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“Descriptions of each crop model can be found in the Supplemental material.” (4:7) Please 
describe the linear model also.

With comments from other reviewers a longer description of the models including the linear model
has been added to the main text of the paper. The content relating to the linear model is repeated 
below.

The linear models use a design that has been used in several previous studies Estes et al. (2013); 
Lobell and Burke (2010); Wang et al. (2016); Parkes et al. (2017). The models in this study use the 
robust linear fitting tools in MATLAB (Holland and Welsch, 1977) that are less sensitive to 
outliers than least squares fitting. The input data for the model have been polynomially detrended 
before fitting and the log of the yield was taken, this means the models produce relative changes in
yield instead of absolute ones. The polynomial detrending used in the models is a two degree 
polynomial solved for each grid cell. The models solve the equation shown in Eqn 1 where a, b and
c are constants for each grid cell and T and P are the seasonal mean temperature and total 
precipitation respectively.

Y_it = a_i + b_i T_it + c_i P_it

It is mentioned that “The four crop models were driven using the outputs of the four bias corrected 
CORDEX-Africa RCM simulations as listed in table 1. The CORDEX-Africa simulations were 
driven by ten GCMs as part of CMIP5” (4:19). However, there is no discussion of the uncertainty 
due to climate forcing from the GCMs and RCMs. It seems important to provide some quantitative
measure of it and compare it to the range of results from crop models under the same forcing, 
which by contrast is discussed extensively.

The relative global warming between the two climates considered is 0.8 K (5:8). What about the 
local warming in W Africa, which is much more directly relevant here? What is the corresponding 
local precipitation change? It might be helpful to include a figure that shows the temperature and 
precipitation seasonal cycle and the modeled changes for the area considered.

These two comments are linked and have therefore been responded to together. A series of tables 
has been added to the SI showing the mean temperature change and IAV along with the change in 
total seasonal precipitation and IAV. The following descriptive text has been added from 2:28.

The precipitation and temperature changes for growing season of maize in the grid cells where 
maize is analysed in the GCMs, RCMs and GCM-RCM pairings are shown in SI Tables 1-3. The 
mean temperature change across the 16 member GCM-RCM ensemble is +0.98 K with a model 
spread of 0.3 K. The mean precipitation change across the ensemble is +0.65 cm/season with a 
model spread of 1.70 cm/season. This is a 1.2% increase in precipitation with a spread of 6%. 

To simulate high temperature stress resistance the GLAM is rerun with the high temperature stress 
routine disabled” (6:22) but this situation is biologically impossible. How would the conclusions 
change if only more realistic stress adaptation were considered?



This is a limitation of the model and we have clarified this in the description of the model in the 
main text of the manuscript.

To simulate a crop resistant to high temperature stress GLAM is rerun with the high temperature 
stress routine disabled, a description of high temperature stress in flowering is found in Challinor 
et al (2005). Disabling the high temperature stress routine produces an unphysical crop and is used 
to give guidance on the importance of high temperature stress.

What is the meaning of “does not suffer from spread from the input data” (7:6)? Also, within the 
context of this work the “successful” performance of ORCHIDEE-Crop is not very encouraging, as
it was run for only one of the three crops considered.

ORCHIDEE-Crop like GLAM has only been validated for maize, therefore it is only used for 
maize. The wording used should be rephrased to prevent confusion and the following text has been
used in place.

ORCHIDEE-Crop replicates the observed IAV and in contrast with the other process based 
models, GLAM and Sarra-H. The mean yields however do show a significant bias.

The yield gains predicted herein need to be considered as part of longer term trends that show 
severe yield reductions as the 21stst [sic] century progresses.” (8:7) It would be good to provide 
citations.

The spelling mistake has been corrected and the following references have been added to the the 
sentence.

(Challinor et al.,2014; Knox et al., 2012)

Figures 4-6: It’s impossible for the variability or failure rate to be less than zero. So the color scale 
should start no lower than zero.

In action to comments from other reviewers, the heatmaps have been removed and replaced new 
figures and tables. The remaining heatmaps are shown below.



Figure 7 is hard to understand. The caption should explain “Impact in current climate” and “Impact
of adaptation”, and the mean yield and number of years between crop failures should probably be 
shown in different panels since they are fundamentally different quantities.

Figure 7 has been rebuilt as a single boxplot with a detailed caption explaining the content. With 
two boxplots it was not easy to see the difference between the adaptation methods. The new plot 
and caption are shown below. 

Efficacy of adaptation methods for maize in GLAM. HTS is high temperature stress adapted crops,
Rw H shows crops with rainwater harvesting, HTS and Rw H shows both adaptation methods in 
use. Each box shows the fractional yield change relative to the unadapted crop with the boxplots 
showing the range across the 6 member GCM-RCM ensemble. The pairs of boxes show the 
relative change in yield for the adaptation method in the historic climate (left) and the future 
climate (right).

Tables 3-5: Please also include and discuss the region-wide mean change (production- weighted 
sum of the by-country changes).

The tables have been updated and new content inserted into the results and discussion sections of 
the manuscript. 
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Rev 2
1. Information about crop models: The basic characteristics of the crop models should be given in 
the main text (Which models do account for CO2 fertilization? etc.). The predictors and equations 
of the statistical models have to be provided.

The model descriptions have been moved from the SI to the main text and a description of the 
linear models added.

GLAM and ORCHIDEE-Crop both respond to carbon dioxide fertilisation and ORCHIDEE-Crop 
has nitrogen fertiliser inputs as part of the simulated crop growth.

The linear models use a design that has been used in several previous studies Estes et al. (2013); 
Lobell and Burke (2010); Wang et al. (2016); Parkes et al. (2017). The models in this study use the 
robust linear fitting tools in MATLAB (Holland and Welsch, 1977) that are less sensitive to 
outliers than least squares fitting. The input data for the model have been polynomially detrended 
before fitting and the log of the yield was taken, this means the models produce relative changes in
yield instead of absolute ones. The polynomial detrending used in the models is a two degree 
polynomial solved for each grid cell. The models solve the equation shown in Eqn 1 where a, b and
c are constants for each grid cell and T and P are the seasonal mean temperature and total 
precipitation respectively.

Y_it = a_i + b_i T_it + c_i P_it

2. Entire distribution of changes in crop yields: Instead of showing the heat maps of mean changes 
it would be much better to report the results of the individual models to illustrate the spread in the 
projections and allow for a risk assessment that does not only depend on ensemble mean changes 
but also on the range of plausible projections. For example, each individual simulation could 
contribute one dot to a scatter plot of present-day mean yields (x-coordinate) against relative 
changes in yields from present- day climate to a “1.5◦ C world” (y-coordinate). All simulations 
generated by one crop model could be shown in one color. Such plots could be provided for the 
entire region or individual countries. I consider it particularly problematic to simply average across
models accounting for CO2 fertilization effects (GLAM and ORCHIDEE-crop (I assume although 
it is not stated in the SI)) and others that do not (Sarra-H and the statistical models (I assume)). 
This could be avoided on this way.

Combined with requests from other reviewers we have built the following plots that show the map 
of yield and IAV changes along with scatter plots suggested above. The maize plot is shown below 
while the millet and sorghum plots have also been added to the manuscript.



Change in maize yield and yield IAV between the historic and future climates. The top left shows 
the change in yield where + indicates that in three crop models the change will be positive and · 
indicates that in three crop models the change will be negative. The top right is the same as the top 
left except for IAV instead of yield. The units of the colour bar in the top plots is kg/ha. The bottom
left shows the fractional change in yield against yield for all analysed grid cells. The bottom right 
shows the fractional change in yield IAV against yield for all analysed grid cells.

3. Representation of present day management in process-based models: The paper needs a more 
detailed discussion to what degree the process-based crop models represent present day 
management (fertilizer input, specification of growing seasons, representation of multi-cropping). 
Is there additional information about growing season or fertilizer input to evaluate the models 
assumptions?

Extra detail has been added in the crop models description section of the manuscript

GLAM and ORCHIDEE-Crop both respond to carbon dioxide fertilisation and ORCHIDEE-Crop 
has nitrogen fertiliser inputs as part of the simulated crop growth. 

The planting and harvest dates for the crop models were determined using data generated as part of
the Global Gridded Crop Model Intercomparison project (Elliott et al 2015). The crop models all 
simulate crops based on a single planting and harvest without multicropping.

4. Inter-crop model spread of projected changes: It is usually hard to really explain model 
differences. It may be impossible. However, any idea would be extremely valuable and should be 
discussed to advance the field and create a better understanding of the processes and potential 
deficits in their representation.

A new section describing the main differences in the models has been added. 

Differences in the crop models
Both GLAM and ORCHIDEE-Crop were used to simulate maize, SARRA-H and the generalised 
linear models were used to simulate maize, sorghum and millet. GLAM and ORCHIDEE-Crop 
both respond to carbon dioxide fertilisation and ORCHIDEE- Crop has nitrogen fertiliser inputs as 
part of the simulated crop growth. The crop models all simulate crops based on a single planting 



and harvest without multicropping. GLAM and the linear models use observational yield as an 
input, in both cases the input yield is detrended using a two degree polynomial before use. This 
detrending removes consistent trends such as management changes and technological 
improvements. GLAM unlike the other models was calibrated specifically for these simulations 
whereas ORCHIDEE-Crop and SARRA-H used pre defined parameter sets. The SARRA-H 
parameters were based on a study area in Burkina Faso. The process based models are time 
dependent and respond to the arrival of the monsoon, the linear models however only use the 
seasonal total precipitation. Linear models suffer with reduced accuracy outside the parameters 
space used to train them. In the short term linear models are not notably worse than process based 
models (Lobell and Asseng,2017).

The differences in the crop models and inputs have an influence on the results. From Figure 1 
GLAM shows a greater spread of yield change with climate change than the other models whereas 
ORCHIDEE-Crop and SARRA-H are more consistent under climate change. The yield changes in 
ORCHIDEE-Crop and GLAM are also influenced by the carbon dioxide fertilisation effect and in 
its absence the projected yields are expected to be lower. The IAV results show greater spread in 
the linear models than the process based models, this is a result of the simple parameters in the 
linear models. The results in Figure 5 show that GLAM has a stronger negative response to 
precipitation loss than the other models. The temperature results for all models show a downward 
trend in yield with increasing temperatures. The lack of variability in the linear models is shown in 
Figure 4 where they consistently underestimate crop failure rates. ORCHIDEE-Crop has a smaller 
IAV than the other process based models which means the crop failure limit is much higher than in 
the other models. This results in ORCHIDEE-Crop finding a significant increase in the number of 
crop failures. As the ORCHIDEE-Crop IAV is closest to the observed IAV (Table 3), this indicates 
that GLAM and SARRA-H are likely to underestimate the number of future crop failures. For 
Figures 2 and 3 the country scale yields in the historic inputs can be clearly seen in the linear 
models as opposed to the spread of yield values in SARRA-H.

5. Comparison of return periods of crop failure: How are the return frequencies of crop failures 
derived? I assume that they are determined from crop-model specific samples of N = 16 climate 
simulations x 20 years = 320 data points. In this case it could be an artefact that the distribution of 
yields at 1.5◦ C of global warming is wider (and potentially less normal) than the associated 
present-day sample: The 1.5◦ C distributions simply comprises the inter-climate model spread of 
the simulations which is reduced in the present-day sample due to the underlying bias-correction. 
To avoid this artefact the change in variability would have to be estimated within each individual 
climate model. Averaging across the different climate models would have to be done afterwards. 
However, that approach would reduce the sample size to only 20 (or 30) years, probably not 
enough to robustly estimate crop failures in the proposed way. So it may only be possible to 
compare the standard deviations (or percentiles) of both 20 (30)-year samples (present-day vs 1.5◦ 
C) as an alternative measure of the variability.

Every grid cell is checked for a crop failure against the crop failure limits determined by the 
historic simulations. The historic simulations are used instead of the observations as a sufficiently 
high or low bias would overwhelm the IAV and cause either zero or total crop failure. The number 
of crop failures is then totalled across the simulation and divided by the total number of 
simulations to give a crop failure fraction. The inverse of the crop failure fraction is the return time
of crop failure. The following text has been added to the manuscript to clarify this.

The number of crop failures is recorded for each grid cell and the total across the domain is 
calculated. The total number of simulations for a crop model is the number of analysed grid cells 
multiplied by the number of years of simulation. The total number of crop failures is divided by the
total number of simulations to give a fractional number of crop failures, this is the crop failure rate 



with units of failures per grid cell per year. The inverse of the crop failure rate is the mean return 
time for a crop failure. 

6. Assessment of adaptation methods: Figure 7 is hard interpret. I think it would be better to 1) 
show the effects of the on present-day distributions in one panel and 2) show the effects on the 1.5◦
C distributions in a second panel. In each panel the 16 values of simulated yields (from the 16 
climate model simulations) for one model setting could be shown in a box plot such that the first 
panel would include four of them (one from the default simulation and three from the alternative 
ones). The second panel could show the associated box plots of relative changes in yields.

Figure 7 has been rebuilt as a single boxplot with a detailed caption explaining the content. With 
two boxplots it was not easy to see the difference between the adaptation methods. The new plot 
and caption are shown below. 

Efficacy of adaptation methods for maize in GLAM. HTS is high temperature stress adapted crops,
Rw H shows crops with rainwater harvesting, HTS and Rw H shows both adaptation methods in 
use. Each box shows the fractional yield change relative to the unadapted crop with the boxplots 
showing the range across the 6 member GCM-RCM ensemble. The pairs of boxes show the 
relative change in yield for the adaptation method in the historic climate (left) and the future 
climate (right).

Given the uncertain representation of the current present-day management in the crop models and 
the artificial turn-off of the heat stress routine in GLAM I am wondering whether the analysis 
could be really considered as an adaptation scenario. It may be better to frame it as a test whether 
the simulated yield changes are more driven by temperature stress or water scarcity. In this sense 
one could think about a more general indicator that measures these stresses in the process-based 
simulations. It would be a way to include the other models, too. It would be good to include the 
other models in this assessment.

We have kept the specific adaptation results separate for GLAM as they are model specific. We 
have however added scatter plots of yield change (%) against precipitation change (%) and 
temperature change (K) to show the responses of the models.  Furthermore the adaptation results 
have been expanded to highlight that the rainwater harvesting may be insufficiently supply water 
to counteract the precipitation losses in the future climate.

The results in Figure 5 show the responses of the maize yield to changes in precipitation and 



temperature change for four crop models. To highlight the responses of precipitation changes 
between -50% and +50% the x-axis of the left figure is truncated, a full version of the figure is 
shown in SI Figure 2. The maize yields in all models show an increase in yield with increasing 
precipitation. A negative trend is also present with increasing temperatures. The differences 
between the crop models can be seen in these figures. The results in ORCHIDEE-Crop show less 
variability than SARRA-H, GLAM or the Linear models and have a strong negative yield response
for a limited temperature change. The temperature change experienced by the crops simulated in 
GLAM covers a larger range than the other models and the positive relationship between 
precipitation and yield is also shown. Water scarcity has a smaller impact on SARRA-H and the 
Linear models than in GLAM or ORCHIDEE-Crop and the SARRA-H results do not show a 
strong negative response to higher temperatures. 

This result needs to be considered alongside the results in Figure 5 which show a strong negative 
precipitation response in GLAM, indicating that the rainwater harvesting routine, while providing 
some extra water does not provide enough to counteract the precipitation changes in the future 
simulations.

