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ABSTRACT 

 

The unprecedented use of Earth’s resources by humans, in combination with increasing natural 

variability in natural processes over the past century, is affecting evolution of the Earth system. To better 35 

understand natural processes and their potential future trajectories requires improved integration with 

and quantification of human processes. Similarly, to mitigate risk and facilitate socio-economic 

development requires a better understanding of how the natural system (e.g., climate variability and 

change, extreme weather events, and processes affecting soil fertility) affects human processes. Our 

understanding of these interactions and feedback between human and natural systems has been 40 

formalized through a variety of modelling approaches. However, a common conceptual framework or 

set of guidelines to model human-natural systems feedbacks is lacking. The presented research lays out a 

conceptual framework that includes representing model-coupling configuration in combination with the 

frequency of interaction and coordination of communication between coupled models. Four different 

approaches used to couple representations of the human and natural system are presented in relation to 45 

this framework, which vary in the processes represented and in the scale of their application. From the 

development and experience associated with the four models of coupled human-natural systems, the 

following eight lessons were identified that if taken into account by future coupled human-natural 

systems model developments may increase their success: 1) leverage the power of sensitivity analysis 

with models, 2) remember modelling is an iterative process, 3) create a common language, 4) make code 50 

open-access, 5) ensure consistency, 6) reconcile spatio-temporal mismatch, 7) construct homogeneous 

units and 8) incorporate feedback increases non-linearity and variability. Following a discussion of 

feedbacks, a way forward to expedite model coupling and increase the longevity and interoperability of 

models is given, which suggests the use of a wrapper container software, a standardized applications 

programming interface (API), the incorporation of standard names, mitigate sunk costs by creating 55 

interfaces to multiple coupling frameworks, and adoption of reproducible workflow environments to 

wire the pieces together. 
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1. INTRODUCTION 

 

Models designed to improve our understanding of human-environment interactions simulate 

interdependent processes that link human activities and natural processes, but usually with a focus on the 

human or natural system. When simulating the land system, such models tend to incorporate either 65 

detailed decision-making algorithms with simplified ecosystem responses (e.g., land-use models) or 

simple mechanisms to drive land-cover patterns that affect detailed environmental processes (e.g., 

ecosystem models). These one-sided approaches are prone to generating biased results, which can be 

improved by capturing the feedbacks between human and natural processes (Verburg 2006, Evans et al., 

2013; Rounsevell et al., 2014). Hence, improving our understanding of the interdependent dynamics of 70 

natural systems and land change through modelling remains a key opportunity and important challenge 

for Earth systems research (NRC 2013). 

Land use describes how humans use the land and the activities that take place at a location (e.g., 

agricultural or forest production), whereas land-cover change describes the transition of the physical 

surface cover (e.g., crop or forest cover) at a location. These distinct concepts are inextricably linked, 75 

and modellers sometimes conflate them or, when represented separately, fail to link them. Because of 

the tradition of division between human and natural sciences (Liu et al., 2007), land-change science and 

social science have focused on how socioeconomic drivers interact with environmental variability to 

affect new quantities and patterns of land use (Turner II et al. 2007) while natural science has focused on 

modelling natural-system responses to prescribed land-cover changes (e.g., Lawrence et al., 2012).  80 



	
  

An important limitation of most natural system models1 is that the impacts of human action are 

represented through changes in land cover that rarely involve mechanistic descriptions of the human 

decision processes driving them. These models are typically applied at coarse resolutions and ignore the 

influence of critical land management activities on natural processes and micro-to-regional climate 

associated with fine-resolution factors such as landscape configuration (e.g., Running and Hunt 1993; 85 

Smith et al. 2001, 2014; Robinson et al. 2009), fragmentation and edge effects (e.g., Parton et al. 1987; 

Lawrence et al. 2011), and horizontal energy transfers (e.g., Coops and Waring 2001). The 

consequences of excluding these factors on the representation of natural processes can be significant 

because they aggregate to affect global processes. 

Conversely, efforts to model and represent changes in how land is used by humans (i.e., land-use 90 

change models, LUCMs) have been developed to understand how human processes impact the 

environment, but in ways that often over-simplify the representation of natural processes (Evans et al. 

2013). While such models vary in their level of process detail, they usually include some representation 

of the economic and social interactions associated with alternative land-use types. Over the past 5-10 

years, the representation of natural systems has been improved in LUCMs by systematically increasing 95 

the complexity of natural processes represented from inventory approaches to rule-based approaches 

(e.g., Manson 2005), statistical models (e.g., Deadman et al. 2004), dynamic linking to ecosystem 

models (e.g., Matthews 2006, Yadav et al. 2008, Luus et al. 2013), or coupling of integrated assessment 

                                                
1	
   	
  Natural system model is used as an overarching term for Earth system, land surface, ecosystem, 
and more specific models of natural processes (e.g., erosion). We use the following nomenclature: a) 
Earth System models couple land and ocean biogeochemistry to atmospheric processes, and represent 
surface-atmosphere interactions, such that CO2 respiration (and other processes) affects the atmospheric 
CO2 concentration, which in turn affects vegetation growth; b) ecosystem models integrate 
biogeochemistry, biophysical processes (e.g., latent and sensible heat fluxes), and vegetation structure to 
simulate dynamic terrestrial vegetation growth (Kucharik et al. 2000); and c) land surface models 
represent heat and moisture fluxes between the land surface and atmosphere and can include vegetation 
properties using anything from simple parameters (e.g., Bonan 1996) to detailed ecosystem models.	
  



	
  

models and Earth-system models (e.g., Collins et al., 2015). Even with the impetus to better understand 

human-environment interactions through model coupling, land-use science and the natural sciences have 100 

historically been separate fields of scientific inquiry (Liu et al. 2007) that foster domain specific 

methods and research questions. Novel integrative modelling methods are being developed to create 

technical frameworks for, and intersecting applications between, these two communities (e.g., Theurich 

et al. 2016, Lemmen et al. 2018, Peckham et al. 2013, Robinson et al. 2013, Collins et al. 2015, Barton 

et al. 2016, Donges et al. 2018) that offer insight and an initial benchmark for identifying methods for 105 

improvement.  

The promise of greater integration between our representations of human and natural processes lies 

partly in the spatially distributed representations of land use, land cover, vegetation, climate, and 

hydrologic features. Models in land-change and natural sciences tend to contain a description of the land 

surface (often gridded) and, while the representations of these systems may differ in their level of detail, 110 

they are often complementary, thus facilitating a more complete representation and understanding of 

land-surface change through integration. The coupling of land-change and natural-system models 

promises a new approach to characterizing and understanding humans as a driving force for Earth-

system processes through the linked understanding of land use and land cover as an integrated land 

system. 115 

The potential gains from greater coupling are threefold. First, the use of many of the Earth’s 

resources by humans alters the state and trajectory of the Earth system (Zalasiewicz et al. 2015, Waters 

et al. 2016, Bai et al. 2015). Therefore, representing and quantifying the impact of humans on the natural 

system can determine their magnitude relative to processes endogenous to the natural system as well as 

provide insight into how to mitigate those impacts through changes in human behaviour. Second, the 120 

natural system (e.g., climate variability and change, extreme weather events, processes affecting soil 



	
  

fertility) also affects human processes. Therefore, interactions and feedbacks within the social and in 

socio-ecological systems must be better quantified (Verburg et al. 2016). Achieving substantive gains in 

our understanding of coupled human-natural systems requires a critical assessment of the different 

modelling approaches used to couple representations of human systems with natural systems that span 125 

from local ecological and biophysical processes (e.g., erosion, hydrology, vegetation growth) through to 

global processes (e.g., climate). Third, coupled models will be most useful if we can use them to test 

possible interventions (e.g., policies or technologies) in the human or natural system and identify 

feedbacks that amplify or dampen system responses, thus garnering a better understanding about how 

human impacts on the environment can be mitigated and how humans might anticipate and adapt to 130 

resulting changes in the natural system.  

