere and atmosphere). Recent
coupling frameworks implement coupling of functional units regardless of the process versus domain
dichotomy (e.g. MESSy cycle 2, Jockel et al. 2005, Kergweg and Jockel 2012).

Model coupling can be described by the strength and frequency of interaction between two software
components, often placed in a continuum between ‘loose’ and ‘tight,” where loose coupling has low
coordination and infrequent communication between two or more models and tight coupling describes
high coordination and frequent communication. The simple characterization along a continuum from
loose to tight neglects multidimensional nuances of different coupling configurations (Figure 1), degree

of coordination, and communication frequency (Figure 2). However, the terms loose and tight coupling
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provide a shorthand about the ease and level of code integration, required understanding of model

components, and where the responsibility for code development resides.

a) b) c)
M1 M2 Ml <=— M2 Ml <= M2
DATA DATA DATA DATA
d) e) f)
COUPLER COUPLER COUPLER
M1 M2 M1 M2 M1 M2
DATA DATA DATA DATA

Figure 1: Approaches to model coupling. a) loose model integration via file / data exchange between
model 1 (M1) and model 2 (M2); b) models may manipulate parameters, variable values, or the
scheduling of processes in another model but they interact with independent data (i.e., model inputs and
outputs); c) the behavior of models is the same as (b) except that they also affect each other by
interacting with the same data (i.e., the output of model may be used as the input for another); d) a
coupler coordinates run time and scheduling and may pass some information between models, models
may also interact through manipulating data (model input and output files); e) a coupler coordinates the
run time and scheduling of the individual models and passes information between models that primarily
use their own data, f) the coupler coordinates all interactions between models and data.

In a strict implementation of loose coupling, communication is mostly based on the exchange of data
files (Figure 1a), and coordination is the automated or manual arrangement of independently operating
(and different) components and externally organized data exchange. No interaction of the developers of

the components is required, and coupling can extend across different expert communities and platforms.

However, in many cases model modification is necessary to manipulate the data generated by a model
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for use by another and to sequence that transaction. As we increase the frequency of communication
between two models and the coordination of interaction (Figure 2) we move towards a tight coupling. In
a strict implementation of tight coupling - some call this the monolithic approach - all components and
their coordination is programmed within a single model; they share much of their programming code
and access shared memory for communication.

Many existing instances of coupled models employ intermediate degrees of coupling. Existing
technologies (i.e. couplers) that support model coupling deploy the strengths of tight and loose coupling
approaches (Syvitski et al. 2013) in ways that address inherent trade-offs between control versus
openness, high performance computing versus wide distribution, distributed versus concentrated
expertise, and shared versus modular independent code. In model coupling, couplers refer to
independent software designed to manage the interaction between two or more models in terms of the
passing of data, manipulation of parameters, and scheduling of processes between models and in some
cases directing models to data or preprocessing data for use by a model. Typically, couplers are designed
for independent research projects using known and available software (e.g., R) and programming
languages (e.g., Java, C++, Fortran). When a coupler has been designed for general use across multiple
projects, the result is a coupling framework that enables the instantiation of multiple model-coupling
projects by others. Like existing modelling frameworks, a coupling framework can speed up the
coupling process and facilitate the interaction, adoption, and comparison of different instantiated and
coupled models.

Couplers or coupling frameworks (Figure 1d-h) are typically introduced when a modelling project
becomes multidisciplinary and requires collaborative modeling of several scientific disciplines, such that
the coupled model is too complex to be comprehended by a single individual or research group (Voinov

et al., 2010). For example, the Community Surface Dynamics Modeling System (CSDMS, Peckham et
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al. 2013) promotes distributed expertise and independent models in the domain of Earth-surface
dynamics. All components are required to implement basic model interfaces (BMI) as communication
ports with any other components in CSDMS (Syvitski et al. 2014). Similarly, to enable interaction
through a coupling framework (Figure 1d), it has been suggested that all components implement the
Earth System Modeling Framework (ESMF, Theurich et al. 2017), The Modular System for Shelves and
Coasts (MOSSCO, Lemmen et al. 2018) provides an example of this approach and combines the high
performance (HPC) computing capability of ESMF with the distributed expertise of CSDMS to facilitate
access to HPC for those working to couple models without expertise with HPC.

The degree of coupling is important as a technical design question, as depicted in Figure 1, but also
as an important ontological question affecting how well we can represent feedbacks within and among
human and environment systems (Ellis 2015, Liu et al. 2015, Dorninger et al. 2017). Taken together,
frequency of communication and degree of coordination affect the degree to which feedbacks can be
represented in coupled systems and, therefore, considered in our prediction of system behaviour or
response to interventions (Figure 2). For this reason, we describe four examples of coupled
representations of human and natural systems, across a range of processes represented and scales of
application, and how their coupling design affects representation of feedbacks.

The four examples are situated at different points along the three dimensions of configuration,
frequency of communication, and coordination. The first example uses a coupler in its architecture
(similar to Figure 1d, 1f) and achieves two-way coupling (Figure 2) to investigate the effects of land
management on Erosion. Our second example investigates the effects of land-management on carbon
storage using a loose coupling approach with two models, whereby one acts as a scheduler for the other
(Figure 1c) and both interact with common data to achieve two-way feedback (Figure 2). The third

example uses a coupler to bring together multiple models that share data (Figure 1d) and create two-way
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feedback (Figure 2) to investigate changes in land use and food consumption under climate
perturbations. Our fourth and final example uses a coupler-based architecture (Figure 1d) to tightly
couple multiple models to investigate how changes in land use and the energy system affect terrestrial
and atmospheric carbon storage and flux. While all four examples achieve two-way feedback (Figure 2),
most examples originated with one-way feedback (Figure 2) or were constructed to enable an
investigation of how the incorporation of feedback could alter model outputs. Collectively, the four
examples illustrate how groups of researchers have attempted to overcome the lack of suitable
frameworks for coupling human and natural systems and the lessons learned for future representations of

feedbacks among human and natural systems.
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Figure 2. Conceptual outline of the frequency of model communication and coordination of interaction
between models from no coupling to one-way and two-way feedback. Examples are not exhaustive but
illustrate common approaches used. M1 = model 1, M2 = model 2, T1 = time step 1, Tn = time step n.
Initial conditions, where one model is merely used to set the initial conditions of another; periodic
perturbations, whereby one model updates data or variables used by another periodically and
unilaterally; prescription, which is common to climate models that use a prescribed trajectory of land
cover data that do not endogenously change (e.g., citation); periodic two-way feedback, whereby two
different modelled processes may act at different temporal resolutions and feedbacks occur upon
alignment (e.g., citation); and two-way feedback where the modelled processes are dependent on the
results and behaviour of each other (e.g., citation).
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2. Examples of approaches to coupling

2.1 Tight Coupling - Effects of subsistence agriculture and pastoralism on erosion

2.1.1 Model definition and description

The Mediterranean Landscape Dynamics (MedLanD) project developed a computational laboratory
(Bankes et al. 2002) for high-resolution modeling of land-use/landscape interaction dynamics in
Mediterranean landscapes called the MedLanD Modeling Laboratory (MML). MML is a virtual lab
designed as a configurable and controlled experimental environment to couple representations of human
and natural systems (Miller and Page, 2007; van der Leeuw, 2004; Verburg et al., 2016). The MML
integrates an agent-based model (ABM) of households practicing subsistence agriculture and/or
pastoralism and cellular automata models of vegetation growth, soil fertility dynamics, and landscape
evolution (e.g., erosion/deposition) along with climate scenario data. The components of the MML are
connected through a coupler that passes information between them (Figure 3; Davis and Anderson,
2004, p. 200; Gholami et al., 2014; Sarjoughian et al., 2013; Sarjoughian, 2006; Sarjoughian et al.,
2015) (See S1 1.1).

Villages and household actors are represented as agents in the ABM, which simulates land-use
decisions and practices, mirroring the organization of known small-scale subsistence farmers (Banning,
2010; Flannery, 1993; Kohler and van der Leeuw, 2007). These agents select land for cultivation and
grazing using decision algorithms and projected returns informed by studies of subsistence farming, with

emphasis on the Mediterranean and xeric landscapes (Ullah 2017).
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The landscape evolution model (LEM) iteratively evolves digital terrain, soil, and vegetation on
landscapes within a watershed by simulating sediment entrainment, transport, and deposition using a 3D
implementation of the Unit Stream Power Erosion/Deposition (USPED) equation and the Stream Power
equation (Barton et al., 2016; Mitasova et al. 2013). The LEM also tracks changes in soil depth and
fertility due to cultivation and fallowing. A simple vegetation model simulates clearance for cultivation
or removal by grazing and regrowth tuned to a Mediterranean 50-year succession interval based on
empirical studies in the region (Bonet, 2004; Bonet and Pausas, 2007). Climate parameters can be
entered iteratively or statically, and may derive from any external climate or paleoclimate data or

simulation output.

2.1.2 Feedback Implementation

The coupling architecture of the MML is highly structured, following a tight coupling scheme that is a
hybrid of types shown in Figure 1d and 1f. In the MML, a coupler manages much of the interaction
with data, but it also coordinates the scheduling and exchange of data among the various subcomponent
models. The coupler was constructed to query data directly and transform it for use by certain
submodels, but it also directs subcomponent models to run and independently retrieve data and produce
output files. Coordination by the coupler is achieved through the use of a strict file naming system and
the use of a common data format (e.g., spatial data must be in the GRASS geographical information
system (GIS) raster file format (Neteler et al. 2012) and other data in delimited text files). Naming
conventions of data files indicate data type, temporality, and data permanence (intermediary data versus
final data). Two versions of the MML have been developed, one where the coupler is an independent
piece of wrapping software coded in Java (in MML v1; Barton et al. 2015) and one where the coupler is

integrated into the main model codebase (in python) of a reduced version of MML (in MML-Lite;
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(Landscape components) or in Java (ABM) in the MML v1, or are coded in a monolithic Python

codebase in the MML-Lite.

