Format of responses

Reviewer comment

Author comment

Sample changes made to manuscript

Rev 1

“Descriptions of each crop model can be found in the Supplemental material.” (4:7) Please
describe the linear model also.

With comments from other reviewers a longer description of the models including the linear model
has been added to the main text of the paper. The content relating to the linear model is repeated
below.

The linear models use a design that has been used in several previous studies Estes et al. (2013);
Lobell and Burke (2010); Wang et al. (2016); Parkes et al. (2017). The models in this study use the
robust linear fitting tools in MATLAB (Holland and Welsch, 1977) that are less sensitive to
outliers than least squares fitting. The input data for the model have been polynomially detrended
before fitting and the log of the yield was taken, this means the models produce relative changes in
yield instead of absolute ones. The polynomial detrending used in the models is a two degree
polynomial solved for each grid cell. The models solve the equation shown in Eqn 1 where a, b and
c are constants for each grid cell and T and P are the seasonal mean temperature and total
precipitation respectively.

Y_ it=a i+b_iT it+c_iP_it

It is mentioned that “The four crop models were driven using the outputs of the four bias corrected
CORDEX-Africa RCM simulations as listed in table 1. The CORDEX-Africa simulations were
driven by ten GCMs as part of CMIP5” (4:19). However, there is no discussion of the uncertainty
due to climate forcing from the GCMs and RCMs. It seems important to provide some quantitative
measure of it and compare it to the range of results from crop models under the same forcing,
which by contrast is discussed extensively.

The relative global warming between the two climates considered is 0.8 K (5:8). What about the
local warming in W Africa, which is much more directly relevant here? What is the corresponding
local precipitation change? It might be helpful to include a figure that shows the temperature and
precipitation seasonal cycle and the modeled changes for the area considered.

These two comments are linked and have therefore been responded to together. A series of tables
has been added to the SI showing the mean temperature change and IAV along with the change in
total seasonal precipitation and IAV. The following descriptive text has been added from 2:28.

The precipitation and temperature changes for growing season of maize in the grid cells where
maize is analysed in the GCMs, RCMs and GCM-RCM pairings are shown in SI Tables 1-3. The
mean temperature change across the 16 member GCM-RCM ensemble is +0.98 K with a model
spread of 0.3 K. The mean precipitation change across the ensemble is +0.65 cm/season with a
model spread of 1.70 cm/season. This is a 1.2% increase in precipitation with a spread of 6%.

To simulate high temperature stress resistance the GLAM is rerun with the high temperature stress
routine disabled” (6:22) but this situation is biologically impossible. How would the conclusions
change if only more realistic stress adaptation were considered?




This is a limitation of the model and we have clarified this in the description of the model in the
main text of the manuscript.

To simulate a crop resistant to high temperature stress GLAM is rerun with the high temperature
stress routine disabled, a description of high temperature stress in flowering is found in Challinor
et al (2005). Disabling the high temperature stress routine produces an unphysical crop and is used
to give guidance on the importance of high temperature stress.

What is the meaning of “does not suffer from spread from the input data” (7:6)? Also, within the
context of this work the “successful” performance of ORCHIDEE-Crop is not very encouraging, as
it was run for only one of the three crops considered.

ORCHIDEE-Crop like GLAM has only been validated for maize, therefore it is only used for
maize. The wording used should be rephrased to prevent confusion and the following text has been
used in place.

ORCHIDEE-Crop replicates the observed IAV and in contrast with the other process based
models, GLAM and Sarra-H. The mean yields however do show a significant bias.

The yield gains predicted herein need to be considered as part of longer term trends that show
severe yield reductions as the 21stst [sic] century progresses.” (8:7) It would be good to provide
citations.

The spelling mistake has been corrected and the following references have been added to the the
sentence.

(Challinor et al.,2014; Knox et al., 2012)

Figures 4-6: It’s impossible for the variability or failure rate to be less than zero. So the color scale
should start no lower than zero.

In action to comments from other reviewers, the heatmaps have been removed and replaced new
figures and tables. The remaining heatmaps are shown below.
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Figure 7 is hard to understand. The caption should explain “Impact in current climate” and “Impact
of adaptation”, and the mean yield and number of years between crop failures should probably be
shown in different panels since they are fundamentally different quantities.

Figure 7 has been rebuilt as a single boxplot with a detailed caption explaining the content. With
two boxplots it was not easy to see the difference between the adaptation methods. The new plot
and caption are shown below.
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Efficacy of adaptation methods for maize in GLAM. HTS is high temperature stress adapted crops,
Rw H shows crops with rainwater harvesting, HTS and Rw H shows both adaptation methods in
use. Each box shows the fractional yield change relative to the unadapted crop with the boxplots
showing the range across the 6 member GCM-RCM ensemble. The pairs of boxes show the
relative change in yield for the adaptation method in the historic climate (left) and the future
climate (right).

Tables 3-5: Please also include and discuss the region-wide mean change (production- weighted
sum of the by-country changes).

The tables have been updated and new content inserted into the results and discussion sections of
the manuscript.




Format of responses

Reviewer comment

Author comment

Sample changes made to manuscript

Rev 2

1. Information about crop models: The basic characteristics of the crop models should be given in
the main text (Which models do account for CO2 fertilization? etc.). The predictors and equations
of the statistical models have to be provided.

The model descriptions have been moved from the SI to the main text and a description of the
linear models added.

GLAM and ORCHIDEE-Crop both respond to carbon dioxide fertilisation and ORCHIDEE-Crop
has nitrogen fertiliser inputs as part of the simulated crop growth.

The linear models use a design that has been used in several previous studies Estes et al. (2013);
Lobell and Burke (2010); Wang et al. (2016); Parkes et al. (2017). The models in this study use the
robust linear fitting tools in MATLAB (Holland and Welsch, 1977) that are less sensitive to
outliers than least squares fitting. The input data for the model have been polynomially detrended
before fitting and the log of the yield was taken, this means the models produce relative changes in
yield instead of absolute ones. The polynomial detrending used in the models is a two degree
polynomial solved for each grid cell. The models solve the equation shown in Eqn 1 where a, b and
c are constants for each grid cell and T and P are the seasonal mean temperature and total
precipitation respectively.

Y it=a i+b iT it+c iP_it

2. Entire distribution of changes in crop yields: Instead of showing the heat maps of mean changes
it would be much better to report the results of the individual models to illustrate the spread in the
projections and allow for a risk assessment that does not only depend on ensemble mean changes
but also on the range of plausible projections. For example, each individual simulation could
contribute one dot to a scatter plot of present-day mean yields (x-coordinate) against relative
changes in yields from present- day climate to a “1.5° C world” (y-coordinate). All simulations
generated by one crop model could be shown in one color. Such plots could be provided for the
entire region or individual countries. I consider it particularly problematic to simply average across
models accounting for CO2 fertilization effects (GLAM and ORCHIDEE-crop (I assume although
it is not stated in the SI)) and others that do not (Sarra-H and the statistical models (I assume)).
This could be avoided on this way.

Combined with requests from other reviewers we have built the following plots that show the map
of yield and IAV changes along with scatter plots suggested above. The maize plot is shown below
while the millet and sorghum plots have also been added to the manuscript.
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Change in maize yield and yield IAV between the historic and future climates. The top left shows
the change in yield where + indicates that in three crop models the change will be positive and -
indicates that in three crop models the change will be negative. The top right is the same as the top
left except for IAV instead of yield. The units of the colour bar in the top plots is kg/ha. The bottom
left shows the fractional change in yield against yield for all analysed grid cells. The bottom right
shows the fractional change in yield IAV against yield for all analysed grid cells.

3. Representation of present day management in process-based models: The paper needs a more
detailed discussion to what degree the process-based crop models represent present day
management (fertilizer input, specification of growing seasons, representation of multi-cropping).
Is there additional information about growing season or fertilizer input to evaluate the models
assumptions?

Extra detail has been added in the crop models description section of the manuscript

GLAM and ORCHIDEE-Crop both respond to carbon dioxide fertilisation and ORCHIDEE-Crop
has nitrogen fertiliser inputs as part of the simulated crop growth.

The planting and harvest dates for the crop models were determined using data generated as part of
the Global Gridded Crop Model Intercomparison project (Elliott et al 2015). The crop models all
simulate crops based on a single planting and harvest without multicropping.

4. Inter-crop model spread of projected changes: It is usually hard to really explain model
differences. It may be impossible. However, any idea would be extremely valuable and should be
discussed to advance the field and create a better understanding of the processes and potential
deficits in their representation.

A new section describing the main differences in the models has been added.

