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Abstract. The ability of a region to feed itself in the upcoming decadesn important question. The West African population
is expected to increase significantly in the next 30 years.résponses of crops to short term climate change is critichle
population and the decision makers tasked with food secdititis leads to a three questions, How will crop yields cleaimg
the near future? What influence will climate change have op failures? Which adaptation methods should be employed to
ameliorate undesirable changes?

An ensemble of near term climate projections are used tolatmmaize, millet and sorghum in West Africa in the recent
historic (1986-2005) and a near term future where globaptmatures are 1.5 K above pre-industrial to assess the eliang
yield, yield variability and crop failure rate. Four crop des were used to simulate maize, millet and sorghum in WegtaA
in the historic and future climates.

Across the majority of West Africa the maize, millet and $arm yields are shown to fall. In the regions where yields
increase the variability also increases. This increasaiialility increases the likelihood of crop failures, whiare defined
as yield negative anomalies beyond one standard deviationgithe historic period. The increasing variability ieases the
frequency of crop failures across West Africa. The retumretof crop failures falls from 8.8, 9.7 and 10.0 years to 5.2 ahd
5.8 years for maize, millet and sorghum respectively.

The adoption of heat-resistant cultivars and the use olicagtrainwater have been investigated using one crop medsel a
idealised sensitivity test. The generalised adoption aflévar resistant to high temperature stress during flomgeis shown
to be more beneficial than using rainwater harvesting.

Copyright statement. TEXT

1 Introduction

The densely populated region of West Africa has been idedtds a region vulnerable to climate change impacts, froftsshi
in the monsoon system to desertification. The global clinraprojected to pass 1.5 K above the pre-industrial controhe
coming decades (Kirtman et al., 2013). To maintain currewls of food intake the crop yields in West Africa will need t
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increase in step with the increasing population. All colstwithin West Africa are currently net importers of cesdaticating
that their current production is insufficient to meet dem@R8OSTAT, 2014). The existing trends in African agricutur
are not sufficient to provide this yield increase and shedagre therefore expected without the adverse effects rohtdi
change (Ray et al., 2013; Gerland et al., 2014).

The changes to the global climate will have local implicasiamn the growing conditions for crops. The primary source
of water for West African crops is the West African monsootudgs have shown that the monsoon may start later in
the year in West Africa under climate change, this in turnosgs the crops to the summer months when temperatures are
higher (Biasutti and Sobel, 2009; Sultan et al., 2014).

Temperatures and rainfall are not the only drivers of crabdyihat are expected to change; there are also possiblgehan
in fertiliser deployment thus nutrient availability (Ladstta et al., 2014) and as well as farmers adaptation, lrgugh ir-
rigation (Rockstrom and Falkenmark, 2000) or planting feeat drought resistant varieties in the case of dryer and a@arm
conditions (Guan et al., 2017).

A factor is the increase in ambient carbon dioxide concéntra and therefore the potential carbon dioxide fertiiaof
yields (Berg et al., 2013). This is primarily for C3 plantsetcarboxylation of C4 plants is insensitive to carbon diexbut
carbon dioxide impacts maize development through storolislire and soil moisture conservation (Leakey, 2009).

There have been multiple studies investigating the futtinesoze, millet and sorghum yields in West Africa. A metalgeis
of 52 studies for several crops without adaptation showgtalus by the 2050s, in African yield of 5%, 10% and 15% for
maize, millet and sorghum respectively (Knox et al., 2012).

The reduction in yields in Africa under climate change igtier supported by the meta-analysis in Roudier et al. (2011)
where multiple crops were shown to experience decreasaslih Yhe meta-analysis in Roudier et al. (2011) used a numbe
of climate scenarios including A1B, A2 and B1 from CMIP3 (Meet al., 2007) with time horizons varying from 2025-2085,
the majority of the publications analysed did not study &aléagn methods. The results in Roudier et al. (2011) ingass
the importance of the carbon dioxide fertilisation effe¢tioh was found the ameliorate some of the yield losses at&ibto
climate change. However it has also been shown the nutitoprality of the resultant crops is lower than in an atmospheth
current carbon dioxide concentrations (Roudier et al.120%uch of the area currently used to grow maize in West Afigc
also projected to be unsuitable in the long term. With a fitlimate based on RCP8.5 only 59.8% of the currently cuéi/a
area predicted to be viable in 2100 (Rippke et al., 2016)h@&fdst cultivated area, 40% can be used to grow sorghum tatsil
which are hardier to heat and drought stresses, howeveethaiming 60% has no suitable alternative (Rippke et al.6p01
The millet and sorghum growing areas however are not prediict suffer as much as maize. Many of the above mentioned
studies use climate projections that find high warming ee¢lthe end of the century.

The expected change in yield for maize was also calculatgrhdf a meta analysis where the response of maize to in-
creasing temperatures with and without adaptation methedsnvestigated. The temperature changes were locallysath
and grouped independent of carbon dioxide fertilisatioglobal climate conditions. Tropical maize was found to eiqrece a
decline in yields as temperatures increase for both studibsand without adaptation (Challinor et al., 2014). Thare mul-



10

15

20

25

30

tiple potential adaptation methods to ameliorate the intgpatclimate change, a non-exhaustive list contains, éndgping,
changing the variety or species grown, use of fertiliseds@op rotation to replenish nutrients in the soil.

