
This paper applies the regional scaling concept (e.g. Tebaldi and Arblaster, 2014) to the 
distributions of annual mean precipitation (P ) and precipitation minus evaporation (P-E) anomalies.
The rationale behind this methodology is based on the work by Seneviratne et al., 2016, in which it 
is shown that local temperature and precipitation extremes scale linearly with global mean 
temperatures in CMIP5 CO2-increasing scenarios projections. The mean and uncertainty ranges of 
P and P-E local responses scale with the global mean temperature in the same way, independently of
the emission scenario. This paper extends Seneviratne et al., 2016, considering annual mean
local precipitation response scaling with global mean temperatures over all the SREX regions 
(Seneviratne et al., 2012). The impacts of uncertainty due to models internal variability, to the inter-
model spread and to the scenario spread are also separately accounted for.

1 GENERAL COMMENTS

The aim of the paper is focused and clear, and it well suits in the current debate about the regional 
impact of global temperature change. Exploring the ranges of applicability of the pattern scaling 
approach allows improving the capability to communicate the impact of climate change to the 
stakeholders and public opinion. In this sense the assessment of regional changes in P and P-E is of 
outmost importance for the adaptation to future changes in local water resources.
The regional pattern scaling is here assessed in terms of a basic least squares fit, regressing annual 
mean P and P-E anomalies over annual mean global temperature anomalies at every grid-point. The 
uncertainties related to internal variability, model and scenario-related uncertainties for each model 
are obtained by resampling the residuals 1000-times over each gridpoint. The empirical probability 
distribution provides thus a way to characterize the range encompassing the median values of the
regression slopes, allowing the distinction between very likely (90-100%), likely (66-100%) 
increase/decrease in P or P-E. The use of a basic linear scaling is justified by the lack of a-priori 
information about the shape of the annual mean P and P-E distributions over the various regions is 
not available. This shifts the focus from the choice of suitable downscaling techniques to the 
evaluation of uncertainty ranges attributable to the regression coefficients. In this respect, I think 
that the manuscript partially fails in discussing the impact of models’ choice. Seneviratne et al., 
2016 outlined limitations to the regional scaling pattern approach in this context. Particularly, point 
4) of their discussion emphasized the risk of common biases through models for some regional 
phenomena. They point out that a careful model evaluation against appropriate observations would 
be necessary to deal with this problem. The internal variability of considered model and the multi-
model ensemble uncertainty is addressed in the manuscript, but some more effort should be devoted
to the evaluation of each model. Particularly, the biases induced by the imbalance in the water mass 
budget and the impact of different choices of the model ensembles should be carefully addressed, in
order to assess the applicability of the method and the robustness of the findings.

We thank the reviewer for his/her thorough comments, which will help to improve the manuscript 
substantially. Based on his/her comments, we will provide additional material/figures to support our
model choice. We will address all comments in a detailed point-by-point response below.

2 SPECIFIC COMMENTS

l. 22-23 p. 3: if not argued the choice of the models may look a bit arbitrary. On one hand the 
authors rely on Fischer et al., 2014 to choose only one model for each modelling centre. On the Env.
Res. Lett.) and this may in principle prevent from consistent estimates of regional changes in P and 
P-E. Evaluating the long-term mean atmospheric moisture budget in control runs, identifying the 
regions where climate models diverge from available observations is thus a pre-requisite to this 
analysis. An inconsistent global mean moisture budget is a potential source of biases and the



impact of adding/removing individual models should be carefully evaluated. In the framework of 
the regional pattern scaling, it would also be relevant to compare the atmospheric moisture budget 
separately over continents and oceans with the total runoff from the continents (which is a standard 
output in climate models, if I am not wrong is named as “mrro”), in order to provide a complete 
description of the hydrological cycle consistency in the model; other hand they do not consider the 
impact of biases in the atmospheric moisture budget. Models are known to show diverse estimates 
of the global mean water budget (cfr. Liepert and Lo, 2012,

As already stated in our initial response, based on the work of Liepert and Lo (ERL, 2013) in which
they update their previous work (Liepert and Lo, ERL, 2012) for all CMIP5 models, we identified 
only MIROC5 among our subset of models that potentially exhibits a large drift. This probably 
further applies to FGOALS-g2, even though Liepert and Lo (2013) used FGOALS-s2. From our 
own experience, we are further aware that the IPSL model is associated with a drying bias over land
areas. In order to assess the impact of these models on our results, we have added additional figures 
to the Supplementary showing the results of Figs. 5 and 6 after excluding these models. It is our 
assessment, that there are qualitatively no substantial differences between the different ensembles 
that would alter our overall conclusions. 
We further agree that the identified drift is of great importance and potentially induces spurious 
changes in hydroclimatological storage components over long time scales. However, the global 
mean changes identified in Liepert and Lo (ERL, 2013) are equivalent to a maximum of only ca. 
0.02mm/day. We further assess the multimodel ensemble in a probabilistic approach, providing 
median estimates and quantiles, thereby following the recommendation provided by Liepert and Lo 
(i.e.~avoiding the ensemble mean). Hence, potentially biased models within the ensemble will not 
substantially affect the median response provided here.

l. 23-24 p. 3: as also mentioned in l. 23-24 p. 6 the choice of ensembles with different numerosity is 
inherently a considerable source of uncertainty, unless one considers the 14-member and 7 (in the 
case of RCP6.0) and 11 (in the case of RCP2.6) members ensembles having the same statistical 
properties. For the same reasons motivating the previous comments, the impact of adding/removing 
a model from the ensembles should be carefully evaluated. To be on the safe side, I would suggest 
to reconsider the RCP2.6, RCP4.5 and RCP8.5 scenarios only using those models that are available 
in the RCP6.0 and discuss about the presence/absence of significance differences in the results. In 
the occurrence of significant differences I would try to identify and describe those models 
significantly reshaping the ensemble distribution;

We added supplementary figures showing the results of Figs. 5 and 6 after excluding all models that
are not available in RCP6.0. It is here also our assessment, that there are qualitatively no substantial 
differences between the different ensembles that would alter our overall conclusions. We, therefore, 
assume that all ensembles (14-member – RCP4.5, RCP8.5; 11-member – RCP2.6; 7-member – 
RCP6) have similar statistical characteristics. However, please note that all results in the main text 
are already provided separately for the individual emission scenarios (Figs. 5,6,7,8).

l. 12-18 p. 4: the definition of variances might be clarified by labelling each sigma with a different 
subscript, either referring to internal variability, model uncertainty, scenario uncertainty; 

Changed.

l. 15 p. 4: following above comment, it should be specified how to deal with the model uncertainty 
when the ensemble numerosity is lower than 14, e.g. in the RCP6.0 n=7?



See above.

l. 30-31 p. 4: to me it is not clear how the authors deal with uncertainty ranges including the zero 
value for the slope. Could you please expand this statement?

We rephrased this part and hope it is more understandable now.

l. 5-6 p. 5: the authors might want to comment on the fact that spatial averaging over northern high 
latitudes is not the same as spatial averaging at lower latitudes, and this shall be considered when 
discussing the significance of results at different latitudes. I wonder if one could compare circles of 
latitude somewhat weighting the likelihood of the changes with the cosine of latitude or the surface
area covered by each circle.

It is not completely clear to us, what the reviewer requests us to do here. However, we can assure 
the reviewer that the spatial averages presented in this work are weighted by latitudes. Regression 
slopes are, however, computed at grid point scale, i.e. that the scaling coefficient at low latitudes 
represents a larger area than those at high latitudes. We added this information to Sec. 2. Regression
slopes for the SREX regions are computed by using weighted averages of P and P-E from the 
particular regions.

l. 19-22 p. 6: the authors mention the different shapes of the uncertainty distributions for different 
SREX regions in P and P-E regression slopes. Could you please specify whether you refer to the P, 
P-E or both variables. Otherwise these statements appear a bit arbitrary and one might want to 
consider removing them;

We changed this and now clearly state, separately for P and P-E, which regions are affected.

l.1 p. 7 (and l. 25 p. 8): please specify the meaning of “significantly”;

We rephrased this part and now specifically explain what we mean here.

l. 4-6 p. 7: the authors list here a number of SREX regions characterized by larger/smaller internal 
variability, model uncertainty, scenario uncertainty compared to other regions. I think some more 
explanation might be welcomed here, rather than just listing the findings over the various regions. 
Why these regions, rather than others? For instance, the large model uncertainty over northern high
latitudes might be related to the more relevant signal (“very likely increase” in precipitation), 
whereas the large internal variability over the two sides of the Tropical-Northern Pacific might 
reflect some relatively well understood mechanisms of inter-annual variabilities, such as the QBO 
(cfr. Labat et al., 2004, Geophys. Res.Lett.);

Thanks. We expanded this part and added the reference.

l. 14-16 p. 7: repetition of l. 2-4 p. 3, consider removing;

We rephrased this part to avoid any repetition.