The coupled modelling approaches discussed here are used in other fields as well, for example in 

integrated assessment modelling (IAM, see Verburg et al. 2016), which combines human and natural 

systems and often explicitly incorporates feedbacks between the two systems. However many IAMs use 

relatively simple representations of individual systems in order to analyze the nature of interactions 135 

between them. In contrast, we focus on coupled modelling that combines specialized and more process-

rich representations of both and therefore may lead to different conclusions. Furthermore, new 

technology for model sharing, model coupling, and high-performance computing make it possible to 

connect specialized models, which was not possible when IAMs were first conceptualized 25 years ago. 

Because of the greater degree of openness enabled by these technologies and their modular nature, 140 

coupled models enable a greater degree of transparency in how we represent human-natural system 

models. Whether their relative process richness enables a greater degree of model accuracy remains to 

be tested. 



	
  

We present multiple approaches to coupling land-change and natural-system models and reflect on 

how their representations of feedbacks add value to scientific inquiry into the dynamics of coupled 145 

human-natural systems. We highlight four example models that explicitly represent feedbacks between 

land-change and natural systems, but vary in their scale of application and coupling architecture. We 

then present the lessons learned from the modelling research teams, discuss the challenges of 

representing feedbacks, and then outline a way forward to expedite model coupling initiatives and their 

subsequent scientific advances.  150 

 

1.1 Approaches to model coupling  

When two models communicate in a coordinated fashion, they form a coupled model, where the 

constituents are often termed components (Dunlap et al. 2013). One of the first examples of coupled 

models was developed in the 1970s to describe the interaction of different physical processes 155 

represented by numerical models for weather prediction (e.g. Schneider and Dickinson 1974). Model 

coupling has been expanded since then to encompass domain coupling, i.e., the coordinated interaction 

of models for different Earth-system domains or “spheres” (e.g., biosphere and atmosphere).  Recent 

coupling frameworks implement coupling of functional units regardless of the process versus domain 

dichotomy (e.g. MESSy cycle 2, Jöckel et al. 2005, Kergweg and Jöckel 2012). 160 

Model coupling can be described by the strength and frequency of interaction between two software 

components, often placed in a continuum between ‘loose’ and ‘tight,’ where loose coupling has low 

coordination and infrequent communication between two or more models and tight coupling describes 

high coordination and frequent communication. The simple characterization along a continuum from 

loose to tight neglects multidimensional nuances of different coupling configurations (Figure 1), degree 165 

of coordination, and communication frequency (Figure 2). However, the terms loose and tight coupling 



	
  

provide a shorthand about the ease and level of code integration, required understanding of model 

components, and where the responsibility for code development resides.  

 

 170 

 

 
Figure 1: Approaches to model coupling. a) loose model integration via file / data exchange between 
model 1 (M1) and model 2 (M2); b) models may manipulate parameters, variable values, or the 
scheduling of processes in another model but they interact with independent data (i.e., model inputs and 175 
outputs); c) the behavior of models is the same as (b) except that they also affect each other by 
interacting with the same data (i.e., the output of model may be used as the input for another); d) a 
coupler coordinates run time and scheduling and may pass some information between models, models 
may also interact through manipulating data (model input and output files); e) a coupler coordinates the 
run time and scheduling of the individual models and passes information between models that primarily 180 
use their own data, f) the coupler coordinates all interactions between models and data. 
 

In a strict implementation of loose coupling, communication is mostly based on the exchange of data 

files (Figure 1a), and coordination is the automated or manual arrangement of independently operating 

(and different) components and externally organized data exchange. No interaction of the developers of 185 

the components is required, and coupling can extend across different expert communities and platforms. 

However, in many cases model modification is necessary to manipulate the data generated by a model 
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for use by another and to sequence that transaction. As we increase the frequency of communication 

between two models and the coordination of interaction (Figure 2) we move towards a tight coupling. In 

a strict implementation of tight coupling - some call this the monolithic approach - all components and 190 

their coordination is programmed within a single model; they share much of their programming code 

and access shared memory for communication.   

Many existing instances of coupled models employ intermediate degrees of coupling. Existing 

technologies (i.e. couplers) that support model coupling deploy the strengths of tight and loose coupling 

approaches (Syvitski et al. 2013) in ways that address inherent trade-offs between control versus 195 

openness, high performance computing versus wide distribution, distributed versus concentrated 

expertise, and shared versus modular independent code. In model coupling, couplers refer to 

independent software designed to manage the interaction between two or more models in terms of the 

passing of data, manipulation of parameters, and scheduling of processes between models and in some 

cases directing models to data or preprocessing data for use by a model. Typically, couplers are designed 200 

for independent research projects using known and available software (e.g., R) and programming 

languages (e.g., Java, C++, Fortran). When a coupler has been designed for general use across multiple 

projects, the result is a coupling framework that enables the instantiation of multiple model-coupling 

projects by others. Like existing modelling frameworks, a coupling framework can speed up the 

coupling process and facilitate the interaction, adoption, and comparison of different instantiated and 205 

coupled models.  

Couplers or coupling frameworks (Figure 1d-h) are typically introduced when a modelling project 

becomes multidisciplinary and requires collaborative modeling of several scientific disciplines, such that 

the coupled model is too complex to be comprehended by a single individual or research group (Voinov 

et al., 2010). For example, the Community Surface Dynamics Modeling System (CSDMS, Peckham et 210 



	
  

al. 2013) promotes distributed expertise and independent models in the domain of Earth-surface 

dynamics. All components are required to implement basic model interfaces (BMI) as communication 

ports with any other components in CSDMS (Syvitski et al. 2014). Similarly, to enable interaction 

through a coupling framework (Figure 1d), it has been suggested that all components implement the 

Earth System Modeling Framework (ESMF, Theurich et al. 2017), The Modular System for Shelves and 215 

Coasts (MOSSCO, Lemmen et al. 2018) provides an example of this approach and combines the high 

performance (HPC) computing capability of ESMF with the distributed expertise of CSDMS to facilitate 

access to HPC for those working to couple models without expertise with HPC. 

The degree of coupling is important as a technical design question, as depicted in Figure 1, but also 

as an important ontological question affecting how well we can represent feedbacks within and among 220 

human and environment systems (Ellis 2015, Liu et al. 2015, Dorninger et al. 2017). Taken together, 

frequency of communication and degree of coordination affect the degree to which feedbacks can be 

represented in coupled systems and, therefore, considered in our prediction of system behaviour or 

response to interventions (Figure 2). For this reason, we describe four examples of coupled 

representations of human and natural systems, across a range of processes represented and scales of 225 

application, and how their coupling design affects representation of feedbacks.  

The four examples are situated at different points along the three dimensions of configuration, 

frequency of communication, and coordination. The first example uses a coupler in its architecture 

(similar to Figure 1d, 1f) and achieves two-way coupling (Figure 2) to investigate the effects of land 

management on Erosion. Our second example investigates the effects of land-management on carbon 230 

storage using a loose coupling approach with two models, whereby one acts as a scheduler for the other 

(Figure 1c) and both interact with common data to achieve two-way feedback (Figure 2). The third 

example uses a coupler to bring together multiple models that share data (Figure 1d) and create two-way 



	
  

feedback (Figure 2) to investigate changes in land use and food consumption under climate 

perturbations. Our fourth and final example uses a coupler-based architecture (Figure 1d) to tightly 235 

couple multiple models to investigate how changes in land use and the energy system affect terrestrial 

and atmospheric carbon storage and flux. While all four examples achieve two-way feedback (Figure 2), 

most examples originated with one-way feedback (Figure 2) or were constructed to enable an 

investigation of how the incorporation of feedback could alter model outputs. Collectively, the four 

examples illustrate how groups of researchers have attempted to overcome the lack of suitable 240 

frameworks for coupling human and natural systems and the lessons learned for future representations of 

feedbacks among human and natural systems. 



