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Abstract. The ability of a region to feed itself in the upcoming decadesis an important question. The West African population

is expected to increase significantly in the next 30 years. The responses of crops to short term climate change is criticalto the

population and the decision makers tasked with food security. This leads to a three questions, How will crop yields change in

the near future? What influence will climate change have on crop failures? Which adaptation methods should be employed to

ameliorate undesirable changes?5

An ensemble of near term climate projections are used to simulate maize, millet and sorghum in West Africa in the recent

historic (1986-2005) and a near term future where global temperatures are 1.5 K above pre-industrial to assess the change in

yield, yield variability and crop failure rate. Four crop models were used to simulate maize, millet and sorghum in West Africa

in the historic and future climates.

Across the majority of West Africa the maize, millet and sorghum yields are shown to fall. In the regions where yields10

increase the variability also increases. This increase in variability increases the likelihood of crop failures, which are defined

as yield negative anomalies beyond one standard deviation during the historic period. The increasing variability increases the

frequency of crop failures across West Africa. The return time of crop failures falls from 8.8, 9.7 and 10.0 years to 5.2, 6.2 and

5.8 years for maize, millet and sorghum respectively.

The adoption of heat-resistant cultivars and the use of captured rainwater have been investigated using one crop model as an15

idealised sensitivity test. The generalised adoption of a cultivar resistant to high temperature stress during flowering is shown

to be more beneficial than using rainwater harvesting.

Copyright statement. TEXT

1 Introduction

The densely populated region of West Africa has been identified as a region vulnerable to climate change impacts, from shifts20

in the monsoon system to desertification. The global climateis projected to pass 1.5 K above the pre-industrial control in the

coming decades (Kirtman et al., 2013). To maintain current levels of food intake the crop yields in West Africa will need to
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increase in step with the increasing population. All countries within West Africa are currently net importers of cereals indicating

that their current production is insufficient to meet demand(FAOSTAT, 2014). The existing trends in African agriculture

are not sufficient to provide this yield increase and shortages are therefore expected without the adverse effects of climate

change (Ray et al., 2013; Gerland et al., 2014).

The changes to the global climate will have local implications on the growing conditions for crops. The primary source5

of water for West African crops is the West African monsoon. Studies have shown that the monsoon may start later in

the year in West Africa under climate change, this in turn exposes the crops to the summer months when temperatures are

higher (Biasutti and Sobel, 2009; Sultan et al., 2014).

Temperatures and rainfall are not the only drivers of crop yield that are expected to change; there are also possible changes

in fertiliser deployment thus nutrient availability (Lassaletta et al., 2014) and as well as farmers adaptation, e.g. through ir-10

rigation (Rockström and Falkenmark, 2000) or planting heatand drought resistant varieties in the case of dryer and warmer

conditions (Guan et al., 2017).

A factor is the increase in ambient carbon dioxide concentrations and therefore the potential carbon dioxide fertilisation of

yields (Berg et al., 2013). This is primarily for C3 plants, the carboxylation of C4 plants is insensitive to carbon dioxide but

carbon dioxide impacts maize development through stomatalclosure and soil moisture conservation (Leakey, 2009).15

There have been multiple studies investigating the future of maize, millet and sorghum yields in West Africa. A meta-analysis

of 52 studies for several crops without adaptation show reductions by the 2050s, in African yield of 5%, 10% and 15% for

maize, millet and sorghum respectively (Knox et al., 2012).

The reduction in yields in Africa under climate change is further supported by the meta-analysis in Roudier et al. (2011)

where multiple crops were shown to experience decreases in yield. The meta-analysis in Roudier et al. (2011) used a number20

of climate scenarios including A1B, A2 and B1 from CMIP3 (Meehl et al., 2007) with time horizons varying from 2025-2085,

the majority of the publications analysed did not study adaptation methods. The results in Roudier et al. (2011) investigate

the importance of the carbon dioxide fertilisation effect which was found the ameliorate some of the yield losses attributed to

climate change. However it has also been shown the nutritional quality of the resultant crops is lower than in an atmosphere with

current carbon dioxide concentrations (Roudier et al., 2011). Much of the area currently used to grow maize in West Africa is25

also projected to be unsuitable in the long term. With a future climate based on RCP8.5 only 59.8% of the currently cultivated

area predicted to be viable in 2100 (Rippke et al., 2016). Of the lost cultivated area, 40% can be used to grow sorghum or millets

which are hardier to heat and drought stresses, however the remaining 60% has no suitable alternative (Rippke et al., 2016).

The millet and sorghum growing areas however are not predicted to suffer as much as maize. Many of the above mentioned

studies use climate projections that find high warming levels at the end of the century.30

The expected change in yield for maize was also calculated aspart of a meta analysis where the response of maize to in-

creasing temperatures with and without adaptation methodswas investigated. The temperature changes were locally analysed

and grouped independent of carbon dioxide fertilisation ofglobal climate conditions. Tropical maize was found to experience a

decline in yields as temperatures increase for both studieswith and without adaptation (Challinor et al., 2014). Thereare mul-
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tiple potential adaptation methods to ameliorate the impacts of climate change, a non-exhaustive list contains, intercropping,

changing the variety or species grown, use of fertilisers and crop rotation to replenish nutrients in the soil.