(1) Sends agro-pastoral needs
gro-p
N . ABM
(6) Identifies ordered
farming and grazing yields
(2) Queries current climate Climate
< Data
(3) Queries current landscape configuration
(4) Agent need, climate, and
landscape data 4
»| Agro-pastoral
(5) Crop and fodder yields \_ Yields CA
Coupler
(7) Current landscape, ( Soil Fertﬂity
climate, and ABM impacts CA (8) Update soil fertility data
Landscape
Data

(9) Current landscape, Vegetation

climate, and ABM impacts CA (10) Update vegetation data -

B (11) Queries current vegetation
(12) Current topography, Landscape (13) Update soil topography
vegetation, and climate . Evolution CA and depth data .
N

Figure 3. Structure of feedback between the components of the MedLanD Modeling Laboratory.
305 Numbers indicate the sequence of steps in a single time-step of a coupled model run.
The structure and sequence of a single time-step of an MML simulation begins with the coupler
initiating the ABM. The ABM determines the subsistence requirements for all households in the agent
population and passes access to these data as a delimited text string back to the coupler (Figure 3(1)).

310  The coupler then retrieves climate and landscape information and passes data file location information
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for subsistence requirements to the Agro-Pastoral Yields CA submodel (Figure 3(4)). The Agro-Pastoral
Yields CA submodel chooses locations for the various subsistence tasks and calculates yields that are
returned in the form of a spatial data layer (i.e., a GRASS GIS raster file). Yields are then passed back to
the ABM (Figure 3(6)) to determine the effects of subsistence choices for each household. At this time,
the human system waits while several natural processes are simulated. The coupler calls the Soil
Fertility CA to update soil characteristics degraded by land use (i.e., farming, grazing, or firewood
gathering) and climate impacts. The coupler then calls the Vegetation CA to determine the amount of
vegetation regrowth following agent land-use impacts (Figure 3(9)). Both the Soil Fertility and
Vegetation CAs directly write output in the form of GRASS GIS raster files that are queried by the
coupler at the beginning of each time step. Lastly, the coupler calls the Landscape Evolution model,
which updates the land surface based on the new configuration of vegetation and climate data for that
year.

The new state of the natural system (i.e., altered land surface, vegetation, and soils) affects
household-agent decisions and natural system processes (i.e., CA submodels) in subsequent time-steps
to achieve two-way feedbacks (as in Figure 2, upper right). It’s worth noting, however, that the MML

currently only implements climate as a one-way prescribed coupling (Figure 2).

2.2 Loose Coupling - Effects of residential land management on carbon storage

2.2.1 Model definition and description
To quantify the effects of residential land management on ecosystem carbon, a framework was
developed to couple a human decision-making model with the dynamic global vegetation model

BIOME-BGC (Robinson et al. 2013). Our model of the human system, Dynamic Ecological Exurban
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Development (DEED) model, combines a suite of components developed to systematically incorporate
additional data and complexity in the residential development landscape (Brown et al. 2004, Brown and
Robinson 2006, Brown et al. 2008, Robinson and Brown 2009, Robinson et al. 2013, and Sun et al.
2014). Farmer agents own land that is bid on by Residential Developer agents. The winning Residential
Developer agent subdivides the farmland into one of three residential subdivision types, each with
different lot density and land-cover impacts (remove all vegetation, leave existing vegetation, grow new
vegetation). Residential Household agents then locate and conduct land management activities.
BIOME-BGC was used to represent deciduous broadleaf forest and turfgrass (i.e., maintained lawn)
growth. It operates on a daily time step and reports outputs at daily and annual periods. Although the
model was not developed to include land management, it was selected because: 1) existing variables
permit the representation of different types of vegetation found in exurban landscapes (Robinson 2012)
like turfgrass (Milesi et al. 2005); 2) the parameters and data used by the model can be altered to
represent the impacts of land management that affect vegetation growth; 3) the biogeochemical cycling
in the model represents water, carbon, and nitrogen with extensive literature validating model outcomes,
including parameterization for different ecosystems and species (White et al. 2000); and 4) it has been
applied both at high spatial resolutions (e.g., 30 m) and at local-to-global spatial extents (e.g., Coops and
Waring 2001), which facilitates both the local site evaluation and the potential to scale out to regional or

national levels.

2.2.2 Feedback Implementation
A loose coupling approach linking the ABM (DEED) and BIOME-BGC was used that is similar to
the structure of Figure 1c, whereby information is exchanged between data files. However, DEED not

only modifies data files used by BIOME-BGC but it also coordinates its run time (Figure 5). Through
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this approach, DEED is an independent model and a coupler coordinating interaction with BIOME-
BGC.

By chaining the input and output between the two models, two-way feedback is represented (Figure
2). First, land exchange, land-use change, and land management activities are conducted by agents in
DEED. If agents irrigate their property then DEED modifies precipitation values in the climate files used
by BIOME-BGC for that year and location. If agents fertilize then DEED alters the soil mineral nitrogen
in the BIOME-BGC initial conditions/restart file (Figure 4(1)). Then, DEED steps BIOME-BGC

forward by one year (Figure 4(2)).

TN (1) Agent additions to the landscape modify input files

)

(2) Step forward one year -
DEED > BIOME-BGC — Data

(5) Agent removals from the landscape modify output files

»
>

— /"

(6) Ecosystem changes (e.g., carbon) affect agent behaviours

Figure 4. Structure of feedback between DEED and BIOME-BGC. Numbers indicate the sequence of
steps in a single time-step of a coupled model run. (3) BIOME-BGC retrieves site characteristic and
climate data as well as initial conditions for the next time step comprising biogeochemical pool values
among other information. (4) results of vegetation growth and changes to biogeochemical pools are
written back for manipulation by the ABM.

BIOME-BGC retrieves site characteristic, climate, and initial conditions for the year (Figure 4(3)).
The products of vegetation growth from BIOME-BGC (i.e., coarse woody debris and litter) are then
modified by land management activities by altering the initial conditions file for the subsequent year

(Figure 4(5)). The ABM then summarizes ecosystem variables (e.g., carbon) for a given cell, residential

property, or landscape. Feedback from the ecological system on agent behaviour was explored through
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changes in policies that support offset payments for increased carbon storage. An alternative feedback
could include effects on social preferences and norms for landscape design elements (e.g., xeriscaping or
adding tree cover) that may drive changes in land management activities and subsequent ecological

outcomes.

2.3 Loose Coupling with Coupler — Changes in food consumption and trade with land use decisions
2.3.1 Model definition and description

To explore the interactions among land-use decisions, food consumption and trade, land-based
emissions, and climate at a global scale, a dynamic global vegetation model (LPJ-GUESS, Smith et al.,
2014), a land use and food system model (PLUMv2, Engstrom et al., 2016a), and a climate emulator
(IMOGEN, Huntingford et al., 2010) were coupled (Figure 5). Key objectives were: a) to represent the
trade-offs and responses between agricultural intensification and expansion and the cross-scale spatial
interactions driving system dynamics (Rounsevell et al., 2014), b) to explore whether climate and CO,-
related yield changes in a coupled system would affect projected land-cover change, and ¢) how these
changes might feedback to the atmosphere and climate via the carbon cycle. A detailed representation of
yield responses to inputs (fertilisers and irrigation) was used and assumptions of market equilibrium
were relaxed to allow exploration of the effects of shocks and short-term dynamics.

The carbon, nitrogen, and water cycles, as well as vegetation growth, composition, and competition
(e.g., following land-use change) were simulated at 0.5-degree spatial resolution in LPJ-GUESS.
Agricultural and pastoral systems were represented as a prescribed fractional cover of area under human
land use per grid cell. Four crop functional types modelled on winter wheat, spring wheat, rice, and
maize were used to simulate croplands (Olin et al., 2015; Lindeskog et al., 2013; Olin et al., 2015; Pugh

et al., 2015). Pastures were represented by competing C3 and C4 grass, with 50% of the above-ground
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biomass removed annually to represent the effects of grazing (Lindeskog et al., 2013). A general
circulation model emulator, IMOGEN, links the terrestrial and atmospheric carbon cycle without the
computational demands of running a full Earth System Model (Huntingford et al., 2010).

Economic and behavioural aspects for country-level decisions within the food system were modelled
in PLUMV2, extending Engstrom et al. (2016a). The PLUMV2 model projects demand for agricultural
commodities based on socio-economic scenarios (e.g. SSPs, van Vuuren & Carter, 2014), and attempts
to meet these demands through country level cost minimisation, including spatially specific land use

selection among other processes such as trade and policy.

2.3.2 Feedback Implementation

The coupling of IMOGEN, PLUMvV2, and LPJ-GUESS is performed using a coupling script written in
CRAN R (R Core Team 2013), which coordinates data, settings files, and the order of operations for the
three models similar to Figure 1d. The coupling script first performs initialisation steps, which produces
the required start files and spins-up all the models. As part of this process IMOGEN is spun-up first
(Figure 5). IMOGEN provides spin-up climate for LPJ-GUESS, and then PLUMvV2. Two instantiations
of LPJ-GUESS are used, one for simulated land use conditions (LPJ-GUESS-main) and one for
generating potential crop yields under a range of land uses (LPJ-GUESS-potential).

The coupling script communicates with the IMOGEN and LPJ-GUESS at a one-year time step,
although LPJ-GUESS and IMOGEN operate on sub-daily time steps. IMOGEN is called to provide the
climate for the current run year (Figure 5(9,11)), which LPJ-GUESS-main uses (Figure 5(5)) to simulate
the vegetation dynamics with the climate from IMOGEN and the land use from PLUMvV2 for the same

year (Figure 5(3.,4,6)). The terrestrial carbon flux data is aggregated to provide global net ecosystem
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exchange of carbon for the land area with prescribed ocean carbon uptake to IMOGEN, which estimates
the global CO, concentration and climate for the next year.