	
  

 

Figure 2. Conceptual outline of the frequency of model communication and coordination of interaction 
between models from no coupling to one-way and two-way feedback. Examples are not exhaustive but 245 
illustrate common approaches used. M1 = model 1, M2 = model 2, T1 = time step 1, Tn = time step n. 
Initial conditions, where one model is merely used to set the initial conditions of another; periodic 
perturbations, whereby one model updates data or variables used by another periodically and 
unilaterally; prescription, which is common to climate models that use a prescribed trajectory of land 
cover data that do not endogenously change (e.g., citation); periodic two-way feedback, whereby two 250 
different modelled processes may act at different temporal resolutions and feedbacks occur upon 
alignment (e.g., citation); and two-way feedback where the modelled processes are dependent on the 
results and behaviour of each other (e.g., citation). 
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2. Examples of approaches to coupling  

 

2.1 Tight Coupling - Effects of subsistence agriculture and pastoralism on erosion 

 

2.1.1 Model definition and description 260 

The Mediterranean Landscape Dynamics (MedLanD) project developed a computational laboratory 

(Bankes et al. 2002) for high-resolution modeling of land-use/landscape interaction dynamics in 

Mediterranean landscapes called the MedLanD Modeling Laboratory (MML).  MML is a virtual lab 

designed as a configurable and controlled experimental environment to couple representations of human 

and natural systems (Miller and Page, 2007; van der Leeuw, 2004; Verburg et al., 2016). The MML 265 

integrates an agent-based model (ABM) of households practicing subsistence agriculture and/or 

pastoralism and cellular automata models of vegetation growth, soil fertility dynamics, and landscape 

evolution (e.g., erosion/deposition) along with climate scenario data. The components of the MML are 

connected through a coupler that passes information between them (Figure 3; Davis and Anderson, 

2004, p. 200; Gholami et al., 2014; Sarjoughian et al., 2013; Sarjoughian, 2006; Sarjoughian et al., 270 

2015) (See S1 1.1). 

Villages and household actors are represented as agents in the ABM, which simulates land-use 

decisions and practices, mirroring the organization of known small-scale subsistence farmers (Banning, 

2010; Flannery, 1993; Kohler and van der Leeuw, 2007). These agents select land for cultivation and 

grazing using decision algorithms and projected returns informed by studies of subsistence farming, with 275 

emphasis on the Mediterranean and xeric landscapes (Ullah 2017).  



	
  

The landscape evolution model (LEM) iteratively evolves digital terrain, soil, and vegetation on 

landscapes within a watershed by simulating sediment entrainment, transport, and deposition using a 3D 

implementation of the Unit Stream Power Erosion/Deposition (USPED) equation and the Stream Power 

equation (Barton et al., 2016; Mitasova et al. 2013). The LEM also tracks changes in soil depth and 280 

fertility due to cultivation and fallowing. A simple vegetation model simulates clearance for cultivation 

or removal by grazing and regrowth tuned to a Mediterranean 50-year succession interval based on 

empirical studies in the region (Bonet, 2004; Bonet and Pausas, 2007).  Climate parameters can be 

entered iteratively or statically, and may derive from any external climate or paleoclimate data or 

simulation output. 285 

 

2.1.2 Feedback Implementation 

The coupling architecture of the MML is highly structured, following a tight coupling scheme that is a 

hybrid of types shown in Figure 1d and 1f.  In the MML, a coupler manages much of the interaction 

with data, but it also coordinates the scheduling and exchange of data among the various subcomponent 290 

models. The coupler was constructed to query data directly and transform it for use by certain 

submodels, but it also directs subcomponent models to run and independently retrieve data and produce 

output files. Coordination by the coupler is achieved through the use of a strict file naming system and 

the use of a common data format (e.g., spatial data must be in the GRASS geographical information 

system (GIS) raster file format (Neteler et al. 2012) and other data in delimited text files). Naming 295 

conventions of data files indicate data type, temporality, and data permanence (intermediary data versus 

final data). Two versions of the MML have been developed, one where the coupler is an independent 

piece of wrapping software coded in Java (in MML v1; Barton et al. 2015) and one where the coupler is 

integrated into the main model codebase (in python) of a reduced version of MML (in MML-Lite; 



	
  

Barton et al. 2015b). Subcomponent models are also either independent software scripts coded in Python 300 

(Landscape components) or in Java (ABM) in the MML v1, or are coded in a monolithic Python 

codebase in the MML-Lite.  

 

Figure 3. Structure of feedback between the components of the MedLanD Modeling Laboratory. 
Numbers indicate the sequence of steps in a single time-step of a coupled model run. 305 
  

The structure and sequence of a single time-step of an MML simulation begins with the coupler 

initiating the ABM. The ABM determines the subsistence requirements for all households in the agent 

population and passes access to these data as a delimited text string back to the coupler (Figure 3(1)). 

The coupler then retrieves climate and landscape information and passes data file location information 310 
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for subsistence requirements to the Agro-Pastoral Yields CA submodel (Figure 3(4)). The Agro-Pastoral 

Yields CA submodel chooses locations for the various subsistence tasks and calculates yields that are 

returned in the form of a spatial data layer (i.e., a GRASS GIS raster file). Yields are then passed back to 

the ABM (Figure 3(6)) to determine the effects of subsistence choices for each household. At this time, 

the human system waits while several natural processes are simulated. The coupler calls the Soil 315 

Fertility CA to update soil characteristics degraded by land use (i.e., farming, grazing, or firewood 

gathering) and climate impacts. The coupler then calls the Vegetation CA to determine the amount of 

vegetation regrowth following agent land-use impacts (Figure 3(9)). Both the Soil Fertility and 

Vegetation CAs directly write output in the form of GRASS GIS raster files that are queried by the 

coupler at the beginning of each time step. Lastly, the coupler calls the Landscape Evolution model, 320 

which updates the land surface based on the new configuration of vegetation and climate data for that 

year.  

The new state of the natural system (i.e., altered land surface, vegetation, and soils) affects 

household-agent decisions and natural system processes (i.e., CA submodels) in subsequent time-steps 

to achieve two-way feedbacks (as in Figure 2, upper right). It’s worth noting, however, that the MML 325 

currently only implements climate as a one-way prescribed coupling (Figure 2).  

 

2.2 Loose Coupling - Effects of residential land management on carbon storage 

 

2.2.1 Model definition and description 330 

To quantify the effects of residential land management on ecosystem carbon, a framework was 

developed to couple a human decision-making model with the dynamic global vegetation model 

BIOME-BGC (Robinson et al. 2013). Our model of the human system, Dynamic Ecological Exurban 



	
  

Development (DEED) model, combines a suite of components developed to systematically incorporate 

additional data and complexity in the residential development landscape (Brown et al. 2004, Brown and 335 

Robinson 2006, Brown et al. 2008, Robinson and Brown 2009, Robinson et al. 2013, and Sun et al. 