 

More specific comments: P2L9-P3L2: Add the level of global warming or at least the emission 
scenario and the timing when discussion the crop yield changes found in other studies. Do they 
account for the CO2 fertilization effect or not? Are projections based on the assumption of no 
adaptation? All the reported changes are conditional on these assumptions and are meaningless 
otherwise.

The requested details have been added into the description of the existing literature

Specific comments:
P2L9: Crops could also be imported. Add the information to what degree the considered countries 
currently fulfill their demand.

Using FAO stats for 2005 in West Africa, all countries are currently net importers of cereals with 
Gambia and Senegal close to three times the regional average of 41 kg/person. With yield changes 



expected to be smaller than population changes the amount of imported food required will 
therefore need to increase. This has been commented on and the FAO cited in the manuscript.

To maintain current levels of food intake the crop yields in West Africa will need to increase in 
step with the increasing population. All countries within West Africa are currently net importers of 
cereals indicating that their current production is insufficient to meet demand (UN FAO)

P2L12 : Add the information which of the considered crops is C3 or C4 as the differences in CO2 
fertilization effects are discussed before.

The crops are all C4 and this is now mentioned in the manuscript where we describe our work

In this paper we use four crop models simulating three crops and driven by meteorological outputs 
from several regional climate models. Three C4 crops have been selected for this analysis; maize, 
sorghum and millet.

P3L5: I am wondering whether the aim of the paper really is to “identify and quantify some of the 
sources of uncertainty in the West African agriculatural system as the global climate passes 1.5◦ 
C”. Is it not a probabilistic projections of the impacts of 1.5◦ C of global warming on crop yields?

We agree and this has been changed to the statement below

The aim of this paper is to produce probabilistic projections of West African crop yields as the 
global climate passes 1.5 K above the pre-industrial control

P3L15: Is there a trend in the reported crop yields, e.g. due to technological progress? Such a trend
is probably not expected from the crop model simulations that do not account for these effects. 
Could that explain part of the difference between the present day simulations and observations? 
The technology or management induced trend in the observations would also lead to a wider 
distribution of the observed present-day yields and the simulated ones. How do you account for 
these effects?

There are a number of trends. The existing crop yields are used as inputs for two models: GLAM 
and the linear models. For both we detrend using a 2 degree polynomial to remove technology 
terms, management changes and increased mechanisation. The remaining data is expected to be 
primarily climate driven. This is described in the crop model section of the manuscript.

GLAM and the linear models use observational yield as an input, in both cases the input yield is 
detrended using a two degree polynomial before use. This detrending removes consistent trends 
such as management changes and technological improvements.

P5L11-13: are the differences due to different warming levels considered in these studies?

We use RCP8.5 which is the most severe of the CMIP5 warming levels, therefore it is unlikely that
the scenario is less severe than the average of a meta-analysis. The earlier projected time of our 
results is likely the reason that the results are not as severe as they are in a meta-analysis at 2050. 
This has been clarified in the text.

The yield losses in GLAM and ORCHIDEE-Crop are smaller than the mean reported in the 
meta-analysis by Knox et al. (2012). The Knox et al. (2012) results are for crops in the 2050s and 
therefore our results are expected to be smaller as they are for a closer time horizon. A second 
meta-analysis by Challinor et al. (2014) presents results by temperature change, our results at 1.5 K
are within the range of results found in their analysis.

P5L14: How is the IAV calculated? See potentially associated problems mentioned in the general 



comment above. Differences in the variability of observed and simulated crop yields could also be 
induced by the technological progress affecting the observational data but not represented in the 
observations or differences in the variability of the climate forcing compared to the observed 
weather fluctuations. To what degree does the bias-correction the adjust the variability of the 
simulated climate to the variability of the observed climate?

The IAV is the standard deviation of the crop yields, averaged over the domain. The observed crop 
yields have been detrended to remove non-climate signals as described in the crop modelling 
section. The multisegement approach of the bias correction will adjust the simulated variability to 
closely match the observed variability and in doing so removes a number of 'drizzle' events from 
the record and increases the intensity of wetter events to match the observations.

P6: There should be some more detailed information about the representation of high temperature 
effects within GLAM.

This information is now in the main manuscript

 The high temperature stress at flowering routine was enabled, if the maximum daily temperature is
above 37 C the yield is reduced, above 45 C the yield is set to zero (Challinor et al 2005,2015). To 
test the importance of high temperature stress during flowering, this routine is disabled.

Section 1 of the SI What does it mean that “GLAM used the maize yield data as an input” (SI)? Is 
the model calibrated to reproduce reported yields in the historical period when forced by 
observational climate data?

This is correct and has been clarified in the updated manuscript.

GLAM and the linear models use observational yield as an input, in both cases the input yield is 
detrended using a two degree polynomial before use. This detrending removes consistent trends 
such as management changes and technological improvements.

Minor issues: P2L4: “or” instead of “of” P2L9: “need to increase” instead of “need increase” 
P2L19: change “predicted” to “projected” as the results are conditional on the emission scenario. 
P3L9: “Two adaptation methods. . .” instead of “The use of two adaptation options. . .” P3L18: 
Would be good to directly name it RCP8.5 P4L26: “With increases” instead to “with to increases” 
P6L9: “simulation for the historical period” instead of “Simulations in for the historical period” 
P6L16: Change “predicted” to “projected” P6L32: Delete “agree” Caption of Figure 1: I do not 
understand the sentence “Sarra-H indicates the model simulating the 90 day variant of maize.”

These corrections have been made, with the exception of the figure captions which have been 
replaced by new figures and captions.
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1. The methodology is unclear and incomplete. It lacks the necessary details to fully understand the
experiment design and the results. For example, there is no explicit information about the statistical
model used in the study. We don’t know what form this model is and how it works in the study. 

The linear model has now been described in the manuscript with the content below.

The linear models use a design that has been used in several previous studies Estes et al. (2013); 
Lobell and Burke (2010); Wang et al. (2016); Parkes et al. (2017). The models in this study use the 
robust linear fitting tools in MATLAB (Holland and Welsch, 1977) that are less sensitive to 
outliers than least squares fitting. The input data for the model have been polynomially detrended 
before fitting and the log of the yield was taken, this means the models produce relative changes in
yield instead of absolute ones. The polynomial detrending used in the models is a two degree 
polynomial solved for each grid cell. The models solve the equation shown in Eqn 1 where a, b and
c are constants for each grid cell and T and P are the seasonal mean temperature and total 
precipitation respectively.

Y_it = a_i + b_i T_it + c_i P_it

Moreover, the interannual variability of yield is analyzed in the future based on projections from 
climate models. But I am not sure whether climate variability and their impacts on yield can be 
captured by the model’s future projection, given that signals like ENSO may not be well captured. 

The variability in the input data has been restricted by bias correcting the data. The models have 
variability that is close to the observations. The monsoon is the primarily precipitation source in 
the region and this is typically a weakness of models. The CORDEX simulations have been shown 
to perform well at replicating the large scale features including the IAV in precipitation over West 
Africa. Biases exist in the CORDEX output and this is one of the reasons we have bias corrected 
the data. To clarify this, the following text has been added.

The CORDEX-Africa simulations were found to perform well at replicating the large scale 
features of the West African climate including the inter annual variability in precipitation 
(Diaconescu et al., 2015). The precipitation in West Africa is primarily driven by the north-south 
motion of the monsoon (Nikulin et al., 2012). The CORDEX-Africa models were found to contain 
biases despite their good performance and therefore bias corrected model output were selected for 
further analysis (Gbobaniyi et al., 2014).

2. The analysis and results are kind of unbalanced. Three crops are included in the study, but most 
of the figures and results are about maize while less attention has been given to other crop and their
results are placed in SI. 

The figures have been consolidated and placed in the main text.

The ensemble approach using climate data of 16 combinations should help understand the 



uncertainty in the results. However, there is little discussion about uncertainty (e.g., from climate 
input data or model itself). And surprisingly, there is no error bar or confidence level reported in 
the results. Discussion section needs to include more content to dig into the inconsistencies and 
discrepancies in the results across the models and across different crop types.

We have confidence levels on the tables of results and the yield changes where discussed. We have 
also inserted a paragraph on the inter-model differences and the impacts of these differences. 

3. The figures in the manuscript are poorly designed, which undermine the readability. Many 
figures can be combined. Results of three crops can be combined in one figure. The colormap used
in the heat map is problematic. Fig 7 is hard to follow. The authors have to think about how to 
improve the figures to make them more effective in conveying key information and in the 
meantime easy to read.

New scatter plots of yield and IAV have been created and are shown below. Figure 7 has been 
reworked into a new box plot. 

P1 L4-5: Please specify recent historical and near term future.

The dates have been added for the historic time period, we have instead specified the temperatures 
as this manuscript is based on SWLs.

An ensemble of near term climate projections are used to simulate maize, millet and sorghum in 
West Africa in the recent historic (1986-2005) and a near term future where global temperatures 
are 1.5 K above pre industrial.

P1 L6: "The mean yields are not expected to alter significantly". Where does this expectation come
from? This contradicts the results of this study.

This line has been removed and the abstract reworked the full abstract is shown in the comment 
below.

The abstract needs more work. Please clearly define the science question, explain the methods used
and the results. 

The abstract has been developed and is shown below.

The ability of a region to feed itself in the upcoming decades is an important question. The West 
African population is expected to increase significantly in the next 30 years. The responses of 
crops to short term climate change is critical to the population and the decision makers tasked with 
food security. This leads to a three questions, How will crop yields change in the near future? What
influence will climate change have on crop failures? Which adaptation methods should be 
employed to ameliorate undesirable changes?

An ensemble of near term climate projections are used to simulate maize, millet and sorghum in 
West Africa in the recent historic (1986-2005) and a near term future where global temperatures 
are 1.5 K above pre-industrial to assess the change in yield, yield variability and crop failure rate. 
Four crop models were used to simulate maize, millet and sorghum in West Africa in the historic 
and future climates.



Across the majority of West Africa the maize, millet and sorghum yields are shown to fall. In the 
regions where yields increase the variability also increases. This increase in variability increases 
the likelihood of crop failures, which are defined as yield negative anomalies beyond one standard 
deviation during the historic period. The increasing variability increases the frequency of crop 
failures across West Africa. The return time of crop failures falls from 8.8, 9.7 and 10.1 years to 
5.2, 6.3 and 5.8 years for maize, millet and sorghum respectively.

The adoption of heat-resistant cultivars and the use of captured rainwater have been investigated 
using one crop model as an idealised sensitivity test. The generalised adoption of a cultivar 
resistant to high temperature stress during flowering is shown to be more beneficial than using 
rainwater harvesting.

The first paragraph needs to have more references and to be better organized. Some content such 
as monsoon is irrelevant to the topic of this study. 

The monsoon is the primary water source for the crops grown in West Africa is therefore important
to the study. 

The introduction has been reorganised to flow better, we now discuss the large scale problem, and 
the challenges faced in the region. This is followed by an introduction to the regional climate, the 
adaptation methods that people may use and then introduced the carbon dioxide fertilisation effect. 
We have also added a number of references.

P2 L4 heat- and drought-resistant

This has been corrected

P2 L19-20: references

Reference to Rippke et al added

P3 L23-25: If 10 out of 16 combinations are based on RCA4. Why is it designed this way? My 
concern is that the results from the ensemble experiment would largely depend on the performance
of RCA4, making the results biased to RCA4.

The experiment uses the full set of CORDEX data that were subsequently bias corrected as part of 
HELIX. We use the full ensemble as subsampling was considered to be less optimal. The 
CORDEX simulations are not k-complete and we used every experiment that we had access to. 
The alternatives are, using only RCA4 to remove the RCM as a source of variability, or restricting 
to the GCMs that used multiple RCMs but only CNRM-CM5, MOHC-HadGEM2-ES and 
MPI-ESM-LR used both RCA4 and CCLM.

P3 L30-33: The varying CO2 levels could affect the mean yield response as well as the variability 
under warming. This needs to be discussed.

This is now discussed in the results section

ORCHIDEE-Crop and GLAM simulate responses to carbon dioxide fertilisation. Both models 



project a small reduction in yield in future climates, the magnitude of which has been reduced by 
the increase in yield from carbon dioxide fertilisation. Carbon dioxide fertilisation increases the 
yield when the crop is limited by carbon dioxide. If the crop is water limited then the carbon 
dioxide fertilisation will have a smaller effect on yield.

Section 2.2: more information about the four crop models need to be provided. For example, at 
least to differentiate process-based crop models and the statistical models. Another question is if 
the results from the statistical model are comparable with that from the process-based models, as 
the mechanisms drive the change could be different. This needs to be discussed.

More detail about the crop models have been added to the text in both the methods and the 
discussion

Differences in the crop models
Both GLAM and ORCHIDEE-Crop were used to simulate maize, SARRA-H and the generalised 
linear models were used to simulate maize, sorghum and millet. GLAM and ORCHIDEE-Crop 
both respond to carbon dioxide fertilisation and ORCHIDEE- Crop has nitrogen fertiliser inputs as 
part of the simulated crop growth. The crop models all simulate crops based on a single planting 
and harvest without multicropping. GLAM and the linear models use observational yield as an 
input, in both cases the input yield is detrended using a two degree polynomial before use. This 
detrending removes consistent trends such as management changes and technological 
improvements. GLAM unlike the other models was calibrated specifically for these simulations 
whereas ORCHIDEE-Crop and SARRA-H used pre defined parameter sets. The SARRA-H 
parameters were based on a study area in Burkina Faso. The process based models are time 
dependent and respond to the arrival of the monsoon, the linear models however only use the 
seasonal total precipitation. Linear models suffer with reduced accuracy outside the parameters 
space used to train them. In the short term linear models are not notably worse than process based 
models (Lobell and Asseng,2017).

The differences in the crop models and inputs have an influence on the results. From Figure 1 
GLAM shows a greater spread of yield change with climate change than the other models whereas 
ORCHIDEE-Crop and SARRA-H are more consistent under climate change. The yield changes in 
ORCHIDEE-Crop and GLAM are also influenced by the carbon dioxide fertilisation effect and in 
its absence the projected yields are expected to be lower. The IAV results show greater spread in 
the linear models than the process based models, this is a result of the simple parameters in the 
linear models. The results in Figure 5 show that GLAM has a stronger negative response to 
precipitation loss than the other models. The temperature results for all models show a downward 
trend in yield with increasing temperatures. The lack of variability in the linear models is shown in 
Figure 4 where they consistently underestimate crop failure rates. ORCHIDEE-Crop has a smaller 
IAV than the other process based models which means the crop failure limit is much higher than in 
the other models. This results in ORCHIDEE-Crop finding a significant increase in the number of 
crop failures. As the ORCHIDEE-Crop IAV is closest to the observed IAV (Table 3), this indicates 
that GLAM and SARRA-H are likely to underestimate the number of future crop failures. For 
Figures 2 and 3 the country scale yields in the historic inputs can be clearly seen in the linear 
models as opposed to the spread of yield values in SARRA-H.

Figure 1: (1) Since the red and blue color already represent negative and positive changes, it may 
not necessary to use symbols (cross and dot) to denote agreement for negative and positive 
changes separately. (2) Fig 1 and 2 and be combined to include both mean change and IAV. (3) I 
would suggest trying to include all four crops in the figure using 8 panels.

The plots have been reworked into new panels to give even attention to all three crops. We have 3 
crops and show 3 figures containing 4 panels each. The new panels are maps of yield and IAV 



along with scatter plots coloured by model.

P4 L24-25: Unless those place names are shown on the map, they make little for people like me 
who is not familiar with the geography of West Africa. And this might be the case for most readers.