Several adaptation methods for sorghum were investigated in Guan et al. (2017) using two crop models for a future cli-

mate period of 2031-2060 under a RCP8.5 climate. The proposed adaptation methods included changing the planting date,

rainwater capture and re-use and increasing resilience to high temperature stress during flowering amongst others. Theresults5

in Guan et al. (2017) show that growing varieties with high temperature stress resistance during flowering is of more benefit

in the future climate than rainwater harvesting. Sorghum yields are expected to decrease with climate change based on simu-

lations using data from RCP8.5 and between 2031-2060, whilecarbon dioxide fertilisation will ameliorate some of the losses,

it will not eliminate them (Sultan et al., 2014). Lastly, formillet a model analysis produced an expected reduction in yields of

6% by 2070-2099 when compared with 1970-1999 across the A1B and A2 scenarios from CMIP3 (Berg et al., 2013).10

In this paper we use four crop models simulating three crops and driven by meteorological outputs from several regional

climate models. Three C4 crops have been selected for this analysis; maize, sorghum and millet. They are a staple foods over

much of West Africa and an important source of many nutrients. The aim of this paper is to produce probabilistic projections

of West African crop yields as the global climate passes 1.5 Kabove the pre-industrial control. This study makes use of newly

available input data from CORDEX-Africa to differentiate from previous works. There are several possible responses tothe15

increasing temperatures and altered precipitation regimes: these include modifying the planting window, using a new variety of

a crop or changing the crop entirely. Two adaptation methodsto mitigate the impacts of climate change has been investigated.

These methods include an idealised crop which is resistant to heat stress during flowering and rainwater harvesting. A global

temperature increase of 1.5 K is drawing closer, with annualaverage carbon dioxide levels above 400 ppm in 2016.

2 Methods20

2.1 Meteorological data

The input data for the crop models in this study was provided as part of the CORDEX-Africa project (Nikulin et al., 2012).

CORDEX-Africa uses a selection of CMIP5 Global Climate Models (GCMs) to drive a number of Regional Climate Models

(RCMs). The simulations used in this study are based on CMIP5simulations of a high emission, low adaptation future climate

where the radiative forcing at the end of the 21st century is +8.5 Wm−2, (RCP8.5) (Taylor et al., 2011; Meinshausen et al.,25

2011). The outputs from CORDEX-Africa were bias corrected as part of the HELIX project using multisegment statistical

bias correction (Grillakis et al., 2013; Papadimitriou et al., 2015). The observations used to bias correct the CORDEX-Africa

simulations was the WATCH-Forcing-Data-ERA-Interim: WFDEI (Weedon et al., 2014) record. The bias corrected CORDEX-

Africa data was provided at a horizontal resolution of 0.44◦ and at a temporal resolution of one day. The multisegement

approach of the bias correction will adjusts the simulated variability to closely match the observed variability and indoing30

so removes a number of drizzle events from the record and increases the intensity of wetter events to match the observa-

tions (Papadimitriou et al., 2015).
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The CORDEX-Africa simulations were found to perform well atreplicating the large scale features of the West African

climate including the inter annual variability in precipitation (Diaconescu et al., 2015). The precipitation in West Africa is

primarily driven by the north-south motion of the monsoon (Nikulin et al., 2012). The CORDEX-Africa models were found

to contain biases despite their good performance and therefore bias corrected model output were selected for further analy-

sis (Gbobaniyi et al., 2014).5

An ensemble of 10 GCMs and four RCMs were used as inputs to cropmodels and a total of 16 GCM-RCM combinations

were utilised. None of the GCMs were used to drive all of the RCMs and of the RCMs, only RCA4 was used with every GCM.

A table of the GCM-RCM combinations used is shown in Table 1. The control time slice for the experiment was 1986-2005

corresponding to the final 20 years of the CMIP5 historic simulations. The future time slice was taken as the 30 year period

where the global average temperature was closest to 1.5 K above the pre-industrial control of 1870-1899. The time slices10

used for this experiment and the mean time slices weighted byboth GCMs and RCMs are shown in Table 2. The GCM and

RCM weighted mean time slices are within a year of each other at 2011-2040 and 2010-2039 respectively. The crop models

that simulate carbon dioxide fertilisation also use the carbon dioxide concentrations as inputs for the future climatescenarios

reached by each GCM when warming reaches 1.5 K. Thus, becauseof different transient climate responses of the GCMs,

the crop models are exposed to a different carbon dioxide concentrations for each GCM climate forcing. Our choice of not15

normalizing the carbon dioxide levels for simulating crop yields is justified because we want to capture the full uncertainty of

West African yield responses to both regional climate and global carbon dioxide conditions in a 1.5K warmer world.

2.2 Crop models

Four different crop models were used in this study, the Global Large Area Model for annual crops (GLAM) (Challinor et al.,

2004), ORCHIDEE-Crop (Wu et al., 2016) which is the crop specific version of the ORganizing Carbon and Hydrology in20

Dynamic EcosystEms (ORCHIDEE) land surface model (Krinneret al., 2005), System of Agroclimatological Regional Risk

Analysis Version H (SARRA-H) (Kouressy et al., 2008) and a series of generalised linear models (Lobell and Burke, 2010).

The planting and harvest dates for the crop models were determined using data generated as part of the Global Gridded Crop

Model Intercomparison project (Elliott et al., 2015).