Every fifth year, the R coupler runs a second instantiation of LPJ-GUESS (LPJ-GUESS-
potential), directing it to use the ecosystem soil state of LPJ-GUESS-main (Figure 5(12,13)). The LPJ-
GUESS-potential model is used to produce potential net primary production (NPP) for pasture grass
lands and potential crop yields for 6 crop management settings (three levels of fertilisation (0, 200, 1000
kgN/ha) and rain fed or irrigated crops). To account for short-term land-use change legacy effects, LPJ-
GUESS-potential uses the previous 10 years of soil conditions and climate from IMOGEN. The last
five years of the LPJ-GUESS-potential pasture NPP and crop yields are averaged by the R coupler and
input to PLUMvV2 (Figure 5(1)) to model land use for the next five year iteration. PLUMvV2 uses these
yield potentials to simulate annual land-use management decisions, which are used (as described above)
in the LPJ-GUESS-main model (Figure 5(4,6)). The land uses are determined using yield potentials for

previous time periods in LPJ-GUESS-potential and therefore has been indicated as step 1 in Figure 5.
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Figure 5. LPJ-GUESS, IMOGEN and PLUMYv2 model coupling structure and feedback between models
and data. Numbers indicate sequence of steps after initialization. (8) LPJ-GUESS-main modifies the soil
state locational data.

2.4 Tight coupling via a coupler — Investigating the effects of changes in land use and the energy
system on terrestrial and climate CO,

2.4.1 Model definition and description

The integrated Earth System Model (ESM v1.0; Collins et al., 2015) couples the Global Change
Assessment Model (GCAM, v3.0; Wise et al., 2014) with the Community Earth System Model (CESM,
v1.1.2; Hurrel et al., 2013) and the Global Land-use Model (GLM, v2; Hurtt et al., 2011) to explore
feedbacks between terrestrial ecosystems (including their interactions with the climate system) and

human land use and energy systems. GCAM is an integrated assessment model that represents both
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human and biogeophysical systems (Wise et al., 2014), and in the iESM the climate and carbon
components of GCAM are replaced by CESM. The human components simulate global energy and
agriculture markets to estimate anthropogenic emissions and land change. The energy and land
components are distinct, but connected via bioenergy, nitrogen fertilizer, and (where applicable)
greenhouse gas emissions markets. GLM generates annual, gridded land use from periodic, regional
GCAM outputs following the Land Use Harmonization protocol (LUH; Hurtt et al., 2011), and an
additional land use translator converts GLM outputs to CESM land cover types (Di Vittorio et al., 2014,
P Lawrence et al., 2012).

CESM is a fully coupled Earth-system model with atmosphere, ocean, land, and sea ice components;
including land and ocean biogeochemistry that exchanges carbon with the atmosphere (Hurrel et al.,
2013). The standard resolution of all CESM components in fully coupled mode is nominally one degree,
but the land cover is determined as fractions of half-degree grid cells and prescribed prior to a
simulation (Lawrence et al., 2012). Biogeographical vegetation shifts are not included, although
ecosystems do respond and contribute to changing environmental conditions. The CESM land model
includes detailed hydrology and mechanistic vegetation growth for 16 Plant Functional Types (PFTs) to
simulate water, carbon, and energy exchange with the atmosphere.

The iIESM coupling follows the Coupled Model Intercomparison Project phase 5 (CMIP5; Taylor et
al., 2012) LUH protocol (Hurtt et al., 2011), with some modifications and additions (Bond-Lamberty et
al., 2014; Di Vittorio et al., 2014), to connect GCAM and GLM (Hurtt et al., 2011) directly to the CESM

framework via a newly developed integrated assessment coupler (Collins et al., 2015).

2.4.2 Feedback Implementation
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The outputs generated by the two-way feedback (Figure 2) between the human and natural
systems represented by iESM are not available from its individual models or through one-way coupling
such as in CMIP5. The iESM is a specific configuration of CESM in which the land model initiates an
integrated assessment coupler every five years (Figure 6(1)). This coupler coordinates communication
between the human and environmental systems by first calculating average crop productivity and
ecosystem carbon density scalars from the previous five years of CESM net primary productivity and
heterotrophic respiration outputs (Bond-Lamberty et al., 2014), except during the initial year when these
scalars are set to unity (Figure 6(2)). The coupler then runs GCAM with these scalars to project fossil
fuel CO, emissions and land use change for the next five years (Figure 6(3)), and then passes these
outputs through downscaling algorithms to the atmosphere and land components of CESM (Figure 6(4-
9)). The non-CO, emissions are prescribed by CMIPS5 data as initial CESM input files. Land use change
is annualized and downscaled by GLM (Hurtt et al., 2011) (Figure 6(4-5)). A land use translator
converts these changes in cropland, pasture, and wood-harvested area into changes in CESM land cover
change, which is based on plant functional types (Di Vittorio et al., 2014, Lawrence et al., 2012) (Figure
6(6-7)). The CO, emissions are downscaled following Lawrence et al. (2011) and passed to the
atmosphere component as a data file (Figure 6(8)), and the land cover change is stored in a land surface
file and passed to the land component (Figure 6(9). The coupler then returns control to the land model
and CESM runs for another five years (Figure 6(10)). This two-way feedback incorporates the effects of
climate change, CO, fertilization, and nitrogen deposition on terrestrial ecosystems into GCAM’s
projections.

The key new feature is the generation of CESM-derived vegetation and soil impact scalars that
are used by GCAM to adjust crop productivity and carbon at each time step. This fundamentally alters

the scenario by making the land projection, and consequently the energy projection, more consistent
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coupler that enables feedbacks by running GCAM, GLM, and a new land use translator inline with
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Figure 6. Structure of iESM and feedback between integrated model components. An integrated

500 assessment coupler facilitates all interactions between the Global Change Assessment Model (GCAM),
the Global Land-Use Model (GLM), and the Community Earth System Model (CESM). The coupler is
activated by the CESM land model every five years to calculate the average carbon and productivity
scalars for the past 5 years and pass them to GCAM, then pass GCAM outputs to the atmosphere
component of CESM via a downscaling algorithm and to GLM, and then pass GLM outputs to the land

505  component via a Land Use Translator (LUT). The non-CO; emissions are provided to CESM as an input
data file.
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These capabilities enable new insights into research questions regarding climate mitigation and
adaptation strategies. For example, how may agricultural production shift due to climate change, how do
different policies influence this shift, and how may this shift affect other aspects of the human-Earth
system? Many recent impact studies (e.g., ISIMIP, BRACE, CIRA2.0) use climate model simulations
based on emissions and land-use scenarios (Representative Concentration Pathways, RCPs) that
themselves do not account for the influence of climate change on future land use. This inconsistency
could affect conclusions about impacts resulting from particular RCPs.

This approach paradoxically has several strengths that are also weaknesses. The main strength of this
approach is that it tightly couples two state-of-the-art global models to implement primary feedbacks
between human and environmental systems under global change. Unfortunately, this configuration is not
amenable to the uncertainty and policy analyses or the climate target experiments usually employed by
GCAM because it takes too long to run a simulation. As a global model it provides self-consistent
representation of interconnected regional and global processes, both human and environmental, but is
unable to capture a fair amount of regional and local detail that influences planning and implementation

of adaptation and mitigation strategies.

3. DISCUSSION

The four presented examples demonstrate how specialized models of human and natural processes have
been connected through alternative coupling approaches to address research questions related to the

impacts of one system on another and the effects of feedbacks between human and natural systems on a
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variety of outcomes of interest (e.g., erosion, carbon storage, and emissions). The focus on specialized
models offers a flexible and open approach to answering new questions about feedbacks in coupled
human-natural systems, and also facilitates the identification of new types of data required to calibrate
and validate the interactions and feedbacks between the two systems. Additionally, coupled modelling
presents an opportunity for increased transparency and detail in the represented processes through more
explicit identification and documentation of component interactions and processes.

The example models are diverse in the spatial and thematic resolutions of human and natural-system
processes represented. The first two examples (MML and DEED) use agent-based approaches that
represent land use and land management in the human system at the household level. While the
ecological impact of land management activities in DEED does not have a direct feedback on residential
household decision-making, those represented in MML do. Agricultural systems, carbon markets, and
policies provide mechanisms to establish this feedback and endogenize the impact-response cycle
between residential land management practices of the human system and the natural system (Sun et al.
2014).

The second two examples are global models with different levels of coupling and complexity that
represent human-natural system feedbacks at regional and global levels. In both examples, the human
system has a direct effect on modelled natural-system processes (i.e., vegetation, carbon, climate), and
the feedback of environmental changes on human systems is mediated by vegetation responses to
changing natural and human conditions.

These examples demonstrate how coupled system implementations extend the applicability of
models to a variety of questions regarding the dynamic relationship between human and environmental
systems that would otherwise be impossible to address quantitatively. Such questions include those

related to direct and indirect effects of one system on another (e.g., what is the effect of the natural
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system on human system?), to the resilience or sensitivity of the coupled system or its components to
perturbations or scenarios (e.g., do feedbacks dampen or amplify the consequences of a perturbation?),
and to identifying thresholds (e.g., what is the critical value of a variable in one system that when

crossed instantiates change in the other system?), among many others.