A figure has been added to the SI and referenced in the results section.

An annotated map of the analysed area is shown in SI Figure 1.

P4 L26: Avoid placing the results in SI unless there is a strong reason to do so. Since millet is one 
of the three crop types in the study, the results should appear in the main text.

As part of earlier responses we have moved several millet and sorghum results into the main text

Fig 3-6: (1) the current blue-to-red contrast type of colormap is problematic. It is not suitable to 
display a continuous range of yield value (not yield change). It creates unnecessary visual 
confusions. For example, What is the white color? Does it mean no value or the value around 
1700? Please use other colormaps, there are plenty alternatives to choose. (2) Heat map here may 
not be a good choice to represent quantitative information . . . The difference between history and 
future is very hard to see. The authors should consider redesigning this figure or at least display the
exact number in the heat map.

The yield and IAV heatmaps have been replaced by new figures and tables. 

P5 L11: Please specify the results from Knox and Challinor results? Is that a model result, 
empirical study, field experiment, or meta-analysis? What did they find and how their results are 
connected here?

This has been expanded and clarified

The yield losses in GLAM and ORCHIDEE-Crop are smaller than the mean reported in the 
meta-analysis by Knox et al. (2012). The Knox et al. (2012) results are for crops in the 2050s and 
therefore our results are expected to be smaller as they are for a closer time horizon. A second 
meta-analysis by Challinor et al. (2014) presents results by temperature change, our results at 1.5 K
are within the range of results found in their analysis.

P5 L24: Please justify the definition of crop failure using 1 and 1.5 standard deviations of yield. Is 
the std threshold calculated using observations?

1 and 1.5 have been used in previous studies by the authors. The standard deviation is from the 
historic results per model. Otherwise biases in the model results would dominate over the yield 
changes. A citation of Parkes et al 2015 has been added too.

Fig 7. The legend is incomplete. Please add legends for all symbols including cross, circle, etc. I 
don’t understand how to read this figure... What is the variable on x and y axes and their units? 
Please add more information in the caption.

Figure 7 has been reworked as a boxplot instead of the scatter plot.



Efficacy of adaptation methods for maize in GLAM. HTS is high temperature stress adapted crops,
Rw H shows crops with rainwater harvesting, HTS and Rw H shows both adaptation methods in 
use. Each box shows the fractional yield change relative to the unadapted crop with the boxplots 
showing the range across the 6 member GCM-RCM ensemble. The pairs of boxes show the 
relative change in yield for the adaptation method in the historic climate (left) and the future 
climate (right).
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Abstract. The ability of acountryor region to feed itself in the upcoming decades isaquestionofimportance.Thepopulation

in WestAfrica
:::

an
:::::::::

important
::::::::

question.
::::

The
:::::

West
:::::::

African
::::::::::

population
:

is expected to increase significantly in the next 30 years.

The responses offoodcrops to short term climate change isthereforecritical to the populationat largeand the decision makers

tasked withproviding food for their people.
::::

food
::::::::

security.
:::::

This
:::::

leads
::

to
::

a
:::::

three
::::::::::

questions,
:::::

How
::::

will
:::::

crop
::::::

yields
:::::::

change
::

in

:::

the
::::

near
:::::::

future?
:::::

What
:::::::::

influence
::::

will
:::::::

climate
::::::

change
:::::

have
:::

on
::::

crop
::::::::

failures?
:::::::

Which
:::::::::

adaptation
::::::::

methods
:::::::

should
:::

be
:::::::::

employed
::

to5

:::::::::

ameliorate
:::::::::::

undesirable
::::::::

changes?
:

An ensemble of near term climate projections are used to simulate maize, millet and sorghum in West Africa in the recent

historicand
:::::::::::

(1986-2005)
:::

and
::

anear term future.
:::::

where
::::::

global
::::::::::::

temperatures
:::

are
:::

1.5
::

K
::::::

above
::::::::::::

pre-industrial
::

to
::::::

assess
:::

the
:::::::

change

::

in
:::::

yield,
:::::

yield
::::::::::

variability
::::

and
:::::

crop
::::::

failure
::::

rate.
:::::

Four
:::::

crop
:::::::

models
:::::

were
:::::

used
::

to
::::::::

simulate
:::::::

maize,
:::::

millet
::::

and
:::::::::

sorghum
::

in
:::::

West

::::::

Africa
::

in
:::

the
:::::::

historic
::::

and
::::::

future
::::::::

climates.
:

10

The meanyields are not expectedto alter significantly,while thereis an increasein inter annualvariability
::::::

Across
::::

the

:::::::

majority
:::

of
:::::

West
:::::::

Africa
:::

the
:::::::

maize,
::::::

millet
::::

and
::::::::

sorghum
::::::

yields
::::

are
::::::

shown
:::

to
::::

fall.
:::

In
:::

the
:::::::

regions
::::::

where
::::::

yields
::::::::

increase
::::

the

:::::::::

variability
::::

also
:::::::::

increases. This increase in variability increases the likelihood of crop failures, which are defined as yield

negative anomalies beyond one standard deviation duringa periodof20 years
::

the
::::::::

historic
::::::

period. The increasing variability

increases the frequencyandintensityof crop failures across West Africa. Themeanreturnfrequencybetweenmild maizecrop15

failuresfrom processbasedcropmodelsincreasesfrom onceevery6.8 yearsto onceevery4.5 years.Themeanreturntime

frequencyfor severecrop failures(beyond1.5 standarddeviations)alsoalmostdoublesfrom onceevery16.5yearsto once

every8.5 years
:::::

return
:::::

time
::

of
:::::

crop
:::::::

failures
:::::

falls
::::

from
::::

8.8,
::::

9.7
::::

and
::::

10.1
:::::

years
:::

to
::::

5.2,
:::

6.3
::::

and
:::

5.8
::::::

years
:::

for
::::::

maize,
::::::

millet
::::

and

::::::::

sorghum
:::::::::::

respectively.

Two adaptationresponsesto climatechange,the
::::

The
:

adoption of heat-resistant cultivars and the use of captured rainwater20

have been investigated using one crop modelin
::

asan idealised sensitivity test. The generalised adoption ofa cultivar resistant

to high temperature stress during flowering is shown to be more beneficial than using rainwater harvestingby both increasing

yieldsandthereturnfrequencyof cropfailures.

1
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1 Introduction

The densely populated region of West Africa has been identified as a region vulnerable to climate change impacts, from shifts

in the monsoon system to desertification. The global climateis projected to pass 1.5 K above the pre-industrial control in the

coming decades. Thearrivalandstrengthof theWestAfrican monsoonis akeycomponentof thecroppingsystemasit provides5

muchof thewaterusedin thegrowingseason.Theuncertaintyin howthemonsoonwill respondto climatechangeis therefore

of high importance,which requirestheuseof morethanoneclimatemodelwhenstudyingimpacts.
::::::::::::::::::::

(Kirtman et al., 2013).
:::

To

::::::::

maintain
::::::

current
::::::

levels
::

of
::::

food
::::::

intake
:::

the
:::::

crop
:::::

yields
:::

in
::::

West
::::::

Africa
::::

will
:::::

need
::

to
::::::::

increase
::

in
::::

step
::::

with
:::

the
::::::::::

increasing
::::::::::

population.

:::

All
::::::::

countries
::::::

within
:::::

West
::::::

Africa
::::

are
::::::::

currently
:::

net
:::::::::

importers
::

of
:::::::

cereals
:::::::::

indicating
::::

that
:::::

their
::::::

current
::::::::::

production
::

is
:::::::::::

insufficient
::

to

::::

meet
::::::::

demand
::::::::::::::::

(FAOSTAT, 2014)
:

.
::::

The
:::::::

existing
::::::

trends
::

in
:::::::

African
::::::::::

agriculture
::::

are
:::

not
:::::::::

sufficient
::

to
:::::::

provide
::::

this
:::::

yield
:::::::

increase
::::

and10

::::::::

shortages
:::

are
:::::::::

therefore
::::::::

expected
:::::::

without
::::

the
:::::::

adverse
::::::

effects
::

of
:::::::

climate
:::::::

change
::::::::::::::::::::::::::::::::::

(Ray et al., 2013; Gerland et al., 2014)
:

.

::::

The
:::::::

changes
:::

to
:::

the
::::::

global
::::::::

climate
::::

will
:::::

have
:::::

local
:::::::::::

implications
:::

on
::::

the
:::::::

growing
::::::::::

conditions
::::

for
::::::

crops.
::::

The
::::::::

primary
::::::

source

::

of
::::::

water
:::

for
:::::

West
::::::::

African
:::::

crops
:::

is
:::

the
::::::

West
:::::::

African
::::::::::

monsoon.
:

Studies have shown that the monsoon may start later in

the year in West Africa under climate change, this in turn exposes the crops to the summer months when temperatures are

higher (Biasutti and Sobel, 2009; Sultan et al., 2014).15

Temperatures and rainfall are not the only drivers of crop yield that are expected to change; there are also possible changes

in fertiliser deploymentandthus nutrient availability
:::::::::::::::::::::

(Lassaletta et al., 2014)
::::

andas well as farmers adaptation, e.g. through

irrigationof plantingheator
::::::::::::::::::::::::::::::::

(Rockström and Falkenmark, 2000)
::

or
::::::::

planting
::::

heat
::::

anddrought resistant varieties in the case of

dryer and warmer conditions. Another
:::::::::::::::::

(Guan et al., 2017).
:

::

A factor is the increase in ambient carbon dioxide concentrations and therefore the potential carbon dioxide fertilisation of20

yields (Berg et al., 2013). This is primarily for C3 plants, the carboxylation of C4 plants is insensitive to carbon dioxide but

carbon dioxide impacts maize development through stomatalclosure and soil moisture conservation
::::::::::::::

(Leakey, 2009).

To maintaincurrent levels of food intake the crop yields in West Africa will needincreasein stepwith the increasing

population.Howevercurrenttrendsin African agriculturearenot sufficient to providethis yield increaseandshortagesare

thereforeto beexpectedevenwithout theadverseeffectsof climatechange(Ray et al., 2013).25

There have been multiple studies investigating the future of maize, millet and sorghum yields in West Africa.In mostcases

the crop yields areexpectedto decreasewith climatechangeand that severalgrowing regionsmay no longer be viable in

theupcomingdecades(Jones and Thornton, 2003). A meta-analysis of 52 studies for several cropsshowsreductions
:::::::

without

:::::::::

adaptation
::::::

show
::::::::::

reductions
:::

by
:::

the
:::::::

2050s,
:

in African yield of 5%, 10% and 15% for maize, millet and sorghum respec-

tively (Knox et al., 2012).30

The reduction in yields in Africa under climate change is further supported by the meta-analysis in Roudier et al. (2011)

where multiple crops were shown to experience decreases in yield. Oneprocesswhich increasesyield is the
:::

The
:::::::::::::

meta-analysis

::

in
:::::::::::::::::::

Roudier et al. (2011)
::::

used
::

a
::::::::

number
::

of
::::::::

climate
::::::::

scenarios
::::::::::

including
:::::

A1B,
::::

A2
::::

and
:::

B1
:::::

from
:::::::

CMIP3
:::::::::::::::::::

(Meehl et al., 2007)

2



::::

with
:::::

time
::::::::

horizons
:::::::

varying
::::::

from
::::::::::

2025-2085,
::::

the
::::::::

majority
:::

of
:::

the
::::::::::::

publications
::::::::

analysed
::::

did
::::

not
:::::

study
::::::::::

adaptation
:::::::::

methods.

:::

The
:::::::

results
::

in
::::::::::::::::::::

Roudier et al. (2011)
:::::::::

investigate
:::

the
:::::::::::

importance
::

of
::::

thecarbon dioxide fertilisation effect, however
:::::

which
::::

was

:::::

found
::::

the
:::::::::

ameliorate
::::::

some
::

of
::::

the
:::::

yield
::::::

losses
:::::::::

attributed
::

to
::::::::

climate
:::::::

change.
:::::::::

Howeverit has also been shown the nutritional

quality of the resultant crops is lower than in an atmospherewith current carbon dioxide concentrations (Roudier et al., 2011).

Much of the area currently used to grow maize in West Africa isalsopredicted
:::::::::

projectedto be unsuitable in the long term,5

with .
:::::

With
::

a
::::::

future
:::::::

climate
::::::

based
:::

on
::::::::

RCP8.5
:

only 59.8% of the currently cultivated area predicted to be viable in 2100.

::::

2100
:::::::::::::::::::

(Rippke et al., 2016).
:

Of the lost cultivated area, 40% can be used to grow sorghum ormillets which are hardier to heat and

drought stresses, however the remaining 60% has no suitablealternative (Rippke et al., 2016). The millet and sorghum growing

areas however are not predicted to suffer as much as maize. Many of the above mentioned studies use climate projections that

find high warming levels at the end of the century.10

The expected change in yield for maize was also calculated aspart of a meta analysis where the response of maize to in-

creasing temperatures with and without adaptation methodswas investigated.
::::

The
:::::::::::

temperature
:::::::

changes
:::::

were
:::::::

locally
::::::::

analysed

:::

and
::::::::

grouped
:::::::::::

independent
::

of
:::::::

carbon
:::::::

dioxide
::::::::::

fertilisation
:::

of
:::::

global
:::::::

climate
:::::::::::

conditions.Tropical maize was found to experience a

decline in yields as temperatures increase for both studieswith and without adaptation (Challinor et al., 2014). Thereare mul-

tiple potential adaptation methods to ameliorate the impacts of climate change, a non-exhaustive list contains, intercropping,15

changing the variety or species grown, use of fertilisers and crop rotation to replenish nutrients in the soil.

Several adaptation methods for sorghum were investigated in Guan et al. (2017) using two crop models
:::

for
:

a
::::::

future
:::::::

climate

::::::

period
::

of
::::::::::

2031-2060
::::::

under
::

a
:::::::

RCP8.5
::::::::

climate. The proposed adaptation methods included changing the planting date, rain-

water capture and re-use and increasing resilience to high temperature stress during flowering amongst others. The results

in Guan et al. (2017) show that growing varieties with high temperature stress resistance during flowering is of more bene-20

fit in the future climate than rainwater harvesting. Sorghumyields are expected to decrease with climate changeand
:::::

based

::

on
:::::::::::

simulations
::::::

using
::::

data
:::::

from
::::::::

RCP8.5
::::

and
::::::::

between
:::::::::::

2031-2060,
:

while carbon dioxide fertilisation will ameliorate some

of the losses, it will not eliminate them (Sultan et al., 2014). Lastly, for millet a model analysis produced an expected re-

duction in yields of 6%acrosstwo
::

by
:::::::::::

2070-2099
:::::

when
:::::::::

compared
:::::

with
::::::::::

1970-1999
::::::

across
::::

the
:::::

A1B
::::

and
:::

A2
:

scenarios from

CMIP3 (Berg et al., 2013).25

In this paper we use four crop models simulating three crops and driven by meteorological outputs from several regional

climate models. Three
:::

C4 crops have been selected for this analysis; maize, sorghum and millet. They are a staple foods over

much of West Africa and an important source of many nutrients. The aim of this paper is toidentify andquantifysomeof the

sourcesof uncertaintyin the WestAfrican agriculturalsystem
:::::::

produce
:::::::::::

probabilistic
:::::::::::

projections
::

of
:::::

West
::::::::

African
::::

crop
::::::

yields

as the global climate passes 1.5 K above the pre-industrial control. This study makes use of newly available input data from30

CORDEX-Africa to differentiate from previous works. Thereare several possible responses to the increasing temperatures

and altered precipitation regimes: these include modifying the planting window, using a new variety of a crop or changing

the crop entirely.The useof two
::::

Two
:

adaptation methods to mitigate the impacts of climate change has been investigated.