Several adaptation methods for sorghum were investigatéguian et al. (2017) using two crop models for a future cli-
mate period of 2031-2060 under a RCP8.5 climate. The prabadaptation methods included changing the planting date,
rainwater capture and re-use and increasing resiliencigtotbmperature stress during flowering amongst othersrd@sdts
in Guan et al. (2017) show that growing varieties with higmperature stress resistance during flowering is of morefitene
in the future climate than rainwater harvesting. Sorghuefdg are expected to decrease with climate change basethon si
lations using data from RCP8.5 and between 2031-2060, waileon dioxide fertilisation will ameliorate some of theses,
it will not eliminate them (Sultan et al., 2014). Lastly, fmillet a model analysis produced an expected reductiondluyiof
6% by 2070-2099 when compared with 1970-1999 across the AtlB\2 scenarios from CMIP3 (Berg et al., 2013).

In this paper we use four crop models simulating three cropisdaiven by meteorological outputs from several regional
climate models. Three C4 crops have been selected for thlgsas; maize, sorghum and millet. They are a staple foods ov
much of West Africa and an important source of many nutriehte aim of this paper is to produce probabilistic projatsio
of West African crop yields as the global climate passes ldbéve the pre-industrial control. This study makes use wfyne
available input data from CORDEX-Africa to differentiat®iin previous works. There are several possible respongés to
increasing temperatures and altered precipitation regithese include modifying the planting window, using a newiety of
a crop or changing the crop entirely. Two adaptation methodsitigate the impacts of climate change has been investiga
These methods include an idealised crop which is resistameat stress during flowering and rainwater harvesting.obhal

temperature increase of 1.5 K is drawing closer, with anauatage carbon dioxide levels above 400 ppm in 2016.

2 Methods
2.1 Meteorological data

The input data for the crop models in this study was providegaat of the CORDEX-Africa project (Nikulin et al., 2012).
CORDEX-Africa uses a selection of CMIP5 Global Climate Misd&CMs) to drive a number of Regional Climate Models
(RCMs). The simulations used in this study are based on CMif&lations of a high emission, low adaptation future ctiena
where the radiative forcing at the end of the'2g¢entury is +8.5 Wm?2, (RCP8.5) (Taylor et al., 2011; Meinshausen et al.,
2011). The outputs from CORDEX-Africa were bias correctecpart of the HELIX project using multisegment statistical
bias correction (Grillakis et al., 2013; Papadimitriou ket 2015). The observations used to bias correct the CORBEXa
simulations was the WAT CH-Forcing-Data-ERA-Interim: WH§B/eedon et al., 2014) record. The bias corrected CORDEX-
Africa data was provided at a horizontal resolution of 0.4hd at a temporal resolution of one day. The multisegement
approach of the bias correction will adjusts the simulatadability to closely match the observed variability anddioing

so removes a number of drizzle events from the record an@ases the intensity of wetter events to match the observa-

tions (Papadimitriou et al., 2015).



10

15

20

25

30

The CORDEX-Africa simulations were found to perform wellraplicating the large scale features of the West African
climate including the inter annual variability in precgtiibn (Diaconescu et al., 2015). The precipitation in WeBtcA is
primarily driven by the north-south motion of the monsoork(in et al., 2012). The CORDEX-Africa models were found
to contain biases despite their good performance and tirerbfas corrected model output were selected for furthalyan
sis (Gbobaniyi et al., 2014).

An ensemble of 10 GCMs and four RCMs were used as inputs toroaafels and a total of 16 GCM-RCM combinations
were utilised. None of the GCMs were used to drive all of thevR@nd of the RCMs, only RCA4 was used with every GCM.
A table of the GCM-RCM combinations used is shown in Table e Tontrol time slice for the experiment was 1986-2005
corresponding to the final 20 years of the CMIP5 historic $ations. The future time slice was taken as the 30 year period
where the global average temperature was closest to 1.5 eahbe pre-industrial control of 1870-1899. The time slices
used for this experiment and the mean time slices weightdablly GCMs and RCMs are shown in Table 2. The GCM and
RCM weighted mean time slices are within a year of each oth2041-2040 and 2010-2039 respectively. The crop models
that simulate carbon dioxide fertilisation also use thdoardioxide concentrations as inputs for the future clinsatnarios
reached by each GCM when warming reaches 1.5 K. Thus, becdulferent transient climate responses of the GCMs,
the crop models are exposed to a different carbon dioxideerdmations for each GCM climate forcing. Our choice of not
normalizing the carbon dioxide levels for simulating craglgs is justified because we want to capture the full ungeytaf
West African yield responses to both regional climate anthagll carbon dioxide conditions in a 1.5K warmer world.

2.2 Crop models

Four different crop models were used in this study, the Globege Area Model for annual crops (GLAM) (Challinor et al.,
2004), ORCHIDEE-Crop (Wu et al., 2016) which is the crop #fieeersion of the ORganizing Carbon and Hydrology in
Dynamic EcosystEms (ORCHIDEE) land surface model (Krirateal., 2005), System of Agroclimatological Regional Risk
Analysis Version H (SARRA-H) (Kouressy et al., 2008) and deseof generalised linear models (Lobell and Burke, 2010).
The planting and harvest dates for the crop models wererdeted using data generated as part of the Global Gridded Crop
Model Intercomparison project (Elliott et al., 2015).