3.1 Lessons Learned

To make progress in modeling coupled human-natural systems, the way in which some set of variables
or processes affects or interacts with both systems must be specified. For example, precipitation has a
known and direct effect on plant growth (e.g., forest or crop) and erosion (e.g., overland flow). The
outcomes of some of these processes (e.g., yield and soil loss) have direct or indirect effects on land
management choices by farmers, effects that are empirically observable at least qualitatively and, in
some instances, quantitatively measured. However, the direct impacts of other perturbations, such as the
introduction of new technology or governance schemes, on human and natural-system processes are not
observable because they have not yet occurred. The presented case studies focus on perturbations or
scenarios that are grounded in known and direct causal relationships that are more likely to be found in
the natural system than the human system, partly due to the multitude of drivers affecting—and
consequent difficulty in predicting—human-decision making. In these example cases, a number of
lessons have been learned:

Lesson 1. Leverage the Power of Sensitivity Analysis with Models. A powerful benefit of simulation
models is that they can facilitate analysis of the effects of interventions and scenarios for which there is
no precedent. Models should be leveraged through computation across a full range of parameters and

use of simulated data or expert- or theory-informed methods to evaluate the relative contribution of
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parameter values/ranges, missing data, or processes on model outcomes. For example, to properly
understand the net effect of human alteration to vegetation on long-term rates of erosion and deposition
in the MML, it became clear that a more complete understanding of the sensitivity of the landscape
evolution subcomponent model to vegetation was needed. This sensitivity analysis showed a very strong
exponential relationship between vegetation type and both the overall amount of erosion and deposition
over time and the temporal variation in erosion rates over time (Ullah, 2017), The analysis show a
particular sensitivity to expanded bare land, grasslands, and shrub land-cover types. Therefore, it is clear
that agent activity that leads to an increase these types of land-cover should also lead to long-term
increases in erosion and deposition in the MML. In this way, model sensitivity to parameters, data, or
processes can be evaluated to support design and deployment of resources for new data collection.

Lesson 2. Modelling is an Iterative Process. The process of analyzing coupled human and natural
system models often results in identification of needs to investigate key variables, data, or mechanisms.
For example, through the coupling of DEED and BIOME-BGC (Section 2.2), it was realized that data
on vegetation and soil carbon for residential land uses are grossly inadequate for model calibration. This
realization fostered new data collection and analysis about the distribution of carbon stored in different
residential land uses (Currie et al. 2016). New forms of measurement and evaluation are often needed to
collect novel data and quantify variables and feedbacks linking human and natural systems. As these
new data are collected and become available, new questions about model processes are inevitable
(Rounsevell et al. 2012).

Lesson 3. Create a Common Language. Coupling human and natural systems brings social and
natural scientists together that often have a different understanding of the meanings of commonly used
terms. Both technical and conceptual aspects of the coupling process can be improved when a common

language is used. For example, traditional coupling between the ocean and the atmosphere in Earth
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System Models typically uses the Climate and Forecast conventions (Eaton et al. 2011). A controlled
vocabulary in these conventions assists understanding of model processes and facilitates their coupling
among models or replacement in new models. With a similar goal but different approach, CSDMS
introduced rules for creation of unequivocal terms through their standard names system that functions as
a semantic matching mechanism for determining whether two terms refer to the same quantity with
associated predefined units. This concept is currently undergoing transition to a Geoscience Standard
Names ontology that reaches out to include social science terms (David et al. 2016), which can benefit
communication between communities (i.e., natural and social science) that may have different terms and
descriptions of similar processes (Di Vittorio et al. 2014). With a common language, data can be more
easily and unambiguously communicated between components in a coupled system.

Lesson 4. Make Code Open-Access. Many ecosystem and Earth-system models have mass, energy,
or other balance equations that constrain the processes to the laws of thermodynamics and can be used to
ensure that they are working correctly. For example, the ecosystem model LPJ-GUESS has a routine to
ensure balance between influx, efflux, and storage of carbon. Similar checks and balances are used in
human system models with respect to population change (e.g., births, deaths, immigration, and
emigration) or economic trade (e.g., production, consumption, imports, and exports) at macro levels and
budget or labour constraints at household or individual levels. However, in many natural-system models
these balance equations are not accessible for coupling and the representation of human perturbations
and modifications to the factors in balance equations are either not included or done so indirectly and
make the coupling less flexible and tractable. Moving forward, critical equations, like mass balance
equations, and model variables should be made open through coding to provide multiple points for

interfacing with other models (specifically human systems models).
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Lesson 5. Ensure Consistency. Modelers seeking to couple natural- and human-systems models that
represent similar phenomena, like land cover, can encounter significant ontological and process
consistency challenges. Models with different initial assumptions and different processes can generate
different values for the same phenomenon. While model coupling ultimately can provide an impetus for
harmonizing and resolving such consistency issues, it requires decisions about which processes to
represent and which to leave out to avoid duplication.

The iESM (Section 2.4) well illustrates issues of consistency in assumptions, definitions, and
processes. First, ecosystem properties from CESM were translated to impacts that could be applied to
GCAM “equilibrium” yields and carbon densities (Bond-Lamberty et al., 2014). Second, a major finding
that is especially relevant to all land change and ecosystem models is that the inconsistencies between
land use and a land cover definitions caused CESM to include only 22% of the prescribed RCP4.5
afforestation in CMIP5 (Di Vittorio et al., 2014). Additionally, it was discovered that wood harvest was
conceptually different across the three models comprising iESM (GCAM, GLM, and CESM), with each
model having its own process for determining how harvest is spatially distributed. Wood harvest is a
good example of different modeling groups describing the same thing, using the same language, but
with very different concepts and processes, with unintended consequences for CESM’s terrestrial carbon
cycle.

Lesson 6. Reconcile Spatio-temporal Mismatch. Many natural system models operate at finer
temporal and coarser spatial resolutions than human system models (Evans et al. 2013). Often, these
discrepancies cannot simply be dealt with by aggregation of the variables because they represent
mismatch in spatial and temporal dynamics that may also happen in reality. Human responses to
environmental change may show significant time-lags or may be related to cycles of management (e.g.

cropping cycles) rather than showing an immediate response. Similarly, while the ecological models are
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strongly place-based, coupling human and natural systems at the pixel level may not always be
appropriate due to complex spatial relations in the human dimensions (e.g. distant land owners) or
responses across different levels of decision making (e.g. policy responses) that are not linked to the
exact place of the ecological impact. Reconciling these mismatches involves balancing detail and
computational tractability within existing model structures and scheduling the frequency of
communication between models.

As an example, the DEED ABM (Section 2.2) used an annual time-step to reflect the timing of land
management decisions, whereas the ecosystem model BIOME-BGC represented vegetation growth and
biogeochemical cycles daily. To reconcile these differences, irrigation decisions were made annually,
but implemented one day a week during the growing season by modifying the daily precipitation file
used by BIOME-BGC. In contrast, other management activities were implemented once annually,
before (for fertilization) and after (for removals) the growing season. These limitations could have a
significant effect on estimated carbon storage and have fostered additional fieldwork for further
validation (e.g., Currie et al. 2016) and additional efforts to tightly couple the two models.

The iESM (Section 2.4) also reconciles similar mismatches through a 5-year time lag and
specialized spatial and temporal downscaling of economic model outputs to provide inputs to the
environmental model. While these approaches allow the separate models to operate synchronously,
further development to better match the inherent spatio-temporal configurations between models is
required to reduce errors associated with such mismatches.

Lesson 7. Construct Homogeneous Units. Coupling models increases computational overhead and
thus requires increases in computational efficiency, both of which come with trade-offs. One approach
to improving efficiency is to classify and generalize components of the model such as agent types in the

human system (e.g., Brown and Robinson 2006), types of vegetation (e.g., plant functional types, Diaz
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and Cabido 1997, Smith et al. 1993, Smith et al. 1997), or landscape units. Landscape units are not
typically constructed to structure spatial variability in land use science, but are used regularly in
hydrological modelling; for example the Soil Water Assessment Tool (SWAT, Neitsch et al. 2011) uses
hydrological response units (HRUs) that have a soil profile, bedrock, and topographic characteristics
that are assumed homogeneous for the entire spatial extent of the unit. Similar concepts have been used
to identify management zones or units, and our examples of DEED-BIOME-BGC (Robinson et al. 2013)
and the iESM (Collins et al., 2015) both employed this approach. However, the variability among
management activities and land-cover types can lead to a large combination of outcomes, and the
delineation of these units directly contributes to uncertainty in model projections (Di Vittorio et al.,
2016).

Lesson 8. Incorporating Feedback Increases Non-Linearity and Variability. Specific results from
the four examples are available in a number of publications associated with each example. Among the
four example coupling efforts, it has been found that the incorporation of two-way feedbacks (Figure 2)
between models of the human and natural system typically produces non-linear results and a greater
range in model outcomes than are observed when the models are isolated or one-way prescriptions are
used. For both the MML and DEED models, changes in the natural system were relatively linear when
one-way human perturbations were prescribed. However, when feedbacks between the systems were
incorporated then non-linear outcomes were observed and frequently a greater variation in model

outcomes.

3.3 Feedback Effects
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Introducing feedbacks often changes model outcomes, but it is difficult to determine if these changes are
significant or realistic relative to the uncertainty in the original models and their coupling. The only way
to test if the representation of a mechanism is representative of the real-world is to remove the
inconsistencies so that the feedback effects can be quantified. Then, experiments that evaluate the effects
of specific feedbacks can be carried out and evaluated. These experiments need to be carefully designed
because the actual feedback signal can be an aggregate of expected, direct effects and additional,
indirect effects. For example, average ecosystem productivity could change due to atmospheric
influences (e.g., climate change, CO, fertilization) or to terrestrial influences associated with changing
ecosystem area (e.g., spatially heterogeneous soil properties, changes in the proportion of different forest
types). Regardless of the challenges, an overall benefit of quantifying feedback effects is that modellers
can gain insight into processes that are typically not observed and measured. Given the difficulty in
observing these effects and potential inconsistencies, efforts in coupling human and natural-system
models have focused on sensitivity analysis to test their effects (e.g. Harrison et al., 2017).

Ultimately, an important goal in such analyses is to discern which of two distinct sources produce
effects from including feedbacks in coupled models: 1) model implementation (both technical and
conceptual), and 2) the actual feedback signal. Model implementation issues often relate to the level of
consistency between the original models. For example, the need to translate changes in gridded patterns
of ecosystem productivity to changes in regional average carbon density can lead to varying sensitivities
across magnitudes of productivity and areal change, requiring the unrealistic sensitivities to be filtered
out (Bond-Lamberty et al., 2014).