2.2.1 GLAM25

GLAM is the Global Large Area Model for annual crops (Challinor et al., 2004), it is a process based crop model that simulates

the growth of a crop on the scale of grid cells used in climate models (Challinor et al., 2004) (Parkes et al., 2015). GLAM uses

four meteorological inputs: maximum and minimum daily temperatures, downwelling shortwave radiation and precipitation,

all at the surface. GLAM used the maize yield data as an input,along with soil quantities taken from the Digital Soil Map

of the World using the approach described in Vermeulen et al.(2013). GLAM uses an intelligent planting system to wait for30

soil moisture to reach a pre-defined limit before planting occurs. The parameter set for maize used in this study is based on

the one used in Vermeulen et al. (2013). The high temperaturestress at flowering routine was enabled, if the maximum daily

temperature is above 37◦C the yield is reduced, above 45◦C the yield is set to zero (Challinor et al., 2005, 2015). To test
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the importance of high temperature stress during flowering,this routine is disabled. The rainwater harvesting routineused in

GLAM stores any runoff from the top layer of the soil in a reservoir, the reservoir is tapped when the soil moisture falls below

the wilting limit. The amount of water released from the reservoir is enough to bring the soil up to 80% of the drained upper

limit or the totality of the water stored. GLAM does not have aparameter set for sorghum or millet and therefore was not used

to simulate those crops. The carbon dioxide fertilisation effect is simulated by increasing the transpiration efficiency of the5

crop, this is based on the mean carbon dioxide concentrationfor the simulated time period.

2.2.2 ORCHIDEE-Crop

ORCHIDEE-crop is a land surface crop model, based on the generic vegetation model ORCHIDEE (Krinner et al., 2005),

simulating carbon, water and energy fluxes (e.g. photosynthesis, respiration and evapotranspiration) and modules specifically

designed to represent crop processes. The version of ORCHIDEE-crop used in this study includes crop phenology mod-10

ule (Wu et al., 2016) and crop management modules (Wang et al., in prep), which has also submitted results for global gridded

crop model intercomparison (Müller et al., 2017). ORCHIDEE-crop calculates thermal unit accumulation, photosynthesis and

energy exchange on a half-hourly time step, while leaf area dynamics, carbon allocation and biomass and soil organic carbon

change are simulated on a daily time step. The daily climate variables driving the model includes: maximum and minimum

daily temperatures, downwelling shortwave rand longwave adiation, surface pressure, wind speed and precipitation. The pa-15

rameter set of maize was tested against a field experiment site in Ghana (Larvor, 2016). ORCHIDEE-Crop like GLAM does

not have a parameter set for sorghum or millet and was therefore not used to simulate those crops.

2.2.3 SARRA-H

SARRA-H (System for Regional Analysis of Agro-Climatic Risks), developed by the CIRAD, is a simple deterministic crop

model for cereals operating at daily time steps (Dingkuhn etal., 2003; Baron et al., 2005; Kouressy et al., 2008) that simulates20

the growth of a crop on an adaptive scale of grid cells depending on the input data for Sorghum (90, 120 days or photoperi-

odic), Millet (90, 120 days or photoperiodic) and Maize (90 or 120 days). The performance in the analysis of climate impacts

on tropical cereals is good (Mishra et al., 2008; Oettli et al., 2011). The yields are simulated under water-limited conditions

by simulating the soil water balance, potential and actual evapotranspiration, phenology, potential and water-limited carbon

assimilation, and biomass partitioning (see (Kouressy et al., 2008) for a detailed review of model concepts). The carbon diox-25

ide fertilisation effect is not yet simulated. The optimum temperature is between 34 and 36◦C and the limit temperature is

between 44 and 46◦C following the crop spices. SARRA-H model does not explicitly simulate the effects of fertilizer, manure

application, or residue on crop yields but reproduce different level of fertility (F1=>F4). The ratio between F1 to F4 rate is

calibrated with a field survey in Burkina Faso. For the sowingit starts when plant-available soil moisture is greater than 8 mm

at the end of the day and after the date determined by krigged field farmers survey. The establishment of the crop is monitored30

during the followed 20 days and if the condition is not correct during this period, the juvenile crop died and a re-sowing is

automatically done. SARRA-H (Sultan et al., 2014) SARRA-H uses five daily meteorological inputs: maximum and minimum
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temperatures, downwelling shortwave radiation, precipitation and PET (Hargreaves formula), all at the surface. Others inputs

are also used: soil depth and soil water holding capacity, and sowing density and depth.

2.2.4 Linear models

The linear models use a design that has been used in several previous studies Estes et al. (2013); Lobell and Burke (2010);

Wang et al. (2016); Parkes et al. (2017). The models in this study use the robust linear fitting tools in MATLAB (Holland andWelsch,5

1977) that are less sensitive to outliers than least squaresfitting. The input data for the model have been polynomially detrended

before fitting and the log of the yield was taken, this means the models produce relative changes in yield instead of absolute

ones. The polynomial detrending used in the models is a two degree polynomial solved for each grid cell. The models solve

the equation shown in Eqn 1 where a, b and c are constants for each grid cell and T and P are the seasonal mean temperature

and total precipitation respectively.10

Yit = ai + biTit + ciPit (1)

2.2.5 Differences in the crop models

Both GLAM and ORCHIDEE-Crop were used to simulate maize, SARRA-H and the generalised linear models were used to

simulate maize, sorghum and millet. GLAM and ORCHIDEE-Cropboth respond to carbon dioxide fertilisation and ORCHIDEE-

Crop has nitrogen fertiliser inputs as part of the simulatedcrop growth. The crop models all simulate crops based on a single15

planting and harvest without multicropping. GLAM and the linear models use observational yield as an input, in both cases the

input yield is detrended using a two degree polynomial before use. This detrending removes consistent trends such as manage-

ment changes and technological improvements. GLAM unlike the other models was calibrated specifically for these simulations

whereas ORCHIDEE-Crop and SARRA-H used pre defined parameter sets. The SARRA-H parameters were based on a study

area in Burkina Faso. The process based models are time dependent and respond to the arrival of the monsoon, the linear20

models however only use the seasonal total precipitation. Linear models suffer with reduced accuracy outside the parameters

space used to train them. In the short term linear models are not notably worse than process based models (Lobell and Asseng,

2017).