Differences in the crop models

Both GLAM and ORCHIDEE-Crop were used to simulate maize, SARRA-H and the generalised
linear models were used to simulate maize, sorghum and millet. GLAM and ORCHIDEE-Crop
both respond to carbon dioxide fertilisation and ORCHIDEE- Crop has nitrogen fertiliser inputs as
part of the simulated crop growth. The crop models all simulate crops based on a single planting




and harvest without multicropping. GLAM and the linear models use observational yield as an
input, in both cases the input yield is detrended using a two degree polynomial before use. This
detrending removes consistent trends such as management changes and technological
improvements. GLAM unlike the other models was calibrated specifically for these simulations
whereas ORCHIDEE-Crop and SARRA-H used pre defined parameter sets. The SARRA-H
parameters were based on a study area in Burkina Faso. The process based models are time
dependent and respond to the arrival of the monsoon, the linear models however only use the
seasonal total precipitation. Linear models suffer with reduced accuracy outside the parameters
space used to train them. In the short term linear models are not notably worse than process based
models (Lobell and Asseng,2017).

The differences in the crop models and inputs have an influence on the results. From Figure 1
GLAM shows a greater spread of yield change with climate change than the other models whereas
ORCHIDEE-Crop and SARRA-H are more consistent under climate change. The yield changes in
ORCHIDEE-Crop and GLAM are also influenced by the carbon dioxide fertilisation effect and in
its absence the projected yields are expected to be lower. The IAV results show greater spread in
the linear models than the process based models, this is a result of the simple parameters in the
linear models. The results in Figure 5 show that GLAM has a stronger negative response to
precipitation loss than the other models. The temperature results for all models show a downward
trend in yield with increasing temperatures. The lack of variability in the linear models is shown in
Figure 4 where they consistently underestimate crop failure rates. ORCHIDEE-Crop has a smaller
IAV than the other process based models which means the crop failure limit is much higher than in
the other models. This results in ORCHIDEE-Crop finding a significant increase in the number of
crop failures. As the ORCHIDEE-Crop IAV is closest to the observed IAV (Table 3), this indicates
that GLAM and SARRA-H are likely to underestimate the number of future crop failures. For
Figures 2 and 3 the country scale yields in the historic inputs can be clearly seen in the linear
models as opposed to the spread of yield values in SARRA-H.

5. Comparison of return periods of crop failure: How are the return frequencies of crop failures
derived? I assume that they are determined from crop-model specific samples of N = 16 climate
simulations x 20 years = 320 data points. In this case it could be an artefact that the distribution of
yields at 1.5¢ C of global warming is wider (and potentially less normal) than the associated
present-day sample: The 1.5¢ C distributions simply comprises the inter-climate model spread of
the simulations which is reduced in the present-day sample due to the underlying bias-correction.
To avoid this artefact the change in variability would have to be estimated within each individual
climate model. Averaging across the different climate models would have to be done afterwards.
However, that approach would reduce the sample size to only 20 (or 30) years, probably not
enough to robustly estimate crop failures in the proposed way. So it may only be possible to
compare the standard deviations (or percentiles) of both 20 (30)-year samples (present-day vs 1.5¢
C) as an alternative measure of the variability.

Every grid cell is checked for a crop failure against the crop failure limits determined by the
historic simulations. The historic simulations are used instead of the observations as a sufficiently
high or low bias would overwhelm the IAV and cause either zero or total crop failure. The number
of crop failures is then totalled across the simulation and divided by the total number of
simulations to give a crop failure fraction. The inverse of the crop failure fraction is the return time
of crop failure. The following text has been added to the manuscript to clarify this.

The number of crop failures is recorded for each grid cell and the total across the domain is
calculated. The total number of simulations for a crop model is the number of analysed grid cells
multiplied by the number of years of simulation. The total number of crop failures is divided by the
total number of simulations to give a fractional number of crop failures, this is the crop failure rate




with units of failures per grid cell per year. The inverse of the crop failure rate is the mean return
time for a crop failure.

6. Assessment of adaptation methods: Figure 7 is hard interpret. I think it would be better to 1)
show the effects of the on present-day distributions in one panel and 2) show the effects on the 1.5°
C distributions in a second panel. In each panel the 16 values of simulated yields (from the 16
climate model simulations) for one model setting could be shown in a box plot such that the first
panel would include four of them (one from the default simulation and three from the alternative
ones). The second panel could show the associated box plots of relative changes in yields.

Figure 7 has been rebuilt as a single boxplot with a detailed caption explaining the content. With
two boxplots it was not easy to see the difference between the adaptation methods. The new plot
and caption are shown below.
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Efficacy of adaptation methods for maize in GLAM. HTS is high temperature stress adapted crops,
Rw H shows crops with rainwater harvesting, HTS and Rw H shows both adaptation methods in
use. Each box shows the fractional yield change relative to the unadapted crop with the boxplots
showing the range across the 6 member GCM-RCM ensemble. The pairs of boxes show the
relative change in yield for the adaptation method in the historic climate (left) and the future
climate (right).

Given the uncertain representation of the current present-day management in the crop models and
the artificial turn-off of the heat stress routine in GLAM I am wondering whether the analysis
could be really considered as an adaptation scenario. It may be better to frame it as a test whether
the simulated yield changes are more driven by temperature stress or water scarcity. In this sense
one could think about a more general indicator that measures these stresses in the process-based
simulations. It would be a way to include the other models, too. It would be good to include the
other models in this assessment.

We have kept the specific adaptation results separate for GLAM as they are model specific. We
have however added scatter plots of yield change (%) against precipitation change (%) and
temperature change (K) to show the responses of the models. Furthermore the adaptation results
have been expanded to highlight that the rainwater harvesting may be insufficiently supply water
to counteract the precipitation losses in the future climate.

The results in Figure 5 show the responses of the maize yield to changes in precipitation and




temperature change for four crop models. To highlight the responses of precipitation changes
between -50% and +50% the x-axis of the left figure is truncated, a full version of the figure is
shown in SI Figure 2. The maize yields in all models show an increase in yield with increasing
precipitation. A negative trend is also present with increasing temperatures. The differences
between the crop models can be seen in these figures. The results in ORCHIDEE-Crop show less
variability than SARRA-H, GLAM or the Linear models and have a strong negative yield response
for a limited temperature change. The temperature change experienced by the crops simulated in
GLAM covers a larger range than the other models and the positive relationship between
precipitation and yield is also shown. Water scarcity has a smaller impact on SARRA-H and the
Linear models than in GLAM or ORCHIDEE-Crop and the SARRA-H results do not show a
strong negative response to higher temperatures.

This result needs to be considered alongside the results in Figure 5 which show a strong negative
precipitation response in GLAM, indicating that the rainwater harvesting routine, while providing
some extra water does not provide enough to counteract the precipitation changes in the future
simulations.
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More specific comments: P21.9-P3L2: Add the level of global warming or at least the emission
scenario and the timing when discussion the crop yield changes found in other studies. Do they
account for the CO2 fertilization effect or not? Are projections based on the assumption of no
adaptation? All the reported changes are conditional on these assumptions and are meaningless
otherwise.

The requested details have been added into the description of the existing literature

Specific comments:

P2L.9: Crops could also be imported. Add the information to what degree the considered countries
currently fulfill their demand.

Using FAO stats for 2005 in West Africa, all countries are currently net importers of cereals with
Gambia and Senegal close to three times the regional average of 41 kg/person. With yield changes




expected to be smaller than population changes the amount of imported food required will
therefore need to increase. This has been commented on and the FAO cited in the manuscript.

To maintain current levels of food intake the crop yields in West Africa will need to increase in
step with the increasing population. All countries within West Africa are currently net importers of
cereals indicating that their current production is insufficient to meet demand (UN FAQO)

P21.12 : Add the information which of the considered crops is C3 or C4 as the differences in CO2
fertilization effects are discussed before.

The crops are all C4 and this is now mentioned in the manuscript where we describe our work

In this paper we use four crop models simulating three crops and driven by meteorological outputs
from several regional climate models. Three C4 crops have been selected for this analysis; maize,
sorghum and millet.

P3L5: I am wondering whether the aim of the paper really is to “identify and quantify some of the
sources of uncertainty in the West African agriculatural system as the global climate passes 1.5¢
C”. Is it not a probabilistic projections of the impacts of 1.5¢ C of global warming on crop yields?

We agree and this has been changed to the statement below

The aim of this paper is to produce probabilistic projections of West African crop yields as the
global climate passes 1.5 K above the pre-industrial control

P3L15: Is there a trend in the reported crop yields, e.g. due to technological progress? Such a trend
is probably not expected from the crop model simulations that do not account for these effects.
Could that explain part of the difference between the present day simulations and observations?
The technology or management induced trend in the observations would also lead to a wider
distribution of the observed present-day yields and the simulated ones. How do you account for
these effects?

There are a number of trends. The existing crop yields are used as inputs for two models: GLAM
and the linear models. For both we detrend using a 2 degree polynomial to remove technology
terms, management changes and increased mechanisation. The remaining data is expected to be
primarily climate driven. This is described in the crop model section of the manuscript.

GLAM and the linear models use observational yield as an input, in both cases the input yield is
detrended using a two degree polynomial before use. This detrending removes consistent trends
such as management changes and technological improvements.