Model experiments are useful for separating the model implementation issues from the actual
feedback signal. For example, iESM was used in a series of land-only simulations to (a) quantify the

relationship between ecosystem productivity and carbon density, (b) implement a statistical method to
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remove outliers that introduce error due to extreme combinations of land cover and productivity change,
and (c) develop the appropriate proxy variables for use by GCAM (Bond-Lamberty et al. 2014). To
verify that this process effectively removed the model implementation effects, another series of land-
only simulations was conducted using the iESM with and without terrestrial feedbacks, and with
constant atmospheric conditions (i.e., year 1850 aerosols and nitrogen deposition, and repeating 15 years
of climate forcing). This experiment showed that the coupling itself, without an atmospherically driven
feedback signal, did not generate significant changes in GCAM outputs. The feedback signal was not
zero, however, indicating that a combination of implementation effects and land heterogeneity effects
was present. These combined effects were not separable due to lack of data on the required outputs, and
in general they were opposite to the total feedback effects in the fully coupled iESM experiment,
suggesting that the atmospherically driven feedbacks may be larger than the net feedbacks.

Depending on the mechanisms involved, feedbacks may create strong feed forward effects that lead
to fast evolution of the dynamics of the system. On the contrary, responses may also lead to an
attenuation of perturbations and strong stability of the dynamics. Where the exact mechanisms involved
and the strength of the feedbacks are unknown, model dynamics may start deviating strongly upon small
changes in variable settings, in other words, leading to strong model sensitivity to highly uncertain
model parameters.

The examples including feedbacks in coupled human- natural-system models illustrate a number of
challenges in designing and implementing feedback mechanisms:

* The representation of human responses. The examples in the four cases above mostly relate to a

coupling based on exchanging land cover and ecological-process-impact information. The
human decision models translate the ecological impacts to alter decision making. For example,

land-use decisions in PLUM-LPJGUESS, iESM, and MedLanD respond to changes in potential
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yields; in the MedLanD application, erosion processes also render land less suitable for use. In
reality the responses of human decision-making are more complex. The relevance of the
ecological indicator exchanged may be context dependent, e.g., potential yields may determine
farming decisions in capital intensive farming that is near to the production frontier, but be much
less important in low-input subsistence farming that is far from potential productivity.
Furthermore, decision-making may not be based on the represented process or by the indicator
exchanged, but rather on the human perception of the environmental change, which may be
irrational and biased by other interests, such as in case of the climate debate. While the concept
of environmental cognitions is well known, relatively little is known in relation to land-use
change decision-making (Meyfroidt 2013). Human responses to environmental change are,
therefore, a critical knowledge gap for implementing coupling mechanisms (Meyfroidt 2013b).
Structural differences in model concepts. The iESM example illustrates how structural
differences in models can hamper the coupling of models, and how careful consideration is
needed of the feedback mechanism and its consequences in relation to the overall model
assumptions. This is especially relevant for coupling models that assume equilibrium and those
that depict instantaneous impacts or transient situations. Global economic models using
equilibrium assumptions, which are frequently coupled to land use and ecosystem models, and
specialized land-change models (or land-change modules in IAM models) both address land use,
but often from different perspectives leading to potential differences in the meaning and
interpretation of input and output variables.

Reconciling stochastic and deterministic approaches. Another factor complicating the
representation of feedback mechanisms is that some models are strongly deterministic (e.g.,

PLUM-LPJGUESS, GCAM-CESM (iESM), BIOME-BGC), so that the results are essentially the
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same for any run with the same initial parameters, while others have strong stochastic
components (e.g., DEED and MedLanD). The former is common for many natural-systems
models and some human-systems models (especially econometric style models). Other models
have algorithms that generate stochasticity to represent uncertainty in processes. Many agent-
based/individual-based models and some cellular automata fall into this category. For models
with included stochasticity, using the same random number generator seed can be used, however,
to capture the variance and distribution of model outcomes repeated runs with different seeds are
required, which can be conceptually challenging or operationally complicated when coupled with

deterministic models.

3.4 A Way Forward

The ability to dynamically simulate feedbacks between human decision-making and natural processes
requires some kind of tight coupling—in the sense of frequent, two-way communication and high
coordination (Figure 2) — between models designed to represent these different processes. To date, this
has largely been achieved through connecting models into a single modeling environment. This is true to
a large extent for all the case studies presented here. Adding new models to such systems often requires
significant reprogramming and makes the expanded code base increasingly difficult to debug, verify,
and validate. Additionally, any other researcher that would like to combine fewer, more, or different
components will need to reprogram multiple parts of the modeling environment to decouple one model
and add another.

To expedite coupling in future modeling of the land system, we recommend a bottom up

approach to modeling whereby modelers with in-depth domain knowledge create relatively small, more
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easily verified modules (Bell et al. 2015) or model components for assembly into a larger coupling
frameworks (e.g., OpenMI, ESMF, OMS, and CSDMS). Using this approach, the community may
preserve and build upon existing numerical code previously developed by the many subdisciplines
involved in modeling human and natural systems. These are not new ideas, but they have not yet been
achievable in spite of their recognized desirability. However, a suite of technologies has reached
sufficient maturity that it may now be a practical way to create a new generation of modeling tools that
can exploit these two avenues for modelling coupled human-natural systems.

New coordinating frameworks for next generation coupled modeling of human and Earth
systems are being developed within a number of relevant organizations: the Community Surface
Dynamics Modeling System (CSDMS), the Network for Computational Modeling in Social and
Ecological Sciences (CoMSES Net), and the Analysis, Integration, and Modeling of the Earth System
(AIMES) Core Project of Future Earth. These frameworks envision a set of community-developed and
endorsed standards for open, platform-independent, model coupling and integration based around an

interrelated set of components that build on Lessons 3,4, 5, and 6.

» Start with wrapper container software (e.g., Docker) to encapsulate model code and needed
dependencies.

* Use a standardized API, like extension of the Basic Modeling Interface (BMI) developed by the
CSDMS, to standardize and describe various functions (e.g., Model Control, Model Information,
Time, Variable Information, Variable Getters and Setters, and Model Grids) such that a calling
component in the framework is provided with the needed level of control to access other
component’s metadata and simulated data (Hutton et al., 2014).

* Incorporate Standard Names to map variables of multiple components to each other. In the



805 CSDMS framework the Standard Names functions as a semantic matching mechanism, a lingua
franca, for determining whether two variable names refer to the same quantity with associated
predefined units.

* Mitigate sunk-cost effects for integration into any one coupling framework by creating separate
interfaces to one or more coupling frameworks (Peckham et al., 2013, Lemmen et al., 2018).
810 * Adopt reproducible workflow environments to wire models together, supervise their execution

and manage storage of the intermediate and final results needed for subsequent analysis.

For these elements of a framework to be maintained, a community organization is required in an

open-source development environment. Models meeting these community standards would then be

815  certified in public code libraries like those maintained by CoMSES Net and CSDMS to indicate which
models could be coupled with any other certified model. Certification from a community organization
and buy-in from the modelling community would create an ecosystem of open, connectable models that
could be integrated into reproducible computational pipelines in standard ways for coupled human and
natural system models. The evolution of such an ecosystem is dependent on the commitment of

820  organizations representing modeling science to support and maintain a set of community standards and
to facilitate the education and adoption of those standards by the modelling community. An important
advantage of the proposed framework is that it does not require scientists to significantly change the way
they develop models or to commit to a particular language, platform, or operating system. The
combination of this development flexibility with committed standards and adoption assistance would

825  enhance the likelihood of reaching a critical mass of development that would greatly expedite not only
the development of coupled human and natural system models, but also increase the rate of scientific

discovery in this domain.
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4. CONCLUSIONS

Coupling human-system and natural-system models requires connecting distinct research fields, each
with unique knowledge, methods, assumptions, definitions, and language. Success depends on the
research team members learning enough about the other field and model to unambiguously
communicate with each other, recognize strengths and weaknesses of other methods, translate
assumptions and definitions, and critically evaluate other model processes and outputs. Additionally,
some team members need to develop working expertise of both models and fields to facilitate
implementation of an internally-consistent coupled model. Furthermore, a software engineer is often
needed to address the technical challenges of coupling complex models. Ultimately, the social and
conceptual challenges combine to require much more time and effort for successful completion than for
similar, mono-disciplinary projects. Nonetheless, all authors noted that the greatest benefit of the
coupling process was the collaborative learning process that created a group of people with working
knowledge of both human- and natural-system research and expertise in how to integrate the two.

While successful coupling of human and natural-systems models requires truly interdisciplinary
collaboration, we note that the playing field is not level with respect to disciplines. There are more
resources and active modeling efforts in the natural sciences than in human systems science. This is
unfortunate since natural scientists need to closely work with human systems scientists to understand the
kinds of information needed and the kinds of information that can be provided by models of human
systems. Moreover, the most scientifically and socially valuable results of model coupling require that
both natural-systems models and human systems models be modified and enhanced to work together.

The collaborative model development that this entails involves social interactions, two-way
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communication, and mutual respect for domain knowledge as well as technical solutions. In this regard,
there needs to be scientific, professional, and policy incentives for all members of the interdisciplinary
teams needed to develop successful integrated modeling.

These efforts highlight the difficulty and challenges associated with the process of human-
environment model coupling as well as the opportunities that coupling presents for making substantive
and methodological advances in science associated with human systems, natural systems, and their

feedbacks with each other.

5. ACKNOWLEDGEMENTS

This research has been made possible for the authors from a variety of supporting institutions, which we
thank and acknowledge in what follows. DR was supported by the Natural Sciences and Engineering
Council (NSERC) of Canada as part of their Discovery Grant program. AD was supported by the U.S.
Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate
and Environmental Sciences Division, Integrated Assessment Program, under Award Number DE-
ACO02-05CHI11231. PA, TP, and MR were supported by the Future Earth AIMES project, CSDMS and
the European Commission LUC4C project. AA, TP, SR, and MR also acknowledge LUC4C (grant no.
603542) and the Helmholtz association through its ATMO programme and its Integration and
Networking fund. CMB and IU were supported by the US National Science Foundation (grants BCS-
410269, DEB-1313727, and GEO-909394), and support from Arizona State University and the
Universitat de Valéncia, Spain. Many other people in Jordan, Spain, and the US contributed in various

ways to the MedLanD project and we want to extend our thanks to them also. AK and JS were supported



875

880

885

890

895

900

905

910

915

by the CSDMS project, funded by The US National Science Foundation (grant 0621695). CL was
supported by the MOSSCO project funded by the German Ministry of Education and Science (BMBF)
under grant agreements 03F0667A. BO contribution was based upon work supported by the National
Science Foundation under Grant Number AGS-1243095. PV was supported by European Union’s
Seventh Framework Programme ERC Grant Agreement nr. 311819 — GLOLAND.