2.3 Agronomic data

The crop model’s output were all analysed against their ability to reproduce observed crop yields and variability. The gridded25

input crop data for maize was taken from a dataset built from satellite observations combined with yields reported by theFood

and Agriculture Organization of the United Nations (FAO) (FAOSTAT, 2014; Iizumi et al., 2014; Iizumi and Ramankutty,

2016). The millet and sorghum data were country level data from the Food and Agriculture Organization of the United Na-

tions (FAO) (FAOSTAT, 2014). The cultivated areas for maize, millet and sorghum were defined by regridding the results

from Monfreda et al. (2008) on the meteorological grid. To prevent the results being swamped by signals from grid cells30
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with low cultivated area (Challinor et al., 2015), any grid cell with less than 1% coverage of each crop type of interest was

eliminated.

3 Results

3.1 Crop model results

The four crop models were driven using the outputs of the fourbias corrected CORDEX-Africa RCM simulations as listed in5

table 1. The CORDEX-Africa simulations were driven by ten GCMs as part of CMIP5. We present the first use of these data

for a specific warming level of 1.5 K above the pre-industrialcontrol. An annotated map of the analysed area is shown in SI

Figure 1.

The results in Figure 1 show the multi-model mean maize yieldand yield interannual variability. The+ and· symbols show

grid cells where three of the four crop models agree with the sign of the response for the multi-model GCM-RCM mean,10

where+ shows an increase and· shows a decrease. The model agreement is high in Côte d’Ivoire and Ghana but there is a

spread of positive and negative impacts across Nigeria. Thepotential increases in yield in Côte d’Ivoire and Nigeria are also

associated with increases in IAV. The millet results are shown in Figure 2 where a dipole can be seen in the yield response,the

yield increases in northern Nigeria and southern Niger, however to the West in Burkina Faso and Mali there is a decrease in

yields. The dipole is not as significant in the IAV results with increases in IAV in Niger, Nigeria and Burkina Faso. The IAVis15

reduced in Mali along with the yield. The stippled Sorghum results (Figure 3) present a smaller dipole effect that has positive

yield change in Niger and a negative yield change over much ofWest Africa. Where the yield increases in Niger the IAV also

increases which is expected to cause problems for food security.

The multimodel ensemble mean yields for the control and future time slices are calculated for each crop model and shown

in Tables 3, 4 and 5. For each yield value, the results are shown with the inter annual variability (IAV) in the yield as the first20

uncertainty and the model spread as the second uncertainty.The observations are shown with a single uncertainty as theyhave

no model spread. The results in Tables 3, 4 and 5 show that the IAV is larger than the model spread for all crop models except

the linear models. The ratio for the IAV in GLAM is much largerthan for all other models, this is due to the simulations for

the historical period in GLAM being calibrated on a per modelbasis and therefore having a very low model spread.

For maize (Table 3), of the process based models GLAM and SARRA-H are closest to the observed yields whereas25

ORCHIDEE-Crop is further away. The linear models by design match the observed yields. The future climate responses for

GLAM and SARRA-H are limited however ORCHIDEE-Crop shows a strong reduction in yields. SARRA-H and the linear

models show an increase in yields at +1.5 K. The control simulation has temperatures that are 0.7 K above the pre-industrial

control, therefore the temperature difference experienced by the crops is 0.8 K. The maize yield reductions are less than 10±

709± 91 kg/ha for GLAM, 95± 185± 51 kg/ha for ORCHIDEE-Crop, whereas SARRA-H increases by around 28± 708±30

243 kg/ha and the linear models increase by 38± 122± 183 kg/ha. In percentage terms these are less than 1.5% for GLAM,

6.6% for ORCHIDEE and increases of 2.2% for SARRA-H and 3.5% for the linear models.
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ORCHIDEE-Crop and GLAM simulate responses to carbon dioxide fertilisation. Both models project a small reduction in

yield in future climates, the magnitude of which has been reduced by the increase in yield from carbon dioxide fertilisation.

Carbon dioxide fertilisation increases the yield when the crop is limited by carbon dioxide. If the crop is water limitedthen the

carbon dioxide fertilisation will have a smaller effect on yield. The yield losses in GLAM and ORCHIDEE-Crop are smaller

than the mean reported in the meta-analysis by Knox et al. (2012). The Knox et al. (2012) results are for crops in the 2050s and5

therefore our results are expected to be smaller as they are for a closer time horizon. A second meta-analysis by Challinor et al.

(2014) presents results by temperature change, our resultsat 1.5 K are within the range of results found in their analysis.

The multimodel ensemble yield results contain two sources of uncertainty, the IAV and the variability across the meteoro-

logical input datasets. The results in Table 3 show that ORCHIDEE-Crop has the most skill in reproducing the observed IAV

followed by the linear models. Both GLAM and SARRA-H overestimate the IAV for maize. Despite these differences, the IAV10

increases for all models in the future climate scenario. Forthe process based models the IAV is significantly larger thanthe

variability resulting from differences in input meteorological data. Both GLAM and ORCHIDEE-Crop show little variability

across the input data in the control scenario. For ORCHIDEE-Crop, GLAM and the linear models the variability increases in

the future climate, this is in contrast to the results in SARRA-H.