3 TECHNICAL COMMENTS

l. 25 p. 3: remove one “in”;
l. 17-18 p. 4: replace “coefficient” with “coefficients”;
l.23 p. 6: replace “causes” with “cause”;



l. 14 p. 8: replace “extent” with “extend;
Table 2: the acronym for Northern Australia should be NAU (instead of NAS);

Thanks! Changed.



In this manuscript, Greve, Gudmundsson, and Seneviratne examine the scaling of local and regional
precipitation and P-E with global mean surface temperature in climate change projections. They 
diagnose the likelihood of increases or decreases with warming in both quantities, and characterize 
and identify uncertainty due to internal variability, structural model differences, and differences in 
emissions scenario. To address the impacts of P and P-E on the 1.5 and 2C warming targets, they 
quantify the P and P-E responses and their uncertainty in each of a variety of land regions in 
response to the two targets. They find that the mean changes in P and P-E are indistinguishable for
1.5 and 2C, but that the two warming targets do differ in the tail of risk estimates, with a higher risk 
of the largest changes for 2C warming compared to 1.5C
This work makes a useful contribution to the literature, as regional changes in mean precipitation 
scaling have not yet been diagnosed. The maps and violin plots for individual regions are 
particularly useful. There are a few issues I think should be addressed to improve the manuscript.

We sincerely thank the reviewer for the positive evaluation of the manuscript and his/her comments,
which substantially helped to improve the manuscript. We provide a detailed point-by-point 
response below.

Scientific issues

P3 line 26-27: Why omit locations where P-E<0?

We here focus on global land. Locations where P-E<0 are omitted since such conditions are 
generally not present over land at yearly or longer time scales. We will now further mention 
throughout the manuscript that our focus is on global land areas. Hence, we also decided against 
providing maps for ocean regions, since the underlying mechanisms and drivers are potentially very
different from those over land areas. It is now our assessment that this should be analyzed 
individually and properly in future studies.

Figures 1,  3,  and 4:  In all dP versus T plots with the exception of the top panel of Fig.   1,  the 
regressions cross through the origin.  The uncertainty in the regression slope is shown as occurring 
entirely at the upper end of the temperature change axis. These are in conflict with the top panel of  
Fig.   1, where the regression slopes do not pass through the origin.  Internal variability is always 
present, so we would expect small changes in dP even when dT=0.  Is there a better way to visualize
the range of regression slopes and their uncertainty?  The violin plots are quite useful and do not 
contain these distortions.

As already stated in our initial response, in all dP versus T plots the main assumption is that (initial) 
P is known in case global mean temperature change dT=0. We understand that this might be 
unrealistic. However, we focus on the relative changes in P (dP) with changes in T, such that dP=0 
when dT=0 and hence, the lines cross the origin. This approach provides an option to illustrate the 
uncertainty distribution as a function of temperature change. The violin plot nicely illustrates the 
uncertainty distribution basically for dT=1K, whereas the dP vs. dT plots illustrate the uncertainty 
distribution for every dT between 0K and 6K, which, in our assessment, makes it easier to assess 
probabilities/risks as a function of dT.

P4  line  28/30:  I  believe  the  10th-90th  percentile  confidence  corresponds  to  p=0.2,
rather than p=0.1.  In addition, why do you choose 10th and 90th percentile – since
these are wider bounds than is customary? Why not 5 and 95 (p=0.1), or 2.5 and 97.5



(p=0.05)?

Thanks! We rephrased this part to also emphasize why we chose the 10th and 90th percentile. If the 
zero coefficient is within the range, it means that the probability of experiencing a scaling response 
of different sign compared to the median response, is, at least, 10% or higher. This corresponds to 
the "very likely" definition of the IPCC, which is used throughout the manuscript.

P4 line 10, P6 line 28: The methodology of Hawkins and Sutton (2009) assumes that variance  is  
constant  over  the  course  of  simulations.   They  only  examined  temperature, for which this 
assumption is more or less valid.  It seems to me that resampling residuals would rely on the same 
assumption.  For precipitation, it is not the case that precipitation  variability  is  generally  constant 
–  instead,  it  increases  in  most  regions (e.g., Räisänen,  2002).  Do you think increasing 
precipitation variability would affect your uncertainty decomposition, and if so, how?

As already stated in the initial response, if the variance increases over time, the uncertainty of the 
sensitivity coefficient (estimated through resampling residuals) consequently also increases. 
However, this will not necessarily influence the decomposition of the uncertainties unless changes 
in precipitation variability are different between scenarios or models.

Typos and grammatical comments

P2 line 31: “comprehensive subset”: This is contradictory, since a subset is by definition not 
comprehensive.

We now use "representative".

P5 line 9: “A very likely decrease is rarely found only in South Africa.” I think what you mean is 
that a decrease with very likely confidence is found only in South Africa, and therefore it is rare; 
your wording means something else:  that very likely decrease is often found in many places, rarely 
only in South Africa.

Rephrased.

P6 line 12-14: “the higher emission scenarios are usually enclosed by the low emission scenarios 
and the uncertainty is narrowing down”;  “partly huge differences”:  These phrases are not quite 
grammatically correct.

We rephrased the sentence.

Fig.   1:  “Global mean Temperature” should probably be “Global mean Temperature Change”

Changed.



The authors investigate regional changes in precipitation (P) and water availability (ex-
pressed in terms of precipitation minus evaporation, P-E) as a function of global tem-
perature changes in a sub-set of the CMIP5 simulations. They further decompose the
uncertainties by sources related to climate variability, scenario, and model choice. They
find robust changes towards wetting in northern high-latitude regions, and tendencies
towards drying in subtropical regions, however associated with larger uncertainties. In
particular, they also discuss changes related to political global warming limits of 1.5K
and 2K.
This study is a worthwhile contribution to the literature, addressing the relevant topic
of regional impact-relevant responses related to different amounts of global warming.
The manuscript is mostly well written, but some clarification is needed at a few places.
I also have a few more major questions related to the methodology, but think that it
should be possible to clarify these with some revisions.

We sincerely thank the reviewer for the thorough and overall positive evaluation of the manuscript. 
His/her comments will help to improve the manuscript and we provide a detailed point-by-point 
response in the following.

Major comments:

(1) The authors use resampling to estimate the effects of internal climate variability.
They mention that this leads to similar results as using different realisations of one
model but do not show results. As estimation of different uncertainty sources, including
variability,  is one of the main goals of this paper,  I think the authors should provide
evidence  that  their  approach  by  just  resampling  results  from  one  run  does  actually
lead to comparable results to analysing different runs. This seems important as usually
effects of variability are estimated from a number of runs started from different climate
states with respect to internal variability.

The only model from the chosen subset that was available to us providing a sufficient number of 
realisations (10 different realisations) was CSIRO-Mk3-6-0. We have now added plots for P similar 
to those provided in Figs. 3 for each SREX region comparing the slope estimates from (i) the 10 
different realisations of CSIRO-Mk3-6-0 against (ii) those estimated from the resampling approach.
These results are now provided as a supplementary figure in the final response. We further 
performed a Kolmogorov-Smirnov test to determine if the two samples, (i) 10 slope estimates from 
CSIRO-Mk3-6-0 and (ii) 1000 slope estimates from the resampling, are from the same parent 
distribution. For each SREX region, the null hypothesis, that the two samples are from the same 
parent distribution, can not be rejected. Respective p-Values are also provided in the new 
supplementary figure.