2014). Farmer agents own land that is bid on by Residential Developer agents. The winning Residential 

Developer agent subdivides the farmland into one of three residential subdivision types, each with 

different lot density and land-cover impacts (remove all vegetation, leave existing vegetation, grow new 

vegetation). Residential Household agents then locate and conduct land management activities. 340 

BIOME-BGC was used to represent deciduous broadleaf forest and turfgrass (i.e., maintained lawn) 

growth. It operates on a daily time step and reports outputs at daily and annual periods. Although the 

model was not developed to include land management, it was selected because: 1) existing variables 

permit the representation of different types of vegetation found in exurban landscapes (Robinson 2012) 

like turfgrass (Milesi et al. 2005); 2) the parameters and data used by the model can be altered to 345 

represent the impacts of land management that affect vegetation growth; 3) the biogeochemical cycling 

in the model represents water, carbon, and nitrogen with extensive literature validating model outcomes, 

including parameterization for different ecosystems and species (White et al. 2000); and 4) it has been 

applied both at high spatial resolutions (e.g., 30 m) and at local-to-global spatial extents (e.g., Coops and 

Waring 2001), which facilitates both the local site evaluation and the potential to scale out to regional or 350 

national levels.  

 

2.2.2 Feedback Implementation 

A loose coupling approach linking the ABM (DEED) and BIOME-BGC was used that is similar to 

the structure of Figure 1c, whereby information is exchanged between data files. However, DEED not 355 

only modifies data files used by BIOME-BGC but it also coordinates its run time (Figure 5). Through 



	
  

this approach, DEED is an independent model and a coupler coordinating interaction with BIOME-

BGC. 

By chaining the input and output between the two models, two-way feedback is represented (Figure 

2). First, land exchange, land-use change, and land management activities are conducted by agents in 360 

DEED. If agents irrigate their property then DEED modifies precipitation values in the climate files used 

by BIOME-BGC for that year and location. If agents fertilize then DEED alters the soil mineral nitrogen 

in the BIOME-BGC initial conditions/restart file (Figure 4(1)). Then, DEED steps BIOME-BGC 

forward by one year (Figure 4(2)).  

 365 

Figure 4. Structure of feedback between DEED and BIOME-BGC. Numbers indicate the sequence of 
steps in a single time-step of a coupled model run. (3) BIOME-BGC retrieves site characteristic and 
climate data as well as initial conditions for the next time step comprising biogeochemical pool values 
among other information. (4) results of vegetation growth and changes to biogeochemical pools are 
written back for manipulation by the ABM. 370 
 

BIOME-BGC retrieves site characteristic, climate, and initial conditions for the year (Figure 4(3)). 

The products of vegetation growth from BIOME-BGC (i.e., coarse woody debris and litter) are then 

modified by land management activities by altering the initial conditions file for the subsequent year 

(Figure 4(5)). The ABM then summarizes ecosystem variables (e.g., carbon) for a given cell, residential 375 

property, or landscape. Feedback from the ecological system on agent behaviour was explored through 

BIOME-BGC

(1) Agent additions to the landscape modify input files

(2) Step forward one year
DEED Data

(5) Agent removals from the landscape modify output files

(6) Ecosystem changes (e.g., carbon) affect agent behaviours

(3)

(4)



	
  

changes in policies that support offset payments for increased carbon storage. An alternative feedback 

could include effects on social preferences and norms for landscape design elements (e.g., xeriscaping or 

adding tree cover) that may drive changes in land management activities and subsequent ecological 

outcomes. 380 

 
 
2.3 Loose Coupling with Coupler – Changes in food consumption and trade with land use decisions 

2.3.1 Model definition and description 

To explore the interactions among land-use decisions, food consumption and trade, land-based 385 

emissions, and climate at a global scale, a dynamic global vegetation model (LPJ-GUESS, Smith et al., 

2014), a land use and food system model (PLUMv2, Engström et al., 2016a), and a climate emulator 

(IMOGEN, Huntingford et al., 2010) were coupled (Figure 5). Key objectives were: a) to represent the 

trade-offs and responses between agricultural intensification and expansion and the cross-scale spatial 

interactions driving system dynamics (Rounsevell et al., 2014), b) to explore whether climate and CO2-390 

related yield changes in a coupled system would affect projected land-cover change, and c) how these 

changes might feedback to the atmosphere and climate via the carbon cycle. A detailed representation of 

yield responses to inputs (fertilisers and irrigation) was used and assumptions of market equilibrium 

were relaxed to allow exploration of the effects of shocks and short-term dynamics. 

 The carbon, nitrogen, and water cycles, as well as vegetation growth, composition, and competition 395 

(e.g., following land-use change) were simulated at 0.5-degree spatial resolution in LPJ-GUESS. 

Agricultural and pastoral systems were represented as a prescribed fractional cover of area under human 

land use per grid cell. Four crop functional types modelled on winter wheat, spring wheat, rice, and 

maize were used to simulate croplands (Olin et al., 2015; Lindeskog et al., 2013; Olin et al., 2015; Pugh 

et al., 2015). Pastures were represented by competing C3 and C4 grass, with 50% of the above-ground 400 



	
  

biomass removed annually to represent the effects of grazing (Lindeskog et al., 2013). A general 

circulation model emulator, IMOGEN, links the terrestrial and atmospheric carbon cycle without the 

computational demands of running a full Earth System Model (Huntingford et al., 2010).  

 Economic and behavioural aspects for country-level decisions within the food system were modelled 

in PLUMv2, extending Engström et al. (2016a). The PLUMv2 model projects demand for agricultural 405 

commodities based on socio-economic scenarios (e.g. SSPs, van Vuuren & Carter, 2014), and attempts 

to meet these demands through country level cost minimisation, including spatially specific land use 

selection among other processes such as trade and policy. 

 

2.3.2 Feedback Implementation 410 

The coupling of IMOGEN, PLUMv2, and LPJ-GUESS is performed using a coupling script written in 

CRAN R (R Core Team 2013), which coordinates data, settings files, and the order of operations for the 

three models similar to Figure 1d.  The coupling script first performs initialisation steps, which produces 

the required start files and spins-up all the models. As part of this process IMOGEN is spun-up first 

(Figure 5). IMOGEN provides spin-up climate for LPJ-GUESS, and then PLUMv2. Two instantiations 415 

of LPJ-GUESS are used, one for simulated land use conditions (LPJ-GUESS-main) and one for 

generating potential crop yields under a range of land uses (LPJ-GUESS-potential). 

The coupling script communicates with the IMOGEN and LPJ-GUESS at a one-year time step, 

although LPJ-GUESS and IMOGEN operate on sub-daily time steps. IMOGEN is called to provide the 

climate for the current run year (Figure 5(9,11)), which LPJ-GUESS-main uses (Figure 5(5)) to simulate 420 

the vegetation dynamics with the climate from IMOGEN and the land use from PLUMv2 for the same 

year (Figure 5(3,4,6)). The terrestrial carbon flux data is aggregated to provide global net ecosystem 



	
  

exchange of carbon for the land area with prescribed ocean carbon uptake to IMOGEN, which estimates 

the global CO2 concentration and climate for the next year.   