These methods include an idealised crop which is resistant to heat stress during flowering and rainwater harvesting. A global

temperature increase of 1.5 K is drawing closer, with annualaverage carbon dioxide levels above 400 ppm in 2016.35

3



2 Methods

2.1 Meteorological data

The input data for the crop models in this study was provided as part of the CORDEX-Africa project (Nikulin et al., 2012).

CORDEX-Africa uses a selection of CMIP5 Global Climate Models (GCMs) to drive a number of Regional Climate Models

(RCMs). The simulations used in this study are based on CMIP5simulations of a high emission, low adaptation future climate5

where the radiative forcing at the end of the 21st century is +8.5 Wm−2,
:::::::::

(RCP8.5)(Taylor et al., 2011; Meinshausen et al.,

2011). The outputs from CORDEX-Africa were bias corrected as part of the HELIX project using multisegment statistical

bias correction (Grillakis et al., 2013; Papadimitriou et al., 2015). The observations used to bias correct the CORDEX-Africa

simulations was the WATCH-Forcing-Data-ERA-Interim: WFDEI (Weedon et al., 2014) record. The bias corrected CORDEX-

Africa data was provided at a horizontal resolution of 0.44◦ and at a temporal resolution of one day.
:::

The
::::::::::::::

multisegement10

::::::::

approach
::

of
::::

the
::::

bias
:::::::::

correction
::::

will
:::::::

adjusts
:::

the
:::::::::

simulated
::::::::::

variability
::

to
:::::::

closely
::::::

match
:::

the
::::::::

observed
::::::::::

variability
::::

and
::

in
:::::

doing
:::

so

:::::::

removes
::

a
:::::::

number
::

of
::::::

drizzle
::::::

events
:::::

from
:::

the
::::::

record
::::

and
::::::::

increases
:::

the
::::::::

intensity
::

of
::::::

wetter
::::::

events
::

to
::::::

match
:::

the
:::::::::::

observations
::::::::::::::::::::

(Papadimitriou et al.,

:

.

::::

The
::::::::::::::::

CORDEX-Africa
::::::::::

simulations
:::::

were
::::::

found
:::

to
:::::::

perform
:::::

well
::

at
::::::::::

replicating
::::

the
:::::

large
:::::

scale
::::::::

features
::

of
::::

the
:::::

West
:::::::

African

::::::

climate
:::::::::

including
::::

the
:::::

inter
::::::

annual
::::::::::

variability
:::

in
:::::::::::

precipitation
:::::::::::::::::::::::

(Diaconescu et al., 2015)
:

.
::::

The
::::::::::::

precipitation
::

in
:::::

West
:::::::

Africa
::

is15

::::::::

primarily
::::::

driven
:::

by
:::

the
:::::::::::

north-south
::::::

motion
:::

of
:::

the
::::::::

monsoon
:::::::::::::::::::

(Nikulin et al., 2012)
:

.
::::

The
::::::::::::::::

CORDEX-Africa
::::::

models
:::::

were
::::::

found
::

to

::::::

contain
::::::

biases
:::::::

despite
::::

their
:::::

good
:::::::::::

performance
::::

and
::::::::

therefore
::::

bias
:::::::::

corrected
::::::

model
::::::

output
::::

were
::::::::

selected
:::

for
::::::

further
:::::::

analysis
:::::::::::::::::::

(Gbobaniyi et al., 2014

:

.

An ensemble of 10 GCMs and four RCMs were used as inputs to cropmodels and a total of 16 GCM-RCM combinations

were utilised. None of the GCMs were used to drive all of the RCMs and of the RCMs, only RCA4 was used with every GCM.20

A table of the GCM-RCM combinations used is shown in Table 1. The control time slice for the experiment was 1986-2005

corresponding to the final 20 years of the CMIP5 historic simulations. The future time slice was taken as the 30 year period

where the global average temperature was closest to 1.5 K above the pre-industrial control of 1870-1899. The time slices

used for this experiment and the mean time slices weighted byboth GCMs and RCMs are shown in Table 2. The
:::::

GCM
::::

and

:::::

RCM
:::::::::

weighted
:::::

mean
::::

time
::::::

slices
:::

are
::::::

within
::

a
::::

year
:::

of
:::::

each
:::::

other
::

at
::::::::::

2011-2040
::::

and
::::::::::

2010-2039
:::::::::::

respectively.
::::

The
:

crop models25

that simulate carbon dioxide fertilisation also use the carbon dioxide concentrations as inputs for the future climatescenarios

reached by each GCM when warming reaches 1.5 K. Thus, becauseof different transient climate responses of the GCMs,

the crop models are exposed to a different carbon dioxide concentrations for each GCM climate forcing. Our choice of not

normalizing the carbon dioxide levels for simulating crop yields is justified because we want to capture the full uncertainty of

West African yield responses to both regional climate and global carbon dioxide conditions in a 1.5K warmer world.30

2.2 Crop models

Four different crop models were used in this study, the Global Large Area Model for annual crops (GLAM) (Challinor et al.,

2004), ORCHIDEE-Crop (Wu et al., 2016) which is the crop specific version of the ORganizing Carbon and Hydrology in

4



Dynamic EcosystEms (ORCHIDEE) land surface model (Krinneret al., 2005), System of Agroclimatological Regional Risk

Analysis Version H (Sarra-H
::::::::::

SARRA-H) (Kouressy et al., 2008) and a series of generalised linear models (Lobell and Burke,

2010).
::::

The
:::::::

planting
::::

and
:::::::

harvest
:::::

dates
:::

for
:::

the
::::

crop
:::::::

models
:::::

were
::::::::::

determined
::::::

using
::::

data
:::::::::

generated
::

as
::::

part
:::

of
:::

the
::::::

Global
::::::::

Gridded

::::

Crop
:::::::

Model
::::::::::::::

Intercomparison
:::::::

project
::::::::::::::::::

(Elliott et al., 2015).
:

2.2.1
::::::

GLAM5

::::::

GLAM
::

is
:::

the
:::::::

Global
:::::

Large
:::::

Area
::::::

Model
:::

for
:::::::

annual
:::::

crops
::::::::::::::::::::

(Challinor et al., 2004)
:

,
:

it
::

is
::

a
:::::::

process
:::::

based
:::::

crop
::::::

model
:::

that
:::::::::

simulates

:::

the
::::::

growth
:::

of
:

a
:::::

crop
::

on
:::

the
:::::

scale
:::

of
::::

grid
::::

cells
:::::

used
::

in
:::::::

climate
:::::::

models
::::::::::::::::::::

(Challinor et al., 2004)
::::::::::::::::::

(Parkes et al., 2015)
:

.
:::::::

GLAM
::::

uses

::::

four
:::::::::::::

meteorological
:::::::

inputs:
::::::::::

maximum
:::

and
:::::::::

minimum
:::::

daily
:::::::::::::

temperatures,
::::::::::::

downwelling
:::::::::

shortwave
:::::::::

radiation
::::

and
::::::::::::

precipitation,

::

all
::

at
::::

the
:::::::

surface.
::::::::

GLAM
::::

used
::::

the
::::::

maize
:::::

yield
::::

data
:::

as
::

an
::::::

input,
::::::

along
::::

with
::::

soil
:::::::::

quantities
::::::

taken
:::::

from
:::

the
:::::::

Digital
::::

Soil
:::::

Map

::

of
:::

the
::::::

World
::::::

using
:::

the
:::::::::

approach
:::::::::

described
::

in
:::::::::::::::::::::

Vermeulen et al. (2013)
:

.
:::::::

GLAM
::::

uses
:::

an
:::::::::

intelligent
::::::::

planting
:::::::

system
::

to
:::::

wait
:::

for10

:::

soil
::::::::

moisture
:::

to
:::::

reach
::

a
:::::::::::

pre-defined
::::

limit
:::::::

before
:::::::

planting
:::::::

occurs.
::::

The
::::::::::

parameter
:::

set
:::

for
::::::

maize
:::::

used
::

in
::::

this
:::::

study
::

is
::::::

based
:::

on

:::

the
:::

one
:::::

used
::

in
::::::::::::::::::::::

Vermeulen et al. (2013).
::::

The
:::::

high
:::::::::::

temperature
:::::

stress
::

at
:::::::::

flowering
:::::::

routine
::::

was
::::::::

enabled,
::

if
:::

the
::::::::::

maximum
:::::

daily

::::::::::

temperature
:::

is
::::::

above
::

37
::::

◦C
:::

the
:::::

yield
::

is
:::::::::

reduced,
:::::

above
:::

45
::::

◦C
:::

the
:::::

yield
::

is
::::

set
::

to
::::

zero
:::::::::::::::::::::::::::

(Challinor et al., 2005, 2015).
:::

To
::::

test

:::

the
::::::::::

importance
:::

of
::::

high
:::::::::::

temperature
::::::

stress
::::::

during
:::::::::

flowering,
::::

this
:::::::

routine
::

is
:::::::::

disabled.
::::

The
::::::::

rainwater
::::::::::

harvesting
:::::::

routine
:::::

used
::

in

::::::

GLAM
::::::

stores
::::

any
::::::

runoff
::::

from
::::

the
:::

top
:::::

layer
::

of
:::

the
::::

soil
::

in
::

a
:::::::::

reservoir,
:::

the
::::::::

reservoir
::

is
::::::

tapped
::::::

when
:::

the
::::

soil
::::::::

moisture
::::

falls
::::::

below15

:::

the
::::::

wilting
::::::

limit.
::::

The
:::::::

amount
::

of
::::::

water
::::::::

released
::::

from
::::

the
::::::::

reservoir
::

is
:::::::

enough
::

to
::::::

bring
:::

the
::::

soil
:::

up
::

to
::::

80%
:::

of
:::

the
:::::::

drained
::::::

upper

::::

limit
::

or
::::

the
::::::

totality
:::

of
:::

the
:::::

water
:::::::

stored.
:::::::

GLAM
::::

does
::::

not
::::

have
::

a
:::::::::

parameter
:::

set
:::

for
::::::::

sorghum
::

or
::::::

millet
::::

and
::::::::

therefore
::::

was
:::

not
:::::

used

::

to
::::::::

simulate
:::::

those
::::::

crops.
::::

The
:::::::

carbon
:::::::

dioxide
:::::::::::

fertilisation
::::::

effect
::

is
:::::::::

simulated
:::

by
::::::::::

increasing
:::

the
::::::::::::

transpiration
:::::::::

efficiency
:::

of
:::

the

::::

crop,
::::

this
::

is
::::::

based
::

on
::::

the
:::::

mean
::::::

carbon
:::::::

dioxide
:::::::::::::

concentration
:::

for
:::

the
:::::::::

simulated
:::::

time
::::::

period.
:

2.2.2
:::::::::::::::::

ORCHIDEE-Crop20

::::::::::::::::

ORCHIDEE-Crop
::

is
::

a
:::::

land
:::::::

surface
::::

crop
:::::::

model,
::::::

based
:::

on
:::

the
:::::::

generic
::::::::::

vegetation
::::::

model
::::::::::::

ORCHIDEE
:::::::::::::::::::

(Krinner et al., 2005)
:

,

:::::::::

simulating
:::::::

carbon,
::::::

water
::::

and
::::::

energy
::::::

fluxes
::::

(e.g.
::::::::::::::

photosynthesis,
::::::::::

respiration
::::

and
::::::::::::::::::

evapotranspiration)
:::

and
::::::::

modules
:::::::::::

specifically

::::::::

designed
::

to
::::::::

represent
:::::

crop
:::::::::

processes.
::::

The
:::::::

version
::

of
::::::::::::::::

ORCHIDEE-Crop
:::::

used
::

in
:::

this
::::::

study
:::::::

includes
:::::

crop
:::::::::

phenology
:::::::

module
::::::::::::::::

(Wu et al., 2016)

:::

and
::::

crop
::::::::::::

management
::::::::

modules
::::::

(Wang
::

et
:::

al.,
::

in
::::::

prep),
::::::

which
:::

has
::::

also
:::::::::

submitted
::::::

results
:::

for
::::::

global
:::::::

gridded
::::

crop
::::::

model
:::::::::::::::

intercomparison
::::::::

(Müller et

:

.
::::::::::::::::

ORCHIDEE-Crop
::::::::::

calculates
:::::::

thermal
:::::

unit
:::::::::::::

accumulation,
:::::::::::::

photosynthesis
::::

and
:::::::

energy
:::::::::

exchange
:::

on
::

a
::::::::::

half-hourly
:::::

time
:::::

step,25

:::::

while
::::

leaf
::::

area
::::::::::

dynamics,
::::::

carbon
::::::::::

allocation
:::

and
::::::::

biomass
::::

and
::::

soil
:::::::

organic
:::::::

carbon
:::::::

change
:::

are
:::::::::

simulated
:::

on
::

a
:::::

daily
::::

time
:::::

step.

:::

The
:::::

daily
:::::::

climate
:::::::::

variables
:::::::

driving
:::

the
::::::

model
:::::::::

includes:
:::::::::

maximum
::::

and
:::::::::

minimum
:::::

daily
::::::::::::

temperatures,
::::::::::::

downwelling
::::::::::

shortwave

::::

rand
:::::::::

longwave
::::::::

adiation,
:::::::

surface
::::::::

pressure,
:::::

wind
::::::

speed
::::

and
::::::::::::

precipitation.
::::

The
:::::::::

parameter
:::

set
:::

of
:::::

maize
::::

was
::::::

tested
:::::::

against
:

a
:::::

field

::::::::::

experiment
:::

site
:::

in
::::::

Ghana
::::::::::::::

(Larvor, 2016).
:::::::::::::::::

ORCHIDEE-Crop
::::

like
:::::::

GLAM
::::

does
::::

not
::::

have
::

a
:::::::::

parameter
:::

set
::::

for
::::::::

sorghum
::

or
::::::

millet

:::

and
::::

was
::::::::

therefore
::::

not
::::

used
:::

to
::::::::

simulate
:::::

those
::::::

crops.30

2.2.3
:::::::::

SARRA-H
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::::::::::

SARRA-H
:::::::

(System
::::

for
::::::::

Regional
::::::::

Analysis
:::

of
:::::::::::::

Agro-Climatic
:::::::

Risks),
:::::::::

developed
:::

by
:::

the
::::::::

CIRAD,
::

is
::

a
::::::

simple
::::::::::::

deterministic
:::::

crop

:::::

model
::::

for
::::::

cereals
:::::::::

operating
::

at
:::::

daily
::::

time
:::::

steps
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(Dingkuhn et al., 2003; Baron et al., 2005; Kouressy et al., 2008)
:::

that
:::::::::

simulates

:::

the
::::::

growth
:::

of
:

a
::::

crop
:::

on
:::

an
:::::::

adaptive
:::::

scale
::

of
::::

grid
:::::

cells
:::::::::

depending
:::

on
:::

the
:::::

input
::::

data
:::

for
:::::::::

Sorghum
::::

(90,
:::

120
:::::

days
::

or
::::::::::::::

photoperiodic),

:::::

Millet
:::::

(90,
::::

120
:::::

days
::

or
::::::::::::::

photoperiodic)
::::

and
::::::

Maize
::::

(90
:::

or
::::

120
::::::

days).
::::