(2) The authors document some larger differences in the response between different
scenarios, and seem to discuss these differences in the context of different strength of
the GHG forcing. However, also the aerosol concentrations differ between the different
RCP scenarios, and I wonder to which extent these scenario differences of P and P-E
changes could be attributed to differences in aerosols?

We are aware of the potential influence of different aerosol concentrations on mean precipitation. 
We referenced in particular the work of Pendergrass and Hartmann (GRL, 2012) and Pendergrass et 
al. (GRL, 2015) to clarify that mean precipitation scaling depends on the emission scenario 
(whereas the scaling of extreme precipitation is independent of the scenario). We did, however, not 



explicitly mention that the differences in mean precipitation scaling can be attributed to differences 
in the prevailing aerosol concentration, which is now briefly discussed. Nonetheless, quantitatively 
assessing the extent to which the scenario-specific differences in aerosols relate to the scenario 
differences in P and P-E requires additional work that goes beyond the rather simplistic approach 
that is used here, which aims to attribute relative uncertainty contributions from different sources.

Specific and technical comments:

- Abstract, line 3:  I’d remove “large” as I don’t think 14 model simulations is a “large”
sub set of the total number of runs available in CMIP5

We romved "large" here.

- Abstract, line 6: (Please also check throughout the text!)  I suggest avoiding “depen-
dency” when discussing the relationship of regional climate with global mean tempera-
ture. Better just say “linear relationship” here.

We now avoid the word "dependency" throughout the manuscript.

- page 1, line 21: suggest adding “public and political debate”

Changed.

- page 2, line 14:  I wonder if the assumption of a linear relationship is justified when
investigating changes at individual grid cells from individual ensemble members.  Es-
pecially P and P-E can be rather noisy variables, strongly affected by low-frequency
variability, so it might help to justify the robustness of the approach if the authors pro-
vided some tests whether linearity is a reasonable assumption in this context.

The linearity assumption is potentially valid if e.g. the residuals are (i) normally distributed and (ii) 
not autocorrelated. We now provide supplementary information on these statistical properties.  We 
show for each gridpoint the number of models for which (i) the Kolmogorov-Smirnov test does not 
reject the null hypothesis (i.e. residuals are normally distributed) and (ii) there is no significant lag1 
autocorrelation of the residuals. However, it is important to note that a further and more thorough 
assessment of the linearity assumption is aggravated through the large amount of data (which does 
e.g.  not allow for any visual inspection at grid point scale, however, we added this for the SREX 
regions).
Nonetheless, in this study we aim to assess the scaling relationship between dT and dP or d(P-E) in 
terms of a single number (the scaling coefficient), which might be expressed through the slope of 
the regression line between the two variables. This is a simple approach, not accounting for any 
nonlinearities, which would ultimately lead to a more complex scaling relationship (not a single 
number, but potentially a more complex function). In this sense, if the linear assumption is valid, 
the slope estimate itself is a good representation (or a good model) of the relationship, if the linear 
assumption does not apply, the slope provides a bad representation (or a bad model) of the 
relationship. However, we do not provide deterministic estimates of the scaling coefficient alone, 
but we also thoroughly assess the uncertainty of the slope through resampling the residuals and 
repeating the regression analysis (1000 times at each grid point for each model and for each 
scenario). This provides us with an uncertainty estimate (even an uncertainty distribution) of the 
slope estimate that corresponds to the validity of linearity. In regions with high uncertainties related 



to the slope estimates (evidently in many arid and hyper-arid regions), both the tests for normality 
and autocorrelation fail for most models. In most world regions, however, residuals are normally 
distributed and not autocorrelated for the majority of models. This is now shown in a supplementary
figure.

-  page  2,  line  20:  This  sentence  is  ambiguous,  it  seems  like  “this  work”  and  “this
analysis” refer to different studies, but it is not really clear what refers to what.

We rephrased the sentence.

- page 3, line 1: insert “global” warming-degree targets

Changed.

-  page  3,  line  23:  many  readers  may  not  be  aware  what  exactly  the  “prerequisites
provided in Fischer et al.” are – for better readability please briefly summarise

We added this information.

- page 3, line 25: the historical runs include the year 2005, therefore if starting in 1980
this should be “26 years” and “from 2006 onwards”.
- page 3, line 26: remove duplicate word “in”

Changed.

- page 3, line 26/27:  Sippel et al (https://doi.org/10.5194/hess-21-441-2017) discuss
that assessing changes relative to a short reference period may lead to bias in the out-
of-reference period. As the authors chose here to use only 20 years as baseline, I am
wondering whether their quantifications of changes would be affected by such biases?

Regarding the work of Sippel et al. it is important to mention that our reference period (1980-1999) 
lies outside the study period (2000-2099) and values from the reference period are hence not used to
estimate the scaling factors.

- page 3, line 27:  Sentence not clear, does “majority of models” suggest that some
models are treated different than others?

We rephrased this sentence.

- page 4, line 1: What kind of least squares fit did you use, e.g. ordinary or orthogonal
(i.e. minimising squared differences only in y-direction or in both x and y-directions)? I
think there may also be some error in the T values, so orthogonal least squares might
be most appropriate?

We use here ordinary least squares and mention this in the text now. Since we want to focus on 
uncertainties in P and P-E, we decided against using orthogonal squares. Nonetheless, you are right 
and there might be also some errors in dT, but it is our assessment that these errors are not 
necessarily well captured through using orthogonal least squares.

- page 4, line 24: Please check, is it 10th and 90th quantile, or 25th and 75th quantile
as written on Figure 2?



We now provide the correct figure showing the 10th and 90th quantile. 

- page 4, line 25: Very confusing use of parentheses. If I follow your logic that the text in
parentheses indicates some opposite results/statements then this sentence seems to
suggest negative values always relate to (P-E) – which of cause is nonsense.  Please
also see this text by A. Robock (https://eos.org/opinions/parentheses-are-are-not-for-
references-and-clarification-saving-space),  and consider rewriting this sentence in a
more readable (and clearer!) way.

You are right.We removed this sentence and rephrased this part. Thanks!

- page 5, line 5: based on only 14 models, the 90-100

We are not sure what the reviewer intends us to do here? The "very likely" decrease presented here 
is not just based on 14 models, but on the uncertainty distribution consisting of several thousand 
slope estimates that were computed through resampling the residuals.

- Page 5, line 21: Figure 4 shows the scaling relationships as regression lines, it does
not explicitly show the “coefficients” as claimed in this sentence.

We changed this. However,  please note that in all dP versus T plots the main assumption is that 
(initial) P is known in case global mean temperature change dT=0, which might be unrealistic. 
However, we focus on the relative changes in P (dP) with dT, such that dP=0 when dT=0 and hence,
the lines cross the orign. This approach provides an option to illustrate the uncertainty distribution 
as a function of temperature change. The dP vs. dT plots provided here illustrate the uncertainty 
distribution for every dT between 0K and 6K, which, in our assessment, makes it easier to assess 
probalities/risks as a function of dT.

- page 5, line 26: replace “/” by “or”
- page 6, line 1: remove “much”
- page 6, line 3: replace “within” with “in”, and “parts” with “individual grid cells”
- page 6, line 4: replace “within” with “in”
- page 6,  line 7:  consider adding the clarification “(very) likely decrease [across all scenarios]”.
- page 6, line 21: replace “many” with “some”

Changed. Thanks!

- page 6, line 25:  The structure of the Results section seems somewhat confusing.
Section 3.2 is named “sources of uncertainty” – but didn’t already section 3.1 discuss
one specific source of uncertainty? Please consider restructuring Section 3 more log-
ically, or at least use more suitable sub-section names, e.g.  “3.2 Comparing different
sources of uncertainty”.

We now introduced different sub-section titles.

- page 7,  line 26:  add “with stronger global warming” (or similar) at the end of the
sentence after “P-E”.

Added.

- page 9,  line 1:  This sentence is a literal repetition of page 7,  line 30-32.   Please



consider rephrasing one of these instances. Otherwise this is a very nice conclusion.

Thanks! We rephrased the part on page 7.