P5L11-13: are the differences due to different warming levels considered in these studies?

We use RCP8.5 which is the most severe of the CMIP5 warming levels, therefore it is unlikely that
the scenario is less severe than the average of a meta-analysis. The earlier projected time of our
results is likely the reason that the results are not as severe as they are in a meta-analysis at 2050.
This has been clarified in the text.

The yield losses in GLAM and ORCHIDEE-Crop are smaller than the mean reported in the
meta-analysis by Knox et al. (2012). The Knox et al. (2012) results are for crops in the 2050s and
therefore our results are expected to be smaller as they are for a closer time horizon. A second
meta-analysis by Challinor et al. (2014) presents results by temperature change, our results at 1.5 K
are within the range of results found in their analysis.

P5L14: How is the IAV calculated? See potentially associated problems mentioned in the general




comment above. Differences in the variability of observed and simulated crop yields could also be
induced by the technological progress affecting the observational data but not represented in the
observations or differences in the variability of the climate forcing compared to the observed
weather fluctuations. To what degree does the bias-correction the adjust the variability of the
simulated climate to the variability of the observed climate?

The TAV is the standard deviation of the crop yields, averaged over the domain. The observed crop
yields have been detrended to remove non-climate signals as described in the crop modelling
section. The multisegement approach of the bias correction will adjust the simulated variability to
closely match the observed variability and in doing so removes a number of 'drizzle' events from
the record and increases the intensity of wetter events to match the observations.

P6: There should be some more detailed information about the representation of high temperature
effects within GLAM.

This information is now in the main manuscript

The high temperature stress at flowering routine was enabled, if the maximum daily temperature is
above 37 C the yield is reduced, above 45 C the yield is set to zero (Challinor et al 2005,2015). To
test the importance of high temperature stress during flowering, this routine is disabled.

Section 1 of the SI What does it mean that “GLAM used the maize yield data as an input” (SI)? Is
the model calibrated to reproduce reported yields in the historical period when forced by
observational climate data?

This is correct and has been clarified in the updated manuscript.

GLAM and the linear models use observational yield as an input, in both cases the input yield is
detrended using a two degree polynomial before use. This detrending removes consistent trends
such as management changes and technological improvements.

Minor issues: P2L4: “or” instead of “of” P2L9: “need to increase” instead of “need increase”
P2L.19: change “predicted” to “projected” as the results are conditional on the emission scenario.
P3L9: “Two adaptation methods. . .” instead of “The use of two adaptation options. . .” P3L.18:
Would be good to directly name it RCP8.5 P4L.26: “With increases” instead to “with to increases”
P6L9: “simulation for the historical period” instead of “Simulations in for the historical period”
P6L.16: Change “predicted” to “projected” P6L.32: Delete “agree” Caption of Figure 1: I do not
understand the sentence “Sarra-H indicates the model simulating the 90 day variant of maize.”

These corrections have been made, with the exception of the figure captions which have been
replaced by new figures and captions.




Format of responses

Reviewer comment

Author comment

Sample changes made to manuscript

Rev 3

1. The methodology is unclear and incomplete. It lacks the necessary details to fully understand the
experiment design and the results. For example, there is no explicit information about the statistical
model used in the study. We don’t know what form this model is and how it works in the study.

The linear model has now been described in the manuscript with the content below.

The linear models use a design that has been used in several previous studies Estes et al. (2013);
Lobell and Burke (2010); Wang et al. (2016); Parkes et al. (2017). The models in this study use the
robust linear fitting tools in MATLAB (Holland and Welsch, 1977) that are less sensitive to
outliers than least squares fitting. The input data for the model have been polynomially detrended
before fitting and the log of the yield was taken, this means the models produce relative changes in
yield instead of absolute ones. The polynomial detrending used in the models is a two degree
polynomial solved for each grid cell. The models solve the equation shown in Eqn 1 where a, b and
c are constants for each grid cell and T and P are the seasonal mean temperature and total
precipitation respectively.

Y it=a i+b_ iT it+c_iP_it

Moreover, the interannual variability of yield is analyzed in the future based on projections from
climate models. But I am not sure whether climate variability and their impacts on yield can be
captured by the model’s future projection, given that signals like ENSO may not be well captured.

The variability in the input data has been restricted by bias correcting the data. The models have
variability that is close to the observations. The monsoon is the primarily precipitation source in
the region and this is typically a weakness of models. The CORDEX simulations have been shown
to perform well at replicating the large scale features including the IAV in precipitation over West
Africa. Biases exist in the CORDEX output and this is one of the reasons we have bias corrected
the data. To clarify this, the following text has been added.

The CORDEX-Africa simulations were found to perform well at replicating the large scale
features of the West African climate including the inter annual variability in precipitation
(Diaconescu et al., 2015). The precipitation in West Africa is primarily driven by the north-south
motion of the monsoon (Nikulin et al., 2012). The CORDEX-Africa models were found to contain
biases despite their good performance and therefore bias corrected model output were selected for
further analysis (Gbobaniyi et al., 2014).

2. The analysis and results are kind of unbalanced. Three crops are included in the study, but most
of the figures and results are about maize while less attention has been given to other crop and their
results are placed in SI.

The figures have been consolidated and placed in the main text.

The ensemble approach using climate data of 16 combinations should help understand the




uncertainty in the results. However, there is little discussion about uncertainty (e.g., from climate
input data or model itself). And surprisingly, there is no error bar or confidence level reported in
the results. Discussion section needs to include more content to dig into the inconsistencies and
discrepancies in the results across the models and across different crop types.

We have confidence levels on the tables of results and the yield changes where discussed. We have
also inserted a paragraph on the inter-model differences and the impacts of these differences.

3. The figures in the manuscript are poorly designed, which undermine the readability. Many
figures can be combined. Results of three crops can be combined in one figure. The colormap used
in the heat map is problematic. Fig 7 is hard to follow. The authors have to think about how to
improve the figures to make them more effective in conveying key information and in the
meantime easy to read.

New scatter plots of yield and IAV have been created and are shown below. Figure 7 has been
reworked into a new box plot.

P1 L4-5: Please specify recent historical and near term future.

The dates have been added for the historic time period, we have instead specified the temperatures
as this manuscript is based on SWLs.

An ensemble of near term climate projections are used to simulate maize, millet and sorghum in
West Africa in the recent historic (1986-2005) and a near term future where global temperatures
are 1.5 K above pre industrial.

P1 L6: "The mean yields are not expected to alter significantly". Where does this expectation come
from? This contradicts the results of this study.

This line has been removed and the abstract reworked the full abstract is shown in the comment
below.

The abstract needs more work. Please clearly define the science question, explain the methods used
and the results.

The abstract has been developed and is shown below.

The ability of a region to feed itself in the upcoming decades is an important question. The West
African population is expected to increase significantly in the next 30 years. The responses of
crops to short term climate change is critical to the population and the decision makers tasked with
food security. This leads to a three questions, How will crop yields change in the near future? What
influence will climate change have on crop failures? Which adaptation methods should be
employed to ameliorate undesirable changes?

An ensemble of near term climate projections are used to simulate maize, millet and sorghum in
West Africa in the recent historic (1986-2005) and a near term future where global temperatures
are 1.5 K above pre-industrial to assess the change in yield, yield variability and crop failure rate.
Four crop models were used to simulate maize, millet and sorghum in West Africa in the historic
and future climates.




Across the majority of West Africa the maize, millet and sorghum yields are shown to fall. In the
regions where yields increase the variability also increases. This increase in variability increases
the likelihood of crop failures, which are defined as yield negative anomalies beyond one standard
deviation during the historic period. The increasing variability increases the frequency of crop
failures across West Africa. The return time of crop failures falls from 8.8, 9.7 and 10.1 years to
5.2, 6.3 and 5.8 years for maize, millet and sorghum respectively.

The adoption of heat-resistant cultivars and the use of captured rainwater have been investigated
using one crop model as an idealised sensitivity test. The generalised adoption of a cultivar
resistant to high temperature stress during flowering is shown to be more beneficial than using
rainwater harvesting.

The first paragraph needs to have more references and to be better organized. Some content such
as monsoon is irrelevant to the topic of this study.

The monsoon is the primary water source for the crops grown in West Africa is therefore important
to the study.

The introduction has been reorganised to flow better, we now discuss the large scale problem, and
the challenges faced in the region. This is followed by an introduction to the regional climate, the
adaptation methods that people may use and then introduced the carbon dioxide fertilisation effect.
We have also added a number of references.

P2 L4 heat- and drought-resistant

This has been corrected

P2 L.19-20: references

Reference to Rippke et al added

P3 L.23-25: If 10 out of 16 combinations are based on RCA4. Why is it designed this way? My
concern is that the results from the ensemble experiment would largely depend on the performance
of RCA4, making the results biased to RCA4.