Figure 4 shows the mild and severe crop failure rate for maizein the control (20 years) and future (30 years) climate15

scenarios. A mild crop failure is one standard deviation below the observed yield for that grid cell, a severe crop failure is

1.5 standard deviations below the simulated yield for that grid cell in the historic simulation, the historic simulation is used to

prevent model bias in yield from dominating the variabilitysignal Parkes et al. (2015). The number of crop failures is recorded

for each grid cell and the total across the domain is calculated. The total number of simulations for a crop model is the number

of analysed grid cells multiplied by the number of years of simulation. The total number of crop failures is divided by thetotal20

number of simulations to give a fractional number of crop failures, this is the crop failure rate with units of failures per grid

cell per year. The inverse of the crop failure rate is the meanreturn time for a crop failure. GLAM slightly underestimates the

mild crop failure rate, whereas ORCHIDEE-Crop and SARRA-H overestimate slightly. The differences however are minor

in comparison to those found in the linear models. The severity of the change in mild crop failure rate varies across the

process based models but the signal is consistent, at 1.5 K above pre-industrial there is an expectation of more crop failures.25

ORCHIDEE-Crop is particularly pessimistic with the returntime between crop failures falling from 6.1 years to 2.5 years per

grid cell. For severe crop failures the process based modelsare again more realistic than the linear models. The future climate

results show an increase in severe crop failures, with ORCHIDEE-Crop again showing the strongest response.

The millet and sorghum analyses for three varieties simulated by the SARRA-H model and the linear models. The linear

models are more able to predict the observed yield and inter annual variability than SARRA-H for millet and sorghum (Fig-30

ures 2 and 3). In the millet simulations the linear models areclose to the observed yield whereas the SARRA-H varieties are

spread above and below the observations. The yield changes are negative for the linear models and the SARRA-H 90 day

variety. The three variants of SARRA-H like the linear models underestimate the frequency of crop failures in the control (Fig-

ure 4), this is most likely a result of overestimating the IAVand therefore giving a too low limit for a crop failure. The expected

return time for a crop failure in the observations is 5.6 years which is shorter than the 7.8, 8.6 and 8.0 years from SARRA-H35
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varieties (90 day, 120 day PP sensitive) and drastically difference from the 34.5 years in the linear models. For severe crop

failures the models perform worse and the return time of 12 years is doubled to 24 in the SARRA-H 90 day variety which is

the best of the models. The future crop failure return time isconsistently shorter than the historic indicating more frequent crop

failures.

For Sorghum, the SARRA-H 90 day cultivar is most capable of reproducing the observed, however the yields are still about5

20% too low. The response of the 90 day cultivar to the future climate are consistent with the simulations in Sultan et al.

(2014). As SARRA-H was used for both millet and sorghum the results are similar with the overestimate of the IAV causing

an underestimate of the crop failure rate. The return time ofa crop failure is 5.3 years in the observations but the SARRA-H

varieties (90 day, 120 day PP sensitive) find 8.0, 7.4 and 7.8 years and the linear models produce a return time of 40.0 years.

The same features are found for the severe crop failures where the return time is overestimated in all models.10

The results in Tables 6, 7, 8 show the change in national yields for each model and the multi-model mean. The per model

production changes are averaged and shown in the rightmost columns of the tables. Countries with fewer than 10 grid cells

analysed have been omitted from the tables. The results for maize show a spread in expected yield changes by nation, with

Cameroon, Côte d’Ivoire and Mali experiencing an increase in yield. There are yield reductions in Benin, Burkina Faso, Ghana

and Senegal with limit changes in Nigeria and Togo. ORCHIDEE-Crop dominates the production change with a large negative15

change to a highly productive nations including Ghana and Nigeria. Only Benin and Senegal are projected to suffer yield

reductions in all four crop models for maize. In the future climate simulations at the 1.5 K warming level Burkina Faso,

Mali, and Senegal all suffer a more than 5% loss in millet yields while Niger is projected to experience an increase of 3.2%.

These yield changes result in an increase in production thatis dominated by Nigeria, however production falls significantly for

Burkina Faso, Mali and Senegal. The sorghum results (Table 8) nearly always show a yield reduction with climate change with20

the exception of Niger which has a small yield increase. The sorghum results show a 10% yield reduction for Burkina Faso,

Mali and Senegal. The negative trends in the yields are also present in the production of sorghum in West Africa with Niger

being the only exception. The total sorghum production lossis estimated as 3%.

The results in Figure 5 show the responses of the maize yield to changes in precipitation and temperature change for four crop

models. To highlight the responses of precipitation changes between -50% and +50% the x-axis of the left figure is truncated,25

a full version of the figure is shown in SI Figure 2. The maize yields in all models show an increase in yield with increasing

precipitation. A negative trend is also present with increasing temperatures. The differences between the crop modelscan be

seen in these figures. The results in ORCHIDEE-Crop show lessvariability than SARRA-H, GLAM or the Linear models

and have a strong negative yield response for a limited temperature change. The temperature change experienced by the crops

simulated in GLAM covers a larger range than the other modelsand the positive relationship between precipitation and yield30

is also shown. Water scarcity has a smaller impact on SARRA-Hand the Linear models than in GLAM or ORCHIDEE and

the SARRA-H results do not show a strong negative response tohigher temperatures.
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3.2 Adaptation results

In one of the four crop models (GLAM) simulations of two idealised adaptation methods were performed. There were three

experiments, crops with a resistance to high temperature stress during flowering, crops grown with rainwater harvesting and

crops resistant to high temperature stress with rainwater harvesting deployed. To simulate a crop resistant to high temperature

stress GLAM is rerun with the high temperature stress routine disabled, a description of high temperature stress in flowering5

is found in Challinor et al. (2005). Disabling the high temperature stress routine produces an unphysical crop and is used to

give guidance on the importance of high temperature stress.The rainwater harvesting system collects runoff from the crop and

stores it with 50% efficiency, the water is deployed if the soil moisture falls below the wilting limit for the crop. The adaptation

methods are simulated in both the control climate and the future climate.