The
::::::::::::

performance
:::

in
:::

the
::::::::

analysis
:::

of
:::::::

climate
::::::::

impacts

::

on
::::::::

tropical
::::::

cereals
:::

is
:::::

good
:::::::::::::::::::::::::::::::::::

(Mishra et al., 2008; Oettli et al., 2011).
::::

The
::::::

yields
::::

are
:::::::::

simulated
::::::

under
::::::::::::

water-limited
::::::::::

conditions5

::

by
::::::::::

simulating
:::

the
::::

soil
::::::

water
::::::::

balance,
::::::::

potential
::::

and
::::::

actual
:::::::::::::::::

evapotranspiration,
:::::::::::

phenology,
::::::::

potential
::::

and
::::::::::::

water-limited
:::::::

carbon

:::::::::::

assimilation,
::::

and
:::::::

biomass
:::::::::::

partitioning
::::

(see
:::::::::::::::::::::

(Kouressy et al., 2008)
::

for
::

a
:::::::

detailed
::::::

review
:::

of
:::::

model
::::::::::

concepts).
::::

The
::::::

carbon
:::::::

dioxide

::::::::::

fertilisation
::::::

effect
::

is
::::

not
::::

yet
::::::::::

simulated.
::::

The
:::::::::

optimum
:::::::::::

temperature
::

is
:::::::::

between
:::

34
::::

and
:::::

36◦C
:::::

and
:::

the
:::::

limit
::::::::::::

temperature
::

is

:::::::

between
:::

44
::::

and
:::::

46◦C
:::::::::

following
:::

the
::::

crop
:::::::

spices.
::::::::::

SARRA-H
::::::

model
:::::

does
:::

not
:::::::::

explicitly
::::::::

simulate
:::

the
::::::

effects
::

of
:::::::::

fertilizer,
:::::::

manure

::::::::::

application,
:::

or
:::::::

residue
:::

on
::::

crop
::::::

yields
::::

but
:::::::::

reproduce
::::::::

different
:::::

level
:::

of
:::::::

fertility
::::::::::

(F1=>F4).
::::

The
::::

ratio
::::::::

between
:::

F1
:::

to
:::

F4
::::

rate
::

is10

:::::::::

calibrated
::::

with
::

a
::::

field
::::::

survey
:::

in
:::::::

Burkina
:::::

Faso.
::::

For
:::

the
:::::::

sowing
::

it
:::::

starts
:::::

when
::::::::::::::

plant-available
:::

soil
::::::::

moisture
::

is
:::::::

greater
::::

than
::

8
::::

mm

::

at
:::

the
:::

end
:::

of
:::

the
::::

day
:::

and
:::::

after
:::

the
::::

date
:::::::::::

determined
::

by
::::::::

krigged
::::

field
:::::::

farmers
:::::::

survey.
::::

The
::::::::::::

establishment
:::

of
:::

the
::::

crop
::

is
::::::::::

monitored

::::::

during
:::

the
::::::::

followed
:::

20
:::::

days
::::

and
::

if
:::

the
:::::::::

condition
::

is
::::

not
:::::::

correct
::::::

during
::::

this
:::::::

period,
:::

the
::::::::

juvenile
::::

crop
:::::

died
::::

and
:

a
::::::::::

re-sowing
::

is

::::::::::::

automatically
:::::

done.
::::::::::

SARRA-H
:::::::::::::::::::

(Sultan et al., 2014)
:::::::::

SARRA-H
::::

uses
::::

five
:::::

daily
::::::::::::::

meteorological
::::::

inputs:
:::::::::

maximum
::::

and
:::::::::

minimum

::::::::::::

temperatures,
::::::::::::

downwelling
:::::::::

shortwave
:::::::::

radiation,
::::::::::::

precipitation
::::

and
::::

PET
:::::::::::

(Hargreaves
:::::::::

formula),
:::

all
::

at
:::

the
::::::::

surface.
::::::

Others
::::::

inputs15

:::

are
::::

also
:::::

used:
::::

soil
:::::

depth
::::

and
:::

soil
::::::

water
:::::::

holding
::::::::

capacity,
::::

and
:::::::

sowing
:::::::

density
:::

and
::::::

depth.
:

2.2.4
::::::

Linear
:::::::

models

:::

The
::::::

linear
:::::::

models
:::

use
:

a
::::::

design
::::

that
:::

has
:::::

been
::::

used
::

in
:::::::

several
::::::::

previous
::::::

studies
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Estes et al. (2013); Lobell and Burke (2010); Wang et al. (2016);

:

.
::::

The
::::::

models
:::

in
:::

this
::::::

study
:::

use
:::

the
::::::

robust
::::::

linear
::::::

fitting
:::::

tools
::

in
:::::::::

MATLAB
::::::::::::::::::::::::::

(Holland and Welsch, 1977)
:::

that
::::

are
::::

less
::::::::

sensitive
::

to

:::::::

outliers
::::

than
:::::

least
:::::::

squares
::::::

fitting.
:::::

The
:::::

input
::::

data
:::

for
::::

the
::::::

model
:::::

have
::::

been
:::::::::::::

polynomially
:::::::::

detrended
::::::

before
::::::

fitting
::::

and
:::

the
::::

log20

::

of
:::

the
:::::

yield
:::::

was
::::::

taken,
::::

this
::::::

means
:::

the
::::::::

models
:::::::

produce
::::::::

relative
:::::::

changes
:::

in
:::::

yield
:::::::

instead
:::

of
::::::::

absolute
:::::

ones.
::::

The
:::::::::::

polynomial

:::::::::

detrending
:::::

used
::

in
::::

the
:::::::

models
::

is
:

a
::::

two
:::::::

degree
::::::::::

polynomial
::::::

solved
::::

for
::::

each
::::

grid
:::::

cell.
::::

The
:::::::

models
:::::

solve
:::

the
::::::::

equation
:::::::

shown
::

in

::::

Eqn
:

1
::::::

where
::

a,
::

b
::::

and
:

c
::::

are
::::::::

constants
:::

for
:::::

each
::::

grid
::::

cell
::::

and
::

T
:::

and
::

P
:::

are
::::

the
::::::::

seasonal
:::::

mean
:::::::::::

temperature
::::

and
::::

total
::::::::::::

precipitation

:::::::::::

respectively.

Yit = ai + biTit + ciPit
::::::::::::::::::::

(1)25

2.2.5
::::::::::

Differences
::

in
::::

the
:::::

crop
:::::::

models

Both GLAM and ORCHIDEE-Crop were used to simulate maize,Sarra-H
:::::::::

SARRA-H
:

and the generalised linear models were

used to simulate maize, sorghum and millet.Descriptionsof eachcrop model can be found in the Supplementalmaterial.

::::::

GLAM
::::

and
:::::::::::::::::

ORCHIDEE-Crop
::::

both
::::::::

respond
::

to
::::::

carbon
:::::::

dioxide
:::::::::::

fertilisation
:::

and
:::::::::::::::::

ORCHIDEE-Crop
:::

has
::::::::

nitrogen
::::::::

fertiliser
::::::

inputs

::

as
::::

part
:::

of
:::

the
::::::::::

simulated
::::

crop
::::::::

growth.
::::

The
:::::

crop
:::::::

models
:::

all
::::::::

simulate
::::::

crops
:::::

based
::::

on
:

a
::::::

single
::::::::

planting
::::

and
:::::::

harvest
::::::::

without30

:::::::::::::

multicropping.
:::::::

GLAM
:::

and
::::

the
:::::

linear
:::::::

models
:::

use
::::::::::::

observational
:::::

yield
::

as
:::

an
:::::

input,
:::

in
::::

both
:::::

cases
:::

the
:::::

input
:::::

yield
::

is
:::::::::

detrended
:::::

using

:

a
::::

two
::::::

degree
::::::::::

polynomial
::::::

before
::::

use.
:::::

This
:::::::::

detrending
::::::::

removes
:::::::::

consistent
::::::

trends
:::::

such
::

as
::::::::::::

management
:::::::

changes
::::

and
::::::::::::

technological

6



:::::::::::::

improvements.
:::::::

GLAM
::::::

unlike
::::

the
:::::

other
:::::::

models
::::

was
:::::::::

calibrated
:::::::::::

specifically
:::

for
:::::

these
:::::::::::

simulations
::::::::

whereas
:::::::::::::::::

ORCHIDEE-Crop

:::

and
::::::::::

SARRA-H
:::::

used
:::

pre
:::::::

defined
::::::::::

parameter
::::

sets.
::::

The
::::::::::

SARRA-H
::::::::::

parameters
:::::

were
::::::

based
:::

on
:

a
::::::

study
::::

area
::

in
::::::::

Burkina
:::::

Faso.
::::

The

:::::::

process
:::::

based
:::::::

models
:::

are
:::::

time
::::::::::

dependent
:::

and
::::::::

respond
::

to
::::

the
::::::

arrival
::

of
::::

the
:::::::::

monsoon,
:::

the
::::::

linear
:::::::

models
::::::::

however
::::

only
::::

use
:::

the

:::::::

seasonal
:::::

total
::::::::::::

precipitation.
::::::

Linear
:::::::

models
:::::

suffer
:::::

with
:::::::

reduced
::::::::

accuracy
:::::::

outside
:::

the
::::::::::

parameters
::::::

space
::::

used
:::

to
::::

train
:::::

them.
:::

In
:::

the

::::

short
:::::

term
:::::

linear
:::::::

models
:::

are
::::

not
:::::::

notably
::::::

worse
::::

than
:::::::

process
::::::

based
::::::

models
::::::::::::::::::::::::

(Lobell and Asseng, 2017)
:

.5

2.3 Agronomic data

The crop model’s output were all analysed against their ability to reproduce observed crop yields and variability. The gridded

input crop data for maize was taken from a dataset built from satellite observations combined with yields reported by theFood

and Agriculture Organization of the United Nations (FAO) (FAOSTAT, 2014; Iizumi et al., 2014; Iizumi and Ramankutty,

2016). The millet and sorghum data were country level data from the Food and Agriculture Organization of the United Na-10

tions (FAO) (FAOSTAT, 2014). The cultivated areas for maize, millet and sorghum were defined by regridding the results

from Monfreda et al. (2008) on the meteorological grid. To prevent the results being swamped by signals from grid cells

with low cultivated area (Challinor et al., 2015), any grid cell with less than 1% coverage of each crop type of interest was

eliminated.

3 Results15

3.1 Crop model results

The four crop models were driven using the outputs of the fourbias corrected CORDEX-Africa RCM simulations as listed in

table 1. The CORDEX-Africa simulations were driven by ten GCMs as part of CMIP5. We present the first use of these data

for a specific warming level of 1.5 K above the pre-industrialcontrol.
:::

An
:::::::::

annotated
::::

map
:::

of
:::

the
::::::::

analysed
:::::

area
::

is
::::::

shown
::

in
:::

SI

::::::

Figure
::

1.20

The results inFigures??, ??
:::::

Figure
::

1
:

show the multi-model mean maize yield and yield interannualvariability(hereafter

IAV) respectively. The+ and· symbols show grid cells where three of the four crop models agree with the sign of the response

for the multi-model GCM-RCM mean, where+ shows an increase and· shows a decrease. The model agreement is high in

Côte d’Ivoire and Ghana but there is a spread of positive and negative impacts across Nigeria. The potential increases inyield

in Côte d’Ivoire and Nigeria are also associated withto increases in IAVasshownin Figure??. The millet results are shown25

in SI Figures1 and2
:::::

Figure
::

2
:

where a dipole can be seen in the yield response, the yield increases in northern Nigeria and

southern Niger, however to the West in Burkina Faso and Mali there is a decrease in yields. The dipole is not as significant in

the IAV results with increases in IAV in Niger, Nigeria and Burkina Faso. The IAV is reduced in Mali along with the yield. The

stippled Sorghum results (SI Figures3 and4
:::::

Figure
::

3) present a smaller dipole effect that has positive yield change in Niger

and a negative yield change over much of West Africa. Where theyield increases in Niger the IAV also increases which is30

expected to cause problems for food security.

7



The multimodel ensemble mean yields for the control and future time slices are calculated for each crop model andplotted

againstthe observationsin Figure??. Of the
::::::

shown
::

in
::::::

Tables
:::

3,
::

4
::::

and
::

5.
::::

For
:::::

each
:::::

yield
::::::

value,
:::

the
:::::::

results
:::

are
::::::

shown
:::::

with

:::

the
::::

inter
:::::::

annual
::::::::::

variability
::::::

(IAV)
::

in
::::

the
:::::

yield
::

as
::::

the
::::

first
:::::::::::

uncertainty
::::

and
:::

the
::::::

model
:::::::

spread
::

as
::::

the
:::::::

second
:::::::::::

uncertainty.
::::

The

:::::::::::

observations
:::

are
::::::

shown
:::::

with
:

a
::::::

single
:::::::::::

uncertainty
::

as
::::

they
:::::

have
:::

no
::::::

model
:::::::

spread.
::::

The
::::::

results
::

in
::::::

Tables
:::

3,
:

4
::::

and
::

5
:::::

show
::::

that
:::

the

::::

IAV
::

is
:::::

larger
::::

than
:::

the
::::::

model
:::::::

spread
:::

for
::

all
:::::

crop
::::::

models
:::::::

except
:::

the
:::::

linear
:::::::

models.
::::

The
:::::

ratio
:::

for
:::

the
::::

IAV
::

in
:::::::

GLAM
::

is
:::::

much
::::::

larger5

::::

than
:::

for
:::

all
::::

other
::::::::

models,
::::

this
:

is
::::

due
::

to
::::

the
::::::::::

simulations
:::

for
:::

the
:::::::::

historical
::::::

period
::

in
:::::::

GLAM
::::::

being
:::::::::

calibrated
::

on
::

a
:::

per
::::::

model
:::::

basis

:::

and
:::::::::

therefore
::::::

having
::

a
::::

very
::::

low
::::::

model
::::::

spread.
:

:::

For
::::::

maize
::::::

(Table
:::

3),
::

of
:::

the
:

process based models GLAM andSarra-H
::::::::::

SARRA-H
:

are closest to the observed yields whereas

ORCHIDEE-Crop is further away. The linear models by design match the observed yields. The future climate responses for

GLAM andSarra-H
::::::::::

SARRA-Hare limited however ORCHIDEE-Crop shows a strong reductionin yields.Sarra-H
::::::::::

SARRA-H10

and the linear models show an increase in yields at +1.5 K. Thecontrol simulation has temperatures that are 0.7 K above the

pre-industrial control, therefore the temperature difference experienced by the crops is 0.8 K. The maize yield reductions are

less than2
::

10
:::

±
::::

709
::

±
:::

91
:

kg/ha for GLAM, 84
::::

95±
:::::

185±
:::

51
:

kg/ha forORCHIDEE,whereasSarra-H
:::::::::::::::::

ORCHIDEE-Crop,

:::::::

whereas
::::::::::

SARRA-H
:

increases by around20
::

28
::

±
::::

708
::

±
::::

243
:

kg/ha and the linear models increase by62
::

40
::

±
::::

127
::

±
::::

191
:

kg/ha.