6. REFERENCES

Bai, X, van der Leeuw, S, O’Brien, K, Berkhout, F, Biermann, F, Broadgate, W, Brondizio, E,
Cudennec, C, Dearing, J, Duraiappah, A, Glaser, M, Steffen, W, Syvitski, JP, 2015, Plausible and
Desirable Futures in the Anthropocene, Global Environmental Change, 39: 351-362

Bankes, S.C., Lempert, R., Popper, S., 2002. Making Computational Social Science Effective:
Epistemology, Methodology, and Technology. Social Science Computer Review 20, 377-388.

Banning, E.B., 2010. Houses, households, and changing society in the Late Neolithic and Chalcolithic of
the Southern Levant. Paleorient 36, 46—87.

Barton CM, Ullah II, Mayer GR, et al (2015) MedLanD Modeling Laboratory v.1. COMSES
Computational Model Library. https://www.openabm.org/model/4609/version/1

Barton, C.M., Ullah, I., Heimsath, A., 2015b. How to Make a Barranco: Modeling Erosion and Land
Use in Mediterranean Landscapes. Land 4, 578—606. doi:10.3390/1and4030578

Barton, C.M., Ullah, I.I.T., Bergin, S.M., Mitasova, H., Sarjoughian, H., 2012. Looking for the future in
the past: long-term change in socioecological systems. Ecological Modelling 241, 42-53.
doi:10.1016/j.ecolmodel.2012.02.010

Barton, C.M., Ullah, I.I.T., Bergin, S.M., Sarjoughian, H.S., Mayer, G.R., Bernabeu-Auban, J.E.,
Heimsath, A.M., Acevedo, M.F., Riel-Salvatore, J.G., Arrowsmith, Jr., 2016. Experimental
socioecology: Integrative science for Anthropocene landscape dynamics. Anthropocene 13, 34-45.
doi:10.1016/j.ancene.2015.12.004

Barton, C.M., Ullah, L.I.T., Mitasova, H., 2010. Computational modeling and Neolithic socioecological
dynamics: a case study from southwest Asia. American Antiquity 75, 364-386.

Bonan, G. B., 1996: A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and
Atmospheric Studies: Technical Description and User's Guide. NCAR Technical Note NCAR/TN-
417+STR, doi:10.5065/D6DF6P5X.

Bond-Lamberty, B., Calvin, K., Jones, A. D., Mao, J., Patel, P., Shi, X., Thomson, A., Thornton, P., and
Zhou, Y., 2014. Coupling earth system and integrated assessment models: the problem of steady
state, Geoscientific Model Development Discuss, 7, 1499-1524, doi: 10.5194/gmdd-7-1499-2014.

Bonet, A., 2004. Secondary succession of semi-arid Mediterranean old-fields in south-eastern Spain:
insights for conservation and restoration of degraded lands, Journal of Arid Environments, 56(2),
213-233, d0i:10.1016/S0140-1963(03)00048-X.

Bonet, A. and Pausas, J. G., 2007. Old Field Dynamics on the Dry Side of the Mediterranean Basin:
Patterns and Processes in Semiarid Southeast Spain, Old Fields: Dynamics and Restoration of
Abandoned Farmland, 247.

Brown, D.G., Page, S.E., Riolo, R., and W. Rand 2004. Agent-based and analytical modeling to evaluate
the effectiveness of greenbelts. Environmental Modelling and Software, 19(12): 1097-1109.

Brown, D.G., and D.T. Robinson, 2006. Effects of heterogeneity in residential preferences on an agent-




920

925

930

935

940

945

950

955

960

based model of wurban sprawl, Ecology and Society, 11(1): 46. [online] URL:
http://www .ecologyandsociety.org/voll1/iss1/art46/

Brown, D.G., D.T. Robinson, L. An, J.I. Nassauer, M. Zellner, W. Rand, R. Riolo, S .E. Page, B. Low,
and Z. Wang, 2008. Exurbia from the bottom-up: Confronting empirical challenges to characterizing
a complex system, Geoforum, 39:805 — 818.

Collins, W. D., Craig, A.P., Truesdale, J.E., Di Vittorio, A.V., Jones, A.D., Bond-Lamberty, B., Calvin,
K.V., Edmonds, J.A., Kim, S.H., Thomson, A.M., Patel, P., Zhou, Y., Mao, J., Shi, X., Thornton,
P.E., Chini, L.P., and Hurtt, G.C., 2015. The integrated Earth System Model version 1: formulation
and functionality. Geosci. Model Dev. 8,2203-2219, doi:10.5194/gmd-8-2203-2015.

Coops, N.C., and R.H. Waring, 2001. The use of multiscale remote sensing imagery to derive regional
estimates of forest growth capacity using 3-PGS. Remote Sensing of Environment, 75: 324-334.

Currie, W.S., Kiger, S., Nassauer, J.I., Hutchins, M., Marshall, L.L., Brown, D.G., Riolo,R.L.,
Robinson, D.T., and S. Hart, 2016. Human-dominated residential land in southeastern Michigan
stores carbon similar to secondary forests. Ecological Applications, 26(5), 1421-1436.

David, C.H., Y. Gil, C. Duffy, S.D. Peckham and S K. Venayagamoorthy (2016) An introduction to the
Earth and Space Science, special issue: "Geoscience Papers of the Future", American Geophysical
Union, 1-4, http://dx.doi.org/10.1002/2016EA000201

Davis, P.K., Anderson, R.H., 2004. Improving the Composability of DoD Models and Simulations. The
Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 1, 5-17.
doi:10.1177/154851290400100101

Deadman, P. J., Robinson, D.T., Moran, E., and E. Brondizio, 2004. Colonist household decision-
making and land-use change in the Amazon Rainforest: an agent-based simulation. Environment and
Planning B: Planning and Design (31)5: 693 — 709.

Diaz, S., & Cabido, M., 1997. Plant functional types and ecosystem function in relation to global
change. Journal of vegetation science, 463-474.

Di Vittorio, A.V, Chini, L.P., Bond-Lamberty, B., Mao, J., Shi, X., Truesdale, J., Craig, A., Calvin, K.,
Jones, A., Collins, W.D., Edmonds, J., Hurtt, G.C., Thornton, P., Thomson, A., 2014. From land use
to land cover: Restoring the afforestation signal in a coupled integrated assessment — earth system
model and the implications for CMIP5 RCP simulations, Biogeosciences, 11:6435-6450.

Di Vittorio, A.V., Kyle, P., Collins, W.D., 2016. What are the effects of Agro-Ecological Zones and
land use region boundaries on land resource projection using the Global Change Assessment
Model?, Environmental Modelling and Software, 85:246-265.

Donges, J.F., Heitzig, J., Barfuss, W., Kassel, J.A., Kittel, T., Kolb, J.J., Kolster, T., Miiller-Hansen, F.,
Otto, I.M., Wiedermann, M., Zimmerer, K.B.,and Lucht, W., 2018. Earth system modelling with
complex dynamic human societies: the copan: CORE World-Earth modeling framework. Earth
System Dynamics, http://doi.org/10.5194/esd-2017-126.

Dorninger, C., Abson, D, Fischer, J, and von Wehrden, H., 2017. Assessing sustainable biophysical
human-nature connectedness at regional scales. Environmental Research Letters, 12(5), 055001.

Dunlap, R., Rugaber, S., and L. Mark, 2013. A feature model of coupling technologies for Earth System
Models. Computers and Geosciences, 53, 13-20.

Eaton, B., Gregory, J., Centre, H., Office, U.K.M., Drach, B., Taylor, K., Hankin, S., Caron, J., Signell,
R.,2011. NetCDF Climate and Forecast (CF) Metadata Conventions, CF Conventions.

Ellis, E. C.: Ecology in an anthropogenic biosphere, Ecological Monographs, 85(3), 287-331,
doi:10.1890/14-2274.1, 2015.

Engstrom K, Rounsevell MDA, Murray-Rust D et al. (2016a) Applying Occam’s Razor to global
agricultural land use change. Environmental Modelling & Software,75,212-229.



965

970

975

980

985

990

995

1000

1005

Engstrom, K., S. Olin, M. D. A. Rounsevell, S. Brogaard, D. P. van Vuuren, P. Alexander, D. Murray-
Rust, and A. Arneth (2016b), Assessing uncertainties in global cropland futures using a conditional
probabilistic modelling framework, Earth System Dynamics, 7,893-915, doi:10.5194/esd-2016-7.

Evans, T., D.T. Robinson, and M. Schmitt-Harsh, 2013. Limitations, challenges, and solutions to
integrating carbon dynamics with land-use models. Brown, D.G., Robinson, D.T., French, N.-H.F.,
and B.C. Reed (eds), in Land use and the carbon cycle: Advances in Integrated Science,
Management, and Policy. Cambridge University Press. pp 178-208.

Flannery, K.V., 1993. Will the real model please stand up: comments on Saidel’s “Round house or
square.” Journal of Mediterranean Archaeology 6, 109—-117.

Gholami, S., Sarjoughian, H.S., Godding, G.W., Peters, D.R., Chang, V., 2014. Developing composed
simulation and optimization models using actual supply-demand network datasets, in: Simulation
Conference (WSC), 2014 Winter. Presented at the Simulation Conference (WSC), 2014 Winter, pp.
2510-2521. doi:10.1109/WSC.2014.7020095

Harrison, P.A., Dunford, R., Holman, I.P. & Rounsevell, M.D.A. (2016). Climate change impact
modelling needs to include cross-sectoral interactions. Nature Climate Change, 6(9), 885,
DOI10.1038/nclimate3039

Hickler, T., Smith, B., Sykes, M.T., Davis, M.B., Walker, K., Sugita, S., 2004. Using a Generalized
Vegetation Model to Simulate Vegetation Dynamics in Northeastern USA. Ecology 85, 519-530.