The adaptation results for GLAM (Figure 6) show that rainwater harvesting is provides a smaller increase in yields in10

the global 1.5 K warmer climate than in the historic climate.The results for the return time between crop failures show an

improvement in the control climate that is greater than in the future climate. In contrast the high temperature stress resistant

crops show a benefit in both cases and a larger benefit in futureclimates. The return time between crop failures also increase

more in future climates. However when combined with rainwater harvesting, high temperature stress resistance has a smaller

relative improvement than when it is deployed in isolation.The maize results from GLAM presented here agree show similar15

responses to the sorghum results in Guan et al. (2017) where high temperature stress resistance is more important than rainwater

harvesting. This result needs to be considered alongside the results in Figure 5 which show a strong negative precipitation

response in GLAM, indicating that the rainwater harvestingroutine, while providing some extra water does not provide enough

to counteract the precipitation changes in the future simulations.

4 Discussion20

The results in Figures 1, 2 and 3, show that as the global climate warms through 1.5 K the yield response is uncertain. For

maize, GLAM and ORCHIDEE-Crop simulate a reduction in yields. Across all crops and models the largest reduction is 16.5%

for SARRA-H 90 day sorghum. The largest increase is found forthe linear models and is 5.3% for maize. This range of results

is within the range found for tropical maize in Challinor et al. (2014).

ORCHIDEE-Crop replicates the observed IAV and in contrast with the other process based models, GLAM and SARRA-25

H. The mean yields however do show a significant bias. The ORCHIDEE-Crop results show the greatest increase in crop

failure rate with crop failures occurring once every 2.5 years in the future climate scenarios. The crop failure rates for GLAM

and SARRA-H are similar with future failures happening every 6 and 5 years respectively. The linear models consistently

underestimate the crop failure rate and this is one of their weaknesses. The results in Figure 4 show consistency across all three

process based models and therefore should be treated with confidence.30

The varieties of SARRA-H are unable to replicate the observed yields for the millet and sorghum analyses and mis-estimate

the yield by several hundred kg/ha (Figures 2 and 3). The cropfailure rate is defined by the model yield and the SARRA-H

10



simulations all underestimate the crop failure rate. They do however all find a relative increase in crop failure rate in future

climates for both millet and sorghum.

The differences in the crop models and inputs have an influence on the results. From Figure 1 GLAM shows a greater spread

of yield change with climate change than the other models whereas ORCHIDEE and SARRA-H are more consistent under

climate change. The yield changes in ORCHIDEE and GLAM are also influenced by the carbon dioxide fertilisation effect and5

in its absence the projected yields are expected to be lower.The IAV results show greater spread in the linear models thanthe

process based models, this is a result of the simple parameters in the linear models. The results in Figure 5 show that GLAM

has a stronger negative response to precipitation loss thanthe other models. The temperature results for all models show a

downward trend in yield with increasing temperatures. The lack of variability in the linear models is shown in Figure 4 where

they consistently underestimate crop failure rates. ORCHIDEE has a smaller IAV than the other process based models which10

means the crop failure limit is much higher than in the other models. This results in ORCHIDEE finding a significant increase

in the number of crop failures. As the ORCHIDEE IAV is closestto the observed IAV (Table 3,this indicates that GLAM

and SARRA-H are likely to underestimate the number of futurecrop failures. For Figures 2 and 3 the country scale yields in

the historic inputs can be clearly seen in the linear models as opposed to the spread of yield values in SARRA-H. As with

SARRA-H, GLAM and the linear models in maize, the SARRA-H varieties and the linear models underestimate the variability15

and therefore the crop failure rate for both millet and sorghum.

The adaptation methods tested in GLAM for maize are shown in Figure 6 and show that rainwater harvesting is not an

effective adaptation method. The higher rainfall in futureclimates reduces the likelihood of water limiting the crop growth.

The high temperature stress adaptation is a more efficient adaptation and provides a benefit in the future climate. The combined

HTS resistant and rainwater harvesting adapted crop is lessof an adaptation than solely HTS resistant crop. Therefore in the20

case of limited resources it is better decision to explore HTS resistance than building systems to capture runoff, especially as

the systems require substantial investment to construct and maintain.

The changes in national yields is a cause for concern as it is well documented that populations in West Africa are expected

to increase quickly in the 21st century. Crop yields need to double by 2050 to feed the population (Ray et al., 2013), whereas

the largest increase found in this study is millet in Niger at+3.20%. The production changes show the importance of different25

growing areas, the lack of strong positive changes in yield across Sub-Saharan West Africa is a concern. The mean yield

changes are not the only message, in many cases where the meanyield increase there is an accompanying increase in IAV. The

increase in IAV means that yield are more uncertain and thereis an increasingly likelihood of crop failures. The reductions in

yields on national levels indicate a need for new breeds of crop or changing species entirely, however the rate of deployment

of new breeds in Africa is slow (Challinor et al., 2016).30

5 Conclusions

Four crop models of varying design and complexity have been used to project crop yields across West Africa for three crops

as global temperatures reach 1.5 K above the pre-industriallevels. The crops models were driven by the outputs of four RCMs
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which were in turn driven by 10 GCMs. The crop models show differing levels of skill at reproducing the yield and variability

found in the observed record. The process based models are able to predict the crop failure rate for maize with moderate skill.