Every fifth year, the R coupler runs a second instantiation of LPJ-GUESS (LPJ-GUESS-425 

potential), directing it to use the ecosystem soil state of LPJ-GUESS-main (Figure 5(12,13)). The LPJ-

GUESS-potential model is used to produce potential net primary production (NPP) for pasture grass 

lands and potential crop yields for 6 crop management settings (three levels of fertilisation (0, 200, 1000 

kgN/ha) and rain fed or irrigated crops).  To account for short-term land-use change legacy effects, LPJ-

GUESS-potential uses the previous 10 years of soil conditions and climate from IMOGEN.  The last 430 

five years of the LPJ-GUESS-potential pasture NPP and crop yields are averaged by the R coupler and 

input to PLUMv2 (Figure 5(1)) to model land use for the next five year iteration.  PLUMv2 uses these 

yield potentials to simulate annual land-use management decisions, which are used (as described above) 

in the LPJ-GUESS-main model (Figure 5(4,6)). The land uses are determined using yield potentials for 

previous time periods in LPJ-GUESS-potential and therefore has been indicated as step 1 in Figure 5. 435 



	
  

 

Figure 5. LPJ-GUESS, IMOGEN and PLUMv2 model coupling structure and feedback between models 
and data. Numbers indicate sequence of steps after initialization. (8) LPJ-GUESS-main modifies the soil 
state locational data. 

 440 
2.4 Tight coupling via a coupler – Investigating the effects of changes in land use and the energy 
system on terrestrial and climate CO2 
 

2.4.1 Model definition and description 

The integrated Earth System Model (iESM v1.0; Collins et al., 2015) couples the Global Change 445 

Assessment Model (GCAM, v3.0; Wise et al., 2014) with the Community Earth System Model (CESM, 

v1.1.2; Hurrel et al., 2013) and the Global Land-use Model (GLM, v2; Hurtt et al., 2011) to explore 

feedbacks between terrestrial ecosystems (including their interactions with the climate system) and 

human land use and energy systems. GCAM is an integrated assessment model that represents both 
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human and biogeophysical systems (Wise et al., 2014), and in the iESM the climate and carbon 450 

components of GCAM are replaced by CESM. The human components simulate global energy and 

agriculture markets to estimate anthropogenic emissions and land change. The energy and land 

components are distinct, but connected via bioenergy, nitrogen fertilizer, and (where applicable) 

greenhouse gas emissions markets. GLM generates annual, gridded land use from periodic, regional 

GCAM outputs following the Land Use Harmonization protocol (LUH; Hurtt et al., 2011), and an 455 

additional land use translator converts GLM outputs to CESM land cover types (Di Vittorio et al., 2014, 

P Lawrence et al., 2012). 

CESM is a fully coupled Earth-system model with atmosphere, ocean, land, and sea ice components; 

including land and ocean biogeochemistry that exchanges carbon with the atmosphere (Hurrel et al., 

2013). The standard resolution of all CESM components in fully coupled mode is nominally one degree, 460 

but the land cover is determined as fractions of half-degree grid cells and prescribed prior to a 

simulation (Lawrence et al., 2012). Biogeographical vegetation shifts are not included, although 

ecosystems do respond and contribute to changing environmental conditions. The CESM land model 

includes detailed hydrology and mechanistic vegetation growth for 16 Plant Functional Types (PFTs) to 

simulate water, carbon, and energy exchange with the atmosphere. 465 

The iESM coupling follows the Coupled Model Intercomparison Project phase 5 (CMIP5; Taylor et 

al., 2012) LUH protocol (Hurtt et al., 2011), with some modifications and additions (Bond-Lamberty et 

al., 2014; Di Vittorio et al., 2014), to connect GCAM and GLM (Hurtt et al., 2011) directly to the CESM 

framework via a newly developed integrated assessment coupler (Collins et al., 2015). 

 470 

2.4.2 Feedback Implementation 



	
  

 The outputs generated by the two-way feedback (Figure 2) between the human and natural 

systems represented by iESM are not available from its individual models or through one-way coupling 

such as in CMIP5. The iESM is a specific configuration of CESM in which the land model initiates an 

integrated assessment coupler every five years (Figure 6(1)). This coupler coordinates communication 475 

between the human and environmental systems by first calculating average crop productivity and 

ecosystem carbon density scalars from the previous five years of CESM net primary productivity and 

heterotrophic respiration outputs (Bond-Lamberty et al., 2014), except during the initial year when these 

scalars are set to unity (Figure 6(2)). The coupler then runs GCAM with these scalars to project fossil 

fuel CO2 emissions and land use change for the next five years (Figure 6(3)), and then passes these 480 

outputs through downscaling algorithms to the atmosphere and land components of CESM (Figure 6(4-

9)). The non-CO2 emissions are prescribed by CMIP5 data as initial CESM input files. Land use change 

is annualized and downscaled by GLM (Hurtt et al., 2011) (Figure 6(4-5)). A land use translator 

converts these changes in cropland, pasture, and wood-harvested area into changes in CESM land cover 

change, which is based on plant functional types (Di Vittorio et al., 2014, Lawrence et al., 2012) (Figure 485 

6(6-7)). The CO2 emissions are downscaled following Lawrence et al. (2011) and passed to the 

atmosphere component as a data file (Figure 6(8)), and the land cover change is stored in a land surface 

file and passed to the land component (Figure 6(9). The coupler then returns control to the land model 

and CESM runs for another five years (Figure 6(10)). This two-way feedback incorporates the effects of 

climate change, CO2 fertilization, and nitrogen deposition on terrestrial ecosystems into GCAM’s 490 

projections. 

The key new feature is the generation of CESM-derived vegetation and soil impact scalars that 

are used by GCAM to adjust crop productivity and carbon at each time step. This fundamentally alters 

the scenario by making the land projection, and consequently the energy projection, more consistent 



	
  

with the climate projection. The largest technical contribution, however, is the integrated assessment 495 

coupler that enables feedbacks by running GCAM, GLM, and a new land use translator inline with 

CESM. 

 

Figure 6. Structure of iESM and feedback between integrated model components. An integrated 
assessment coupler facilitates all interactions between the Global Change Assessment Model (GCAM), 500 
the Global Land-Use Model (GLM), and the Community Earth System Model (CESM). The coupler is 
activated by the CESM land model every five years to calculate the average carbon and productivity 
scalars for the past 5 years and pass them to GCAM, then pass GCAM outputs to the atmosphere 
component of CESM via a downscaling algorithm and to GLM, and then pass GLM outputs to the land 
component via a Land Use Translator (LUT). The non-CO2 emissions are provided to CESM as an input 505 
data file. 
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These capabilities enable new insights into research questions regarding climate mitigation and 

adaptation strategies. For example, how may agricultural production shift due to climate change, how do 

different policies influence this shift, and how may this shift affect other aspects of the human-Earth 510 

system? Many recent impact studies (e.g., ISIMIP, BRACE, CIRA2.0) use climate model simulations 

based on emissions and land-use scenarios (Representative Concentration Pathways, RCPs) that 

themselves do not account for the influence of climate change on future land use. This inconsistency 

could affect conclusions about impacts resulting from particular RCPs. 

This approach paradoxically has several strengths that are also weaknesses. The main strength of this 515 

approach is that it tightly couples two state-of-the-art global models to implement primary feedbacks 

between human and environmental systems under global change. Unfortunately, this configuration is not 

amenable to the uncertainty and policy analyses or the climate target experiments usually employed by 

GCAM because it takes too long to run a simulation. As a global model it provides self-consistent 

representation of interconnected regional and global processes, both human and environmental, but is 520 

unable to capture a fair amount of regional and local detail that influences planning and implementation 

of adaptation and mitigation strategies.  