The experiment uses the full set of CORDEX data that were subsequently bias corrected as part of
HELIX. We use the full ensemble as subsampling was considered to be less optimal. The
CORDEX simulations are not k-complete and we used every experiment that we had access to.
The alternatives are, using only RCA4 to remove the RCM as a source of variability, or restricting
to the GCMs that used multiple RCMs but only CNRM-CM5, MOHC-HadGEM2-ES and
MPI-ESM-LR used both RCA4 and CCLM.

P3 L.30-33: The varying CO2 levels could affect the mean yield response as well as the variability
under warming. This needs to be discussed.

This is now discussed in the results section

ORCHIDEE-Crop and GLAM simulate responses to carbon dioxide fertilisation. Both models




project a small reduction in yield in future climates, the magnitude of which has been reduced by
the increase in yield from carbon dioxide fertilisation. Carbon dioxide fertilisation increases the
yield when the crop is limited by carbon dioxide. If the crop is water limited then the carbon
dioxide fertilisation will have a smaller effect on yield.

Section 2.2: more information about the four crop models need to be provided. For example, at
least to differentiate process-based crop models and the statistical models. Another question is if
the results from the statistical model are comparable with that from the process-based models, as
the mechanisms drive the change could be different. This needs to be discussed.

More detail about the crop models have been added to the text in both the methods and the
discussion

Differences in the crop models

Both GLAM and ORCHIDEE-Crop were used to simulate maize, SARRA-H and the generalised
linear models were used to simulate maize, sorghum and millet. GLAM and ORCHIDEE-Crop
both respond to carbon dioxide fertilisation and ORCHIDEE- Crop has nitrogen fertiliser inputs as
part of the simulated crop growth. The crop models all simulate crops based on a single planting
and harvest without multicropping. GLAM and the linear models use observational yield as an
input, in both cases the input yield is detrended using a two degree polynomial before use. This
detrending removes consistent trends such as management changes and technological
improvements. GLAM unlike the other models was calibrated specifically for these simulations
whereas ORCHIDEE-Crop and SARRA-H used pre defined parameter sets. The SARRA-H
parameters were based on a study area in Burkina Faso. The process based models are time
dependent and respond to the arrival of the monsoon, the linear models however only use the
seasonal total precipitation. Linear models suffer with reduced accuracy outside the parameters
space used to train them. In the short term linear models are not notably worse than process based
models (Lobell and Asseng,2017).

The differences in the crop models and inputs have an influence on the results. From Figure 1
GLAM shows a greater spread of yield change with climate change than the other models whereas
ORCHIDEE-Crop and SARRA-H are more consistent under climate change. The yield changes in
ORCHIDEE-Crop and GLAM are also influenced by the carbon dioxide fertilisation effect and in
its absence the projected yields are expected to be lower. The IAV results show greater spread in
the linear models than the process based models, this is a result of the simple parameters in the
linear models. The results in Figure 5 show that GLAM has a stronger negative response to
precipitation loss than the other models. The temperature results for all models show a downward
trend in yield with increasing temperatures. The lack of variability in the linear models is shown in
Figure 4 where they consistently underestimate crop failure rates. ORCHIDEE-Crop has a smaller
IAV than the other process based models which means the crop failure limit is much higher than in
the other models. This results in ORCHIDEE-Crop finding a significant increase in the number of
crop failures. As the ORCHIDEE-Crop IAV is closest to the observed IAV (Table 3), this indicates
that GLAM and SARRA-H are likely to underestimate the number of future crop failures. For
Figures 2 and 3 the country scale yields in the historic inputs can be clearly seen in the linear
models as opposed to the spread of yield values in SARRA-H.

Figure 1: (1) Since the red and blue color already represent negative and positive changes, it may
not necessary to use symbols (cross and dot) to denote agreement for negative and positive
changes separately. (2) Fig 1 and 2 and be combined to include both mean change and IAV. (3) I
would suggest trying to include all four crops in the figure using 8 panels.

The plots have been reworked into new panels to give even attention to all three crops. We have 3
crops and show 3 figures containing 4 panels each. The new panels are maps of yield and IAV




along with scatter plots coloured by model.

P4 1.24-25: Unless those place names are shown on the map, they make little for people like me
who is not familiar with the geography of West Africa. And this might be the case for most readers.

A figure has been added to the SI and referenced in the results section.

An annotated map of the analysed area is shown in SI Figure 1.

P4 1.26: Avoid placing the results in SI unless there is a strong reason to do so. Since millet is one
of the three crop types in the study, the results should appear in the main text.

As part of earlier responses we have moved several millet and sorghum results into the main text

Fig 3-6: (1) the current blue-to-red contrast type of colormap is problematic. It is not suitable to
display a continuous range of yield value (not yield change). It creates unnecessary visual
confusions. For example, What is the white color? Does it mean no value or the value around
17007 Please use other colormaps, there are plenty alternatives to choose. (2) Heat map here may
not be a good choice to represent quantitative information . . . The difference between history and
future is very hard to see. The authors should consider redesigning this figure or at least display the
exact number in the heat map.

The yield and IAV heatmaps have been replaced by new figures and tables.

P5 L11: Please specify the results from Knox and Challinor results? Is that a model result,
empirical study, field experiment, or meta-analysis? What did they find and how their results are
connected here?

This has been expanded and clarified

The yield losses in GLAM and ORCHIDEE-Crop are smaller than the mean reported in the
meta-analysis by Knox et al. (2012). The Knox et al. (2012) results are for crops in the 2050s and
therefore our results are expected to be smaller as they are for a closer time horizon. A second
meta-analysis by Challinor et al. (2014) presents results by temperature change, our results at 1.5 K
are within the range of results found in their analysis.

P5 L.24: Please justify the definition of crop failure using 1 and 1.5 standard deviations of yield. Is
the std threshold calculated using observations?

1 and 1.5 have been used in previous studies by the authors. The standard deviation is from the
historic results per model. Otherwise biases in the model results would dominate over the yield
changes. A citation of Parkes et al 2015 has been added too.

Fig 7. The legend is incomplete. Please add legends for all symbols including cross, circle, etc. I
don’t understand how to read this figure... What is the variable on x and y axes and their units?
Please add more information in the caption.

Figure 7 has been reworked as a boxplot instead of the scatter plot.
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Efficacy of adaptation methods for maize in GLAM. HTS is high temperature stress adapted crops,
Rw H shows crops with rainwater harvesting, HTS and Rw H shows both adaptation methods in
use. Each box shows the fractional yield change relative to the unadapted crop with the boxplots
showing the range across the 6 member GCM-RCM ensemble. The pairs of boxes show the
relative change in yield for the adaptation method in the historic climate (left) and the future
climate (right).
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Abstract. The ability of aceuntryerregion to feed itself in the upcoming decades-tgiestionofimpeortanceFhepepulation
in-WestAfrica-an importantquestion.The WestAfrican populationis expected to increase significantly in the next 30 years.
The responses éboed-crops to short term climate changethgreforecritical to the populatiomtlargeand the decision makers

tasked withprovidingfoed-for-theirpeople-food security. This leadsto a threequestionsHow will crop yields changein
ameliorataindesirablehanges?

An ensemble of near term climate projections are used tolatmmaize, millet and sorghum in West Africa in the recent
historicand(1986-2005andanear term futurewhereglobaltemperatureare1, 5K abovepre-industriato asseshechange

Africa in the historicandfuture climates.

ity-Acrossthe
variability also increasesThis increase in variability increases the likelihood obg failures, which are defined as yield
negative anomalies beyond one standard deviation darimeriodet20-yearshe historic period The increasing variability
increases the frequenepdintensityof crop failures across West Africa. Th%aﬂreturn#eqﬂeneybemee{wldmzeerep

every8:5yearsreturntime of crop failuresfalls from 9.7and10.1yearsto 5.2,6.3 and 5.8 yearsfor maize,millet and
sorghunrespectively
Twe-adaptatiorresponseso-climatechangethe The adoption of heat-resistant cultivars and the use of cagtiaimwater

have been investigated using one crop maelelsan idealised sensitivity test. The generalised adoptianafitivar resistant

to high temperature stress during flowering is shown to beerbeneficial than using rainwater harveskndpethinereasing
. " : : cail
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1 Introduction

The densely populated region of West Africa has been idedtds a region vulnerable to climate change impacts, froftsshi
in the monsoon system to desertification. The global clinsprojected to pass 1.5 K above the pre-industrial contrahé

coming decade&he

shortagesrethereforeexpectedithouttheaadverseeffectsof climatechange(Ray et al,, 2013; Gerland et al., 2014)

of water for West African cropsis the West African monsoon.Studies have shown that the monsoon may start later in
the year in West Africa under climate change, this in turnomgs the crops to the summer months when temperatures are

higher (Biasutti and Sobel, 2009; Sultan et al., 2014).

Temperatures and rainfall are not the only drivers of crabdyihat are expected to change; there are also possiblgehan
in fertiliser deploymengndthus nutrient availabilitfLassaletta et al., 2014)ndas well as farmers adaptation, e.g. through
irrigationef-plantingheator- (Rockstrom and Falkenmark, 200@) plantingheatanddrought resistant varieties in the case of
dryer and warmer condition$wiether (Guan et al., 2017).