221 GLAM

GLAM is the Global Large Area Model for annual crops (Challirt al., 2004), it is a process based crop model that siesilat
the growth of a crop on the scale of grid cells used in climadelefs (Challinor et al., 2004) (Parkes et al., 2015). GLAMsus
four meteorological inputs: maximum and minimum daily tergiures, downwelling shortwave radiation and precijpitat

all at the surface. GLAM used the maize yield data as an irgdahg with soil quantities taken from the Digital Soil Map
of the World using the approach described in Vermeulen €Rall3). GLAM uses an intelligent planting system to wait for
soil moisture to reach a pre-defined limit before plantingurs. The parameter set for maize used in this study is based o
the one used in Vermeulen et al. (2013). The high temperattgss at flowering routine was enabled, if the maximum daily
temperature is above 3T the yield is reduced, above 4% the yield is set to zero (Challinor et al., 2005, 2015). Tt te
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the importance of high temperature stress during flowetimg,routine is disabled. The rainwater harvesting routised in
GLAM stores any runoff from the top layer of the soil in a res®r, the reservoir is tapped when the soil moisture fallowe
the wilting limit. The amount of water released from the rge@ is enough to bring the soil up to 80% of the drained upper
limit or the totality of the water stored. GLAM does not havpaaameter set for sorghum or millet and therefore was nat use
to simulate those crops. The carbon dioxide fertilisatifiact is simulated by increasing the transpiration efficieof the
crop, this is based on the mean carbon dioxide concentrtidghe simulated time period.

2.2.2 ORCHIDEE-Crop

ORCHIDEE-crop is a land surface crop model, based on therigenegetation model ORCHIDEE (Krinner et al., 2005),
simulating carbon, water and energy fluxes (e.g. photosgighrespiration and evapotranspiration) and modulesfsyzly
designed to represent crop processes. The version of OREEDop used in this study includes crop phenology mod-
ule (Wu et al., 2016) and crop management modules (Wang @t akep), which has also submitted results for global ggitld
crop model intercomparison (Mlller et al., 2017). ORCHID&p calculates thermal unit accumulation, photosynshesd
energy exchange on a half-hourly time step, while leaf ay@ahics, carbon allocation and biomass and soil organtwocar
change are simulated on a daily time step. The daily climat@bles driving the model includes: maximum and minimum
daily temperatures, downwelling shortwave rand longwaliateon, surface pressure, wind speed and precipitatibe. pa-
rameter set of maize was tested against a field experimenns@&hana (Larvor, 2016). ORCHIDEE-Crop like GLAM does
not have a parameter set for sorghum or millet and was therefit used to simulate those crops.

2.2.3 SARRA-H

SARRA-H (System for Regional Analysis of Agro-Climatic R#, developed by the CIRAD, is a simple deterministic crop
model for cereals operating at daily time steps (Dingkuhal.e2003; Baron et al., 2005; Kouressy et al., 2008) thatikites
the growth of a crop on an adaptive scale of grid cells dependn the input data for Sorghum (90, 120 days or photoperi-
odic), Millet (90, 120 days or photoperiodic) and Maize (9A@0 days). The performance in the analysis of climate ingac
on tropical cereals is good (Mishra et al., 2008; Oettli gt2011). The yields are simulated under water-limited doores

by simulating the soil water balance, potential and actuapetranspiration, phenology, potential and water-kaitarbon
assimilation, and biomass partitioning (see (Kouressy.£2@08) for a detailed review of model concepts). The carthox-

ide fertilisation effect is not yet simulated. The optimuemiperature is between 34 and°86and the limit temperature is
between 44 and 4€ following the crop spices. SARRA-H model does not exgiicgimulate the effects of fertilizer, manure
application, or residue on crop yields but reproduce diffiedevel of fertility (F1=>F4). The ratio between F1 to F4erés
calibrated with a field survey in Burkina Faso. For the sowtrggarts when plant-available soil moisture is greatent®anm

at the end of the day and after the date determined by kriggkbfirmers survey. The establishment of the crop is magttor
during the followed 20 days and if the condition is not cotrearing this period, the juvenile crop died and a re-sowig i

automatically done. SARRA-H (Sultan et al., 2014) SARRA4¢sIfive daily meteorological inputs: maximum and minimum
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temperatures, downwelling shortwave radiation, preaifwt and PET (Hargreaves formula), all at the surface. Qtimputs
are also used: soil depth and soil water holding capacitysawing density and depth.

2.2.4 Linear models

The linear models use a design that has been used in sevevadys studies Estes et al. (2013); Lobell and Burke (2010);
Wang et al. (2016); Parkes et al. (2017). The models in thdyatise the robust linear fitting tools in MATLAB (Holland aki¢elsch,
1977) that are less sensitive to outliers than least sqtittireg. The input data for the model have been polynomiadijrended
before fitting and the log of the yield was taken, this meaesniodels produce relative changes in yield instead of atesolu
ones. The polynomial detrending used in the models is a twoedepolynomial solved for each grid cell. The models solve
the equation shown in Eqn 1 where a, b and c are constantsdbrgg cell and T and P are the seasonal mean temperature
and total precipitation respectively.

Yie = a; + 0Ty + i Py (1)
2.2.5 Differencesin thecrop models

Both GLAM and ORCHIDEE-Crop were used to simulate maize, 8ARH and the generalised linear models were used to
simulate maize, sorghum and millet. GLAM and ORCHIDEE-Choth respond to carbon dioxide fertilisation and ORCHIDEE-
Crop has nitrogen fertiliser inputs as part of the simulatexgb growth. The crop models all simulate crops based ongdesin
planting and harvest without multicropping. GLAM and theglar models use observational yield as an input, in bottsdhse
input yield is detrended using a two degree polynomial eetme. This detrending removes consistent trends such agean
ment changes and technological improvements. GLAM unlikeother models was calibrated specifically for these sitioms
whereas ORCHIDEE-Crop and SARRA-H used pre defined parasete The SARRA-H parameters were based on a study
area in Burkina Faso. The process based models are time diggieand respond to the arrival of the monsoon, the linear
models however only use the seasonal total precipitatioredr models suffer with reduced accuracy outside the peters
space used to train them. In the short term linear modelsaneatably worse than process based models (Lobell and gssen
2017).