 

 

3. DISCUSSION 525 

 

The four presented examples demonstrate how specialized models of human and natural processes have 

been connected through alternative coupling approaches to address research questions related to the 

impacts of one system on another and the effects of feedbacks between human and natural systems on a 



	
  

variety of outcomes of interest (e.g., erosion, carbon storage, and emissions). The focus on specialized 530 

models offers a flexible and open approach to answering new questions about feedbacks in coupled 

human-natural systems, and also facilitates the identification of new types of data required to calibrate 

and validate the interactions and feedbacks between the two systems. Additionally, coupled modelling 

presents an opportunity for increased transparency and detail in the represented processes through more 

explicit identification and documentation of component interactions and processes. 535 

The example models are diverse in the spatial and thematic resolutions of human and natural-system 

processes represented. The first two examples (MML and DEED) use agent-based approaches that 

represent land use and land management in the human system at the household level. While the 

ecological impact of land management activities in DEED does not have a direct feedback on residential 

household decision-making, those represented in MML do. Agricultural systems, carbon markets, and 540 

policies provide mechanisms to establish this feedback and endogenize the impact-response cycle 

between residential land management practices of the human system and the natural system (Sun et al. 

2014). 

The second two examples are global models with different levels of coupling and complexity that 

represent human-natural system feedbacks at regional and global levels. In both examples, the human 545 

system has a direct effect on modelled natural-system processes (i.e., vegetation, carbon, climate), and 

the feedback of environmental changes on human systems is mediated by vegetation responses to 

changing natural and human conditions.  

These examples demonstrate how coupled system implementations extend the applicability of 

models to a variety of questions regarding the dynamic relationship between human and environmental 550 

systems that would otherwise be impossible to address quantitatively. Such questions include those 

related to direct and indirect effects of one system on another (e.g., what is the effect of the natural 



	
  

system on human system?), to the resilience or sensitivity of the coupled system or its components to 

perturbations or scenarios (e.g., do feedbacks dampen or amplify the consequences of a perturbation?), 

and to identifying thresholds (e.g., what is the critical value of a variable in one system that when 555 

crossed instantiates change in the other system?), among many others. 

 

3.1 Lessons Learned 

 

To make progress in modeling coupled human-natural systems, the way in which some set of variables 560 

or processes affects or interacts with both systems must be specified. For example, precipitation has a 

known and direct effect on plant growth (e.g., forest or crop) and erosion (e.g., overland flow). The 

outcomes of some of these processes (e.g., yield and soil loss) have direct or indirect effects on land 

management choices by farmers, effects that are empirically observable at least qualitatively and, in 

some instances, quantitatively measured. However, the direct impacts of other perturbations, such as the 565 

introduction of new technology or governance schemes, on human and natural-system processes are not 

observable because they have not yet occurred. The presented case studies focus on perturbations or 

scenarios that are grounded in known and direct causal relationships that are more likely to be found in 

the natural system than the human system, partly due to the multitude of drivers affecting—and 

consequent difficulty in predicting—human-decision making. In these example cases, a number of 570 

lessons have been learned: 

Lesson 1. Leverage the Power of Sensitivity Analysis with Models. A powerful benefit of simulation 

models is that they can facilitate analysis of the effects of interventions and scenarios for which there is 

no precedent. Models should be leveraged through computation across a full range of parameters and 

use of simulated data or expert- or theory-informed methods to evaluate the relative contribution of 575 



	
  

parameter values/ranges, missing data, or processes on model outcomes. For example, to properly 

understand the net effect of human alteration to vegetation on long-term rates of erosion and deposition 

in the MML, it became clear that a more complete understanding of the sensitivity of the landscape 

evolution subcomponent model to vegetation was needed. This sensitivity analysis showed a very strong 

exponential relationship between vegetation type and both the overall amount of erosion and deposition 580 

over time and the temporal variation in erosion rates over time (Ullah, 2017), The analysis show a 

particular sensitivity to expanded bare land, grasslands, and shrub land-cover types. Therefore, it is clear 

that agent activity that leads to an increase these types of land-cover should also lead to long-term 

increases in erosion and deposition in the MML. In this way, model sensitivity to parameters, data, or 

processes can be evaluated to support design and deployment of resources for new data collection. 585 

Lesson 2. Modelling is an Iterative Process. The process of analyzing coupled human and natural 

system models often results in identification of needs to investigate key variables, data, or mechanisms. 

For example, through the coupling of DEED and BIOME-BGC (Section 2.2), it was realized that data 

on vegetation and soil carbon for residential land uses are grossly inadequate for model calibration. This 

realization fostered new data collection and analysis about the distribution of carbon stored in different 590 

residential land uses (Currie et al. 2016). New forms of measurement and evaluation are often needed to 

collect novel data and quantify variables and feedbacks linking human and natural systems. As these 

new data are collected and become available, new questions about model processes are inevitable 

(Rounsevell et al. 2012). 

Lesson 3. Create a Common Language. Coupling human and natural systems brings social and 595 

natural scientists together that often have a different understanding of the meanings of commonly used 

terms. Both technical and conceptual aspects of the coupling process can be improved when a common 

language is used. For example, traditional coupling between the ocean and the atmosphere in Earth 



	
  

System Models typically uses the Climate and Forecast conventions (Eaton et al. 2011). A controlled 

vocabulary in these conventions assists understanding of model processes and facilitates their coupling 600 

among models or replacement in new models. With a similar goal but different approach, CSDMS 

introduced rules for creation of unequivocal terms through their standard names system that functions as 

a semantic matching mechanism for determining whether two terms refer to the same quantity with 

associated predefined units. This concept is currently undergoing transition to a Geoscience Standard 

Names ontology that reaches out to include social science terms (David et al. 2016), which can benefit 605 

communication between communities (i.e., natural and social science) that may have different terms and 

descriptions of similar processes (Di Vittorio et al. 2014). With a common language, data can be more 

easily and unambiguously communicated between components in a coupled system.  

Lesson 4. Make Code Open-Access. Many ecosystem and Earth-system models have mass, energy, 

or other balance equations that constrain the processes to the laws of thermodynamics and can be used to 610 

ensure that they are working correctly. For example, the ecosystem model LPJ-GUESS has a routine to 

ensure balance between influx, efflux, and storage of carbon. Similar checks and balances are used in 

human system models with respect to population change (e.g., births, deaths, immigration, and 

emigration) or economic trade (e.g., production, consumption, imports, and exports) at macro levels and 

budget or labour constraints at household or individual levels. However, in many natural-system models 615 

these balance equations are not accessible for coupling and the representation of human perturbations 

and modifications to the factors in balance equations are either not included or done so indirectly and 

make the coupling less flexible and tractable. Moving forward, critical equations, like mass balance 

equations, and model variables should be made open through coding to provide multiple points for 

interfacing with other models (specifically human systems models).  620 

 



	
  

Lesson 5. Ensure Consistency. Modelers seeking to couple natural- and human-systems models that 

represent similar phenomena, like land cover, can encounter significant ontological and process 

consistency challenges. Models with different initial assumptions and different processes can generate 

different values for the same phenomenon. While model coupling ultimately can provide an impetus for 625 

harmonizing and resolving such consistency issues, it requires decisions about which processes to 

represent and which to leave out to avoid duplication.  

The iESM (Section 2.4) well illustrates issues of consistency in assumptions, definitions, and 

processes. First, ecosystem properties from CESM were translated to impacts that could be applied to 

GCAM “equilibrium” yields and carbon densities (Bond-Lamberty et al., 2014). Second, a major finding 630 

that is especially relevant to all land change and ecosystem models is that the inconsistencies between 

land use and a land cover definitions caused CESM to include only 22% of the prescribed RCP4.5 

afforestation in CMIP5 (Di Vittorio et al., 2014). Additionally, it was discovered that wood harvest was 

conceptually different across the three models comprising iESM (GCAM, GLM, and CESM), with each 

model having its own process for determining how harvest is spatially distributed. Wood harvest is a 635 

good example of different modeling groups describing the same thing, using the same language, but 

with very different concepts and processes, with unintended consequences for CESM’s terrestrial carbon 

cycle. 