A factor is the increase in ambient carbon dioxide conceatratand therefore the potential carbon dioxide fertiiggabf
yields (Berg et al., 2013). This is primarily for C3 plantsetcarboxylation of C4 plants is insensitive to carbon diexbut
carbon dioxide impacts maize development through storshislire and soil moisture conservatigreakey, 2009)

adaptationshow reductionsby the 2050s,in African yield of 5%, 10% and 15% for maize, millet and sangh respec-
tively (Knox et al., 2012).
The reduction in yields in Africa under climate change igtier supported by the meta-analysis in Roudier et al. (2011)

where multiple crops were shown to experience decreasaslth @neprocesswhichinereaseyieldisthe Themeta-analysis
in Roudier et al. (2011)seda numberof climate scenariogncluding A1B, A2 andB1 from CMIP3 (Meehl et al., 2007
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with time horizonsvarying from 2025-2085 the majority of the publicationsanalyseddid not study adaptationmethods.
Theresultsin Roudier et al. (2011linvestigatethe importanceof the carbon dioxide fertilisation effegtheweverwhich was

found the amelioratesomeof the yield lossesgattributedto climate change Howeverit has also been shown the nutritional
quality of the resultant crops is lower than in an atmosphétie current carbon dioxide concentrations (Roudier et2411).

Much of the area currently used to grow maize in West Africals®predictedprojectedto be unsuitable in the long term
with-, With a future climate basedon RCP8.5only 59.8% of the currently cultivated area predicted to mble in2100.
2100(Rippke et al., 2016)0f the lost cultivated area, 40% can be used to grow sorghumillets which are hardier to heat and
drought stresses, however the remaining 60% has no suétbtaative (Rippke et al., 2016). The millet and sorghuowgng
areas however are not predicted to suffer as much as maizg. dahe above mentioned studies use climate projecticats th
find high warming levels at the end of the century.

The expected change in yield for maize was also calculatgrhdf a meta analysis where the response of maize to in-
creasing temperatures with and without adaptation methvadsnvestigatedl he temperaturehangesverelocally analysed
andgroupedndependentf carbondioxidefertilisationof globalclimateconditions.Tropical maize was found to experience a
decline in yields as temperatures increase for both stwdtesand without adaptation (Challinor et al., 2014). Thare mul-
tiple potential adaptation methods to ameliorate the ingatclimate change, a non-exhaustive list contains, énb@ping,
changing the variety or species grown, use of fertilisets@np rotation to replenish nutrients in the soil.

Several adaptation methods for sorghum were investigat&lian et al. (2017) using two crop mod#is a future climate
periodof 2031-2060undera RCP8.5climate The proposed adaptation methods included changing tmtimdadate, rain-
water capture and re-use and increasing resilience to bigipdrature stress during flowering amongst others. Thédtsesu
in Guan et al. (2017) show that growing varieties with higmperature stress resistance during flowering is of more-bene
fit in the future climate than rainwater harvesting. Sorghyieids are expected to decrease with climate chaagkbased
on simulationsusing datafrom RCP8.5and between2031-2060,while carbon dioxide fertilisation will ameliorate some
of the losses, it will not eliminate them (Sultan et al., 2D14astly, for millet a model analysis produced an expeced r
duction in yields of 6%aerosstwe-by 2070-2099when comparedwith 1970-1999%crossthe A1B and A2 scenarios from
CMIP3 (Berg et al., 2013).

In this paper we use four crop models simulating three cropiscaiven by meteorological outputs from several regional
climate models. Thre€4 crops have been selected for this analysis; maize, sorghdmmaélet. They are a staple foods over
much of West Africa and an important source of many nutriehite aim of this paper is talentify-andguantifyysemeof-the
as the global climate passes 1.5 K above the pre-industidta. This study makes use of newly available input dadanfr
CORDEX-Africa to differentiate from previous works. Thesige several possible responses to the increasing tempratu
and altered precipitation regimes: these include modjfithre planting window, using a new variety of a crop or chaggin
the crop entirelyFhe-useof-two-Two adaptation methods to mitigate the impacts of climate cahdras been investigated.
These methods include an idealised crop which is resistameat stress during flowering and rainwater harvesting.obal
temperature increase of 1.5 K is drawing closer, with anauatage carbon dioxide levels above 400 ppm in 2016.
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2 Methods
2.1 Meteorological data

The input data for the crop models in this study was providegaat of the CORDEX-Africa project (Nikulin et al., 2012).
CORDEX-Africa uses a selection of CMIP5 Global Climate Misd&CMs) to drive a number of Regional Climate Models
(RCMs). The simulations used in this study are based on CMif&lations of a high emission, low adaptation future ctiena
where the radiative forcing at the end of the2tentury is +8.5 Wm?, (RCP8.5)(Taylor et al., 2011; Meinshausen et al.,
2011). The outputs from CORDEX-Africa were bias correctecpart of the HELIX project using multisegment statistical
bias correction (Grillakis et al., 2013; Papadimitriou ket 2015). The observations used to bias correct the CORBEXa
simulations was the WAT CH-Forcing-Data-ERA-Interim: WHB/eedon et al., 2014) record. The bias corrected CORDEX-
Africa data was provided at a horizontal resolution of 0.4d at a temporal resolution of one dayie multisegement

approaclof the biascorrectionwill adjuststhe simulatedvariability to closelymatchthe observedrariability andin doingso
removesanumberof drizzleeventdrom therecordandincreasesheintensityof wettereventso matchtheobservation$Papadimitriou et

climate including the inter annualvariability in precipitation(Diaconescu et al., 2015The precipitationin West Africa is

~

An ensemble of 10 GCMs and four RCMs were used as inputs toroagfels and a total of 16 GCM-RCM combinations
were utilised. None of the GCMs were used to drive all of theMe@nd of the RCMs, only RCA4 was used with every GCM.
A table of the GCM-RCM combinations used is shown in Table He Tontrol time slice for the experiment was 1986-2005
corresponding to the final 20 years of the CMIP5 historic $ations. The future time slice was taken as the 30 year period
where the global average temperature was closest to 1.5 eahe pre-industrial control of 1870-1899. The time slices
used for this experiment and the mean time slices weighteablly GCMs and RCMs are shown in Table 2. TBREM and
RCM weightedmeantime slicesarewithin ayearof eachotherat 2011-2040and2010-203espectivelyThe crop models
that simulate carbon dioxide fertilisation also use théoardioxide concentrations as inputs for the future clinsanarios
reached by each GCM when warming reaches 1.5 K. Thus, becdulfferent transient climate responses of the GCMs,
the crop models are exposed to a different carbon dioxideartrations for each GCM climate forcing. Our choice of not
normalizing the carbon dioxide levels for simulating craglgs is justified because we want to capture the full unoestaf
West African yield responses to both regional climate athgll carbon dioxide conditions in a 1.5K warmer world.

2.2 Crop models

Four different crop models were used in this study, the Globege Area Model for annual crops (GLAM) (Challinor et al.,
2004), ORCHIDEE-Crop (Wu et al., 2016) which is the crop #fiieeersion of the ORganizing Carbon and Hydrology in
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Dynamic EcosystEms (ORCHIDEE) land surface model (Krireteal., 2005), System of Agroclimatological Regional Risk

Analysis Version H $arra-EFSARRA-H) (Kouressy et al., 2008) and a series of generalised linealeta (Lobell and Burke,

2010).Theplantingandharvesiatesfor the cropmodelsweredeterminedisingdatageneratedspart of the Global Gridded
CropModel Intercomparisomproject(Elliott et al., 2015).

221 GLAM

GLAM istheGlobalLargeAreaModelfor annualcrops(Challinor et al., 2004}t is aprocesdaseccropmodelthatsimulates
thegrowthof a croponthescaleof grid cellsusedin climatemodels(Challinor et al., 2004{§Parkes et al., 2015GLAM uses

four meteorologicalnputs: maximumand minimum daily temperaturesjownwelling shortwaveradiationand precipitation,

of the World usingthe approactdescribedn Vermeulen et al. (201315LAM usesan intelligent plantingsystemto wait for

222 ORCHIDEE-Cro

ORCHIDEE-Cropis a land surfacecrop model, basedon the genericvegetationmodel ORCHIDEE (Krinner et al., 2005

simulatingcarbon,waterandenergyfluxes(e.g.photosynthesigespirationandevapotranspiratiordand modulesspecificall

designedo representropprocesseslheversionof ORCHIDEE-Cropusedn this studyincludescropphenolo odule(Wu et al., 201¢

andcropmanagememnnodulegWangetal.,in prep),whichhasalsosubmittedesultsfor globalgriddedcropmodelintercomparisoiiMlle

The daily climatevariablesdriving the modelincludes:maximumandminimurn daily temperaturesdownwellingshortwave
randlongwaveadiation,surfacepressurewind speecandprecipitation.The parametesetof maizewastestedagainsta field
andwasthereforenotusedto simulatethosecrops.