- Figure 2: It looks like ocean areas and Antarctica were removed. This is not explicitly
mentioned in the text – are these regions removed due to P-E<0 here (page 3, line
27) ?  As mentioned above, please also check for consistency whether it is 10th/90th
percentile (or if you wish to express in quantiles: 0.1 and 0.9), or 25th/75th

We now provide the correct figure showing the 10th and 90th quantile. We will now further mention
throughout the manuscript that our focus is on global land areas. Hence, we also decided against 
providing maps for ocean regions, since the underlying mechanisms and drivers are potentially very
different from those over land areas. It is our assessment that this should be analyzed individually in
future studies.

- Figure 3/4:  The text and labelling of the T-P scaling plots surrounding the map is
impossible to read and should be larger. To save space you may consider to axis labels
only on one plot (assuming it is equal for all), and then minimise the white space.

Changed.

- Figure 10 caption:  replace “all SREX regions” with “each SREX region” – I assume
this is what you actually wanted to say (having an average for each region rather than
one average over all)?

Changed. Also in the other figure captions.
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Abstract. Changes in regional water availability belong to the most crucial potential impacts of anthropogenic climate change,

but are highly uncertain. It is thus of key importance for stakeholders to assess the possible implications of different global

temperature thresholds on these quantities. Using a large subset of climate model simulations from the 5th phase of the Coupled

Modeling Intercomparison Project (CMIP5), we derive here the sensitivity of regional changes in precipitation and precipitation

minus evapotranspiration to global temperature changes. The simulations span the full range of available emissions scenarios5

and the sensitivities are derived using a modified pattern scaling approach. The applied approach assumes linear dependencies

::::::::::
relationships

:
on global temperature changes while thoroughly addressing associated uncertainties via resampling methods.

This allows us to assess the full distribution of the simulations in a probabilistic sense. Northern high latitude regions display

robust responses towards a wetting, while subtropical regions display a tendency towards drying but with a large range of

responses. Even though both internal variability and the scenario choice play an important role in the overall spread of the10

simulations, the uncertainty stemming from the climate model choice usually accounts for about half of the total uncertainty

in most regions. We additionally assess the implications of limiting global mean temperature warming to values below (i) 2K

or (ii) 1.5K (as stated within the 2015 Paris Agreement). We show that opting for the 1.5K-target might just slightly influence

the mean response, but could substantially reduce the risk of experiencing extreme changes in regional water availability.

1 Introduction15

Assessing regional changes in mean-annual precipitation, P , and precipitation minus evapotranspiration, P −E (often also

referred to as water availability), in the context of on-going global warming is of high relevance for a wide-range of socio-

economic sectors. Regional differences in P and P −E pose important challenges to farmers, water resources managers,

stakeholders and decision-makers and a comprehensive, easily accessible communication and visualization of complex climate

model output is necessary to allow for targeted adaptation and mitigation strategies.20

The public
:::
and

:::::::
political

:
debate on climate change is usually limited to a debate about global temperature change, which is,

however, an abstract measure and does not enable end-users to infer direct implications for regional to local climate change,

especially also with respect to hydroclimatological variables (Victor and Kennel, 2014; Seneviratne et al., 2016). However,
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due to its omnipresence in popular climate communication, global mean temperature T could be used as a general measure of

climate change and thereby enable a different communication of regional climate impacts to the public: ’The regional change

of a climate variable as a function of global warming’. Many studies use approaches following this guideline, with one of the

most common techniques used being summarized as ’pattern scaling’.

In this study we follow the tradition of pattern scaling, but introduce a more rigorous, probabilistic assessment of the under-5

lying uncertainties. Common pattern scaling approaches originally have the goal to use a spatial response pattern in a certain

variable (e.g. regional temperature, precipitation) that is derived from observational or (usually) from climate model data with

respect to global mean temperature or CO2-changes in order to create a large number of additional scenarios (Santer et al.,

1990; Mitchell, 2003). In this study we use the “large number of additional scenarios” created by the utilized pattern scaling

technique to estimate the uncertainty distribution of the response pattern in a probabilistic approach. Pattern scaling approaches10

have been employed in a large number of studies (see e.g. Tebaldi and Arblaster (2014) for an overview), but many common

approaches to estimate the response pattern are also subject to an ongoing debate (Tebaldi and Arblaster, 2014; Herger et al.,

2015; Kravitz et al., 2016). To estimate the spatial response pattern in mean-annual P and P −E, we adapt here a technique

based on the assumption that the scaling relationship between local temperature at each gridpoint and global mean temperature

is linear and that the resulting maps of regression slopes could be used as the response pattern (Solomon et al., 2009). Fol-15

lowing a more empirical approach without a priori assumptions on the dependency
::::::::::
relationship of regional variables on global

temperature, it was recently shown that these findings also hold for extreme temperatures and extreme precipitation, mostly

independent of emission scenarios (Seneviratne et al., 2016). This approach was further applied and extended in Wartenburger

et al. (2017) by using a comprehensive set of hydroclimatological variables, including both mean-annual P and P −E. The

assessment presented in this work builds upon this analysis
:::
the

:::::::
analysis

::::::::
presented

::
in

::::::::::::::::::::::
Wartenburger et al. (2017) by utilizing a20

similar data collection to quantify the associated response pattern.

The scaling relationship between global mean P and global warming has also been analysed in previous studies (Andrews

et al., 2009; Frieler et al., 2011; Pendergrass and Hartmann, 2012; Fischer et al., 2014; Pendergrass et al., 2015). At global

scales, mean precipitation scales positively with global temperature increase (Knutti et al., 2016), but the associated scaling

coefficient is still subject to an ongoing debate and might not necessarily follow a linear relationship (Good et al., 2016). It was25

further shown that the magnitude of the scaling relationship depends on the emission scenario (Andrews et al., 2009; Frieler

et al., 2011; Pendergrass and Hartmann, 2012; Pendergrass et al., 2015), whereas the scaling relationship of extreme precip-

itation is independent of the emission scenario (Pendergrass et al., 2015; Seneviratne et al., 2016). The scaling relationship

between global mean P −E and global warming was, to our knowledge, only assessed in Wartenburger et al. (2017) and more

research is needed to evaluate the full range of potential impacts of regional water availability change.30

We aim here to develop a methodological framework in order to assess regional changes in mean-annual P and P −E

:::
over

::::::
global

::::
land

:::::
areas with respect to global warming by using a comprehensive

:::::::::::
representative subset of climate models and

considering different emission scenarios. We further account for the internal variability of each projection by considering the

year-to-year variability of P and P −E. This enables us to generate conservative estimates of the uncertainty distribution of

the scaling coefficient for P and P −E at every gridpoint and within specific regions.35
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Another issue addressed within this study is related to the implications of different
:::::
global

:
warming-degree targets on regional

P and P −E. At the United Nations Climate Change Conference held in Paris in 2015 (COP21), most nations agreed to limit

the increase in global mean temperature to values "well below 2K" and to ideally not surpass a warming of 1.5K above

pre-industrial conditions. Thereby, previous goals to limit global warming to “only” 2K global warming are significantly

intensified. However, this raises the question of potential implications and differences between these “warming-degree targets”5

with respect to changes in many other climate variables besides the (rather abstract) value of global mean temperature and

especially at regional scales (Seneviratne et al., 2016; Schleussner et al., 2016; Guiot and Cramer, 2016; James et al., 2017).

The framework developed within this study allows us to directly assess regional changes in P and P−E in the context of these

warming-degree targets, thereby providing important and useful information to decision makers, farmers, water resources

managers, stakeholders and the general public within a specific region.10

First, we introduce the climate model data that is utilized within this study before describing the methodological approach

that is used to estimate the uncertainty distribution of the scaling coefficients of P and P −E with respect to global warming

(Sec. 2). We provide in the following illustrations of the median and the range of the scaling coefficients (Section 3). Next,

we comprehensively assess the uncertainty that is stemming from the choice of emission scenario (Section 3.1) and how other

sources of uncertainty contribute to the total uncertainty (Section 3.2). We further apply the new framework to analyse changes15

between different warming degree targets (Section 4) and summarize and discuss our results also within the context of previous

assessments (Sec. 5).

