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1 Crop models

GLAM is the Global Large Area Model for annual crops (Challiret al., 2004), it is a process based crop model that siesilat
the growth of a crop on the scale of grid cells used in climatelefs (Challinor et al., 2004) (Parkes et al., 2015). GLAMsIs
four meteorological inputs: maximum and minimum daily tergiures, downwelling shortwave radiation and precijpitat
all at the surface. GLAM used the maize yield data as an irgdatg with soil quantities taken from the Digital Soil Map
of the World using the approach described in Vermeulen €Rall3). GLAM uses an intelligent planting system to wait for
soil moisture to reach a pre-defined limit before plantingurs. The parameter set for maize used in this study is based o
the one used in Vermeulen et al. (2013). The high temperatuess at flowering routine was enabled, if the maximum daily
temperature is above 3T the yield is reduced, above 46 the yield is set to zero (Challinor et al., 2005, 2015). Tdiewater
harvesting routine used in GLAM stores any runoff from the tayer of the soil in a reservoir, the reservoir is tappedmwhe
the soil moisture falls below the wilting limit. The amourftwater released from the reservoir is enough to bring thieugoi
to 80% of the drained upper limit or the totality of the watésred. GLAM does not have a parameter set for sorghum or
millet and therefore was not used to simulate those crops c@hbon dioxide fertilisation effect is simulated by iresig the
transpiration efficiency of the crop, this is based on themezaibon dioxide concentration for the simulated time pgkrio
ORCHIDEE-crop model is a land surface crop model, based emgémeric vegetation model ORCHIDEE (Krinner et al.,
2005), simulating carbon, water and energy fluxes (e.g.gslyothesis, respiration and evapotranspiration) and feedpecif-
ically designed to represent crop processes. The versiOiRGHIDEE-crop used in this study includes crop phenologgimo
ule (Wu et al., 2016) and crop management modules (Wang @t atep), which has also submitted results for global ggitld
crop model intercomparison (Mller et al., 2017). ORCHIDE&&p calculates thermal unit accumulation, photosynshessd
energy exchange on a half-hourly time step, while leaf ay@ahics, carbon allocation and biomass and soil organtwocar
change are simulated on a daily time step. The daily climat@bles driving the model includes: maximum and minimum
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daily temperatures, downwelling shortwave rand longwaliateon, surface pressure, wind speed and precipitatibe. ga-
rameter set of maize was tested against a field experimerihgghana (Larvor, 2016).

SARRA-H (System for Regional Analysis of Agro-Climatic R#, developed by the CIRAD, is a simple deterministic
crop model for cereals operating at daily time steps (Dimgket al., 2003; Baron et al., 2005; Kouressy et al., 2008) tha
simulates the growth of a crop on an adaptive scale of grid delpending on the input data for Sorghum (90, 120 days or
photoperiodic), Millet (90, 120 days or photoperiodic) avidize (90 or 120 days). The performance in the analysis ofatk
impacts on tropical cereals is good (Mishra et al., 2008lGxtal., 2011). The yields are simulated under watert&ai
conditions by simulating the soil water balance, poteratral actual evapotranspiration, phenology, potential aatelimited
carbon assimilation, and biomass partitioning (see (Kssyet al., 2008) for a detailed review of model concepts. Gdrbon
dioxide fertilisation effect is not yet simulated. The optim temperature is between 34 and@&nd the limit temperature is
between 44 and 4€ following the crop spices. SARRA-H model does not exgdiicgimulate the effects of fertilizer, manure
application, or residue on crop yields but reproduce diffielevel of fertility (F1=>F4). The ratio between F1 to F4erés
calibrated with a field survey in Burkina Faso. For the sowtragarts when plant-available soil moisture is greatent®anm
at the end of the day and after the date determined by kriggktfirmers survey. The establishment of the crop is magitor
during the followed 20 days and if the condition is not cotreéaring this period, the juvenile crop died and a re-sowig i
automatically done. SARRA-H (Sultan et al., 2014) SARRA4+¢sIfive daily meteorological inputs: maximum and minimum
temperatures, downwelling shortwave radiation, preafjuh and PET (Hargreaves formula), all at the surface. Gtimputs
are also used: soil depth and soil water holding capacitysawing density and depth.

Author contributions. BP acquired the data and performed the simulations in GLAM, ORCHIDEp-@nd the Linear models. DD ran the
Sarra-H simulations. XW provided technical support for ORCHIDE®BEC All authors contributed to the manuscript.
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Figure 1. Multi model mean change in millet yield between control and future climates West Africa in a world 1.5 K warmer than
pre-industrial. Where + indicates three crop models agree the chandmitisitive and indicates three crop models agree the change will

be negative.
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Figure 2. Multi model mean change in millet IAV between control and future climates ®West Africa in a world 1.5 K warmer than
pre-industrial. Where + indicates three crop models agree the chandmitisitive and indicates three crop models agree the change will

be negative.
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Figure 3. Multi model mean change in sorghum yield between control and futuretdisrover West Africa in a world 1.5 K warmer than
pre-industrial. Where + indicates three crop models agree the chandmitisitive and indicates three crop models agree the change will

be negative.
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Figure 4. Multi model mean change in sorghum IAV between control and futureatBsover West Africa in a world 1.5 K warmer than
pre-industrial. Where + indicates three crop models agree the chandmpitisitive and indicates three crop models agree the change will

be negative.
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Figure 5. Heatmap of millet yields for four models for the control time period and &KL
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Figure 6. Heatmap of inter annual variability of millet yields for four models for thetcol time period and at 1.5 K.
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Figure 7. Heatmap of mild crop failure rate of millet for four models for the controliperiod and at 1.5 K.
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Figure 8. Heatmap of severe crop failure rate of millet for four models for therobtime period and at 1.5 K.
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Figure 9. Heatmap of sorghum yields for four models for the control time periatleari.5 K.
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Figure 10. Heatmap of inter annual variability of sorghum yields for four modelgtiercontrol time period and at 1.5 K.
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Figure 11. Heatmap of mild crop failure rate of sorghum for four models for thetrmbtime period and at 1.5 K.
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Figure 12. Heatmap of severe crop failure rate of sorghum for four models octimtrol time period and at 1.5 K.
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Figure 13. Ratio of IAV to model spread for maize for four models for the conteigid and 1.5 K
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Figure 14. Ratio of IAV to model spread for millet for four models for the controtgid and 1.5 K

18

10



RCP 8.5 +1.5K

Controlr A

L L L L L
Observations Sarra-H 90 Sarra-H 120 Sarra-H PP Linear model

Figure 15. Ratio of IAV to model spread for sorghum for four models for the colnteroid and 1.5 K
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