Huntingford, C., Booth, B.B.B., Sitch, S., Gedney, N., Lowe, J. a., Liddicoat, S K., Mercado, L.M.,
Best, M.J., Weedon, G.P., Fisher, R. a., Lomas, M.R., Good, P., Zelazowski, P., Everitt, a. C.,
Spessa, a.C., Jones, C.D., 2010. IMOGEN: an intermediate complexity model to evaluate terrestrial
impacts of a changing climate. Geosci. Model Dev. 3, 679-687. doi:10.5194/gmd-3-679-2010

Hurrell, J. W., Holland. M.M., Gent, P.R., Ghan, S., Kay, J.E., Kushner, P.J., Lamarque, J.-F., Large,
W.G., Lawrence, D., Lindsay, K., Lipscomb, W.H., Long, M.C., Mahowald, N., Marsh, D.R., Neale,
R.B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W.D., Hack, J.J., J. Kiehl, J., and
Marshall, S., 2013. The Community Earth System Model: A Framework for Collaborative Research.
Bulletin of the American Meteorological Society 94, 1339-1360, doi:10.1175/BAMS-D-12-00121.1.

Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., Fisk, J. P., Hibbard, K.,
Houghton, R. A., Janetos, A., Jones, C. D., Kindermann, G., Kinoshita, T., Klein Goldewijk, K.,
Riahi, K., Shevliakova, E., Smith, S., Stehfest, E., Thomson, A., Thornton, P., Vuuren, D. P., and
Wang, Y. P., 2011. Harmonization of land-use scenarios for the period 1500-2100: 600 years of
global gridded annual land-use transitions, wood harvest, and resulting secondary lands, Clim.
Change, 109, 117-161, 10.1007/s10584-011-0153-2.

Jockel, P., Sander, R., Kerkweg, A., Tost, H., Lelieveld, J., 2005. Technical Note: The Modular Earth
Submodel System (MESSy) - a new approach towards Earth System Modeling. Atmos. Chem. Phys.
5,433-444. doi:10.5194/acp-5-433-2005

Kerkweg, A., Jockel, P.: The 1-way on-line coupled atmospheric chemistry model system MECO(n)
Part 1: Description of the limited-area atmospheric chemistry model COSMO/MESSy, Geoscientific
Model Development, 5, 87-110, doi:10.5194/gmd-5- 87-2012, 2012.

Kohler, T.A., van der Leeuw, S.E., 2007. Historical Socionatural Systems and Models, in: The Model-
Based Archaeology of Socionatural Systems. School for Advanced Research Press, Santa Fe, NM,
pp. 1-12.

Kucharik, C.L., Foley, J.A., Delire, C., Fisher, V.A., Coe, M.T., Lenters, J.D., Young-Molling, C., and
N. Ramankutty, 2000. Testing the performance of a Dynamic Global Ecosystem Model: Water
balance, carbon balance, and vegetation structure.



1010

1015

1020

1025

1030

1035

1040

1045

1050

Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence, P. J.,
Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan, G. B., and Slater, A. G., 2011.
Parameterization improvements and functional and structural advances in version 4 of the
community land model, Journal of Advances in Modeling Earth Systems, 3, MO03001,
10.1029/2011ms000045.

Lawrence, P. J., Feddema, J. J., Bonan, G. B., Meehl, G. A., O’Neill, B. C., Oleson, K. W_, Levis, S.,
Lawrence, D. M., Kluzek, E., Lindsay, K., and Thornton, P. E., 2012. Simulating the
biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the
community climate system model (ccsm4) from 1850 to 2100, J. Clim., 25, 3071-3095, 10.1175/jcli-
d-11-00256.1.

Lemmen, C., Hofmeister, R., Klingbeil, K., Nasermoaddeli, M. H., Kerimoglu, O., Burchard, H.,
Kosters, F., and Wirtz, K. W., 2017. Modular System for Shelves and Coasts (MOSSCO v1.0) — a
flexible and multi-component framework for coupled coastal ocean ecosystem modelling, Geosci.
Model Dev., 11,915-935, 2018 https://doi.org/10.5194/gmd-11-915-2018

Lindeskog, M., Arneth, A., Bondeau, A., Waha, K., Seaquist, J., Olin, S., Smith, B., 2013. Implications
of accounting for land use in simulations of ecosystem carbon cycling in Africa. Earth Syst. Dyn. 4,
385-407. doi:10.5194/esd-4-385-2013

Liu, J., Dietz, T., Carpenter, S.R., Alberti, M., Folke, C., Moran, E., Pell, AN., Deadman, P., Kratz, T.,

Lubchenco, J., Ostrom, E., Ouyang, Z., Provencher, W., Redman, C.L., Schneider, S.H. and Taylor,
W.W., 2007. Complexity of coupled human and natural systems. Science, 317.

Liu, J., Mooney, H., Hull, V., Davis, S.J., Gaskell, J., Hertel, T., Lubchenco, J., Seto, K. C., Gleick, P.,
Kremen, C. and Li, S.: Systems integration for global sustainability, Science, 347(6225), 1258832—
1258832, doi:10.1126/science.1258832,2015.

Luus, N., Robinson, D.T. and P.J. Deadman, 2013 Representing ecological processes in agent-
based models of land use and cover change. Land Use Science, 8(2): 175-198.

Manson, S.M., 2005. Agent Based Modelling and Genetic Programming for Modelling Land Change in
the Southern Yucatan Peninsular Region of Mexico. Agri., Ecosys. and Env., 111: 47-62.

Matthews, R., 2006. The People and Landscape Model (PALM): Towards full integration of human
decision-making and biophysical simulation models. Ecological Modelling, 194: 329-343.

Mayer, G.R., Sarjoughian, H.S., 2009. Composable Cellular Automata. SIMULATION 85, 735-749.
doi:10.1177/0037549709106341

Milesi, C., Running, S.W., Elvidge, C.D., Dietz, J.B., Tuttle, B.T., Nemani, R.R., 2005. Mapping and
modelling the biogeochemical cycling of turfgrasses in the United States. Environmental
Management 36 (3), 426-438.

Meyfroidt, P., 2013. Environmental Cognitions, Land Change, and Social-Ecological Feedbacks: An
Overview. Journal of Land Use Science, 8(3): 341-367.

Meyfroidt, P., 2013b. Environmental Cognitions, Land Change and Social-Ecological Feedbacks: Local
Case Studies of Forest Transition in Vietnam. Human Ecology , 41 (3): 367-392. DOI :
10.1007/s10745-012-9560-x

Miller, J.H., Page, S .E., 2007. Complex adaptive systems: an introduction to computational models of
social life. Princeton University Press, Princeton, N.J.

Mitasova, H., Barton, C.M., Ullah, [.I.T., Hofierka, J., Harmon, R.S., 2013. GIS-based soil erosion
modeling, in: Shroder, J., Bishop, M. (Eds.), Treatise in Geomorphology: Vol. 3 Remote Sensing
and GI Science in Geomorphology. Academic Press, San Diego, CA, pp. 228-258.

Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. (2011). Soil and Water Assessment Tool



1055

1060

1065

1070

1075

1080

1085

1090

1095

Theoretical Documentation Version 2009. Texas Water Resources Institute. Available electronically
from http : / /hdl .handle .net /1969 .1 /128050.

Neteler, M., Bowman, M. H., Landa, M. and Metz, M.: GRASS GIS: A multi-purpose open source GIS,
Environmental Modelling & Software, 31, 124—130, doi:10.1016/j.envsoft.2011.11.014, 2012.

NRC (National Research Council) 2013. Advancing land change modeling: opportunities and research
equirements. National Academies Press, Washington, D.C., USA, pp. 146.

Olin, S., Lindeskog, M., Pugh, T.A.M., Schurgers, G., Warlind, D., Mishurov, M., Zaehle, S., Stocker,
B.D., Smith, B., A, A., 2015. Soil carbon management in large-scale Earth system modelling :
implications for crop yields and nitrogen. Earth Syst. Dyn. 6, 745-768. doi:10.5194/esd-6-745-2015

Parton, W.J., D.S. Schimel, C.V. Cole, and D.S. Ojima. 1987. Analysis of factors controlling soil
organic matter levels in Great Plains grasslands. Soil Sci. Society of America Journal, 51: 1173-
1179.

Peckham, S.D., Hutton, E.W.H., and Norris, B., 2013. A component-based approach to integrated
modeling in the geosciences: The design of CSDMS. Computers & Geosciences, 53, 3-12. Doi:
10.1016/j.cageo.2012.04.002

Peters,W., Jacobson, A R., Sweeney, C., Andrews, A E., Conway, T.J., Masarie, K., Miller, J.B.,

Bruhwiler, L.M.P., Petron, G., Hirsch, AI., Worthy, D.E., van der Werf, G.R., Randerson,
J.T.,.Wennberg, P.O., Krol, M.C., Tans, P.P., 2007. An atmospheric perspective on North American
carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. 104, 18925-18930.

Pugh, T.AM., Arneth, A., Olin, S., Ahlstrom, A., Bayer, A.D., Goldewijk, K K., Lindeskog, M.,
Schurgers, G., 2015. Simulated carbon emissions from land-use change are substantially enhanced
by accounting for agricultural management. Environ. Res. Lett. 10, 124008. doi:10.1088/1748-
9326/10/12/124008

R Core Team (2013). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. http://www R-project.org/.

Rabin, S., Alexander, P., Anthoni, P., Henry, R., Huntingford, C., Pugh, T.A.M., Rounsevell, M., and A.
Arneth. 2017. Projecting optimal land-use and management strategies under population growth and
climate change using a coupled ecosystem & land use model framework. Presented at the
General Assembly of the European Geosciences Union, Vienna, Austria.