223 SARRAH
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SARRA-H (Systemfor RegionalAnalysisof Agro-Climatic Risks),developeddy the CIRAD, is a simpledeterministiccro

modelfor cerealoperatingat daily time steps(Dingkuhn et al., 2003; Baron et al., 2005; Kouressy et &l08)thatsimulates
thegrowthof acroponanadaptivescaleof grid cellsdependingntheinputdatafor Sorghum(90, 120daysor photoperiodic),
Millet (90, 120 daysor photoperiodic)and Maize (90 or 120 days). The performancen the analysisof climate impacts

on tropical cerealsis good (Mishra et al., 2008; Oettli et al., 201 IThe yields are simulatedunderwater-limited conditions

assimilationandbiomasgartitioning(see(Kouressy et al. r adetailedreviewof modelconcepts)Thecarbondioxide
lication,or residueon crop yields but reproducedifferent level of fertility (F1=>F4).The ratio betweenF1 to F4 rateis

during the followed 20 daysandif the conditionis not correctduring this period, the juvenile crop died and a re-sowingis
automatically/done. SARRA-H (Sultan et al., 20143ARRA-H usedive daily meteorologicainputs:maximumandminimum

temperaturesjownwellingshortwaveradiation,precipitationand PET (Hargreavesormula), all at the surface Othersinputs

arealsoused:soil depthandsoil waterholding capacityandsowingdensityanddepth.

224 Linear models

Thelinearmodelsuseadesigrnthathasbeenusedn severapreviousstudiesEstes et al. (2013); Lobell and Burke (2010); Wang et al. |

Eqn 1 wherea, b andc areconstantdor eachgrid cell andT andP arethe seasonaineantemperaturendtotal precipitation
respectively.

Yie = a1 30Ty + ol @)

2.2.5 Differencesin the crop models

Both GLAM and ORCHIDEE-Crop were used to simulate magasra-HSARRA-H and the generalised linear models were
used to simulate maize, sorghum and milleeseriptionsef-eacheropmodelcanbefoundin-the Supplementamaterial.
GLAM andORCHIDEE-Crophothrespondo carbondioxidefertilisationandORCHIDEE-Crophasnitrogenfertiliser inputs

as part of the simulatedcrop growth. The crop modelsall simulatecropsbasedon a single planting and harvestwithout
multicropping.GLAM andthelinearmodelsuseobservationayield asaninput,in bothcasegheinputyield is detrendedisin

atwo degreepolynomialbeforeuse.This detrendingemovesconsistentrendssuchasmanagementhangesndtechnological
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shorttermlinearmodelsarenot notablyworsethanprocesshasednodels(Lobell and Asseng, 2017)

2.3 Agronomic data

The crop model’s output were all analysed against theiitghd reproduce observed crop yields and variability. Thdded
input crop data for maize was taken from a dataset built fratellte observations combined with yields reported byRbed

and Agriculture Organization of the United Nations (FAOAQ@STAT, 2014; lizumi et al., 2014; lizumi and Ramankutty,
2016). The millet and sorghum data were country level datma fthe Food and Agriculture Organization of the United Na-
tions (FAO) (FAOSTAT, 2014). The cultivated areas for maizgllet and sorghum were defined by regridding the results
from Monfreda et al. (2008) on the meteorological grid. Tevant the results being swamped by signals from grid cells
with low cultivated area (Challinor et al., 2015), any griellavith less than 1% coverage of each crop type of interest wa

eliminated.

3 Reaults
3.1 Crop model results

The four crop models were driven using the outputs of the liias corrected CORDEX-Africa RCM simulations as listed in
table 1. The CORDEX-Africa simulations were driven by tenNB&Cas part of CMIP5. We present the first use of these data
for a specific warming level of 1.5 K above the pre-industciahtrol. An annotatednapof the analysedareais shownin Sl
Figurel.

The results inFigures??2-22-Figure 1 show the multi-model mean maize yield and yield interanvaaiability(hereafter
HAV)—respectively The+ and- symbols show grid cells where three of the four crop modelsagith the sign of the response
for the multi-model GCM-RCM mean, where shows an increase andghows a decrease. The model agreement is high in
Coéte d’lvoire and Ghana but there is a spread of positive agative impacts across Nigeria. The potential increasgieid
in Cote d’lvoire and Nigeria are also associated witlincreases in |IAdsshownin-Figure??. The millet results are shown
in SHrigurest-and2-Figure 2 where a dipole can be seen in the yield response, the yietddses in northern Nigeria and
southern Niger, however to the West in Burkina Faso and Malig is a decrease in yields. The dipole is not as significant i
the 1AV results with increases in IAV in Niger, Nigeria andBina Faso. The IAV is reduced in Mali along with the yield.€Th
stippled Sorghum result$S{igures3-and4Figure 3) present a smaller dipole effect that has positive yielchglean Niger
and a negative yield change over much of West Africa. Wheregyittld increases in Niger the 1AV also increases which is

expected to cause problems for food security.
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The multimodel ensemble mean yields for the control andréutime slices are calculated for each crop modelaptied

againstthe-observationsn-Figure 22-Of-the shownin Tables3, 4 and5, For eachyield value, the resultsare shownwith
the inter annualvariability (IAV) in the yield asthe first uncertaintyand the model spreadas the seconduncertainty.The
1AV _is largerthanthemodelspreador all cropmodelsexceptihelinearmodels Theratiofor thelAV in GLAM is muchlarger

andthereforehavingavery low modelspread.
Formaize(Table3), of the process based models GLAM aSdrra-HSARRA-H are closest to the observed yields whereas

ORCHIDEE-Crop is further away. The linear models by desigriai the observed yields. The future climate responses for
GLAM and Sara-HSARRA-H are limited however ORCHIDEE-Crop shows a strong redudtigrields. Sarra-HSARRA-H

and the linear models show an increase in yields at +1.5 K.cbh&rol simulation has temperatures that are 0.7 K above the
pre-industrial control, therefore the temperature differe experienced by the crops is 0.8 K. The maize yield ramhsctre
less thar2-10 & 709 £+ 91 kg/ha for GLAM, 84-95+ 185+ 51 kg/ha forORCHIDEE whereasSarra-HORCHIDEE-Crop,
whereasSARRA-Hincreases by arourizb-28 £+ 708+ 243kg/ha and the linear models increased®A0+ 127+ 191kg/ha.

In percentage terms these are less thhB% for GLAM, 5-7%fer-ORCHIDEEG.6%for ORCHIDEE-Cropand increases of
1-6%for-Sarra-Hand5:32.2%for SARRA-H and3.8% for the linear modelstherespenseformestmedels

the carbondioxide fertilisation will_havea smallereffect on yield, The yield lossesin GLAM_and ORCHIDEE-Cropare
smaller thammmwmmm@x@y Knox et al. (2012)heweveﬁh+s
mmwmd
meta-analysisy Challinor et al. (2014presentgesultsby temperatureehangeour resultsat 1.5 K arewithin the range of

result i : undin theiranalysis

The multimodel ensemble yield results contain two sourdasioertainty, thenterannualvariability- (HFAV-)-1AV and the
variability across the meteorological input datasets. rEsaltsfor-thelAV—areshewninFigures??2-Theresultsin-Figure 2?2
in Table3 show that ORCHIDEE-Crop has the most skill in reproduciregaghserved AV followed by the linear models. Both
GLAM and Sarra-HSARRA-H overestimate the 1AV for maize. Despite these differenties |AV increases for all models
in the future climate scenario. For the process based mdtuelg\ is significantly larger than the variability resultj from

differences in input meteorological data. Both GLAM and OfRBEE-Crop show little variability across the input datétlire
control scenario. For ORCHIDEE-Crop, GLAM and the lineardals the variability increases in the future climate, tkigi
contrast to the results Bara-F5ARRA-H.

Figures??-and??shewFigure4 showsthe mild and severe crop failure rate for maize in the corf0lyears) and future (30
years) climate scenarios. A mild crop failure is one stadd&viation below the observed yield for that grid cell, aesewcrop



5

10

15

20

25

30

35

failure is 1.5 standard deviations below thieserveesimulatedyield for that grid cell-in the historic simulation,the historic
ield from dominatingthe variability signal (Parkes et al., 2015T-he numberof

cropfailuresis recordedfor eachgrid cell andthe total acrosshe domainis calculated.The total numberof simulationsfor
acropmodelis the numberof analysedyrid cells multiplied by the numberof yearsof simulation.The total numberof cro
failuresis divided by the total numberof simulationsto give a fractionalnumberof cropfailures,this is the crop failure rate

with units of failures per grid cell per year. The inverseof the crop failure rate is the meanreturntime for a crop failure.
GLAM slightly underestimates the mild crop failure rate, ambas ORCHIDEE-Crop anBarra-HSARRA-H overestimate

slightly. The differences however are minor in comparisothbse found in the linear models. The severity of the chamge

simulationis usedto preventmodelbiasin

mild crop failure rate varies across the process based mbdéethe signal is consistent, at 1.5 K above pre-indudtréte is
an expectation of more crop failures. ORCHIDEE-Crop isipalarly pessimistic with the return time between cropuegis
falling from 6.1 years to 2.5 years per grid cell. For seveopdailures the process based models are again more ie#iish
the linear models. The future climate results show an irseéa severe crop failures, with ORCHIDEE-Crop again shgwin
the strongest response.