In percentage terms these are less than1
:::

1.5% for GLAM, 5.7%for ORCHIDEE
::::

6.6%
::::

for
::::::::::::::::

ORCHIDEE-Crop
:

and increases of15

1.6%for Sarra-Hand5.3
:::::

2.2%
:::

for
::::::::::

SARRA-H
::::

and
:::

3.8% for the linear models.Theresponsesfor mostmodels

::::::::::::::::

ORCHIDEE-Crop
::::

and
:::::::

GLAM
::::::::

simulate
:::::::::

responses
:::

to
::::::

carbon
:::::::

dioxide
:::::::::::

fertilisation.
:::::

Both
:::::::

models
:::::::

project
:

a
::::::

small
:::::::::

reduction
::

in

::::

yield
:::

in
::::::

future
::::::::

climates,
:::

the
::::::::::

magnitude
:::

of
::::::

which
:::

has
:::::

been
::::::::

reduced
::

by
::::

the
::::::::

increase
::

in
:::::

yield
:::::

from
::::::

carbon
::::::::

dioxide
:::::::::::

fertilisation.

::::::

Carbon
::::::::

dioxide
::::::::::

fertilisation
:::::::::

increases
:::

the
:::::

yield
::::::

when
:::

the
:::::

crop
::

is
:::::::

limited
:::

by
::::::

carbon
::::::::

dioxide.
::

If
:::

the
:::::

crop
::

is
::::::

water
:::::::

limited
::::

then

:::

the
::::::

carbon
::::::::

dioxide
:::::::::::

fertilisation
::::

will
:::::

have
::

a
:::::::

smaller
::::::

effect
:::

on
:::::

yield.
:::::

The
:::::

yield
::::::

losses
::

in
::::::::

GLAM
::::

and
::::::::::::::::

ORCHIDEE-Crop
:

are20

smaller thanthosefound in the metaanalysis
:::

the
:::::

mean
::::::::

reported
:::

in
:::

the
:::::::::::::

meta-analysis
:

by Knox et al. (2012), howeverthis

studyis not projectedasfar into the future.Thefourdifferentmodelresultspresentedare
:

.
::::

The
:::::::::::::::::

Knox et al. (2012)
::::::

results
:::

are

:::

for
:::::

crops
::

in
::::

the
::::::

2050s
::::

and
::::::::

therefore
::::

our
::::::

results
::::

are
::::::::

expected
:::

to
:::

be
:::::::

smaller
::

as
:::::

they
:::

are
::::

for
:

a
::::::

closer
:::::

time
::::::::

horizon.
::

A
:::::::

second

::::::::::::

meta-analysis
:::

by
:::::::::::::::::::::

Challinor et al. (2014)
:::::::

presents
::::::

results
:::

by
:::::::::::

temperature
::::::::

change,
:::

our
:::::::

results
::

at
:::

1.5
:::

K
:::

are
:

within the range of

resultsfrom Challinor et al. (2014)
::::::

found
::

in
::::

their
::::::::

analysis.25

The multimodel ensemble yield results contain two sources of uncertainty, theinter annualvariability (IAV )
::::

IAV and the

variability across the meteorological input datasets. Theresultsfor theIAV areshownin Figures??. Theresultsin Figure??

::

in
:::::

Table
::

3 show that ORCHIDEE-Crop has the most skill in reproducing the observed IAV followed by the linear models. Both

GLAM and Sarra-H
:::::::::

SARRA-H
:

overestimate the IAV for maize. Despite these differences,the IAV increases for all models

in the future climate scenario. For the process based modelsthe IAV is significantly larger than the variability resulting from30

differences in input meteorological data. Both GLAM and ORCHIDEE-Crop show little variability across the input data inthe

control scenario. For ORCHIDEE-Crop, GLAM and the linear models the variability increases in the future climate, this is in

contrast to the results inSarra-H
::::::::::

SARRA-H.

Figures?? and?? show
::::::

Figure
:

4
::::::

shows
:

the mild and severe crop failure rate for maize in the control(20 years) and future (30

years) climate scenarios. A mild crop failure is one standard deviation below the observed yield for that grid cell, a severe crop35
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failure is 1.5 standard deviations below theobserved
::::::::

simulated
:

yield for that grid cell.
::

in
:::

the
:::::::

historic
:::::::::::

simulation,
:::

the
:::::::

historic

:::::::::

simulation
::

is
:::::

used
::

to
:::::::

prevent
:::::::

model
::::

bias
::

in
:::::

yield
:::::

from
:::::::::::

dominating
:::

the
::::::::::

variability
:::::

signal
:::::::::::::::::::

(Parkes et al., 2015).
::::

The
:::::::

number
:::

of

::::

crop
:::::::

failures
::

is
::::::::

recorded
::::

for
::::

each
::::

grid
::::

cell
::::

and
:::

the
:::::

total
::::::

across
:::

the
::::::::

domain
::

is
::::::::::

calculated.
::::

The
::::

total
::::::::

number
::

of
:::::::::::

simulations
:::

for

:

a
::::

crop
:::::::

model
::

is
:::

the
:::::::

number
:::

of
::::::::

analysed
::::

grid
:::::

cells
:::::::::

multiplied
:::

by
:::

the
::::::::

number
::

of
:::::

years
:::

of
::::::::::

simulation.
::::

The
:::::

total
:::::::

number
::

of
:::::

crop

:::::::

failures
::

is
:::::::

divided
:::

by
:::

the
::::

total
::::::::

number
::

of
:::::::::::

simulations
::

to
::::

give
::

a
:::::::::

fractional
:::::::

number
:::

of
::::

crop
::::::::

failures,
::::

this
::

is
:::

the
:::::

crop
::::::

failure
::::

rate5

::::

with
:::::

units
::

of
::::::::

failures
:::

per
:::::

grid
::::

cell
:::

per
:::::

year.
::::

The
:::::::

inverse
:::

of
:::

the
:::::

crop
::::::

failure
::::

rate
:::

is
:::

the
::::::

mean
::::::

return
::::

time
::::

for
:

a
:::::

crop
:::::::

failure.

GLAM slightly underestimates the mild crop failure rate, whereas ORCHIDEE-Crop andSarra-H
:::::::::

SARRA-H
:

overestimate

slightly. The differences however are minor in comparison to those found in the linear models. The severity of the changein

mild crop failure rate varies across the process based models but the signal is consistent, at 1.5 K above pre-industrialthere is

an expectation of more crop failures. ORCHIDEE-Crop is particularly pessimistic with the return time between crop failures10

falling from 6.1 years to 2.5 years per grid cell. For severe crop failures the process based models are again more realistic than

the linear models. The future climate results show an increase in severe crop failures, with ORCHIDEE-Crop again showing

the strongest response.

The millet and sorghumresultsareshownin SI Figures5 - 12.Themillet andsorghumanalyses for three varieties simulated

by theSarra-H
:::::::::

SARRA-H
:

model and the linear models. The linear models are more able to predict the observed yield and15

inter annual variability thanSarra-H
::::::::::

SARRA-H for millet and sorghum (SI Figures5, 6, 9 and10
:::::

Tables
::

4
::::

and
:

4). In the millet

simulations the linear models are close to the observed yield whereas theSarra-H
::::::::::

SARRA-H varieties are spread above and

below the observations.Of theSarra-Hvarietiesthe
::::

The
:::::

yield
:::::::

changes
:::

are
::::::::

negative
:::

for
:::

the
::::::

linear
::::::

models
::::

and
:::

the
::::::::::

SARRA-H
:

90

:::

day
:::::::

variety.
::::

The
:::::

three
:::::::

variants
:::

of
::::::::::

SARRA-H
::::

like
:::

the
::::::

linear
::::::

models
:::::::::::::

underestimate
::::

the
:::::::::

frequency
::

of
:::::

crop
:::::::

failures
::

in
:::

the
:::::::

control

::::::

(Figure
:::

4),
::::

this
::

is
:::::

most
::::::

likely
::

a
:::::

result
:::

of
:::::::::::::

overestimating
::::

the
::::

IAV
::::

and
::::::::

therefore
:::::::

giving
:

a
::::

too
::::

low
::::

limit
::::

for
:

a
:::::

crop
:::::::

failure.
::::

The20

::::::::

expected
::::::

return
::::

time
:::

for
::

a
:::::

crop
::::::

failure
::

in
::::

the
:::::::::::

observations
:::

is
:::

5.3
:::::

years
::::::

which
:::

is
::::::

shorter
:::::

than
:::

the
::::

8.0,
:::

7.4
::::

and
::::

7.8
:::::

years
:::::

from

::::::::::

SARRA-H
::::::::

varieties
:::

(90
:::::

day,
::::

120
:::

day
::::

PP
:::::::::

sensitive)
::::

and
:::::::::

drastically
::::::::::

difference
:::::

from
:::

the
:::::

41.1
:::::

years
:::

in
:::

the
::::::

linear
:::::::

models.
::::

For

:::::

severe
:::::

crop
:::::::

failures
::::

the
:::::::

models
::::::::

perform
::::::

worse
:::

and
::::

the
::::::

return
::::

time
:::

of
:::

15
:::::

years
::

is
:::::::::

increased
:::

to
:::

21
::

in
::::

the
::::::::::

SARRA-H
:::

PP
::::

day

::::::

variety
::::::

which
::

is
:::

the
:::::

best
::

of
:::

the
::::::::

models.
::::

The
::::::

future
::::

crop
::::::

failure
::::::

return
:::::

time
::

is
:::::::::::

consistently
:::::::

shorter
::::

than
:::

the
::::::::

historic
:::::::::

indicating

::::

more
::::::::

frequent
:::::

crop
:::::::

failures.
:

25

:::

For
:::::::::

Sorghum,
:::

the
:::::::::::

SARRA-H
::

90
:

day cultivar is most capable of reproducing the observedsorghumyields
::::

yield, however the

yields are still about20
::

15% too low. The response of the 90 day cultivar to the future climate are consistent with the simulations

in Sultan et al. (2014).

Thethreevariantsof Sarra-Hlike thelinearmodelsunderestimatethefrequencyof cropfailuresin thecontrol(SI Figures7,

8, 11and12).Acrossall threecropsandall modelsthereis anincreasein
:::

As
::::::::::

SARRA-H
::::

was
::::

used
:::

for
:::::

both
:::::

millet
::::

and
::::::::

sorghum30

:::

the
::::::

results
:::

are
:::::::

similar
:::::

with
:::

the
::::::::::::

overestimate
::

of
:

the
::::

IAV
:::::::

causing
:::

an
::::::::::::

underestimate
:::

of
:::

the
:

crop failure ratein the futureclimate

whencomparedwith thehistoricclimate.

With ensemblesof input datait is possibleto calculatetwo differentuncertaintyvalues,the IAV andthespreadacrossthe

ensemble.Theratio of IAV to input dataspreadis shownin SI Figures13-15for maize,millet andsorghum.Theresultsshow

that theIAV is alwayslargerthanthemodelspread.Theratio for theIAV in GLAM is muchlargerthanfor all othermodels,35
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this is dueto thesimulationsin for thehistoricalperiodin GLAM beingcalibratedon apermodelbasisandthereforehaving

avery low modelspread.
::::

The
::::::

return
::::

time
::

of
::

a
::::

crop
:::::::

failure
::

is
:::

5.6
:::::

years
::

in
:::

the
::::::::::::

observations
:::

but
:::

the
:::::::::::

SARRA-H
:::::::

varieties
::::

(90
::::

day,

:::

120
::::

day
:::

PP
:::::::::

sensitive)
::::

find
::::

7.8,
:::

8.6
::::

and
:::

7.9
:::::

years
::::

and
:::

the
::::::

linear
:::::::

models
:::::::

produce
::

a
:::::

return
:::::

time
::

of
:::::

35.5
:::::

years.
::::

The
:::::

same
::::::::

features

:::

are
:::::

found
:::

for
::::

the
::::::

severe
::::

crop
:::::::

failures
::::::

where
:::

the
::::::

return
::::

time
::

is
:::::::::::::

overestimated
::

in
:::

all
::::::::

models.

The results in Tables 6, 7, 8 show the change in national yields for each model and the multi-model mean.
:::

The
::::

per
::::::

model5

:::::::::

production
::::::::

changes
::::

are
::::::::

averaged
::::

and
::::::

shown
:::

in
:::

the
:::::::::

rightmost
::::::::

columns
:::

of
:::

the
::::::

tables.
:

Countries with fewer than 10 grid cells

analysed have been omitted from the tables. The results for maize show a spread in expected yield changes by nation, withthe

:::::::::

Cameroon
::::

and
:

Côte d’Ivoire experiencing an increase in yieldandGhanashowinga decrease.Nigerianyields areuncertain

andthe averageis a very small change.
:::::

There
:::

are
:::::

yield
::::::::::

reductions
:::

in
::::::

Benin,
::::::::

Burkina
:::::

Faso,
:::::::

Ghana,
:::::

Mali
::::

and
:::::::

Senegal
:::::

with

::::::

limited
::::::::

changes
::

in
:::::::

Nigeria
::::

and
:::::

Togo.
:

ORCHIDEE-Cropfindsayield reductionin all threecountries,whereasGLAM, Sarra-H10

andthe Linear modelsareonly negativefor onecountry
:::::::::

dominates
::::

the
::::::::::

production
:::::::

change
::::

with
::

a
:::::

large
::::::::

negative
:::::::

change
::

to
::

a

::::::

highly
::::::::::

productive
:::::::

nations
::::::::

including
:::::::

Ghana
::::

and
::::::::

Nigeria.
:::::

Only
::::::

Benin,
:::::::

burkina
:::::

Faso
::::

and
::::::::

Senegal
:::

are
:::::::::

projected
::

to
::::::

suffer
:::::

yield

:::::::::

reductions
::

in
:::

all
::::

four
:::::

crop
::::::

models
::::

for
:::::

maize. In the future climate simulations at the 1.5 K warming levelBurkina Faso, Mali,

andSenegalall
::::

and
::::

Mali
:

suffer a more than 5% loss in millet yields while Nigeris predicted
:::

and
:::::::

Nigeria
::::

are
:::::::::

projectedto

experience an increase of3.2%.
::::

4.2%
::::

and
::::::

4.2%.
::::::

These
:::::

yield
::::::::

changes
:::::

result
:::

in
::

an
::::::::

increase
:::

in
::::::::::

production
::::

that
::

is
::::::::::

dominated15

::

by
::::::::

Nigeria,
::::::::

however
::::::::::

production
::::

falls
::::::::::::

significantly
:::

for
::::::::

Burkina
:::::

Faso,
:::::

Mali
::::

and
::::::::

Senegal.The sorghum results (Table 8) nearly

always show a yield reduction with climate change with the exception of Niger which has asmallyield increase. The sorghum

results show a 10% yield reduction for Burkina Faso, Mali andSenegal.
::::

The
::::::::

negative
::::::

trends
::

in
:::

the
::::::

yields
::::

are
::::

also
:::::::

present
::

in

:::

the
::::::::::

production
::

of
::::::::

sorghum
::

in
:::::

West
::::::

Africa
:::::

with
:::::

Niger
::::::

being
:::

the
::::

only
::::::::::

exception.