2 Scaling - Data and Methodology

The Coupled Model Intercomparison Project, version 5 (CMIP5) ensemble (Taylor et al., 2012) includes climate model pro-

jections forced by four Representative Concentration Pathway (RCP) emissions scenarios (Moss et al., 2010). These scenarios20

correspond to their relative radiative forcings reached by the end of the 21st century with respect to the preindustrial period: 2.6,

4.5, 6.0, and 8.5Wm−2 (from hereon referred to as RCP2.6, RCP4.5, RCP6.0 and RCP8.5). We use a total of 14 climate mod-

els selected based on prerequisites provided in Fischer et al. (2014),
::::::
which

::
are

::::
only

::::
one

:::::
model

:::::
from

::::
each

::::::::
modeling

:::::
center

::::
and

::::::
thereof

:::
the

::::::
newest

::::
with

:::
the

::::::
highest

:::::::::
resolution. Please note that not all climate models provide data for all emission scenarios

(see Table 1). We consider a time period of 120 years beginning in 1980 and ending in 2099 comprising historical simulations25

for the first 25
::
26 years which emerge into simulations of the respective emission scenarios from 2005

::::
2006

:
onwards. The

first 20 years (1980-1999) are used as a common baseline period and values in in mean annual P and P −E are assessed in

relative terms [%] with respect to the baseline period. Please
::::
Since

:::
we

:::::
focus

::::
here

::
on

::::::
global

::::
land

:::::
areas,

:::::
please

:
note that in case

P −E < 0 for the majority of
::
all models and scenarios, those gridpoints

::::
grid

:::::
points

:
were neglected.

For each model m and each emission scenario s within the 100-year period 2000-2099 (yr), these
::
the

:
relative values of30

precipitation, Pm,s,yr, and precipitation minus evapotranspiration, (P −E)m,s,yr, are regressed at each gridpoint (or averaged
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over a certain region) against mean-annual global temperature, Tm,s,yr). We use a
::
an

::::::::
ordinary least squares fit to estimate the

parameters of the linear equation:

P ′m,s,yr = rm,s ·Tm,s,yr + Im,s (1)

with rm,s denoting the regression slope and Im,s the intercept (and likewise for (P −E)m,s,yr). The slope itself provides us

with an estimate of the regional scaling coefficient of P against global changes in T.5

Given the annual residuals Rm,s,yr = Pm,s,yr −P ′m,s,yr, the uncertainty of the regression slope rm,s is assessed by resam-

pling years yr′ of the residuals (Rm,s,yr′ ) and fitting the regression slope against the new pairs (Tm,s,yr,P ′m,s,yr +Rm,s,yr′ ).

Repeating this approach 1000-times at each gridpoint (or within each specific region) provides us with a comprehensive uncer-

tainty measure εm,s of each model- and scenario-specific regression slope rm,s for both P and P −E. We like to point out that

the uncertainty estimated through resampling residuals results in very similar results as computing the uncertainty through us-10

ing different realisations of a single model (not shown ).
:::
this

::
is

::::::
shown

::
for

::::::::::::::
CSIRO-Mk3-6-0

::
in
:::
the

:::::::::::::
supplementary

:::::::::::
information).

:::
We

:::::
further

:::::
note,

:::
that

::::::
scaling

::::::::::
coefficients

::
in

:::
low

:::::::
latitude

::::::
regions

::::::::
represent

:::
the

:::::::
response

::::::
within

:
a
:::::
larger

::::
area

::::::::
compared

::
to

:::::
those

::
in

::::
high

::::::
latitude

:::::::
regions.

::
To

::::
also

:::
test

:::
the

:::::::
validity

::
of

:::
the

:::::::
linearity

::::::::::
assumption,

:::
we

:::::::
assessed

:::
(i)

:
if
:::
the

::::::::::::::::::
Kolmogorov-Smirnov

::::
test

::::
does

:::
not

::::
reject

:::
the

::::
null

:::::::::
hypothesis

:::
that

:::
the

::::::
annual

::::::::
residuals

:::::::
Rm,s,yr ::

are
::::::::
normally

:::::::::
distributed

:::
and

:::
(ii)

::
if

::::
there

::
is
:::
no

::::::::
significant

:::::::
lag-1yr

::::::::::::
autocorrelation

::
of

:::
all

::::::::
Rm,s,yr.

::::::::
Following

::::
this

::::::::
approach,

:::
in

:::
the

:::::::
majority

::
of
::::::

world
::::::
regions

::::
and

:::
for

::::
most

:::::::
models,

:::
the

::::::::
linearity15

:::::::::
assumption

::
is

:::::::::
potentially

:::::
valid.

::::::::
However,

::::::
please

:::
note

:::
for

:::
the

::::::::
following

::::::::
sections,

:::
that

::
in
:::::
many

:::::::::
hyper-arid

::::::
regions

:::::
both

::::
tests

:::
fail

::
for

:::
the

::::::::
majority

::
of

::::::
models.

:

This approach allows us to distinguish between three different sources of uncertainty. As illustrated in the conceptual Fig. 1,

these are (i) internal variability,
::
σi,:representing the uncertainty stemming from interannual variability for each model under

each scenario, (ii) the model uncertainty,
:::
σm,

:
related to the uncertainty across all models and for a specific scenario (e.g. in20

terms of variance: σ = 1/n
∑n

m=1(rm,rx −µr)
2
:::::::::::::::::::::::::
σm = 1/n

∑n
m=1(rm,rx −µr)

2, with n= 14 models and µr denoting the av-

erage of all scaling coefficient) and (iii) the scenario uncertainty,
:::
σs, related to the uncertainty across all scenarios and for a spe-

cific model or the multi-model mean (e.g. in terms of variance: σ = 1/n
∑n

rx=1(rm,rx −µr)
2
:::::::::::::::::::::::::
σs = 1/n

∑n
rx=1(rm,rx −µr)

2,

with n= 4 scenarios and µr denoting the average of all scaling coefficient
:::::::::
coefficients). The total uncertainty denotes the un-

certainty across all models, all scenarios and considering the internal uncertainty. Please note, that this approach of attributing25

uncertainties is very simplistic and neglects any potential relationship between the individual sources of uncertainty, but is

suitable and useful to provide a general measure of the underlying uncertainty sources.

3 Scaling - Results

Considering the total uncertainty across all models and scenarios and by additionally including the internal variability, we

are able to estimate the uncertainty distribution of the regional scaling coefficient of P (P −E) against globally-averaged T .30

Displayed in Fig. 2 are the median and the 10th and 90th quantile of the uncertainty distribution of the scaling coefficient for
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both P and P −E at each gridpoint. Positive (negative) valuesdenote an increase (decrease) in
:::
The

:::::::
median

::::::
scaling

:::::::::
coefficient

:::::
shows

:::::::
positive

::::::
values,

:::
and

:::::
hence

:::
an

:::::::
increase

::
in

::::
both P (

:::
and P −E ) with increasing T . The median scaling coefficient shows

positive values
:
, in most parts of the northern high latitudes and Asia, but also in eastern Africa for both P and P−E. Negative

values
:
,
:::
and

:::::
hence

::
a

:::::::
decrease

::
in

::::
both

::
P

::::
and

:::::
P −E

:::::
with

::::::::
increasing

:::
T , are found in the Mediterranean region, southern Africa,

Australia and in parts of West Africa, as well as Central and South America. Comparing the 10th and 90th quantiles of the5

uncertainty distribution shows the range of possible scaling coefficients. This range does, in most regions and especially for

P −E, include the zero coefficient, which means that the median response is not significant in classical sense (p= 0.1) and

that there is a non-negligible chance of
:::::::::
probability

::
of

:::::::::::
experiencing

:
a
::::::
scaling

::::::::
response

::
of

:::::::
different

::::
sign

::::::::
compared

::
to
:
the median

responseswitching signs
:
,
::
is,

::
at
:::::

least,
:::::
10%

::
or

::::::
higher. The range is further generally much larger for P −E, pointing towards

overall higher uncertainties in the estimation of the scaling relationship. The range is especially large in most subtropical10

regions (e.g. Sahara, Arab peninsula, India, Australia, etc.). Regions showing a significant increase of P and P−E with global

warming are located mainly in the northern high latitudes.