The millet and sorghuresuitsareshownin-SHriguress—12- Themilletandsorghumanalyses for three varieties simulated
by the Sarra-HSARRA-H model and the linear models. The linear models are more alpeedict the observed yield and
inter annual variability tha®arra-HSARRA-H for millet and sorghum&H-igures5:-6;:-9-andtdables4 and4). In the millet
simulations the linear models are close to the observed wkreas th&arra-HSARRA-H varieties are spread above and
below the observation®fthe Sarra-Hvarietiesthe Theyield changesirenegativefor thelinearmodelsandthe SARRA-H90

Figure4), this is mostlikely a resultof overestimatinghe IAV _andthereforegiving a too low limit for a crop failure. The
severecrop failures the modelsperformworseandthe returntime of 15 yearsis increasedo 21 in the SARRA-H PP day
morefrequentcropfailures.

For Sorghumthe SARRA-H 90 day cultivar is most capable of reproducing the obsesgrdhumyieldsyield, however the
yields are still abou2015% too low. The response of the 90 day cultivar to the futuraate are consistent with the simulations

in Sultan et al. (2014).

VaHa Otoafa 2RO GEetSHAG atd t D o oRtro gu
7 0

8-Handi2)}Acrossal-threecropsandalbmedelsthereis-aninereasdn-As SARRA-Hwasusedfor bothmillet andsorghum
theresultsaresimilar with the overestimatef the |AV_causingan underestimatef the crop failure rate-thefutureclimate
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120dayPPsensitive)ind 7.8,8.6 and7.9 yearsandthelinearmodelsproduceareturntime of 35.5years The samefeatures
The results in Tables 6, 7, 8 show the change in national yieldeach model and the multi-model medie per model

roductionchangesare averagedand shownin the rightmostcolumnsof the tables.Countries with fewer than 10 grid cells
analysed have been omitted from the tables. The resultsd@enshow a spread in expected yleld changes by nation#wdth

Cameroorand Cote d’lvoire experiencing an increase in yiafal

andtheaverageas-a-very-smallehange. Thereareyield reductionsin Benin, Burkina Faso,Ghana,Mali and Senegalvith
limited changesn NigeriaandTogo. ORCHIDEE-Cropfindsayieldreductionin-all-threecountrieswhereassLAM-Sarra-H

yominateghe productionchangewith a large negativechangeto a

reductionsn all four cropmodelsfor maize In the future climate simulations at the 1.5 K warming |leBafkina Fasq-Mati;
and-Senegabkll-andMali suffer a more than 5% loss in millet yields while Nigerpredictedand Nigeria are projectedto
experience an increase 8f2%-4.2%and4.2%. Theseyield changesesultin anincreasein productionthatis dominated

by Nigeria, howeverproductionfalls significantlyfor Burkina Faso,Mali and SenegalThe sorghum results (Table 8) nearly
always show a yield reduction with climate change with theegtion of Niger which has smallyield increase. The sorghum

results show a 10% yield reduction for Burkina Faso, Mali &emegalThe negativetrendsin the yields arealsopresentn
andhavea strongnegativeyield responsdor alimited temperaturehange The temperaturehangeexperiencedy the crops
simulatedin GLAM coversa largerrangethanthe othermodelsandthe positiverelationshipbetweerprecipitationandyield
andthe SARRA-H resultsdo not showa strongnegativeresponséo highertemperatures.

3.2 Adaptation results

In one of the four crop models (GLAM) simulations of two idisaed adaptation methods were performed. There were three
experiments, crops with a resistance to high temperatwessstiuring flowering, crops grown with rainwater harvestand
crops resistant to high temperature stress with rainwateristing deployed. To simulaéeropresistanto high temperature
stresgesistancehe GLAM is rerun with the high temperature stress routine diséba description of high temperature stress

in flowering is found in Challinor et al. (2005Risabling the high temperaturestressroutine producesan unphysicalcro
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andis usedto give guidanceon the importanceof high temperaturestress.The rainwater harvesting system collects runoff
from the crop and stores it with 50% efficiency, the water igldged if the soil moisture falls below the wilting limit fahe

crop. The adaptation methods are simulated in both the @ocitmate and the future climateingthe-approachdescribed
in-Lobell-(2014)

The adaptation results for GLAM (Figure 6) show that rairevaiarvesting is provides a smaller increase in yields in
the global 1.5 K warmer climate than in the historic climalee results for the return time between crop failures show an
improvement in the control climate that is greater than mftiture climate. In contrast the high temperature stresistest
crops show a benefit in both cases and a larger benefit in faliomates. The return time between crop failures also irsgea
more in future climates. However when combined with raimwvéiarvesting, high temperature stress resistance haslieisma
relative improvement than when it is deployed in isolatibhe maize results from GLAM presented here agree show simila
responses to the sorghum results in Guan et al. (2017) wigrédmperature stress resistance is more important thamater
harvesting This resultneedsto be considerecalongsidethe resultsin Figure 5 which showa strongnegativeprecipitation
responsén GLAM, indicatingthattherainwateharvestingoutine while providingsomeextrawaterdoesnot provideenough

4 Discussion

The results irFigure 22, SHrigures5-andFiguresl, 2 and3, show that as the global climate warms through 1.5 K the yield

response is uncertain. For maize, GLAM and ORCHIDEE-Craputate a reduction in yields. Across all crops and models

the largest reduction is 16.5% f8earra-HSARRA-H 90 day sorghum. The largest increase is found for the lineatets and

is 5-:3%fer-maized.2%for millet. This range of results is within the range found for tropiwalize in Challinor et al. (2014).
ORCHIDEE-Cropis-sueeessfubtreplicatingreplicatesthe observed |AV andieesnotsufferfrom-spreadirom-theinput

data;heweverthemeanyieldresultsin contrasiwith the otherprocesdasednodels GLAM andSARRA-H. Themeanyields
howeverdo show a significant bias. The ORCHIDEE-Crop results shawileatest increase in crop failure rate with crop

failures occurring once every 2.5 years in the future clexsaenarios. The crop failure rates for GLAM &@@fra-HSARRA-H
are similar with future failures happening every 6 and 5 geaspectively. The linear models consistently underedérthe
crop failure rate and this is one of their weaknesses. Thatsda Figures??-and??Figure4 show consistency across all three
process based models and therefore should be treated wiideace.

The varieties ofSarra-HSARRA-H are unable to replicate the observed yields for the millet sorghum analyses and
mis-estimate the yield by several hundred kg/BaKiguresSanddigures2 and3). The crop failure rate is defined by the
model yield and th&arra-HSARRA-H simulations all underestimate the crop failure rate. Thehaolwever all find a relative
increase in crop failure rate in future climates for bothletidnd sorghum.

The differencesin the crop modelsand inputs have an influenceon the results.From Figure 1 GLAM showsa greater
spreadof yield changewith climate changethan the other modelswhereasORCHIDEE-Cropand SARRA-H are more
consistentunderclimatechangeTheyield changesn ORCHIDEE-CropandGLAM arealsoinfluencedby thecarbondioxide

11



in Figure5 showthat GLAM hasa strongemegativeresponseo precipitationlossthanthe othermodels. The temperature
10 spreachf yield valuesin SARRA-H, As with SARRA-H, GLAM andthelinearmodelsin maize the SARRA-H varietiesand

The adaptation methods tested in GLAM for maize are shown inreiguand show that rainwater harvesting is not an

effective adaptation method. The higher rainfall in futalienates reduces the likelihood of water limiting the crapwth.
The high temperature stress adaptation is a more efficiaptation and provides a benefit in the future climate. Theloed
15 HTS resistant and rainwater harvesting adapted crop ifess adaptation than solely HTS resistant crop. Therefotae
case of limited resources it is better decision to explor&Hdsistance than building systems to capture runoff, éspeas

the systems require substantial investment to constructeintain.
The changes in national yields is a cause for concern as élisidacumented that populations in West Africa are expetted
increase quickly in the 21 century. Crop yields need to double by 2050 to feed the ptipuléRay et al., 2013), whereas the
20 largestincrease found in this studysgiietsorghunin Niger at $3-20%-Fhe8.84% whichif replicatedacrosgheentireregion

would be dufficienthoweverit is in contrasto the falling yields foundinstead.The productionchangeshowthe importance
of differentgrowingareasthelack of strongpositivechangesn yield acrossSub-SaharaMVestAfrica is aconcernThemean

yield changes are not the only message, in many cases wiearestin yield increase there is an accompanying increas¥in 1A

The increase in IAV means that yield are more uncertain amicttis an increasingly likelihood of crop failures. The retittns
25 inyields on national levels indicate a need for new breedsayd or changing species entirely, however the rate of geptmt
of new breeds in Africa is slow (Challinor et al., 2016).