2.3 Agronomic data

The crop model's output were all analysed against theiitgltd reproduce observed crop yields and variability. Thidded
input crop data for maize was taken from a dataset built fratellte observations combined with yields reported byRbed

and Agriculture Organization of the United Nations (FAOAQSTAT, 2014; lizumi et al., 2014; lizumi and Ramankutty,
2016). The millet and sorghum data were country level data fthe Food and Agriculture Organization of the United Na-
tions (FAO) (FAOSTAT, 2014). The cultivated areas for maizgllet and sorghum were defined by regridding the results
from Monfreda et al. (2008) on the meteorological grid. Teyent the results being swamped by signals from grid cells
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with low cultivated area (Challinor et al., 2015), any griellavith less than 1% coverage of each crop type of interest wa
eliminated.

3 Results
3.1 Crop modé results

The four crop models were driven using the outputs of the lhias corrected CORDEX-Africa RCM simulations as listed in
table 1. The CORDEX-Africa simulations were driven by tenNBCas part of CMIP5. We present the first use of these data
for a specific warming level of 1.5 K above the pre-industciahtrol. An annotated map of the analysed area is shown in SI
Figure 1.

The results in Figure 1 show the multi-model mean maize yaeld yield interannual variability. The and- symbols show
grid cells where three of the four crop models agree with tga sf the response for the multi-model GCM-RCM mean,
where+ shows an increase andghows a decrease. The model agreement is high in Céte édlaoid Ghana but there is a
spread of positive and negative impacts across Nigeriapotential increases in yield in Cote d’lvoire and Nigeria afso
associated with increases in IAV. The millet results arenshim Figure 2 where a dipole can be seen in the yield respdimse,
yield increases in northern Nigeria and southern Niger,ev@nto the West in Burkina Faso and Mali there is a decrease in
yields. The dipole is not as significant in the IAV resultsiwiicreases in IAV in Niger, Nigeria and Burkina Faso. The li8V
reduced in Mali along with the yield. The stippled Sorghusutes (Figure 3) present a smaller dipole effect that hagipes
yield change in Niger and a negative yield change over mudNesft Africa. Where the yield increases in Niger the 1AV also
increases which is expected to cause problems for foodiggecur

The multimodel ensemble mean yields for the control andréutime slices are calculated for each crop model and shown
in Tables 3, 4 and 5. For each yield value, the results are shath the inter annual variability (I1AV) in the yield as thedi
uncertainty and the model spread as the second uncertaimyobservations are shown with a single uncertainty ashbeg
no model spread. The results in Tables 3, 4 and 5 show thafthis larger than the model spread for all crop models except
the linear models. The ratio for the 1AV in GLAM is much largéan for all other models, this is due to the simulations for
the historical period in GLAM being calibrated on a per mdagsis and therefore having a very low model spread.

For maize (Table 3), of the process based models GLAM and $%RRare closest to the observed yields whereas
ORCHIDEE-Crop is further away. The linear models by desigrtain the observed yields. The future climate responses for
GLAM and SARRA-H are limited however ORCHIDEE-Crop showstiaisg reduction in yields. SARRA-H and the linear
models show an increase in yields at +1.5 K. The control sitiart has temperatures that are 0.7 K above the pre-indlustri
control, therefore the temperature difference experiggethe crops is 0.8 K. The maize yield reductions are less 1i6at
709+ 91 kg/ha for GLAM, 95t 185+ 51 kg/ha for ORCHIDEE-Crop, whereas SARRA-H increases byiad 28+ 708+
243 kg/ha and the linear models increase byt3822 + 183 kg/ha. In percentage terms these are less than 1.5% #MGL
6.6% for ORCHIDEE and increases of 2.2% for SARRA-H and 3.6%ilie linear models.
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ORCHIDEE-Crop and GLAM simulate responses to carbon diekédtilisation. Both models project a small reduction in
yield in future climates, the magnitude of which has beemced by the increase in yield from carbon dioxide fertilimat
Carbon dioxide fertilisation increases the yield when ttogpds limited by carbon dioxide. If the crop is water limitégen the
carbon dioxide fertilisation will have a smaller effect deld. The yield losses in GLAM and ORCHIDEE-Crop are smaller
than the mean reported in the meta-analysis by Knox et al22@he Knox et al. (2012) results are for crops in the 205@ks a
therefore our results are expected to be smaller as thepaaecfoser time horizon. A second meta-analysis by Chalktal.
(2014) presents results by temperature change, our resdltS K are within the range of results found in their analysi

The multimodel ensemble yield results contain two sourdemoertainty, the AV and the variability across the meteor
logical input datasets. The results in Table 3 show that OREH-Crop has the most skill in reproducing the observed 1AV
followed by the linear models. Both GLAM and SARRA-H oveigsite the 1AV for maize. Despite these differences, the 1AV
increases for all models in the future climate scenario.tRerprocess based models the 1AV is significantly larger then
variability resulting from differences in input meteorgloal data. Both GLAM and ORCHIDEE-Crop show little variktyi
across the input data in the control scenario. For ORCHIQE®&R, GLAM and the linear models the variability increases i
the future climate, this is in contrast to the results in SARR.