::::

The
::::::

results
::

in
::::::

Figure
::

5
::::

show
::::

the
:::::::::

responses
::

of
:::

the
::::::

maize
::::

yield
::

to
::::::::

changes
::

in
::::::::::::

precipitation
:::

and
:::::::::::

temperature
:::::::

change
:::

for
::::

four
::::

crop20

:::::::

models.
:::

To
::::::::

highlight
:::

the
:::::::::

responses
:::

of
:::::::::::

precipitation
::::::::

changes
::::::::

between
:::::

-50%
::::

and
::::::

+50%
:::

the
::::::

x-axis
::

of
::::

the
:::

left
::::::

figure
::

is
:::::::::

truncated,

:

a
::::

full
:::::::

version
::

of
:::

the
::::::

figure
::

is
:::::::

shown
::

in
::

SI
:::::::

Figure
::

2.
::::

The
::::::

maize
::::::

yields
::

in
:::

all
:::::::

models
:::::

show
:::

an
::::::::

increase
::

in
:::::

yield
::::

with
::::::::::

increasing

::::::::::::

precipitation.
::

A
::::::::

negative
:::::

trend
::

is
::::

also
:::::::

present
:::::

with
:::::::::

increasing
:::::::::::::

temperatures.
::::

The
::::::::::

differences
::::::::

between
:::

the
:::::

crop
:::::::

models
:::

can
:::

be

::::

seen
::

in
::::::

these
:::::::

figures.
::::

The
::::::

results
:::

in
:::::::::::::::::

ORCHIDEE-Crop
:::::

show
::::

less
::::::::::

variability
::::

than
:::::::::::

SARRA-H,
:::::::

GLAM
:::

or
:::

the
:::::::

Linear
:::::::

models

:::

and
:::::

have
:

a
::::::

strong
::::::::

negative
:::::

yield
::::::::

response
:::

for
::

a
:::::::

limited
:::::::::::

temperature
:::::::

change.
::::

The
:::::::::::

temperature
:::::::

change
:::::::::::

experienced
::

by
::::

the
:::::

crops25

::::::::

simulated
:::

in
:::::::

GLAM
::::::

covers
::

a
:::::

larger
::::::

range
::::

than
:::

the
:::::

other
:::::::

models
::::

and
:::

the
::::::::

positive
:::::::::::

relationship
::::::::

between
:::::::::::

precipitation
::::

and
:::::

yield

:

is
:::::

also
::::::

shown.
::::::

Water
:::::::

scarcity
::::

has
::

a
:::::::

smaller
::::::

impact
:::

on
::::::::::

SARRA-H
::::

and
:::

the
::::::

Linear
:::::::

models
:::::

than
::

in
:::::::

GLAM
::

or
:::::::::::::::::

ORCHIDEE-Crop

:::

and
:::

the
::::::::::

SARRA-H
:::::::

results
::

do
::::

not
:::::

show
:

a
::::::

strong
::::::::

negative
::::::::

response
:::

to
::::::

higher
::::::::::::

temperatures.
:

3.2 Adaptation results

In one of the four crop models (GLAM) simulations of two idealised adaptation methods were performed. There were three30

experiments, crops with a resistance to high temperature stress during flowering, crops grown with rainwater harvesting and

crops resistant to high temperature stress with rainwater harvesting deployed. To simulate
:

a
::::

crop
::::::::

resistant
:::

to high temperature

stressresistancetheGLAM is rerun with the high temperature stress routine disabled, a description of high temperature stress

in flowering is found in Challinor et al. (2005).
:::::::::

Disabling
:::

the
:::::

high
:::::::::::

temperature
::::::

stress
:::::::

routine
::::::::

produces
:::

an
::::::::::

unphysical
:::::

crop

10



:::

and
::

is
:::::

used
::

to
:::::

give
::::::::

guidance
:::

on
::::

the
::::::::::

importance
:::

of
:::::

high
:::::::::::

temperature
::::::

stress.
:

The rainwater harvesting system collects runoff

from the crop and stores it with 50% efficiency, the water is deployed if the soil moisture falls below the wilting limit forthe

crop. The adaptation methods are simulated in both the control climate and the future climateusingthe approachdescribed

in Lobell (2014).

The adaptation results for GLAM (Figure 6) show that rainwater harvesting is provides a smaller increase in yields in5

the global 1.5 K warmer climate than in the historic climate.The results for the return time between crop failures show an

improvement in the control climate that is greater than in the future climate. In contrast the high temperature stress resistant

crops show a benefit in both cases and a larger benefit in futureclimates. The return time between crop failures also increase

more in future climates. However when combined with rainwater harvesting, high temperature stress resistance has a smaller

relative improvement than when it is deployed in isolation.The maize results from GLAM presented here agree show similar10

responses to the sorghum results in Guan et al. (2017) where high temperature stress resistance is more important than rainwater

harvesting.
::::

This
::::::

result
::::::

needs
::

to
:::

be
::::::::::

considered
:::::::::

alongside
::::

the
::::::

results
:::

in
::::::

Figure
::

5
::::::

which
:::::

show
::

a
::::::

strong
::::::::

negative
::::::::::::

precipitation

::::::::

response
::

in
:::::::

GLAM,
:::::::::

indicating
::::

that
:::

the
:::::::::

rainwater
::::::::::

harvesting
:::::::

routine,
:::::

while
:::::::::

providing
:::::

some
:::::

extra
:::::

water
:::::

does
:::

not
:::::::

provide
:::::::

enough

::

to
:::::::::

counteract
::::

the
:::::::::::

precipitation
::::::::

changes
::

in
:::

the
::::::

future
:::::::::::

simulations.
:

4 Discussion15

The results inFigure??,SI Figures5 and9
::::::

Figures
::

1,
::

2
::::

and
::

3, show that as the global climate warms through 1.5 K the yield

response is uncertain. For maize, GLAM and ORCHIDEE-Crop simulate a reduction in yields. Across all crops and models

the largest reduction is 16.5% forSarra-H
::::::::::

SARRA-H 90 day sorghum. The largest increase is found for the linear models and

is 5.3%for maize
:::::

4.2%
:::

for
::::::

millet. This range of results is within the range found for tropicalmaize in Challinor et al. (2014).

ORCHIDEE-Cropis successfulat replicating
::::::::

replicates
:

the observed IAV anddoesnot suffer from spreadfrom the input20

data,howeverthemeanyield results
::

in
:::::::

contrast
:::::

with
:::

the
:::::

other
:::::::

process
:::::

based
::::::::

models,
:::::::

GLAM
:::

and
:::::::::::

SARRA-H.
::::

The
:::::

mean
::::::

yields

:::::::

however
:

do show a significant bias. The ORCHIDEE-Crop results show the greatest increase in crop failure rate with crop

failures occurring once every 2.5 years in the future climate scenarios. The crop failure rates for GLAM andSarra-H
::::::::::

SARRA-H

are similar with future failures happening every 6 and 5 years respectively. The linear models consistently underestimate the

crop failure rate and this is one of their weaknesses. The results inFigures?? and??
:::::

Figure
::

4 show consistency across all three25

process based models and therefore should be treated with confidence.

The varieties ofSarra-H
:::::::::

SARRA-H
:

are unable to replicate the observed yields for the millet and sorghum analyses and

mis-estimate the yield by several hundred kg/ha (SI Figures5and9
::::::

Figures
::

2
::::

and
::

3). The crop failure rate is defined by the

model yield and theSarra-H
::::::::::

SARRA-Hsimulations all underestimate the crop failure rate. They do however all find a relative

increase in crop failure rate in future climates for both millet and sorghum.30

The
::::::::::

differences
:::

in
:::

the
:::::

crop
:::::::

models
::::

and
::::::

inputs
:::::

have
:::

an
::::::::

influence
:::

on
::::

the
:::::::

results.
:::::

From
:::::::

Figure
::

1
:::::::

GLAM
::::::

shows
::

a
:::::::

greater

::::::

spread
::

of
::::::

yield
:::::::

change
:::::

with
:::::::

climate
:::::::

change
:::::

than
:::

the
::::::

other
:::::::

models
::::::::

whereas
:::::::::::::::::

ORCHIDEE-Crop
::::

and
:::::::::::

SARRA-H
::::

are
:::::

more

:::::::::

consistent
:::::

under
:::::::

climate
:::::::

change.
::::

The
:::::

yield
::::::::

changes
::

in
::::::::::::::::

ORCHIDEE-Crop
::::

and
:::::::

GLAM
:::

are
::::

also
::::::::::

influenced
::

by
:::

the
:::::::

carbon
:::::::

dioxide

11



::::::::::

fertilisation
::::::

effect
::::

and
::

in
:::

its
::::::::

absence
:::

the
:::::::::

projected
::::::

yields
:::

are
:::::::::

expected
::

to
:::

be
::::::

lower.
::::

The
:::::

IAV
::::::

results
:::::

show
:::::::

greater
:::::::

spread
::

in

:::

the
:::::

linear
:::::::

models
:::::

than
:::

the
::::::::

process
:::::

based
::::::::

models,
::::

this
::

is
::

a
:::::

result
:::

of
:::

the
:::::::

simple
::::::::::

parameters
:::

in
:::

the
::::::

linear
:::::::

models.
:::::

The
::::::

results

::

in
::::::

Figure
::

5
:::::

show
::::

that
:::::::

GLAM
::::

has
::

a
:::::::

stronger
::::::::

negative
:::::::::

response
::

to
::::::::::::

precipitation
::::

loss
:::::

than
:::

the
:::::

other
::::::::

models.
::::

The
:::::::::::

temperature

::::::

results
:::

for
:::

all
:::::::

models
::::::

show
::

a
::::::::::

downward
:::::

trend
::

in
::::::

yield
::::

with
::::::::::

increasing
:::::::::::::

temperatures.
::::

The
:::::

lack
::

of
::::::::::

variability
:::

in
:::

the
::::::

linear

::::::

models
::

is
:::::::

shown
::

in
:::::::

Figure
:

4
::::::

where
:::::

they
:::::::::::

consistently
:::::::::::::

underestimate
:::::

crop
::::::

failure
:::::

rates.
:::::::::::::::::

ORCHIDEE-Crop
::::

has
::

a
:::::::

smaller
::::

IAV5

::::

than
:::

the
:::::

other
:::::::

process
:::::

based
:::::::

models
::::::

which
::::::

means
:::

the
:::::

crop
::::::

failure
:::::

limit
::

is
:::::

much
::::::

higher
::::

than
:::

in
:::

the
:::::

other
:::::::

models.
:::::

This
::::::

results
::

in

::::::::::::::::

ORCHIDEE-Crop
:::::::

finding
:

a
::::::::::

significant
::::::::

increase
::

in
:::

the
:::::::

number
:::

of
::::

crop
::::::::

failures.
:::

As
:::

the
:::::::::::::::::

ORCHIDEE-Crop
::::

IAV
::

is
::::::

closest
:::

to
:::

the

::::::::

observed
::::

IAV
::::::

(Table
::::::

3),this
::::::::

indicates
::::

that
:::::::

GLAM
:::

and
::::::::::

SARRA-H
::::

are
:::::

likely
::

to
:::::::::::::

underestimate
:::

the
:::::::

number
::

of
::::::

future
::::

crop
::::::::

failures.

:::

For
:::::::

Figures
::

2
::::

and
::

3
:::

the
:::::::

country
:::::

scale
::::::

yields
::

in
::::

the
:::::::

historic
::::::

inputs
::::

can
::

be
:::::::

clearly
:::::

seen
::

in
:::

the
::::::

linear
:::::::

models
::

as
::::::::

opposed
:::

to
:::

the

::::::

spread
::

of
:::::

yield
::::::

values
::

in
:::::::::::

SARRA-H.
:::

As
::::

with
:::::::::::

SARRA-H,
:::::::

GLAM
::::

and
:::

the
::::::

linear
::::::

models
:::

in
::::::

maize,
:::

the
::::::::::

SARRA-H
::::::::

varieties
::::

and10

:::

the
:::::

linear
:::::::

models
:::::::::::::

underestimate
:::

the
::::::::::

variability
:::

and
:::::::::

therefore
:::

the
::::

crop
:::::::

failure
:::

rate
:::

for
:::::

both
:::::

millet
::::

and
:::::::::

sorghum.

::::

The adaptation methods tested in GLAM for maize are shown in Figure 6 and show that rainwater harvesting is not an

effective adaptation method. The higher rainfall in futureclimates reduces the likelihood of water limiting the crop growth.

The high temperature stress adaptation is a more efficient adaptation and provides a benefit in the future climate. The combined

HTS resistant and rainwater harvesting adapted crop is lessof an adaptation than solely HTS resistant crop. Therefore in the15

case of limited resources it is better decision to explore HTS resistance than building systems to capture runoff, especially as

the systems require substantial investment to construct and maintain.

The changes in national yields is a cause for concern as it is well documented that populations in West Africa are expectedto

increase quickly in the 21st century. Crop yields need to double by 2050 to feed the population (Ray et al., 2013), whereas the

largest increase found in this study ismillet
:::::::

sorghum
:

in Niger at +3.20%.The
::::::

8.84%,
::::::

which
::

if
:::::::::

replicated
:::::

across
::::

the
:::::

entire
::::::

region20

:::::

would
:::

be
:::::::::

dufficient
::::::::

however
::

it
::

is
::

in
::::::::

contrast
::

to
:::

the
:::::::

falling
:::::

yields
::::::

found
:::::::

instead.
::::

The
::::::::::

production
::::::::

changes
:::::

show
::::

the
::::::::::

importance

::

of
::::::::

different
::::::::

growing
:::::

areas,
:::

the
::::

lack
:::

of
::::::

strong
:::::::

positive
::::::::

changes
::

in
:::::

yield
::::::

across
:::::::::::

Sub-Saharan
:::::

West
::::::

Africa
::

is
::

a
::::::::

concern.
::::

Themean

yield changes are not the only message, in many cases where the mean yield increase there is an accompanying increase in IAV.

The increase in IAV means that yield are more uncertain and there is an increasingly likelihood of crop failures. The reductions

in yields on national levels indicate a need for new breeds ofcrop or changing species entirely, however the rate of deployment25

of new breeds in Africa is slow (Challinor et al., 2016).

5 Conclusions

Four crop models of varying design and complexity have been used to project crop yields across West Africa for three crops

as global temperatures reach 1.5 K above the pre-industriallevels. The crops models were driven by the outputs of four RCMs

which were in turn driven by 10 GCMs. The crop models show differing levels of skill at reproducing the yield and variability30

found in the observed record. The process based models are able to predict the crop failure rate for maize with moderate skill.

The varieties of crop simulated bySarra-H
::::::::::

SARRA-H
:

for millet and sorghum are less able to replicate observations than the

linear models, but they are more capable for the crop failures. This study is limited by the number of crop models used, in

12



particular only one process based model was used to millet and sorghum. The use of bias corrected RCMs to provide input

data removes some of the problems associated with GCM data. The large size of the grid (50km) prevents the formation of true

convective storms and therefore the intensity of the weather is likely to be underestimated (Garcia-Carreras et al., 2015).

The crop yields and percentage changes in yield were calculated for several West Africa countries. The yield changes are

not consistent across national borders and some nations areexpected to lose more than others. The yield gains predicted5

herein need to be considered as part of longer term trends that show severe yield reductions as the21st
:::

21st century pro-

gresses
:::::::::::::::::::::::::::::::::::::

(Challinor et al., 2014; Knox et al., 2012). As global temperatures approach 1.5 K above the pre-industrial levels, the

knowledge of the most effective adaptation methods becomescritical and therefore it is of high importance to develop models

capable of simulating them.