The varieties of crop simulated by SARRA-H for millet and sorghum are less able to replicate observations than the linear

models, but they are more capable for the crop failures. Thisstudy is limited by the number of crop models used, in particular

only one process based model was used to millet and sorghum. The use of bias corrected RCMs to provide input data removes5

some of the problems associated with GCM data. The large sizeof the grid (50km) prevents the formation of true convective

storms and therefore the intensity of the weather is likely to be underestimated (Garcia-Carreras et al., 2015).

The crop yields and percentage changes in yield were calculated for several West Africa countries. The yield changes arenot

consistent across national borders and some nations are expected to lose more than others. The yield gains predicted herein need

to be considered as part of longer term trends that show severe yield reductions as the 21st century progresses (Challinor et al.,10

2014; Knox et al., 2012). As global temperatures approach 1.5 K above the pre-industrial levels, the knowledge of the most

effective adaptation methods becomes critical and therefore it is of high importance to develop models capable of simulating

them.

The results from this study show that for several crops the mean yield may not change much, however the increase in

variability is likely to result in an increase in crop failures. The average crop yield responses are sometimes negativeand none15

are positive enough to increase yields sufficiently to prevent food shortages.
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Figure 1. Change in maize yield and yield IAV between the historic and future climates. The top left shows the change in yield where +

indicates that in three crop models the change will be positive and· indicates that in three crop models the change will be negative. The top

right is the same as the top left except for IAV instead of yield. The units ofthe colour bar in the top plots is kg/ha. The bottom left shows the

fractional change in yield against yield for all analysed grid cells. The bottom right shows the fractional change in yield IAV against yield

for all analysed grid cells.
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Figure 2. Change in millet yield and yield IAV between the historic and future climates. The top left shows the change in yield where +

indicates that in three crop models the change will be positive and· indicates that in three crop models the change will be negative. The top

right is the same as the top left except for IAV instead of yield. The units ofthe colour bar in the top plots is kg/ha. The bottom left shows the

fractional change in yield against yield for all analysed grid cells. The bottom right shows the fractional change in yield IAV against yield

for all analysed grid cells.
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Figure 3. Change in sorghum yield and yield IAV between the historic and future climates. The top left shows the change in yield where +

indicates that in three crop models the change will be positive and· indicates that in three crop models the change will be negative. The top

right is the same as the top left except for IAV instead of yield. The units ofthe colour bar in the top plots is kg/ha. The bottom left shows the

fractional change in yield against yield for all analysed grid cells. The bottom right shows the fractional change in yield IAV against yield

for all analysed grid cells.
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Figure 4. Heatmaps of Mild (left) and severe (right) crops failures for maize (top), millet (middle) and sorghum (bottom) in West Africa.
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Figure 5. Percentage maize yield change against precipitation (left) and temperature (right) for four crop models. This figure has a restricted

x-axis in the precipitation plot to enhance the clarity of the results and a full version in shown in SI Figure 2.
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Figure 6. Efficacy of adaptation methods for maize in GLAM. HTS is high temperaturestress adapted crops, Rw H shows crops with

rainwater harvesting, HTS and Rw H shows both adaptation methods in use.Each box shows the fractional yield change relative to the

unadapted crop with the boxplots showing the range across the 6 member GCM-RCM ensemble. The pairs of boxes show the relative change

in yield for the adaptation method in the historic climate (left) and the future climate(right).
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Table 1. GCMs and RCMs whereX indicates a RCM-GCM combination used in this study. The RCM description papers are as fol-

lows: RCA4 (Chylek et al., 2011), RACMO22T (van Meijgaard et al., 2008), HIRHAM5 (Christensen et al., 2006). The GCM decrip-

tion papers are as follows: CNRM-CM5 (Voldoire et al., 2013), CM5A-MR (Dufresne et al., 2013), CSIRO-Mk3.6.0 (Rotstayn et al.,

2012), NOAA-GFDL-CM3 (Griffies et al., 2011), MOHC-HadGEM2-ES (Jones et al., 2011), ICHEC-EC-EARTH (Hazeleger et al., 2012),

MIROC5 (Watanabe et al., 2010), MPI-ESM-LR (Raddatz et al., 2007), NorESM (Bentsen et al., 2013).

RCA4 CCLM4.8.17 RACMO22T HIRHAM5

CanESM2 X

CNRM-CM5 X X

CM5A-MR X

CSIRO-Mk3.6.0 X

NOAA-GFDL-CM3 X

MOHC-HadGEM2-ES X X X

ICHEC-EC-EARTH X X X

MIROC5 X

MPI-ESM-LR X X

NorESM X

24



Table 2. GCM time slices at +1.5 K and their corresponding carbon dioxide concentrations.

Time (years) CO2 (ppm)

CanESM2 2000-2029 402.8

CNRM-CM5A 2016-2045 453.5

CM5A-MR 2002-2031 408.2

CSIRO-Mk3.6.0 2018-2047 461.2

NOAA-GFDL-CM3 2020-2049 469.3

MOHC-HadGEM2-ES 2009-2038 429.1

ICHEC-EC-EARTH 2006-2035 419.7

MIROC5 2018-2047 461.2

MPI-ESM-LR 2004-2033 413.9

NorESM 2018-2047 461.2

GCM Mean 2011-2040 438.0

RCM Mean 2010-2039 434.1
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Table 3. Simulated maize yields in kg/ha in West Africa for observations and four crop models for the historic time period and at 1.5 K.