Figure 4 shows the mild and severe crop failure rate for maizghe control (20 years) and future (30 years) climate
scenarios. A mild crop failure is one standard deviatiorowethe observed yield for that grid cell, a severe crop failisr
1.5 standard deviations below the simulated yield for thiat cgll in the historic simulation, the historic simulatiés used to
prevent model bias in yield from dominating the variabibignal Parkes et al. (2015). The number of crop failuresdsnaed
for each grid cell and the total across the domain is caledlakhe total number of simulations for a crop model is the loem
of analysed grid cells multiplied by the number of years ofidation. The total number of crop failures is divided by tbl
number of simulations to give a fractional number of crojufas, this is the crop failure rate with units of failures geid
cell per year. The inverse of the crop failure rate is the nreturn time for a crop failure. GLAM slightly underestimatine
mild crop failure rate, whereas ORCHIDEE-Crop and SARRA\restimate slightly. The differences however are minor
in comparison to those found in the linear models. The sgvefithe change in mild crop failure rate varies across the
process based models but the signal is consistent, at 1.®9Weglve-industrial there is an expectation of more cropfes.
ORCHIDEE-Crop is particularly pessimistic with the retdime between crop failures falling from 6.1 years to 2.5 ggaer
grid cell. For severe crop failures the process based madelagain more realistic than the linear models. The futiimeate
results show an increase in severe crop failures, with ORXEHCrop again showing the strongest response.

The millet and sorghum analyses for three varieties siradlaty the SARRA-H model and the linear models. The linear
models are more able to predict the observed yield and intewal variability than SARRA-H for millet and sorghum (Fig-
ures 2 and 3). In the millet simulations the linear modelsciose to the observed yield whereas the SARRA-H varieties ar
spread above and below the observations. The yield chamgasegative for the linear models and the SARRA-H 90 day
variety. The three variants of SARRA-H like the linear madehderestimate the frequency of crop failures in the co(fig-
ure 4), this is most likely a result of overestimating the I&kd therefore giving a too low limit for a crop failure. Thepexted
return time for a crop failure in the observations is 5.6 geahich is shorter than the 7.8, 8.6 and 8.0 years from SARRA-H
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varieties (90 day, 120 day PP sensitive) and drasticalfemihce from the 34.5 years in the linear models. For sever c
failures the models perform worse and the return time of /& doubled to 24 in the SARRA-H 90 day variety which is
the best of the models. The future crop failure return tinmissistently shorter than the historic indicating moreérent crop
failures.

For Sorghum, the SARRA-H 90 day cultivar is most capable pfagducing the observed, however the yields are still about
20% too low. The response of the 90 day cultivar to the futliraate are consistent with the simulations in Sultan et al.
(2014). As SARRA-H was used for both millet and sorghum tlseilts are similar with the overestimate of the 1AV causing
an underestimate of the crop failure rate. The return time afop failure is 5.3 years in the observations but the SARRA-
varieties (90 day, 120 day PP sensitive) find 8.0, 7.4 and §a8syand the linear models produce a return time of 40.0 years
The same features are found for the severe crop failuresethemreturn time is overestimated in all models.

The results in Tables 6, 7, 8 show the change in national yileldeach model and the multi-model mean. The per model
production changes are averaged and shown in the rightrobshnos of the tables. Countries with fewer than 10 grid cells
analysed have been omitted from the tables. The results &xrenshow a spread in expected yield changes by nation, with
Cameroon, Cote d’lvoire and Mali experiencing an increasgdld. There are yield reductions in Benin, Burkina Fasoa@a
and Senegal with limit changes in Nigeria and Togo. ORCHIBEBp dominates the production change with a large negative
change to a highly productive nations including Ghana armgehi&. Only Benin and Senegal are projected to suffer yield
reductions in all four crop models for maize. In the futuranate simulations at the 1.5 K warming level Burkina Faso,
Mali, and Senegal all suffer a more than 5% loss in milletdgelvhile Niger is projected to experience an increase of 3.2%
These yield changes result in an increase in productionglumminated by Nigeria, however production falls signffitiya for
Burkina Faso, Mali and Senegal. The sorghum results (Tgble&ly always show a yield reduction with climate changgwi
the exception of Niger which has a small yield increase. Tdrglaum results show a 10% vyield reduction for Burkina Faso,
Mali and Senegal. The negative trends in the yields are aksept in the production of sorghum in West Africa with Niger
being the only exception. The total sorghum production isgstimated as 3%.

The results in Figure 5 show the responses of the maize yieldanges in precipitation and temperature change for fopr ¢
models. To highlight the responses of precipitation charmgween -50% and +50% the x-axis of the left figure is trietsat
a full version of the figure is shown in S| Figure 2. The maizelds in all models show an increase in yield with increasing
precipitation. A negative trend is also present with inshe@ temperatures. The differences between the crop modelbe
seen in these figures. The results in ORCHIDEE-Crop showvasability than SARRA-H, GLAM or the Linear models
and have a strong negative yield response for a limited testyoe change. The temperature change experienced byohe cr
simulated in GLAM covers a larger range than the other moaletsthe positive relationship between precipitation amdbyi
is also shown. Water scarcity has a smaller impact on SARRaxttithe Linear models than in GLAM or ORCHIDEE and
the SARRA-H results do not show a strong negative responisigi@r temperatures.