Fig. 3 summarizes these findings by qualitatively showing the probability of experiencing either a positive or negative scaling

response in P with respect to global warming. A very likely increase (90−100% probability) in regional P with ongoing global

warming is hence found only within regions of the northern high latitudes, whereas a likely increase (66−100% probability) is15

located also in many parts of Asia and North America and to a minor extent also in some regions of South America and Africa.

A likely decrease is located in most parts of the Mediterranean region, southern Africa, northeastern South America, Central

America and along the Australian coastal regions. A very likely decrease is rarely found only
:::::::
decrease

:::
that

::
is
:::::

very
:::::
likely

::
is

::::
only

:::::
found in South Africa. Most other regions show either uncertain or no change. Fig. 3 also shows illustrations

::::::::
illustrates

::::::
selected

::::::::
quantiles

:
of the uncertainty distribution of the scaling coefficient

::
of

::
P

:
as a function of global temperature increase20

for a comprehensive subset of SREX regions (Seneviratne et al., 2012) as outlined in the map (see also Table 2 for more

information). Very certain responses within the SREX-regions are only found for those in the northern high latitudes (ALA,

NAS, NEU), while most other regions show a large spread of the uncertainty distribution (especially e.g. in NEB, NAU).

Similarly for P −E, Fig. 4 displays a very likely increase (90− 100% probability) in regional P −E with ongoing global

warming for an even smaller portion of land in the northern high latitudes, whereas a likely increase (66−100% probability) is25

located throughout the northern high latitudes and similarly to P in many parts of Asia and North America and to a minor extent

also in some regions in South America and Africa. A likely decrease is located in parts of the Mediterranean region, southern

Africa, northeastern South America, Central America and some parts of Australia. A very likely decrease is only found for

single gridpoints, primarily in Central America. Most other (and when compared to P an even higher number of) regions show

either uncertain or no change. Fig. 4 also shows illustrations
::::::::
illustrates

::::::
selected

::::::::
quantiles

:
of the uncertainty distribution of the30

scaling coefficient of P −E as a function of global temperature increase for the same set of SREX regions as shown in Fig. 3.

Very certain responses are again only found in the northern high latitudes (ALA, NAS) and southern Asia (SAS), while most

other regions show a very large and even larger spread of the uncertainty distribution when compared to estimates of P .
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:::::
Please

::::
note

::::
that

:::
the

::::::
results

:::
for

::::
both

::
P

:::
and

::::::
P −E

::::
are

::::::
neither

::::::::::
substantially

:::::::::
influenced

:::
by

:::
the

:::::::
unequal

:::::::
number

::
of

::::::::
available

::::::
models

:::
per

:::::::
scenario

::::
nor

::::::::
individual

:::::::
climate

::::::
models

:::
of

:::
the

::::::::
ensemble

:::
that

::::::::::
potentially

::::::
exhibit

:
a
:::::
large

:::::::::::::::::
hydroclimatological

::::
drift

:::::::::::::::::::::::::::::::::::::::::::::
(Liepert and Previdi, 2012; Liepert and Lo, 2013) (refer

::
to

:::
the

::::::::::::
supplementary

:::::::
material

:::
for

::::
more

:::::::::::
information).

:

3.1 Scenario uncertainty

The probability of experiencing an increase /
::
or decrease in regional P and P−E with global warming depends on the emission5

scenario. At global scales, mean precipitation scaling was shown to depend on the emission scenario (Andrews et al., 2009;

Frieler et al., 2011; Pendergrass and Hartmann, 2012; Pendergrass et al., 2015), whereas the scaling of extreme precipitation

is independent of the emission scenario (Pendergrass et al., 2015; Seneviratne et al., 2016). Here we assess the dependence

:::::::::
relationship

:
of regional changes in P and P −E on the emission scenario by analysing the uncertainty distributions of the

scaling coefficient for each scenario individually. A conceptual representation of the probability of the scaling coefficient being10

postive/negative is displayed for P in Fig. 5 and for P −E in Fig. 6 (similar to the total uncertainty as shown in Fig. 3 and

Fig. 4). In general, the fraction of regions showing either likely or very likely changes is increasing with the emission scenario

for both P and P −E, pointing towards a larger uncertainty in the estimation of the scaling coefficient in case the climate

change forcing is weak (RCP2.6, RCP4.5). Further, regions showing very likely changes are much more common under high

emission scenarios (RCP6.0, RCP8.5). The drying response in the Mediterranean region is e.g. not evident when considering15

the RCP2.6 scenario alone, whereas a very likely decrease is found within
::
in the RCP8.5 scenario. In fact, parts

::::::::
individual

::::
grid

:::::
points of the Mediterranean

:::::
region

:
(e.g.

:
in central Spain) even show a likely increase in P and P −E within

::
in the RCP2.6

scenario. On the other hand, a likely drying response in parts of central and northen Australia found in RCP2.6 disappears for

higher emission scenarios for P , or even turns into a wetting response for P −E. Robust signals are, again, found in most

parts of the northern high latitudes, showing a (very) likely increase across all emission scenarios. A (very) likely decrease20

:::::
across

:::
all

::::::::
scenarios

:
is further found for parts of southern Africa and parts of the Amazon region.

:::
Also

:::::
note

::::
here

::::
that

:::
the

:::::
overall

:::::::::::
conclusions

:::
for

::::
both

::
P

::::
and

::::::
P −E

:::
are

:::
not

:::::::::
influenced

:::
by

:::
the

:::::::
unequal

:::::::
number

::
of

::::::::
available

::::::
models

:::
per

::::::::
scenario

::::
(see

::::::::::::
supplementary

:::::::::::
information).

A more detailed look on the underlying uncertainty distributions for P (P−E) within each SREX-region is provided in Fig. 7

(Fig. 8). It is clearly evident that the uncertainty is largest for low emission scenarios throughout all regions and in most cases25

lowest for the RCP8.5 scenario (with overall larger uncertainties in P−E, please note the different y-axis scales). Additionally,

the
:::::::::
uncertainty

::::::::::
distribution

::
of

:::
the higher emission scenarios are usually enclosed by the

:
is
:::::::
usually

:::::
found

:::::
within

:::
the

::::::::::
uncertainty

::::
range

:::
of

:::
the low emission scenariosand the uncertainty is narrowing down

:
,
:::::::
pointing towards a more certain signal. However,

there are partly
:::::
often huge differences regarding the median response and the location and shape of the uncertainty distribution

of a particular emission scenario with respect to other emission scenarios. This is especially evident when comparing low to30

high emission scenarios. Most prominently, for many regions (e.g. WNA, CAM, MED, WAS, CAS, please see Table 2 for

more information on the acronyms) the uncertainty distribution of the RCP6.0 or RCP8.5 scenario is located mainly within

the lowest tercile of the RCP2.6 scenario, leading to a dryer response in P (P −E) with global warming for high emission

scenarios. This finding is, however, reversed in a few other regions (especially NAU and for P −E, to a certain extent also
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in ALA, EAF, SEA). The shapes of the uncertainty distributions
::
for

::::
both

:::
P

:::
and

::::::
P −E

:
are also different between regions

and emission scenarios. While the distributions for the low emission scenarios are, in most cases, unimodal, there are bimodal

distributions in many
::::
some

:
(e.g.

:::
for

:::
P : NEU, WAS, CAS,

:::
for

:::::::
P −E:

::::::
MED,

::::
EAS,

:::::
SEA) and even multimodal distributions

in a few other regions (e.g.
:::
for

:::
P : AMZ, NAS,

:::
for

:::::::
P −E:

:::::
CNA,

:::::
WAF,

:::::
EAF) for the higher emissions scenerios (especially

RCP8.5). Please note, however, that not all models provide data for the RCP2.6 and RCP6.0 emission scenarios, which might5

also causes
:::::
cause differences between those and the other scenarios (see Table 1 for more information).