5 Conclusions

Four crop models of varying design and complexity have besed tio project crop yields across West Africa for three crops

as global temperatures reach 1.5 K above the pre-indugvigls. The crops models were driven by the outputs of fouMRC
30 which were in turn driven by 10 GCMs. The crop models showediffy levels of skill at reproducing the yield and variatyili
found in the observed record. The process based modelslar®aivedict the crop failure rate for maize with moderatiél.sk
The varieties of crop simulated Barra-HSARRA-H for millet and sorghum are less able to replicate obsematiban the

linear models, but they are more capable for the crop falufais study is limited by the number of crop models used, in

12
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particular only one process based model was used to millesarghum. The use of bias corrected RCMs to provide input
data removes some of the problems associated with GCM dagdatge size of the grid (50km) prevents the formation o tru
convective storms and therefore the intensity of the weaskely to be underestimated (Garcia-Carreras et all520

The crop yields and percentage changes in yield were cééclifar several West Africa countries. The yield changes are
not consistent across national borders and some nationsxpeeted to lose more than others. The yield gains predicted
herein need to be considered as part of longer term trendsshiosv severe yield reductions as tB&s21** century pro-
gressegChallinor et al., 2014; Knox et al., 2012)s global temperatures approach 1.5 K above the pre-iridulgvels, the
knowledge of the most effective adaptation methods becamitisal and therefore it is of high importance to developdais
capable of simulating them.

The results from this study show that for several crops tharmgeld may not change much, however the increase in
variability is likely to result in an increase in crop faikg. The average crop yield responses are sometimes negadiveone
are positive enough to increase yields sufficiently to pnefeod shortages.
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Table 1. GCMs and RCMs wher& indicates a RCM-GCM combination used in this study. The RCM descriptioerpagre as fol-
lows: RCA4 (Chylek etal., 2011), RACMO22T (van Meijgaard et al.080 HIRHAMS5 (Christensen et al., 2006). The GCM decrip-
tion papers are as follows: CNRM-CM5 (Voldoire et al., 2013), CM5/&NMDufresne et al., 2013), CSIRO-Mk3.6.0 (Rotstayn et al.,
2012), NOAA-GFDL-CM3 (Griffies et al., 2011), MOHC-HadGEMZHJones et al., 2011), ICHEC-EC-EARTH (Hazeleger et al., 2012)
MIROCS5 (Watanabe et al., 2010), MPI-ESM-LR (Raddatz et al., 2008rESM (Bentsen et al., 2013).

RCA4 | CCLM4.8.17 | RACMO22T | HIRHAMS

CanESM2
CNRM-CM5
CM5A-MR
CSIRO-Mk3.6.0
NOAA-GFDL-CM3
MOHC-HadGEM2-ES
ICHEC-EC-EARTH
MIROC5
MPI-ESM-LR
NorESM

x

X X X X X X X X X
x
x
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Table 2. GCM time slices at +1.5 K and their corresponding carbon dioxide carat@ms.

Time (years)| CO; (ppm)
CanESM2 2000-2029 402.8
CNRM-CM5A 2016-2045 453.5
CM5A-MR 2002-2031 408.2
CSIRO-Mk3.6.0 2018-2047 461.2
NOAA-GFDL-CM3 2020-2049 469.3
MOHC-HadGEM2-ES| 2009-2038 429.1
ICHEC-EC-EARTH 2006-2035 419.7
MIROC5 2018-2047 461.2
MPI-ESM-LR 2004-2033 413.9
NorESM 2018-2047 461.2
GCM Mean 2011-2040 438.0
RCM Mean 2010-2039 434.1
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Table 3. Simulatedmaizeyieldsin kg/hain WestAfrica for observationsandfour crop modelsfor the historic time periodandat 1.5 K.
Wherethefirst uncertaintyalueis theinter annualvariability andthe seconds the spreadacrosgshe RCM-GCM ensemble.

| Observations GLAM

ORCHIDEE-Cro SARRAH Linearmodels
+1.5K
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Table 4. Simulatedmillet yields in kg/hain WestAfrica for observationgndfour crop modelsfor the historic time periodandat 1.5 K.
Wherethefirst uncertaintyalueis theinter annualvariability andthe seconds the spreadacrosgshe RCM-GCM ensemble.

| Observations SARRA-H90 SARRA-H120 SARRA-HPP Linearmodels
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Table 5. Simulatedsorghumyieldsin kg/hain WestAfrica for observationsndfour crop modelsfor the historictime periodandat 1.5K.
Wherethefirst uncertaintyalueis theinter annualvariability andthe seconds the spreadacrosshe RCM-GCM ensemble.

| Observations SARRAH90 SARRAH120 SARRAHPP Linearmodels
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Table 6. Percentage maize yield change by country. The number of grid cellgsénis in brackets and countries where fewer than 10 grid

cells were analysed have been omitted.

WMM%@WBFA@}FA@SM%WS shown in the rightmost colunin tonnes

Country GLAM ORCHIDEE-Crop Sarra-HSARRA-H  Linear models| Multi model mean| Productionfractienchar
Cote d’lvoire @8) 3.29 -4.87 6.03 1.35 1.44 5
Mali (13) 3:650.99 -3:95:5.07 9.05017  1:33528 252034 5:52%-1;
GhanaSenegalll) | +:34-10.10 -6:82:16.85 -3:60-342  -0:233,92 -2:33:6.61 10:09%-41
Nigeria(120Togo(17) | -0-860.56 -6:14:5.02 191033 520437 0.030.06 51.:34%-4¢
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Table 7. Percentage millet yield change by country.The number of grid cells sisd$yin brackets and countries where fewer than 10 grid

cells were analysed have been omitted.

WMMMWMWSMWQWS shown in the rightmost colunin tonnes

Country Sarra-HSARRA-HO90  Sara-HSARRA-H120 Sara-HSARRA-HPP  Linear models Multi model mean| Productio
Burkina Faso (93) ~4-21-4.95 -12:44-12.54 ~#47-8.32 0:67-3.21 -5:86-7.25
Chad (24) 11311731 2:420.21 -1-72-0.48 -5:03-8.47_ 0:-532.14
Céte d'lvoire (11) 21224 0.970.89 -4:17-4,22 363,72 0:630.66
Ghana (10) -1.16-1,.99 -4.78-6.04 -5.08-5.28 8.3816.74 -0.770.86
Mali (94) -1.6-3.31 -16.79-18.67 -17.78-22.37 3.859.74 -8.08-8.66
Niger (114) 11.9513.71 -1.56-0.90 -1.8-0,74 4.24.68 3.24.19
Nigeria (232) 7.2412.44 -3.530.22 -2.44-0.05 1.584.96 0.714.39 !
Senegal (40) 5.526.94 -12.32-13.12 -16.22-17.67 1.624.67 -5.35-4.80
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Table 8. Percentage sorghum yield change by country The number of gricaeellgsis is in brackets and countries where fewer than 10 grid

cells were analysed have been omitted.

QW%HMMNMF&%}{%SWWH[WQQS shown in the rightmost colunin tonnes

Country Sarra-HSARRA-HO90  Sara-HSARRA-H120 Sarra-HSARRA-HPP  Linear models Multi model mean| Producti
Benin 2023) -10:55-11.48 -18:52-19.57 -1-250.37 -0-37-0.29 ~#:05-7.74
Burkina Faso (102) -114-12.71 -19:63-20.20 -1-62-2.64 ~#-52-8.82 -10:04-11.09
Cameroon (65) -10:87-10.48 -17:98-17.90 -1:51-1.38 135207 ~#25-6.92
Chad (28) -3-63-4.17 -16-55-16.66 -0-36-0.84 -3-68-6.70_ -6-06-7.09
Ghana (28) ~#-66-8.15 -9:69-10.38 1:371.45 -1:94-0.04 -4-48-4.28
Mali (93) -9:42-9.53 -23:5-23.40 -9:5-8.60 690,07 -16:18-10.36
Mauritania (11) -#-54-8.59 -14-16-15.03 -8:33-9.92 11-:286.30 -4-69-6.81
Niger (94) 9:9826.35 -7-9-0.44 2:639.70 -21-0.24 0-658.84
Nigeria (313) -2-72.96 -14:92-12 14 14512.15 -0-29-1.34 -4-1-2,09
Senegal (19) ~#-29-7.27 -16-62-15.98 -15:56-14.61 -3-7-8.26_ -10-79-11.53
Togo (16) -6:02-5.48 -9-87-9.25 2:843.40 -2:650.41 -3:93-2.73
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