10

15

20

25

30

3.2 Adaptation results

In one of the four crop models (GLAM) simulations of two idisaed adaptation methods were performed. There were three
experiments, crops with a resistance to high temperatuessstiuring flowering, crops grown with rainwater harvestand
crops resistant to high temperature stress with rainwaterelsting deployed. To simulate a crop resistant to higlpésature
stress GLAM is rerun with the high temperature stress reutiisabled, a description of high temperature stress in floge

is found in Challinor et al. (2005). Disabling the high terrgiere stress routine produces an unphysical crop and istase
give guidance on the importance of high temperature stidmsrainwater harvesting system collects runoff from ttopand
stores it with 50% efficiency, the water is deployed if the s@isture falls below the wilting limit for the crop. The gatation
methods are simulated in both the control climate and thedutlimate.

The adaptation results for GLAM (Figure 6) show that rairevaiarvesting is provides a smaller increase in yields in
the global 1.5 K warmer climate than in the historic climafee results for the return time between crop failures show an
improvement in the control climate that is greater than mfthture climate. In contrast the high temperature stresistest
crops show a benefit in both cases and a larger benefit in falinnates. The return time between crop failures also irsgea
more in future climates. However when combined with rairewvéitarvesting, high temperature stress resistance hasli@isma
relative improvement than when it is deployed in isolatibhe maize results from GLAM presented here agree show simila
responses to the sorghum results in Guan et al. (2017) whgrédmperature stress resistance is more important tihamater
harvesting. This result needs to be considered alongsa&leesults in Figure 5 which show a strong negative precipitat
response in GLAM, indicating that the rainwater harvestmgine, while providing some extra water does not proviaeaugh
to counteract the precipitation changes in the future satits.

4 Discussion

The results in Figures 1, 2 and 3, show that as the global tdimvarms through 1.5 K the yield response is uncertain. For
maize, GLAM and ORCHIDEE-Crop simulate a reduction in y&l8cross all crops and models the largest reduction is 16.5%
for SARRA-H 90 day sorghum. The largest increase is foundfedinear models and is 5.3% for maize. This range of results
is within the range found for tropical maize in Challinor €t(@014).

ORCHIDEE-Crop replicates the observed 1AV and in contrash the other process based models, GLAM and SARRA-
H. The mean yields however do show a significant bias. The OREB-Crop results show the greatest increase in crop
failure rate with crop failures occurring once every 2.5rgda the future climate scenarios. The crop failure rate$loAM
and SARRA-H are similar with future failures happening gvérand 5 years respectively. The linear models consistently
underestimate the crop failure rate and this is one of theakmesses. The results in Figure 4 show consistency adrtaza
process based models and therefore should be treated witidece.

The varieties of SARRA-H are unable to replicate the obskyields for the millet and sorghum analyses and mis-esémat
the yield by several hundred kg/ha (Figures 2 and 3). The faityre rate is defined by the model yield and the SARRA-H
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simulations all underestimate the crop failure rate. Theyhdwever all find a relative increase in crop failure rateutufe
climates for both millet and sorghum.

The differences in the crop models and inputs have an infeiendhe results. From Figure 1 GLAM shows a greater spread
of yield change with climate change than the other modelsr@d®eORCHIDEE and SARRA-H are more consistent under
climate change. The yield changes in ORCHIDEE and GLAM ase glfluenced by the carbon dioxide fertilisation effect and
in its absence the projected yields are expected to be IGWerlAV results show greater spread in the linear models than
process based models, this is a result of the simple paresrietthe linear models. The results in Figure 5 show that GLAM
has a stronger negative response to precipitation lossthiganther models. The temperature results for all models sho
downward trend in yield with increasing temperatures. ok lof variability in the linear models is shown in Figure 4ex
they consistently underestimate crop failure rates. ORXEHH has a smaller 1AV than the other process based modelfwhic
means the crop failure limit is much higher than in the othedeis. This results in ORCHIDEE finding a significant incesas
in the number of crop failures. As the ORCHIDEE |AV is closasthe observed IAV (Table 3,this indicates that GLAM
and SARRA-H are likely to underestimate the number of futtrap failures. For Figures 2 and 3 the country scale yields in
the historic inputs can be clearly seen in the linear modelspposed to the spread of yield values in SARRA-H. As with
SARRA-H, GLAM and the linear models in maize, the SARRA-Higties and the linear models underestimate the variability
and therefore the crop failure rate for both millet and sargh

The adaptation methods tested in GLAM for maize are shownignrE 6 and show that rainwater harvesting is not an

effective adaptation method. The higher rainfall in futalienates reduces the likelihood of water limiting the crapwth.
The high temperature stress adaptation is a more effici@ptation and provides a benefit in the future climate. Thelioed
HTS resistant and rainwater harvesting adapted crop ifess adaptation than solely HTS resistant crop. Therefothe
case of limited resources it is better decision to explor&Hhasistance than building systems to capture runoff, épeas
the systems require substantial investment to constructeintain.

The changes in national yields is a cause for concern as glisdecumented that populations in West Africa are expected
to increase quickly in the 21 century. Crop yields need to double by 2050 to feed the ptipnléRay et al., 2013), whereas
the largest increase found in this study is millet in Niger2t20%. The production changes show the importance ofrdifte
growing areas, the lack of strong positive changes in yieldss Sub-Saharan West Africa is a concern. The mean yield
changes are not the only message, in many cases where thgigleéncrease there is an accompanying increase in IAV. The
increase in 1AV means that yield are more uncertain and tiseaia increasingly likelihood of crop failures. The redoos in
yields on national levels indicate a need for new breedsay or changing species entirely, however the rate of depdoym
of new breeds in Africa is slow (Challinor et al., 2016).