3.2 Sources of uncertainty

Besides the scenario uncertainty we also introduced two other sources of uncertainty in Sec. 2, the internal variability and

the model uncertainty which contribute to the total uncertainty. Here we assess the fraction of uncertainty which each source

contributes to the total uncertainty. We follow the approach of Hawkins and Sutton (2009), which was also adapted in Orlowsky10

and Seneviratne (2013). Therefore we compare (i) the average over the variances of the uncertainty distributions of each model

under each emission scenario (internal uncertainty,
:
,
:::
σi), (ii) the average of the variances of scenario-specific uncertainty

distributions of each model (model uncertainty
:
,
:
,
::::
σm) and (iii) the variance of the averages of all uncertainty distributions

within a specific scenario (scenario uncertainty
:
,
::
σs). Even though this approach of attributing uncertainties is very simplistic

(see section 2), it provides basic information on the composition of different uncertainty sources within the total uncertainty.15

The percentage of the total uncertainty that stems from a particular source is illustrated for both P and P −E in Fig. 9.

For all SREX regions, there is generally no uncertainty source which is significantly dominating
:::::
single

::::::
source

::
of

::::::::::
uncertainty

::::::::::
contributing

:::::
more

::::
than

::::
80%

::
to

:
the total uncertainty. However, in most regions the largest source of uncertainty stems from

model uncertainty, which is contributing up to ca. 3/4 of the total uncertainty in some regions and is especially large in most

northern high latitude regions (CGI, NEU, NAS, except ALA),
::::::::

possibly
::::::
related

::
to

::::
the

::::::::
relatively

::::
large

::::
and

::::::
certain

:::::::
scaling20

:::::::
response

::
in

:::::
these

::::::
regions. Internal variability contributes between 20− 40% to the total uncertainty, with highest values found

for contrasting regions such as ALA, CEU and SAU
::
in

::::::::
particular

:::
for

::::::
several

::::::
regions

:::::::
adjacent

::
to
:::
the

::::::
Pacific

::::::
Ocean

::::
(e.g.

::::::
WNA,

::::
SEA,

::::::
SAU),

::::::::
probably

::::::
related

::
to

:::::::::
previously

:::::::
assessed

::::::
modes

::
of

::::::::::
inter-annual

::::::::::
variability,

::::
such

::
as

:::
the

::::::::::::
Quasibiennial

::::::::::
Oscillation,

::::
QBO

::::::::::::::::::::
(e.g. Labat et al., 2004). Internal variability seems to be rather low in

::::
other

:::::::
tropical

::
to

:::::::::
subtropical

:::::::
regions,

::::
such

::
as

:
AMZ,

EAS and NAU for P and in NEB, WAF and SAS for P −E. Scenario uncertainty contributes between ca. 5−30% to the total25

uncertainty with those regions reaching highest values that have differing locations of the uncertainty distributions between

low and high emission scenarios as shown in Fig. 7 and Fig. 8 (especially
:::
e.g.

:
WNA, ENA, CAM, MED, WAS, CAS, and

NAU).
:::::::::
Differences

::
in

::
P

:::::::
between

::::::::
emission

::::::::
scenarios

:::
are

::::::
further

:::
not

:::::
solely

::::::
caused

:::
by

::::::
varying

::::::::
radiative

::::::
forcing

:::
due

::
to

::::::::
differing

:::::::::
greenhouse

::::
gas

:::::::::
emissions,

:::
but

::::
also

:::
due

:::
to

:::::::::
differences

:::
in

:::
the

:::::
black

::::::
carbon

:::::::
forcing

:::::::::::::::::::::::::::::
(Pendergrass and Hartmann, 2012). It is

further interesting to note that scenario uncertainty is generally lower and internal variability generally larger for P −E when30

compared to P . However, even though the scenario uncertainty is the overall weakest source of uncertainty in most regions,

it is by no means negligible. Please note, again, that the scenario uncertainty interferes especially with the rather large model

uncertainty and we do not account for such relationships in this approach.

7



4 Application: Assessing warming degree limits

At the United Nations Climate Change Conference held in Paris in 2015 (
:::
As

::::::
agreed

::
in

:
COP21), most nations agreed to

limit
:
,
:
the increase in global mean temperature

:::::
should

:::
be

::::::
limited

:
to values well below the previously set goal of 2Kand to

limit warming to
:
,
:::::::::
preferably

::
to

:
not more than 1.5K above pre-industrial conditions. However, global mean temperature is

an abstract value and provides no information about direct implications at regional scales and with respect to other climate5

variables such as regional, mean-annual P or P −E. The framework developed within this study enables us to directly assess

the regional response of P and P−E to these targets and to study differences between them. Using the uncertainty distributions

of each SREX region and scaling them to either 1.5K or 2K (as illustrated in Fig. 10 for P and in Fig. 11 for P −E) allows

us to study differences both in the median response as well as in the tails of the distribution. It is, however, naturally evident

that in regions with a weak median scaling response the difference between the warming degree targets is small regarding the10

median response itself (e.g. AMZ, CEU, WAS), whereas in regions with a stronger median scaling (e.g. ALA, NEU, NAS) an

additional 0.5K warming could lead to substantial differences. Nonetheless, even though the difference in the median might

be small, the difference in the tails of the uncertainty distributions are in most cases significant and stress an increased risk of

experiencing strong changes in P and P −E. As an example for the Mediterranean region (MED): The median responses of

P to 1.5K global warming vs 2K global warming are not strongly different, while there are stronger differences at the tails,15

showing that the 1.5K limit would avoid a decrease of P of more than 20%, which can on the other hand not be excluded with

the 2K limit. This behavior is even more evident for P −E and also occurs in regions with almost no median response (e.g.

CEU). Also the irregularity of the distribution further amplifies this behavior in some regions. In summary, opting for a low

warming degree target (such as 1.5K) might just slightly influence the mean response but could substantially reduce the risk

of experiencing more extreme changes in regional P and P −E.20

5 Conclusions

We developed here a framework building upon the pattern scaling approach to assess regional changes in mean-annual P

and P −E with respect to global mean T -increase by utilizing a comprehensive subset of climate models and considering

all available emission scenarios. We further took into account internal variability from each projection by accounting for the

year-to-year variability of P (P −E). This enabled us to assess a conservative estimate of the uncertainty distribution of the25

scaling coefficient of P (P −E) to global warming at every gridpoint or within SREX regions.

Analysing maps of the median response and the responses in the 10th and 90th quantile of the gridpoint-specific uncertainty

distributions showed low uncertainties and positive scaling coefficients (thereby a certain increase in P and P −E with global

warming) within most northern high latitude regions. Slight decreases in the median response together with large uncertainties

(and thereby an uncertain decrease in P and P −E with global warming) are found for most subtropical regions. Uncertainties30

are, however, larger for estimates of P −E and do hence not permit robust conclusions for many regions. Our results support

previous findings of hydroclimatological changes (Greve and Seneviratne, 2015), but provide a new, probabilistic and rigorous

perspective on the assessment of uncertainties in regional hydroclimatological changes under conditions of ongoing global

8



warming and extent
:::::
extend

:
the wealth of studies investigating pattern scaling approaches of climate variables (Tebaldi and

Arblaster, 2014; Herger et al., 2015).

Assessing scenario-specific uncertainty distributions revealed strong regional differences between different emission sce-

narios. It is evident that weaker climate change signals within the low-emission scenarios (RCP2.6, RCP4.5) lead to high

uncertainties in the estimation of scaling coefficients. A very likely change in regional P only emerges under high emission5

scenarios (RCP6.0, RCP8.5) and is even less likely to occur for P −E. In some regions low emission scenarios further show

likely opposite changes compared to changes identified in higher emission scenarios (both switching from a likely wetting to

a very likely drying in parts of MED, or from a likely drying to no change in P or even a likely wetting in P −E in NAU).

A closer look a the uncertainty distributions shows large differences both in location and shape across regions and emission

scenario. However, in most cases higher emission scenarios point towards a dryer response than low emission scenarios (with10

a few regions showing, however, the opposite behavior).

This led us to the analysis of the relative contribution of single sources of uncertainty to the overall uncertainty. It is shown

that model uncertainty is largest in most regions, but isnot significantly dominating ,
::::::::
however,

::
in

::
no

::::
case

::::::::::
contributing

:::::
more

::::
than

::::
80%

::
to the overall uncertainty. It is therefore important that both internal variability and scenario uncertainty are considered

as well in order to get a complete picture of the total uncertainty. Comparing mean annual P and P −E shows that scenario15

uncertainty is generally lower and internal variability generally larger for P −E.