Where the first uncertainty value is the inter annual variability and the second is the spread across the RCM-GCM ensemble.

Observations GLAM ORCHIDEE-Crop SARRA-H Linear models

Historic 1099.3± 140.9 896.7± 493.5± 17.3 1446.2± 125.3± 16.0 1317.9± 485.2± 207.1 1081.9± 79.9± 125.6

+1.5 K 886.2± 508.6±89.7 1351.1± 136. 3± 48.4 1346.6± 515.3± 126.5 1120.0± 92.7± 132.5
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Table 4. Simulated millet yields in kg/ha in West Africa for observations and four crop models for the historic time period and at 1.5 K.

Where the first uncertainty value is the inter annual variability and the second is the spread across the RCM-GCM ensemble.

Observations SARRA-H 90 SARRA-H 120 SARRA-H PP Linear models

Historic 827.6± 76.3 1251.7± 409.0± 217.1 792.0± 362.1± 103.9 427.8± 129.8± 40.4 830.7± 43.6± 171.2

+1.5 K 1296.2± 433.3± 57.5 740.2± 367.9± 48.7 402.7± 121.3± 18.1 830.7± 51.9± 189.9
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Table 5. Simulated sorghum yields in kg/ha in West Africa for observations and four crop models for the historic time period and at 1.5 K.

Where the first uncertainty value is the inter annual variability and the second is the spread across the RCM-GCM ensemble.

Observations SARRA-H 90 SARRA-H 120 SARRA-H PP Linear models

Historic 907.2± 69.8 769.2± 324.5± 107.1 240.3± 144.5± 73.5 342.5± 105.2± 56.3 916.8± 46.8± 72.9

+1.5 K 721.0± 332.5± 66.6 200.6± 135.1± 20.2 341.4± 103.8± 33.3 902.8± 50.5± 96.8
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Table 6. Percentage maize yield change by country. The number of grid cells analysis is in brackets and countries where fewer than 10 grid

cells were analysed have been omitted. The production change is shown inthe rightmost column in tonnes.

Country GLAM ORCHIDEE-Crop SARRA-H Linear models Multi model mean Production change

Benin (23) -2.90 -7.57 -0.51 -1.94 -3.23 -16372

Burkina Faso (37) -0.08 -6.39 3.75 -3.21 -1.48 -2337

Cameroon (24) 1.04 -1.46 -2.45 9.74 1.72 739

Côte d’Ivoire (98) 3.29 -4.87 6.03 1.16 1.40 5283

Ghana (70) 0.17 -6.91 -0.84 0.13 -1.86 -16318

Mali (13) 0.99 -5.07 0.17 5.28 0.34 -1255

Nigeria (320) -1.27 -6.63 1.80 5.96 -0.04 -71274

Senegal (11) -10.10 -16.85 -3.42 -6.60 -9.24 -4142

Togo (17) 0.56 -5.02 0.33 4.07 -0.01 -4847
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Table 7. Percentage millet yield change by country.The number of grid cells analysis is in brackets and countries where fewer than 10 grid

cells were analysed have been omitted. The production change is shown inthe rightmost column in tonnes.

Country SARRA-H 90 SARRA-H 120 SARRA-H PP Linear modelsMulti model mean Production change

Burkina Faso (93) -4.21 -12.44 -7.47 0.67 -5.86 -53223

Chad (24) 11.31 2.42 -1.72 -5.03 0.53 3731

Côte d’Ivoire (11) 2.10 0.97 -4.17 3.60 0.63 429

Ghana (10) -1.16 -4.78 -5.08 8.38 -0.77 -1882

Mali (94) -1.60 -16.79 -17.78 3.85 -8.08 -45140

Niger (114) 11.95 -1.56 -1.80 4.20 3.20 69195

Nigeria (232) 7.24 -3.53 -2.44 1.58 0.71 197726

Senegal (40) 5.52 -12.32 -16.22 1.62 -5.35 -16667
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Table 8. Percentage sorghum yield change by country. The number of grid cellsanalysis is in brackets and countries where fewer than 10

grid cells were analysed have been omitted. The production change is shown in the rightmost column in tonnes.

Country SARRA-H 90 SARRA-H 120 SARRA-H PP Linear modelsMulti model mean Production change

Benin (23) -10.55 -18.52 -1.25 -0.37 -7.05 -5363

Burkina Faso (102) -11.40 -19.63 -1.62 -7.52 -10.04 -53290

Cameroon (65) -10.87 -17.98 -1.51 1.35 -7.25 -24814

Chad (28) -3.63 -16.55 -0.36 -3.68 -6.06 -2478

Ghana (28) -7.66 -9.69 1.37 -1.94 -4.48 -3855

Mali (93) -9.42 -23.5 -9.50 1.69 -10.18 -18560

Mauritania (11) -7.54 -14.16 -8.33 11.28 -4.69 -81

Niger (94) 9.98 -7.90 2.63 -2.10 0.65 17972

Nigeria (313) -2.70 -14.92 1.51 -0.29 -4.10 -14728

Senegal (19) -7.29 -16.62 -15.56 -3.70 -10.79 -4068

Togo (16) -6.02 -9.87 2.84 -2.65 -3.93 -1499
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