The results from this study show that for several crops the mean yield may not change much, however the increase in10

variability is likely to result in an increase in crop failures. The average crop yield responses are sometimes negativeand none

are positive enough to increase yields sufficiently to prevent food shortages.
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:::

crop
:

modelsfor
:

.
::::

This
:::::

figure
:::

has
:

a
::::::::

restricted
:::::

x-axis
:::

in thecontroltimeperiod
::::::::::

precipitation
::::

plot
::

to
:::::::

enhance
:::

the
:::::

clarity
::

of
:::

the
::::::

resultsandat1.5

K.
:

a
:::

full
::::::

version
::

in
::::::

shown
::

in
::

SI
::::::

Figure
::

2.
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Figure 6. Heatmap
::::::

Efficacy
:

of severe
::::::::

adaptation
::::::::

methods
::

for
::::::

maize
::

in
:::::::

GLAM.
::::

HTS
::

is
::::

high
::::::::::

temperature
::::

stress
:::::::

adapted
:::::

crops,
::::

Rw
::

H
:::::

shows

::::

crops
::::

with
::::::::

rainwater
:::::::::

harvesting,
:::::

HTS
:::

and
:::

Rw
::

H
:::::

shows
::::

both
:::::::::

adaptation
:::::::

methods
::

in
::::

use.
::::

Each
::::

box
:::::

shows
:::

the
::::::::

fractional
:::::

yield
::::::

change
::::::

relative

::

to
::

the
:::::::::

unadaptedcropfailure rate
::::

with
:::

the
:::::::

boxplots
:::::::

showing
:::

the
:::::

range
:::::

across
:::

the
::

6
::::::

member
::::::::::

GCM-RCM
:::::::::

ensemble.
:::

The
:::::

pairsof maize
:::::

boxes

::::

show
:::

the
::::::

relative
::::::

change
::

in
:::::

yield for four modelsfor thecontrol time period
::::::::

adaptation
::::::

method
::

in
:::

the
:::::::

historic
::::::

climate
::::

(left)
:

andat 1.5K
::

the

:::::

future
::::::

climate
:::::

(right).

Efficacyof adaptationmethodsfor maizein GLAM. Wherecirclesshowmeanyield, crossesandstarsshowaveragenumberof years

betweenmild andseverecropfailuresrespectively.HTS is high temperaturestressadaptedcrops,Rw H showscropswith rainwater

harvesting,HTS & Rw H showsbothadaptationmethodsin use.
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Table 1. GCMs and RCMs whereX indicates a RCM-GCM combination used in this study. The RCM description papers are as fol-

lows: RCA4 (Chylek et al., 2011), RACMO22T (van Meijgaard et al., 2008), HIRHAM5 (Christensen et al., 2006). The GCM decrip-

tion papers are as follows: CNRM-CM5 (Voldoire et al., 2013), CM5A-MR (Dufresne et al., 2013), CSIRO-Mk3.6.0 (Rotstayn et al.,

2012), NOAA-GFDL-CM3 (Griffies et al., 2011), MOHC-HadGEM2-ES (Jones et al., 2011), ICHEC-EC-EARTH (Hazeleger et al., 2012),

MIROC5 (Watanabe et al., 2010), MPI-ESM-LR (Raddatz et al., 2007), NorESM (Bentsen et al., 2013).

RCA4 CCLM4.8.17 RACMO22T HIRHAM5

CanESM2 X

CNRM-CM5 X X

CM5A-MR X

CSIRO-Mk3.6.0 X

NOAA-GFDL-CM3 X

MOHC-HadGEM2-ES X X X

ICHEC-EC-EARTH X X X

MIROC5 X

MPI-ESM-LR X X

NorESM X
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Table 2. GCM time slices at +1.5 K and their corresponding carbon dioxide concentrations.

Time (years) CO2 (ppm)

CanESM2 2000-2029 402.8

CNRM-CM5A 2016-2045 453.5

CM5A-MR 2002-2031 408.2

CSIRO-Mk3.6.0 2018-2047 461.2

NOAA-GFDL-CM3 2020-2049 469.3

MOHC-HadGEM2-ES 2009-2038 429.1

ICHEC-EC-EARTH 2006-2035 419.7

MIROC5 2018-2047 461.2

MPI-ESM-LR 2004-2033 413.9

NorESM 2018-2047 461.2

GCM Mean 2011-2040 438.0

RCM Mean 2010-2039 434.1
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Table 3.
::::::::

Simulated
::::::

maize
:::::

yields
::

in
:::::

kg/ha
::

in
:::::

West
:::::

Africa
:::

for
:::::::::::

observations
:::

and
::::

four
::::

crop
:::::::

models
:::

for
:::

the
::::::

historic
::::

time
::::::

period
:::

and
::

at
:::

1.5
:::

K.

:::::

Where
:::

the
::::

first
:::::::::

uncertainty
:::::

value
::

is
::

the
::::

inter
::::::

annual
:::::::::

variability
:::

and
:::

the
::::::

second
::

is
:::

the
:::::

spread
::::::

across
:::

the
::::::::::

RCM-GCM
::::::::

ensemble.

:::::::::::

Observations
::::::

GLAM
::::::::::::::

ORCHIDEE-Crop
: :::::::::

SARRA-H
::::::

Linear
::::::

models

:::::::

Historic
::::::

1099.3
::

±
:::::

140.9
:::::

896.7
::

±
:::::

493.5
::

±
::::

17.3
:::::

1446.2
::

±
:::::

125.3
::

±
::::

16.0
: ::::::

1317.9
::

±
:::::

485.2
::

±
:::::

207.1
::::::

1078.0
::

±
::::

82.7
::

±
:::::

130.3

::::

+1.5
::

K
::::

886.2
::

±
:::::

508.6
::::::

±89.7
::::::

1351.1
::

±
::::

136.
:

3
::

±
::::

48.4
: ::::::

1346.6
::

±
:::::

515.3
::

±
:::::

126.5
:::::

1118.3
::

±
::::

95.9
::

±
:::::

139.0
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Table 4.
::::::::

Simulated
::::::

millet
:::::

yields
::

in
:::::

kg/ha
::

in
:::::

West
:::::

Africa
:::

for
:::::::::::

observations
:::

and
::::

four
::::

crop
:::::::

models
::

for
::::

the
::::::

historic
::::

time
::::::

period
:::

and
::

at
:::

1.5
:::

K.

:::::

Where
:::

the
::::

first
:::::::::

uncertainty
:::::

value
::

is
::

the
::::

inter
::::::

annual
:::::::::

variability
:::

and
:::

the
::::::

second
::

is
:::

the
:::::

spread
::::::

across
:::

the
::::::::::

RCM-GCM
::::::::

ensemble.

:::::::::::

Observations
::::::::

SARRA-H
:::

90
::::::::

SARRA-H
::::

120
:::::::::

SARRA-H
:::

PP
::::::

Linear
::::::

models

:::::::

Historic
:::::

827.6
::

±
::::

76.3
::::::

1251.7
::

±
:::::

409.0
::

±
:::::

217.1
:::::

792.0
::

±
:::::

362.1
::

±
:::::

103.9
:::::

427.8
::

±
:::::

129.8
::

±
::::

40.4
:::::

831.5
::

±
::::

44.0
::

±
:::::

174.3

::::

+1.5
::

K
::::::

1296.2
::

±
:::::

433.3
::

±
::::

57.5
:::::

740.2
::

±
:::::

367.9
::

±
::::

48.7
:::::

402.7
::

±
:::::

121.3
::

±
::::

18.1
::::

866.6
::

±
::::

52.4
::

±
:::::

193.1
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Table 5.
::::::::

Simulated
::::::::

sorghum
:::::

yields
::

in
:::::

kg/ha
::

in
::::

West
::::::

Africa
:::

for
::::::::::

observations
:::

and
::::

four
::::

crop
::::::

models
:::

for
:::

the
:::::::

historic
::::

time
:::::

period
::::

and
::

at
:::

1.5
::

K.

:::::

Where
:::

the
::::

first
:::::::::

uncertainty
:::::

value
::

is
::

the
::::

inter
::::::

annual
:::::::::

variability
:::

and
:::

the
::::::

second
::

is
:::

the
:::::

spread
::::::

across
:::

the
::::::::::

RCM-GCM
::::::::

ensemble.

:::::::::::

Observations
::::::::

SARRA-H
:::

90
::::::::

SARRA-H
::::

120
:::::::::

SARRA-H
:::

PP
:::::

Linear
::::::

models
:

:::::::

Historic
:::::

907.2
::

±
::::

69.8
:::::

769.2
::

±
:::::

324.5
::

±
:::::

107.1
:::::

240.3
::

±
:::::

144.5
::

±
::::

73.5
:::::

342.5
::

±
:::::

105.2
::

±
::::

56.3
::::

917.5
::

±
::::

47.0
::

±
::::

76.6
:

::::

+1.5
::

K
:::::

721.0
::

±
:::::

332.5
::

±
::::

66.6
:::::

200.6
::

±
:::::

135.1
::

±
::::

20.2
:::::

341.4
::

±
:::::

103.8
::

±
::::

33.3
:::::

902.3
::

±
::::

50.6
::

±
:::::

100.1
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Table 6. Percentage maize yield change by country. The number of grid cells analysis is in brackets and countries where fewer than 10 grid

cells were analysed have been omitted. Thefraction of WestAfrican maizeproductionfor the year2005from the FoodandAgriculture

Organizationof theUnitedNations(FAO) (FAOSTAT, 2014)
::::::::

production
::::::

change
:

is shown in the rightmost column
::

in
:::::

tonnes.

Country GLAM ORCHIDEE-Crop Sarra-H
:::::::::

SARRA-H Linear models Multi model mean Productionfraction
::::::

change

:::::

Benin
::::

(23)
::::

-2.90
: ::::

-7.57
: ::::

-0.51
::::

-2.00
: ::::

-3.24
: :::::

-16369

:::::::

Burkina
::::

Faso
::::

(37)
::::

-0.08
: ::::

-6.39
: ::::

-3.99
::::

-3.21
: ::::

-1.67
: ::::

-2374

::::::::

Cameroon
::::

(24)
: :::

1.04
: ::::

-1.46
: ::::

-2.45
:::

9.74
: :::

1.72
: :::

739

Côte d’Ivoire (
:::

98)
:::

3.29
: ::::

-4.87
: ::::

6.03
:::

1.35
: :::

1.44
: ::::

5291

:::::

Ghana
::::

(70)
: :::

0.17
: ::::

-6.91
: ::::

-0.84
:::

0.61
: ::::

-1.73
: :::::

-16270

::::

Mali
:

(13) 3.65
:::

0.99
:

-3.95
::::

-5.07
:

9.05
::::

0.17 1.33
:::

5.28
:

2.52
:::

0.34
:

5.52%
::::

-1255

::::::

Nigeria
:::::

(320)
::::

-1.27
: ::::

-6.63
: ::::

1.80
:::

6.05
: ::::

-0.01
: :::::

-71762

Ghana(
::::::

Senegal
:

(11) 1.34
:::::

-10.10
:

-6.82
:::::

-16.85
:

-3.60
::::

-3.42 -0.23
:::

3.92
:

-2.33
::::

-6.61
:

10.09%
::::

-4107

Nigeria(120
::::

Togo
:::

(17) -0.86
:::

0.56
:

-6.11
::::

-5.02
:

1.91
::::

0.33 5.20
:::

4.37
:

0.03
:::

0.06
:

51.34%
::::

-4845
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Table 7. Percentage millet yield change by country.The number of grid cells analysis is in brackets and countries where fewer than 10 grid

cells were analysed have been omitted. Thefraction of WestAfrican millet productionfor the year2005from the FoodandAgriculture

Organizationof theUnitedNations(FAO) (FAOSTAT, 2014)
::::::::

production
::::::

change
:

is shown in the rightmost column
::

in
:::::

tonnes.

Country Sarra-H
:::::::::

SARRA-H90 Sarra-H
:::::::::

SARRA-H120 Sarra-H
:::::::::

SARRA-HPP Linear models Multi model mean Productionfraction

Burkina Faso (93) -4.21
::::

-4.95 -12.44
:::::

-12.54 -7.47
::::

-8.32 0.67
::::

-3.21
:

-5.86
::::

-7.25
:

8.83%

Chad (24) 11.31
:::::

17.31 2.42
::::

0.21 -1.72
::::

-0.48 -5.03
::::

-8.47
:

0.53
:::

2.14
:

Côte d’Ivoire (11) 2.1
::::

2.24 0.97
::::

0.89 -4.17
::::

-4.22 3.6
:::

3.72
:

0.63
:::

0.66
:

Ghana (10) -1.16
::::

-1.99 -4.78
:::::

-6.04 -5.08
::::

-5.28 8.38
::::

16.74
:

-0.77
:::

0.86
:

1.37%

Mali (94) -1.6
::::

-3.31 -16.79
:::::

-18.67 -17.78
:::::

-22.37 3.85
:::

9.74
:

-8.08
::::

-8.66
:

8.55%

Niger (114) 11.95
:::::

13.71 -1.56
:::::

-0.90 -1.8
::::

-0.74 4.2
:::

4.68
:

3.2
:::

4.19
:

19.59%

Nigeria (232) 7.24
:::::

12.44 -3.53
::::

0.22 -2.44
::::

-0.05 1.58
:::

4.96
:

0.71
:::

4.39
:

52.93%

Senegal (40) 5.52
::::

6.94 -12.32
:::::

-13.12 -16.22
:::::

-17.67 1.62
:::

4.67
:

-5.35
::::

-4.80
:

4.49%
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Table 8. Percentage sorghum yield change by country. The number of grid cellsanalysis is in brackets and countries where fewer than 10 grid

cells were analysed have been omitted. Thefractionof WestAfrican sorghumproductionfor theyear2005from theFoodandAgriculture

Organizationof theUnitedNations(FAO) (FAOSTAT, 2014)
::::::::

production
::::::

change
:

is shown in the rightmost column
::

in
:::::

tonnes.

Country Sarra-H
:::::::::

SARRA-H90 Sarra-H
:::::::::

SARRA-H120 Sarra-H
:::::::::

SARRA-HPP Linear models Multi model mean Productionfraction

Benin (20
::

23) -10.55
:::::

-11.48 -18.52
:::::

-19.57 -1.25
::::

0.37 -0.37
::::

-0.29
:

-7.05
::::

-7.74
:

Burkina Faso (102) -11.4
:::::

-12.71 -19.63
:::::

-20.20 -1.62
::::

-2.64 -7.52
::::

-8.82
:

-10.04
:::::

-11.09
:

11.63%

Cameroon (65) -10.87
:::::

-10.48 -17.98
:::::

-17.90 -1.51
::::

-1.38 1.35
:::

2.07
:

-7.25
::::

-6.92
:

Chad (28) -3.63
::::

-4.17 -16.55
:::::

-16.66 -0.36
::::

-0.84 -3.68
::::

-6.70
:

-6.06
::::

-7.09
:

Ghana (28) -7.66
::::

-8.15 -9.69
:::::

-10.38 1.37
::::

1.45 -1.94
::::

-0.04
:

-4.48
::::

-4.28
:

Mali (93) -9.42
::::

-9.53 -23.5
:::::

-23.40 -9.5
::::

-8.60 1.69
:::

0.07
:

-10.18
:::::

-10.36
:

4.71%

Mauritania (11) -7.54
::::

-8.59 -14.16
:::::

-15.03 -8.33
::::

-9.92 11.28
:::

6.30
:

-4.69
::::

-6.81
:

Niger (94) 9.98
:::::

26.35 -7.9
:::::

-0.44 2.63
::::

9.70 -2.1
::::

-0.24
:

0.65
:::

8.84
:

Nigeria (313) -2.7
::::

2.96 -14.92
:::::

-12.14 1.51
::::

2.15 -0.29
::::

-1.34
:

-4.1
::::

-2.09
:

68.72%

Senegal (19) -7.29
::::

-7.27 -16.62
:::::

-15.98 -15.56
:::::

-14.61 -3.7
::::

-8.26
:

-10.79
:::::

-11.53
:

Togo (16) -6.02
::::

-5.48 -9.87
:::::

-9.25 2.84
::::

3.40 -2.65
:::

0.41
:

-3.93
::::

-2.73
:
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