We further assessed the implications of different warming degree limits on changes in regional P and P −E. At the COP21,

most nations agreed to limit the increase in global mean temperature to values well below the previously set goal of 2K and to

consider limiting warming to not more than 1.5K above pre-industrial conditions. Comparing these two targets reveals natu-

rally little differences in the mean response in regions where the mean response is small anyway. However, since uncertainties20

are large, especially for P −E, there is a nonlinear increase in the risk of experiencing more extreme changes. Therefore,

opting for a low warming degree target (such as 1.5K) might just slightly influence the mean response but could substan-

tially reduce the risk of experiencing extreme changes in regional P and P −E. This means that even though the discussion

about the implications of 1.5K vs. 2K global warming might be moot for the mean response, it is, given the underlying, large

uncertainties of climate projections, absolutely necessary to more closely investigate the potentially large increase in the risk25

of experiencing extreme change. This is especially important in order to enable robust decision making to ensure adequate

development pathways and to avoid the risk of maladaptation; in the specific case of changes in mean-annual P and P −E this

is e.g. of high relevance for water resources managers and farmers.
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Figure 1. Conceptual illustration of deriving the uncertainty distribution of the scaling coefficient of P with respect to global warming

from multiple models forced by multiple emissions scenarios. (Top) For each model under each scenario we regress the relative change in

mean-annual P (∆P , with respect to a baseline period) against global mean T . We thereby obtain the regression slope which is the scaling

coefficient of P to global warming. The year-to-year variability further causes the estimate of the slope to be uncertain. We account for this

uncertainty by numerically estimating the uncertainty distribution of each model- and scenario-specific regression slope through resampling

the residuals in a bootstrapping approach. (Middle) This uncertainty is associated with every model run and represents the internal variability.

The average of the uncertainties stemming from the range of all individual models within a certain scenario represents the model uncertainty

and the uncertainty associated with the range of all scenario-specific multi-model means represents the scenario uncertainty. The uncertainty

distribution is illustrated here as a function of global temperature increase. (Bottom) The Total uncertainty combines all sources of uncertainty

and provides a conservative estimate of regional ∆P as a function of global warming, that can be used to assess either the median response

or to study changes in any other quantile of the uncertainty distribution.
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Figure 2. Median (middle), 10th (top) and 90th quantile (bottom) of the sensitivity of P (left) and P −E (right) to changes in global mean

temperature [%/K]. A total of 14 CMIP5 models and all scenarios (RCP2.6, RCP4.5, RCP6.0, RCP8.5) are considered.
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Figure 3. Conceptual summary of the probability that the slope of P is negatively/positively different from zero considering all climate

models and all scenarios. Panel plots illustrates the uncertainty distribution of the sensitivity of P to global temperature change as a function

of global mean temperature change averaged for each SREX regions outlined in the map (the shading in each panel plot corresponds to those

illustrated in Fig. 1).

15



very likely decr. 

likely decr. 

no change

likely incr.

very likely incr.

1 2 3 4 50
ΔT [K] 

-20

-40

 40

 20

 0

Δ
P 

[%
] 

ALA 

1 2 3 4 50

-20

-40

 40

 20

 0

ENA 

1 2 3 4 50

-20

-40

 40

 20

 0

NEU 

1 2 3 4 50

-20

-40

 40

 20

 0

CEU 

1 2 3 4 50

-20

-40

 40

 20

 0

MED 

1 2 3 4 50

-20

-40

 40

 20

 0

SAS 

1 2 3 4 50

-20

-40

 40

 20

 0

NAS 

1 2 3 4 50

-20

-40

 40

 20

 0

EAS

1 2 3 4 50

-20

-40

 40

 20

 0

SEA 

1 2 3 4 50

-20

-40

 40

 20

 0

NAU 

1 2 3 4 50

-20

-40

 40

 20

 0

SAU 

1 2 3 4 50

-20

-40

 40

 20

 0

EAF 

1 2 3 4 50

-20

-40

 40

 20

 0

WAF 

1 2 3 4 50

-20

-40

 40

 20

 0

SAF 

1 2 3 4 50

-20

-40

 40

 20

 0

NEB 

1 2 3 4 50

-20

-40

 40

 20

 0

SSA 

1 2 3 4 50

-20

-40

 40

 20

 0

AMZ 

1 2 3 4 50

-20

-40

 40

 20

 0

CAM 

1 2 3 4 50

-20

-40

 40

 20

 0

WNA 

1 2 3 4 50

-20

-40

 40

 20

 0

CNA 

Figure 4. Conceptual summary of the probability that the slope of P −E is negatively/positively different from zero considering all climate

models and all scenarios. Panel plots show the uncertainty distribution of the sensitivity of P −E to global temperature change as a function

of global mean temperature change averaged for each SREX regions outlined in the map (the shading in each panel plot corresponds to those

illustrated in Fig. 1).
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Figure 5. Conceptual summary of the probability that the slope of P is negatively/positively different from zero considering all climate

models and a) the RCP2.6, b) the RCP4.5, c) RCP6.0 and d) RCP8.5 emission scenario only. See Fig. 3 for comparison.
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Figure 6. Conceptual summary of the probability that the slope of P −E is negatively/positively different from zero considering all climate

models and a) the RCP2.6, b) the RCP4.5, c) RCP6.0 and d) RCP8.5 emission scenario only. See Fig. 4 for comparison.
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Figure 7. Uncertainty distributions (shown as violin plots) of the sensitivity of P to global mean temperature change for each emission

scenario averaged over all SREX regions (as outlined in Table 2 and Fig. 3).
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Figure 8. Uncertainty distributions (shown as violin plots) of the sensitivity of P −E to global mean temperature change for each emission

scenario averaged over all SREX regions (as outlined in Table 2 and Fig. 4). It is important to note that the data considered to estimate the

area average is scarce in some regions (e.g. SAH). Please also refer to Fig. 7 for more information.
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Figure 9. Sources of uncertainty in the sensitivity of P (left) and P−E (right) to global mean temperature change averaged over each SREX

regions as outlined in Fig. 3.
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Figure 10. Uncertainty distributions (shown as violin plots) of the sensitivity of P to global mean temperature change for two different

degrees of global mean temperature change, which correspond to the widely used warming degree limits of 1.5K and 2K. The estimates are

averaged over all SREX regions (as outlined in Fig. 3 and Table 2).
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Figure 11. Uncertainty distributions (shown as violin plots) of the sensitivity of P −E to global mean temperature change for two different

degrees of global mean temperature change, which correspond to the widely used warming degree limits of 1.5K and 2K. The estimates

are averaged over all SREX regions (as outlined in Fig. 3 and Table 2). It is important to note that the data considered to estimate the area

average is scarce in some regions (e.g. SAH). Please also refer to Fig. 10 for more information.
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Table 1. List of models and availability under each emission scenario.

Model RCP2.6 RCP4.5 RCP6.0 RCP8.5

ACCESS1-3 x x

bcc-csm1-1 x x x x

CanESM2 x x x

CESM1-BGC x x

CMCC-CMS x x

CNRM-CM5 x x x

CSIRO-Mk3-6-0 x x x x

FGOALS-g2 x x x

GISS-E2-R x x x x

HadGEM2-ES x x x

IPSL-CM5A-MR x x x x

MIROC5 x x x x

MRI-GCM3 x x x x

NorESM1-M x x x x
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Table 2. List of Acronyms for all 26 SREX-regions (Seneviratne et al., 2012)

Region SREX-Acronym

Alaska/NW Canada ALA

Eastern Canada/Greenland/Iceland CGI

Western North America WNA

Central North America CNA

Eastern North America ENA

Central America/Mexico CAM

Amazon AMZ

NE Brazil NEB

West Coast South America WSA

South- Eastern South America SSA

Northern Europe NEU

Central Europe CEU

Southern Europe/the Mediterranean MED

Sahara SAH

Western Africa WAF

Eastern Africa EAF

Southern Africa SAF

Northern Asia NAS

Western Asia WAS

Central Asia CAS

Tibetan Plateau TIB

Eastern Asia EAS

Southern Asia SAS

Southeast Asia SEA

Northern Australia NAU

Southern Australia/New Zealand SAU
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