Robinson. D.T., Brown, D.G., and W.S. Currie, 2009. Modelling carbon storage in highly fragmented
and human dominated landscapes: linking land-cover patterns and ecosystem models. Ecological
Modelling 220: 1325-1338.

Robinson, D.T., 2012. Land-cover fragmentation and configuration of ownership parcels in an exurban
landscape. Urban Ecosystems. 15: 53-69. DOI: 10.1007/s11252-011-0205-4

Robinson, D.T., Shipeng, S., Hutchins, M., Riolo, R.L., Brown, D.G., Parker, D.C., Currie, W.S.,
Filatova, T., and S. Kiger, 2013. Effects of land markets and land management on ecosystem
function: A framework for modelling exurban land-changes. Environmental Modelling and
Software, 45: 129-140. DOI: 10.1016/j.envsoft.2012.06.016

Rounsevell, M., Robinson, D.T. and D. Murray-Rust, 2012. From actors to agents in socio-ecological
systems models. Philosophical Transactions of the Royal Society B 367: 259-269.

Rounsevell, M.D.A., Arneth, A., Alexander, P., Brown, D.G., de Noblet-Ducoudré, N., Ellis, E.,
Finnigan, J., Galvin, K., Grigg, N., Harman, 1., Lennox, J., Magliocca, N., Parker, D., O’Neill, B.C.,
Verburg, P.H., Young, O., 2014. Towards decision-based global land use models for improved
understanding of the Earth system. Earth Syst. Dyn. 5, 117-137. doi:10.5194/esd-5-117-2014

Running, S.W., and R.E. Hunt, 1993. Generalization of a forest ecosystem process model for other
biomes, BIOME-BGC, and an application for global-scale models. In: Ehleringer, J.R., Field, C.B.




L100

L105

L110

L115

1120

L1125

L130

135

1140

(Eds.), Scaling Physiological Processes: Leaf to Globe. Academic Press Inc., pp. 141-158.

Sarjoughian, H.S., 2006. Model Composability, in: Winter Simulation Conference , Monterey, CA 2006.
Presented at the Winter Simulation Conference , Monterey, CA 2006, ACM Digital Library, pp. 149—
158.

Sarjoughian, H.S., Meyer, G.R., Ullah, L.I., Barton, C.M., 2015. Managing Hybrid Model Composition
Complexity: Human—-Environment Simulation Models, in: Yilmaz, L. (Ed.), Concepts and
Methodologies for Modeling and Simulation, Simulation Foundations, Methods and Applications.
Springer International Publishing, pp. 107-134.

Sarjoughian, H., Smith, J., Godding, G., Mugsith, M., 2013. Model composability and execution across
simulation, optimization, and forecast models, in: Proceedings of the Symposium on Theory of
Modeling & Simulation-DEVS Integrative M&S Symposium. Society for Computer Simulation
International, p. 30.

Schneider, S.H., Dickinson, R.E., 1974. Climate modeling. Rev. Geophys. 12, 447.
doi:10.1029/RG012i003p00447

Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J.O., Levis, S.,

Lucht, W., Sykes, M.T., Thonicke, K., and S. Venevsky, 2003. Evaluation of ecosystem dynamics,
plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global
Change Biology: 9, 161-185.

Smith, T.M., Shugart, H.H., Woodward, F.I. and Burton, P.J., 1993. Plant functional types. In
Vegetation Dynamics & Global Change (pp. 272-292). Springer US.

Smith, T.M., Shugart, H.H., Woodward, F.I., 1997. Plant functional types: their relevance to ecosystem
properties and global change (Vol. 1). Cambridge University Press.

Smith, B., I. C. Prentice, and M. T. Sykes (2001), Representation of vegetation dynamics in the
modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate
space, Global Ecology & Biogeography, 10, 621-637.

Smith, B., Warlind, D., Arneth, a., Hickler, T., Leadley, P., Siltberg, J., Zaehle, S., 2014. Implications
of incorporating N cycling and N limitations on primary production in an individual-based dynamic
vegetation model. Biogeosciences 11, 2027-2054. doi:10.5194/bg-11-2027-2014

Soto-Berelov, M., 2011. Vegetation Modeling of Holocene Landscapes in the Southern Levant (doctoral
disseration). Arizona State University, Tempe, AZ.

Sun, S., Parker, D.C., Huang, Q., Filatova, T., Robinson, D.T., Riolo, R.L., Hutchins, M.D., and D.G.
Brown, 2014. Market Impacts on Land Use Change: An Agent-Based Modeling Experiment. Annals
of the Association of American Geographers, 104(3): 460-484.

Syvitski, JPM, Peckham, S.P., David, O., Goodall, J.L., Delucca, C., Theurich, G. 2013.
Cyberinfrastructure and Community Environmental Modeling. In: Handbook in Environmental
Fluid Dynamics, Editor: HJ.S. Fernando, CRC Press/Taylor & Francis Group, LLC. ISBN: 978-1-
4665-5601-0. Chapter 28: 399-410.

Syvitski, JPM, Hutton, EWH, MD Piper, I Overeem, AJ Kettner, SD Peckham, 2014, Plug and Play
Component Modeling — The CSDMS2.0 Approach. International Environmental Modelling and
Software Society (1IEMSs) 7th Intl. Congress on Env. Modelling and Software, San Diego, CA, USA,
Daniel P. Ames, Nigel W.T. Quinn and Andrea E. Rizzoli (Eds.)
http://www .iemss.org/society/index.php/iemss-2014-proceedings

Taylor, K. E., Stouffer, R. J., and Meehl, G. A., 2012. An overview of cmip5 and the experiment design,
Bulletin of the American Meteorological Society, 93, 485-498, 10.1175/bams-d-11-00094.1.

Theobald D.M., 2005. Landscape patterns of exurban growth in the USA from 1980 to 2020. Ecology
and Society, 10:32.



1145

L150

L155

160

L165

L170

L175

180

185

Theurich, G., DeLuca, C., Campbell, T., et al.: The Earth System Prediction Suite: Toward a
Coordinated U.S. Modeling Capability, B. Am. Meteorol. Soc., 97, 1229-1247,
https://doi.org/10.1175/BAMS-D-14-00164.1, 2016.

Thornton, P.E., Calvin, K., Jones, A.D., Di Vittorio, A.V., Bond-Lamberty, B., Chini, L., Shi, X., Mao,
J., Collins, W.D., Edmonds, J., Thomson, A., Truesdale, J., Craig, A., Branstetter, M.L., Hurtt, G.,
2017. Biospheric feedback effects in a synchronously coupled model of Earth and human systems,
Nature Climate Change. Doi: 10.1038/NCLIMATE3310.

Turner II, B.L., Lambin, E.F., and A. Reenberg, 2007. The emergence of land change science for global
environmental change and sustainability. Proc. of the Nat. Academy of Sci., 104(52): 20666-20671.

Ullah, I.I.T., 2017. The Consequences of Human land-use Strategies During the PPNB-LN Transition: A
Simulation Modeling Approach. Arizona State University Anthropological Research Papers.
Arizona Board of Regents, Tempe, Arizona.

van der Leeuw, S.E., 2004. Why model? Cybernetics and Systems: An International Journal 35, 117—-
128. doi:10.1080/01969720490426803

van Vuuren DP, Carter TR (2014) Climate and socio-economic scenarios for climate change research
and assessment: Reconciling the new with the old. Climatic Change, 122, 415-429.

Verburg PH. 2006. Simulating feedback in land use and land cover change models. Landscape Ecology
21(8): 1171-1183.

Verburg, P.H., Dearing, J.A., Dyke, J.G., van der Leeuw, S.E., Seitzinger, S., Steffen, W., Syvitski, J.P.,
2016. Methods and Approaches to Modelling the Anthropocene. Global Environmental Change,
39:328-340. https://doi.org/10.1016/j.gloenvcha.2015.08.007

Voinov, A.A., Hood, R.R., Peckham, S.D., Sherwood, C.R, and Syvitski, J.P.M., 2010. A community
Approach to Earth Systems Modeling. Eos, 91(13), 117-124.

Waters, CN, J Zalasiewicz, C Summerhayes, AD Barnosky, C Poirier, A Gatuszka, I Hajdas, A
Cearreta, M Edgeworth, E Ellis, MA Ellis, C Jeandel, R Leinfelder, JR McNeill, DB Richter, W
Steffen, J Syvitski, D Vidas, M Wagreich, M Williams, A Zhisheng, J Grinevald, E Odada, and N
Oreskes. 2016, The Anthropocene is functionally and stratigraphically distinct from the Holocene.
Science 351(6269)

White, A.M., Thornton, P.E., Runnin, S.W., Nemani, R.R., 2000. Parameterization and sensitivity
analysis of the BIOME-BGC terrestrial ecosystem model: net primary production controls. Earth
Interactions 4 (3), 1-85.

Wise, M., Calvin, K., Kyle, P., Luckow, P., Edmonds, J., 2014. Economic and physical modeling of land
ause in GCAM 3.0 and an application to agricultural productivity, land, and terrestrial carbon.
Climate Change Economics 05, 1450003, doi:10.1142/S2010007814500031.

Yadav, V., Del Grosso, S.J., Parton, W.J., and G.P. Malanson, 2008. Adding ecosystem function to
agent-based land use models. Land Use Science 3, 27-40.

Zalasiewicz, J, CN Waters, AD Barnosky, A Cearreta, M Edgeworth, EC Ellis, A Gatuszka, PL
Gibbard, J Grinevald, I Hajdas, J Ivar do Sul, C Jeandel, R Leinfelder, JR McNeill, C Poirier, A
Revkin, D de B Richter, W Steffen, C Summerhayes, JPM Syvitski, D Vidas, M Wagreich, M
Williams and AP Wolfe, 2015, Colonization of the Americas, ‘Little Ice Age’ climate, and bomb
produced carbon: Their role in defining the Anthropocene, The Anthropocene Review 2(2): 117—
127.