5 Conclusions

Four crop models of varying design and complexity have besead tio project crop yields across West Africa for three crops
as global temperatures reach 1.5 K above the pre-indugvigls. The crops models were driven by the outputs of fouMRC
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which were in turn driven by 10 GCMs. The crop models showediffy levels of skill at reproducing the yield and variatyili
found in the observed record. The process based modelslar®aivedict the crop failure rate for maize with moderatiél.sk
The varieties of crop simulated by SARRA-H for millet andgiaum are less able to replicate observations than the linear
models, but they are more capable for the crop failures. Jtiidy is limited by the number of crop models used, in paldicu
only one process based model was used to millet and sorgheruge of bias corrected RCMs to provide input data removes
some of the problems associated with GCM data. The largeo$ithe grid (50km) prevents the formation of true convective
storms and therefore the intensity of the weather is likelge underestimated (Garcia-Carreras et al., 2015).

The crop yields and percentage changes in yield were cééclilar several West Africa countries. The yield changesate
consistent across national borders and some nations agetexo lose more than others. The yield gains predictezirheeed
to be considered as part of longer term trends that showesgiadd reductions as the Zicentury progresses (Challinor et al.,
2014; Knox et al., 2012). As global temperatures approasiKlabove the pre-industrial levels, the knowledge of thetmos
effective adaptation methods becomes critical and thezefas of high importance to develop models capable of sating
them.

The results from this study show that for several crops tharmgeld may not change much, however the increase in
variability is likely to result in an increase in crop faikg. The average crop yield responses are sometimes negradiveone

are positive enough to increase yields sufficiently to pnef@od shortages.
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Figure 1. Change in maize yield and yield IAV between the historic and future climates.tdp left shows the change in yield where +
indicates that in three crop models the change will be positive armdicates that in three crop models the change will be negative. The top
right is the same as the top left except for IAV instead of yield. The unitsetolour bar in the top plots is kg/ha. The bottom left shows the
fractional change in yield against yield for all analysed grid cells. Th@boright shows the fractional change in yield 1AV against yield
for all analysed grid cells.
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Figure 2. Change in millet yield and yield 1AV between the historic and future climates. top left shows the change in yield where +
indicates that in three crop models the change will be positive armdicates that in three crop models the change will be negative. The top
right is the same as the top left except for IAV instead of yield. The unitsetolour bar in the top plots is kg/ha. The bottom left shows the
fractional change in yield against yield for all analysed grid cells. Th@boright shows the fractional change in yield 1AV against yield
for all analysed grid cells.
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Figure 3. Change in sorghum yield and yield 1AV between the historic and future clsnatee top left shows the change in yield where +
indicates that in three crop models the change will be positive amdicates that in three crop models the change will be negative. The top
right is the same as the top left except for IAV instead of yield. The unitse€olour bar in the top plots is kg/ha. The bottom left shows the
fractional change in yield against yield for all analysed grid cells. Th@boright shows the fractional change in yield 1AV against yield

for all analysed grid cells.

20



RCP 85 +1.5K

Control

RCP 85 +1.5K

Control

RCP85 +1.5K

Control

Figure 4. Heatmaps of Mild (left) and severe (right) crops failures for maize (tmjljet (middle) and sorghum (bottom) in West Africa.
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Figure5. Percentage maize yield change against precipitation (left) and tempefagint) for four crop models. This figure has a restricted
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Figure 6. Efficacy of adaptation methods for maize in GLAM. HTS is high temperastmess adapted crops, Rw H shows crops with
rainwater harvesting, HTS and Rw H shows both adaptation methods ifEask.box shows the fractional yield change relative to the
unadapted crop with the boxplots showing the range across the 6 meif@BMREM ensemble. The pairs of boxes show the relative change

in yield for the adaptation method in the historic climate (left) and the future clinigtet).
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Table 1. GCMs and RCMs wher& indicates a RCM-GCM combination used in this study. The RCM descriptioerpagre as fol-
lows: RCA4 (Chylek et al., 2011), RACMO22T (van Meijgaard et al.080 HIRHAMS5 (Christensen et al., 2006). The GCM decrip-
tion papers are as follows: CNRM-CM5 (Voldoire et al., 2013), CM5/&NMDufresne et al., 2013), CSIRO-Mk3.6.0 (Rotstayn et al.,
2012), NOAA-GFDL-CM3 (Griffies et al., 2011), MOHC-HadGEMZHJones et al., 2011), ICHEC-EC-EARTH (Hazeleger et al., 2012)
MIROCS5 (Watanabe et al., 2010), MPI-ESM-LR (Raddatz et al., 2008rESM (Bentsen et al., 2013).

RCA4 | CCLM4.8.17 | RACMO22T | HIRHAMS

CanESM2
CNRM-CM5
CM5A-MR
CSIRO-Mk3.6.0
NOAA-GFDL-CM3
MOHC-HadGEM2-ES
ICHEC-EC-EARTH
MIROC5
MPI-ESM-LR
NorESM

x

X X X X X X X X X
x
x
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Table 2. GCM time slices at +1.5 K and their corresponding carbon dioxide caratems.

Time (years)| CO; (ppm)
CanESM2 2000-2029 402.8
CNRM-CM5A 2016-2045 453.5
CM5A-MR 2002-2031 408.2
CSIRO-Mk3.6.0 2018-2047 461.2
NOAA-GFDL-CM3 2020-2049 469.3
MOHC-HadGEM2-ES| 2009-2038 429.1
ICHEC-EC-EARTH 2006-2035 419.7
MIROC5 2018-2047 461.2
MPI-ESM-LR 2004-2033 413.9
NorESM 2018-2047 461.2
GCM Mean 2011-2040 438.0
RCM Mean 2010-2039 434.1
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Table 3. Simulated maize yields in kg/ha in West Africa for observations and foyp anodels for the historic time period and at 1.5 K.