Lesson 6. Reconcile Spatio-temporal Mismatch. Many natural system models operate at finer 

temporal and coarser spatial resolutions than human system models (Evans et al. 2013). Often, these 640 

discrepancies cannot simply be dealt with by aggregation of the variables because they represent 

mismatch in spatial and temporal dynamics that may also happen in reality. Human responses to 

environmental change may show significant time-lags or may be related to cycles of management (e.g. 

cropping cycles) rather than showing an immediate response. Similarly, while the ecological models are 



	
  

strongly place-based, coupling human and natural systems at the pixel level may not always be 645 

appropriate due to complex spatial relations in the human dimensions (e.g. distant land owners) or 

responses across different levels of decision making (e.g. policy responses) that are not linked to the 

exact place of the ecological impact. Reconciling these mismatches involves balancing detail and 

computational tractability within existing model structures and scheduling the frequency of 

communication between models.  650 

As an example, the DEED ABM (Section 2.2) used an annual time-step to reflect the timing of land 

management decisions, whereas the ecosystem model BIOME-BGC represented vegetation growth and 

biogeochemical cycles daily. To reconcile these differences, irrigation decisions were made annually, 

but implemented one day a week during the growing season by modifying the daily precipitation file 

used by BIOME-BGC. In contrast, other management activities were implemented once annually, 655 

before (for fertilization) and after (for removals) the growing season. These limitations could have a 

significant effect on estimated carbon storage and have fostered additional fieldwork for further 

validation (e.g., Currie et al. 2016) and additional efforts to tightly couple the two models. 

 The iESM (Section 2.4) also reconciles similar mismatches through a 5-year time lag and 

specialized spatial and temporal downscaling of economic model outputs to provide inputs to the 660 

environmental model. While these approaches allow the separate models to operate synchronously, 

further development to better match the inherent spatio-temporal configurations between models is 

required to reduce errors associated with such mismatches. 

Lesson 7.  Construct Homogeneous Units. Coupling models increases computational overhead and 

thus requires increases in computational efficiency, both of which come with trade-offs. One approach 665 

to improving efficiency is to classify and generalize components of the model such as agent types in the 

human system (e.g., Brown and Robinson 2006), types of vegetation (e.g., plant functional types, Díaz 



	
  

and Cabido 1997, Smith et al. 1993, Smith et al. 1997), or landscape units. Landscape units are not 

typically constructed to structure spatial variability in land use science, but are used regularly in 

hydrological modelling; for example the Soil Water Assessment Tool (SWAT, Neitsch et al. 2011) uses 670 

hydrological response units (HRUs) that have a soil profile, bedrock, and topographic characteristics 

that are assumed homogeneous for the entire spatial extent of the unit. Similar concepts have been used 

to identify management zones or units, and our examples of DEED-BIOME-BGC (Robinson et al. 2013) 

and the iESM (Collins et al., 2015) both employed this approach. However, the variability among 

management activities and land-cover types can lead to a large combination of outcomes, and the 675 

delineation of these units directly contributes to uncertainty in model projections (Di Vittorio et al., 

2016). 

Lesson 8. Incorporating Feedback Increases Non-Linearity and Variability.  Specific results from 

the four examples are available in a number of publications associated with each example. Among the 

four example coupling efforts, it has been found that the incorporation of two-way feedbacks (Figure 2) 680 

between models of the human and natural system typically produces non-linear results and a greater 

range in model outcomes than are observed when the models are isolated or one-way prescriptions are 

used. For both the MML and DEED models, changes in the natural system were relatively linear when 

one-way human perturbations were prescribed. However, when feedbacks between the systems were 

incorporated then non-linear outcomes were observed and frequently a greater variation in model 685 

outcomes.	
  

 

3.3 Feedback Effects 

 



	
  

Introducing feedbacks often changes model outcomes, but it is difficult to determine if these changes are 690 

significant or realistic relative to the uncertainty in the original models and their coupling. The only way 

to test if the representation of a mechanism is representative of the real-world is to remove the 

inconsistencies so that the feedback effects can be quantified. Then, experiments that evaluate the effects 

of specific feedbacks can be carried out and evaluated. These experiments need to be carefully designed 

because the actual feedback signal can be an aggregate of expected, direct effects and additional, 695 

indirect effects. For example, average ecosystem productivity could change due to atmospheric 

influences (e.g., climate change, CO2 fertilization) or to terrestrial influences associated with changing 

ecosystem area (e.g., spatially heterogeneous soil properties, changes in the proportion of different forest 

types). Regardless of the challenges, an overall benefit of quantifying feedback effects is that modellers 

can gain insight into processes that are typically not observed and measured. Given the difficulty in 700 

observing these effects and potential inconsistencies, efforts in coupling human and natural-system 

models have focused on sensitivity analysis to test their effects (e.g. Harrison et al., 2017).  

Ultimately, an important goal in such analyses is to discern which of two distinct sources produce 

effects from including feedbacks in coupled models: 1) model implementation (both technical and 

conceptual), and 2) the actual feedback signal. Model implementation issues often relate to the level of 705 

consistency between the original models. For example, the need to translate changes in gridded patterns 

of ecosystem productivity to changes in regional average carbon density can lead to varying sensitivities 

across magnitudes of productivity and areal change, requiring the unrealistic sensitivities to be filtered 

out (Bond-Lamberty et al., 2014).  

Model experiments are useful for separating the model implementation issues from the actual 710 

feedback signal. For example, iESM was used in a series of land-only simulations to (a) quantify the 

relationship between ecosystem productivity and carbon density, (b) implement a statistical method to 



	
  

remove outliers that introduce error due to extreme combinations of land cover and productivity change, 

and (c) develop the appropriate proxy variables for use by GCAM (Bond-Lamberty et al. 2014). To 

verify that this process effectively removed the model implementation effects, another series of land-715 

only simulations was conducted using the iESM with and without terrestrial feedbacks, and with 

constant atmospheric conditions (i.e., year 1850 aerosols and nitrogen deposition, and repeating 15 years 

of climate forcing). This experiment showed that the coupling itself, without an atmospherically driven 

feedback signal, did not generate significant changes in GCAM outputs. The feedback signal was not 

zero, however, indicating that a combination of implementation effects and land heterogeneity effects 720 

was present. These combined effects were not separable due to lack of data on the required outputs, and 

in general they were opposite to the total feedback effects in the fully coupled iESM experiment, 

suggesting that the atmospherically driven feedbacks may be larger than the net feedbacks. 

Depending on the mechanisms involved, feedbacks may create strong feed forward effects that lead 

to fast evolution of the dynamics of the system. On the contrary, responses may also lead to an 725 

attenuation of perturbations and strong stability of the dynamics. Where the exact mechanisms involved 

and the strength of the feedbacks are unknown, model dynamics may start deviating strongly upon small 

changes in variable settings, in other words, leading to strong model sensitivity to highly uncertain 

model parameters.   

The examples including feedbacks in coupled human- natural-system models illustrate a number of 730 

challenges in designing and implementing feedback mechanisms: 

• The representation of human responses. The examples in the four cases above mostly relate to a 

coupling based on exchanging land cover and ecological-process-impact information. The 

human decision models translate the ecological impacts to alter decision making. For example, 

land-use decisions in PLUM-LPJGUESS, iESM, and MedLanD respond to changes in potential 735 



	
  

yields; in the MedLanD application, erosion processes also render land less suitable for use. In 

reality the responses of human decision-making are more complex. The relevance of the 

ecological indicator exchanged may be context dependent, e.g., potential yields may determine 

farming decisions in capital intensive farming that is near to the production frontier, but be much 

less important in low-input subsistence farming that is far from potential productivity. 740 

Furthermore, decision-making may not be based on the represented process or by the indicator 

exchanged, but rather on the human perception of the environmental change, which may be 

irrational and biased by other interests, such as in case of the climate debate. While the concept 

of environmental cognitions is well known, relatively little is known in relation to land-use 

change decision-making (Meyfroidt 2013). Human responses to environmental change are, 745 

therefore, a critical knowledge gap for implementing coupling mechanisms (Meyfroidt 2013b). 

• Structural differences in model concepts. The iESM example illustrates how structural 

differences in models can hamper the coupling of models, and how careful consideration is 

needed of the feedback mechanism and its consequences in relation to the overall model 

assumptions. This is especially relevant for coupling models that assume equilibrium and those 750 

that depict instantaneous impacts or transient situations. Global economic models using 

equilibrium assumptions, which are frequently coupled to land use and ecosystem models, and 

specialized land-change models (or land-change modules in IAM models) both address land use, 

but often from different perspectives leading to potential differences in the meaning and 

interpretation of input and output variables.  755 

• Reconciling stochastic and deterministic approaches. Another factor complicating the 

representation of feedback mechanisms is that some models are strongly deterministic (e.g., 

PLUM-LPJGUESS, GCAM-CESM (iESM), BIOME-BGC), so that the results are essentially the 



	
  

same for any run with the same initial parameters, while others have strong stochastic 

components (e.g., DEED and MedLanD). The former is common for many natural-systems 760 

models and some human-systems models (especially econometric style models). Other models 

have algorithms that generate stochasticity to represent uncertainty in processes. Many agent-

based/individual-based models and some cellular automata fall into this category. For models 

with included stochasticity, using the same random number generator seed can be used, however, 

to capture the variance and distribution of model outcomes repeated runs with different seeds are 765 

required, which can be conceptually challenging or operationally complicated when coupled with 

deterministic models. 	
  

	
  

3.4 A Way Forward 

 770 

The ability to dynamically simulate feedbacks between human decision-making and natural processes 

requires some kind of tight coupling—in the sense of frequent, two-way communication and high 

coordination (Figure 2) — between models designed to represent these different processes. To date, this 

has largely been achieved through connecting models into a single modeling environment. This is true to 

a large extent for all the case studies presented here. Adding new models to such systems often requires 775 

significant reprogramming and makes the expanded code base increasingly difficult to debug, verify, 

and validate. Additionally, any other researcher that would like to combine fewer, more, or different 

components will need to reprogram multiple parts of the modeling environment to decouple one model 

and add another.   

To expedite coupling in future modeling of the land system, we recommend a bottom up 780 

approach to modeling whereby modelers with in-depth domain knowledge create relatively small, more 



	
  

easily verified modules (Bell et al. 2015) or model components for assembly into a larger coupling 

frameworks (e.g., OpenMI, ESMF, OMS, and CSDMS).  Using this approach, the community may 

preserve and build upon existing numerical code previously developed by the many subdisciplines 

involved in modeling human and natural systems. These are not new ideas, but they have not yet been 785 

achievable in spite of their recognized desirability. However, a suite of technologies has reached 

sufficient maturity that it may now be a practical way to create a new generation of modeling tools that 

can exploit these two avenues for modelling coupled human-natural systems.  

 New coordinating frameworks for next generation coupled modeling of human and Earth 

systems are being developed within a number of relevant organizations: the Community Surface 790 

Dynamics Modeling System (CSDMS), the Network for Computational Modeling in Social and 

Ecological Sciences (CoMSES Net), and the Analysis, Integration, and Modeling of the Earth System 

(AIMES) Core Project of Future Earth. These frameworks envision a set of community-developed and 

endorsed standards for open, platform-independent, model coupling and integration based around an 

interrelated set of components that build on Lessons 3, 4, 5, and 6.   795 

 

• Start with wrapper container software (e.g., Docker) to encapsulate model code and needed 

dependencies. 

• Use a standardized API, like extension of the Basic Modeling Interface (BMI) developed by the 

CSDMS, to standardize and describe various functions (e.g., Model Control, Model Information, 800 

Time, Variable Information, Variable Getters and Setters, and Model Grids) such that a calling 

component in the framework is provided with the needed level of control to access other 

component’s metadata and simulated data (Hutton et al., 2014). 

• Incorporate Standard Names to map variables of multiple components to each other. In the 



	
  

CSDMS framework the Standard Names functions as a semantic matching mechanism, a lingua 805 

franca, for determining whether two variable names refer to the same quantity with associated 

predefined units.  

• Mitigate sunk-cost effects for integration into any one coupling framework by creating separate 

interfaces to one or more coupling frameworks (Peckham et al., 2013, Lemmen et al., 2018).   

• Adopt reproducible workflow environments to wire models together, supervise their execution 810 

and manage storage of the intermediate and final results needed for subsequent analysis. 

 

For these elements of a framework to be maintained, a community organization is required in an 

open-source development environment. Models meeting these community standards would then be 

certified in public code libraries like those maintained by CoMSES Net and CSDMS to indicate which 815 

models could be coupled with any other certified model. Certification from a community organization 

and buy-in from the modelling community would create an ecosystem of open, connectable models that 

could be integrated into reproducible computational pipelines in standard ways for coupled human and 

natural system models. The evolution of such an ecosystem is dependent on the commitment of 

organizations representing modeling science to support and maintain a set of community standards and 820 

to facilitate the education and adoption of those standards by the modelling community. An important 

advantage of the proposed framework is that it does not require scientists to significantly change the way 

they develop models or to commit to a particular language, platform, or operating system. The 

combination of this development flexibility with committed standards and adoption assistance would 

enhance the likelihood of reaching a critical mass of development that would greatly expedite not only 825 

the development of coupled human and natural system models, but also increase the rate of scientific 

discovery in this domain.  



	
  

 
 

4. CONCLUSIONS 830 

 

Coupling human-system and natural-system models requires connecting distinct research fields, each 

with unique knowledge, methods, assumptions, definitions, and language. Success depends on the 

research team members learning enough about the other field and model to unambiguously 

communicate with each other, recognize strengths and weaknesses of other methods, translate 835 

assumptions and definitions, and critically evaluate other model processes and outputs. Additionally, 

some team members need to develop working expertise of both models and fields to facilitate 

implementation of an internally-consistent coupled model. Furthermore, a software engineer is often 

needed to address the technical challenges of coupling complex models. Ultimately, the social and 

conceptual challenges combine to require much more time and effort for successful completion than for 840 

similar, mono-disciplinary projects. Nonetheless, all authors noted that the greatest benefit of the 

coupling process was the collaborative learning process that created a group of people with working 

knowledge of both human- and natural-system research and expertise in how to integrate the two.  

While successful coupling of human and natural-systems models requires truly interdisciplinary 

collaboration, we note that the playing field is not level with respect to disciplines. There are more 845 

resources and active modeling efforts in the natural sciences than in human systems science. This is 

unfortunate since natural scientists need to closely work with human systems scientists to understand the 

kinds of information needed and the kinds of information that can be provided by models of human 

systems. Moreover, the most scientifically and socially valuable results of model coupling require that 

both natural-systems models and human systems models be modified and enhanced to work together. 850 

The collaborative model development that this entails involves social interactions, two-way 



	
  

communication, and mutual respect for domain knowledge as well as technical solutions. In this regard, 

there needs to be scientific, professional, and policy incentives for all members of the interdisciplinary 

teams needed to develop successful integrated modeling.  

These efforts highlight the difficulty and challenges associated with the process of human-855 

environment model coupling as well as the opportunities that coupling presents for making substantive 

and methodological advances in science associated with human systems, natural systems, and their 

feedbacks with each other.  
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