Where the first uncertainty value is the inter annual variability and the gdsdhe spread across the RCM-GCM ensemble.

‘ Observations GLAM ORCHIDEE-Crop SARRA-H Linear models
Historic | 1099.3+ 140.9 896.A4 493.5+ 17.3  1446.2+ 125.3+ 16.0 1317.9t+ 485.2+207.1 1081.9% 79.9+4+ 125.6
+1.5K 886.2+ 508.6+89.7 1351.14 136.3+48.4 1346.6-515.3+126.5 1120.0+92.7+ 132.5
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Table 4. Simulated millet yields in kg/ha in West Africa for observations and fouparmdels for the historic time period and at 1.5 K.

Where the first uncertainty value is the inter annual variability and the gdsdhe spread across the RCM-GCM ensemble.

‘ Observations SARRA-H 90 SARRA-H 120 SARRA-H PP Linear models
Historic | 827.6+ 76.3 1251.74 409.04+ 217.1 792.0+ 362.14+ 103.9 427.8+ 129.8+40.4 830.7+43.64+ 171.2
+1.5 K 1296.2+ 433.3+ 57.5 740.24+- 367.9+48.7 402.7+121.3+18.1 830.7+51.9+ 189.9
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Table 5. Simulated sorghum yields in kg/ha in West Africa for observations anddimp models for the historic time period and at 1.5 K.

Where the first uncertainty value is the inter annual variability and the gdsdhe spread across the RCM-GCM ensemble.

‘ Observations SARRA-H 90 SARRA-H 120 SARRA-H PP Linear models
Historic | 907.2+ 69.8 769.2+ 324.5+£ 107.1 240.3t 1445+ 73.5 342.5-105.2+56.3 916.8+ 46.8472.9
+1.5 K 721.04+ 332.54+66.6 200.6+ 135.14+ 20.2 341.4+ 103.84+ 33.3 902.8+ 50.5+ 96.8
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Table 6. Percentage maize yield change by country. The number of grid cellgsania in brackets and countries where fewer than 10 grid
cells were analysed have been omitted. The production change is shdverightmost column in tonnes.

Country GLAM ORCHIDEE-Crop SARRA-H Linear modelslf Multi model mean| Production change
Benin (23) -2.90 -7.57 -0.51 -1.9 -3.23 -16372
Burkina Faso (37)) -0.08 -6.39 3.75 -3.2 -1.48 -2337
Cameroon (24) 1.04 -1.46 -2.45 9.7 1.72 739
Céte d’'lvoire (98) 3.29 -4.87 6.03 1.1 1.40 5283
Ghana (70) 0.17 -6.91 -0.84 0.1 -1.86 -16318
Mali (13) 0.99 -5.07 0.17 5.2 0.34 -1255
Nigeria (320) -1.27 -6.63 1.80 5.9 -0.04 -71274
Senegal (11) -10.10 -16.85 -3.42 -6.6 -9.24 -4142
Togo (17) 0.56 -5.02 0.33 4.0 -0.01 -4847
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Table 7. Percentage millet yield change by country.The number of grid cells sisatyin brackets and countries where fewer than 10 grid
cells were analysed have been omitted. The production change is shtivenrightmost column in tonnes.

Country SARRA-H90 SARRA-H 120 SARRA-HPP Linear mode|lsMulti model mean| Production change
Burkina Faso (93) -4.21 -12.44 -7.47 0.6 -5.86 -53223
Chad (24) 11.31 2.42 -1.72 -5.0 0.53 3731
Céte d'lvoire (11) 2.10 0.97 -4.17 3.6 0.63 429
Ghana (10) -1.16 -4.78 -5.08 8.3 -0.77 -1882
Mali (94) -1.60 -16.79 -17.78 3.8 -8.08 -45140
Niger (114) 11.95 -1.56 -1.80 4.2 3.20 69195
Nigeria (232) 7.24 -3.53 -2.44 15 0.71 197726
Senegal (40) 5.52 -12.32 -16.22 1.6 -5.35 -16667
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Table 8. Percentage sorghum yield change by country. The number of gridasgllgsis is in brackets and countries where fewer than 10
grid cells were analysed have been omitted. The production changenis ghthe rightmost column in tonnes.

Country SARRA-H90 SARRA-H 120 SARRA-HPP Linear mode|sMulti model mean| Production change
Benin (23) -10.55 -18.52 -1.25 -0.3 -7.05 -5363
Burkina Faso (102) -11.40 -19.63 -1.62 -7.5 -10.04 -53290
Cameroon (65) -10.87 -17.98 -1.51 1.3 -7.25 -24814
Chad (28) -3.63 -16.55 -0.36 -3.6 -6.06 -2478
Ghana (28) -7.66 -9.69 1.37 -1.9 -4.48 -3855
Mali (93) -9.42 -23.5 -9.50 1.6 -10.18 -18560
Mauritania (11) -7.54 -14.16 -8.33 11.2 -4.69 -81
Niger (94) 9.98 -7.90 2.63 2.1 0.65 17972
Nigeria (313) -2.70 -14.92 151 -0.2 -4.10 -14728
Senegal (19) -7.29 -16.62 -15.56 -3.7 -10.79 -4068
Togo (16) -6.02 -9.87 2.84 -2.6 -3.93 -1499
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