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Interactive comment on “An efficient training scheme that improves the forecast skill of a supermodel” by Francine
Schevenhoven and Frank Selten.

Reply to Anonymous Referee #1.

We would like to thank the reviewer for his helpful comments. We revised our manuscript and will give a reply to the reviewer’s
comments below.

My main criticism is that the method (section 2) is very short and lacking in detail. Although I can see how to do it, it is not
clear exactly how the supermodel weights are calculated or the criteria by which convergence is determined. Given the brevity
of the article a bit more technical detail is warranted.

The supermodel weights are calculated just by counting how often a certain imperfect model is chosen during the CPT training.
For example, if a model is chosen 30% of the time, then the corresponding weight will be 0.3. Convergence is obtained when
during the CPT training every time step the supermodel is the model that is closest to the truth. This perfect convergence does
not happen with our examples. The majority of time steps the supermodel is chosen, but sometimes the other imperfect models
are closer to the truth. However, the obtained weights do not significantly change after certain time.

More comments on technical details can be found in the reply to reviewer Guannan Hu.
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Interactive comment on “An efficient training scheme that improves the forecast skill of a supermodel” by Francine
Schevenhoven and Frank Selten.

Reply to reviewer Guannan Hu.

We would like to thank Guannan Hu for his very helpful comments. We revised our manuscript and will give a pointwise reply
to Guannan Hu’s comments below.

Major comments
1

Section 2 Training the supermodel: my understanding is that every time CPT takes place, it is counted which model is closest to
the truth. If we have done 100 times CPT, then we have 100 predictions, and we count for each model in these 100 predictions,
how often they have closest prediction to the truth. If I understand correctly, there are several questions. First is CPT interval
time should be shown (how often does CPT take place?). Second is whether iterative method is necessary. What if increasing
the training timesteps or training the model from many different initial conditions. I think these two ways also make the results
converge.

The CPT step takes place every time step.

Increasing the number of training steps will not always give a better estimation for the weights. For example, it can happen that
during training the true trajectory cannot be followed anymore by the CPT trajectory, the CPT trajectory can diverge from the
true trajectory. In that case, the resulting weights will probably not give a supermodel with an improved forecast quality. For
the quasi-geostrophic model we have started the training from many different initial points. In that case we train on a larger
part of the attractor. If the supermodel is closer to the truth than the initial imperfect models then adding the supermodel as an
extra imperfect model in a next iteration step enables the CPT trajectory to follow the true trajectory more closely and fewer
strong adjustments will be needed. Hence, this can result in a better estimation of the weights.

Added text in revised paper: The training phase of CPT starts from an observed initial condition in state space. From this initial
state, the imperfect models run for one time step each ending in a different state. (page 2, line 23)

2

Page 4, Table 1 if the parameter values for the imperfect models are all smaller or greater than standard values, how well will
the supermodel perform?

The supermodeling approach only works well if the imperfect models are on “opposite” sides of the truth. We took this into
account in the choice of the imperfections. The imperfect values of the parameters and the number of imperfect models is based
on the convex hull principle. In one dimension this convex hull principle basically says that if there is one parameter value o
smaller than the true value o and one parameter value o, larger than the true value, there are positive weights wy,ws such that
a linear combination w101 + wy0oo can be exactly equal to o. In case of Lorenz63, the equations for &,y and 2 contain each
only one parameter that appears linearly in the equation. Since we apply different weights for the different equations for z,y
and z, per equation we need only two imperfect models to be able to reconstruct exactly the true parameter value with positive
weights. This convex hull principle can be extended to more dimensions:

Definition. Let x',....x* be vectors in R"™ and let \1, ..., \i, be nonnegative scalars whose sum is unity.

k P L
(a) The vector ) ;_, \ix" is said to be a convex combination of the vectors xt, . xk

(b) The convex hull of the vectors x*, ..., x" is the set of all convex combinations of these vectors.

In this definition, the vectors x?,3 € 1,...k represent the imperfect parameter values = per equation i and \;,i € 1, ...k the

corresponding weights. This convex hull generalizes the ‘in between’ concept for one dimension. To be able to reproduce the

n-dimensional vector X, it has to lie inside the convex hull of vectors x',x2, ..., x*.
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We can write this as a matrix-vector equation, where the last row indicates that the sum of the weights has to be equal to 1 and
the vector x represents the true parameter values:

1 2 n+1

x7 27 T " A1 1
1 2 n

Ty X5 o T Ao To
1 2 n+1

LTy Ty 0 Ty An Ln
1 1 - 1 An+1 1

For parameter vectors of size n, we have n + 1 constraints, since also the sum of the weights has to equal 1. Hence we know
that to be able to reproduce the true parameter vector X, for n parameters that appear linearly in one differential equation for
a state variable, n + 1 linearly independent vectors of these parameters are needed which form a convex hull around the true
parameter vector.

For the quasi-geostrophic model, the imperfect parameters do not appear linearly in the equations. Therefore choosing the
parameter perturbations such that they form a convex hull around the true parameter values will not necessarily result in model
that represents the truth. Nevertheless, in practice we found that this approach worked well. In this case, choosing the imperfect
parameter values on opposite sides of the truth created “opposite” behaviour such that the imperfect models could compensate
for each other.

Added text in revised paper: Appendix A
3

Page 10, Table 5 and page 4, Table 1: an important issue is how to set the parameter values of imperfect models and how to
decide the number of imperfect models. These problems are not touched in the article. As shown in conclusion (page 13, line 8
and 9) the number of imperfect models is related to the number of uncertain parameters. The uncertain parameters in Lorenz
63 and quasi-geostrophic model are both 3, but imperfect models used to construct supermodel are 2 and 4, respectively. I
wonder if the number of imperfect modes depends on the degrees of freedom. As shown in Table 5 each two imperfect models
have a same parameter value, why? Is it possible to randomly select parameter values for imperfect models with given error.

In the previous comment we explained how to set the parameter values of the imperfect models and how to decide on the
number of imperfect models. As you pointed out, we think it is important to touch these problems in the article, therefore we
will add an appendix that explains this.

4

Page 12, 4.3 Use of fewer imperfect models: I am interested in the difference between supermodel without the worst imperfect
model and supermodel without the best imperfect model. In such a way, it can be clarified whether the accuracy of imperfect
model affects the performance of supermodel. Clearly the number of imperfect models influences the skill of the supermodel.
While the relationship is unclear. The differences between supermodel and truth as a function of number of imperfect models
can used to illustrate this relationship.

The number of imperfect models influences the skill of the supermodel. Since the number of imperfect models is not generaliz-
able for every model, because parameters will not always appear linearly in the equations, we did not investigate the differences
between the supermodel and truth as a function of number of imperfect models.
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Minor comments
1

Abstract, page 1, line 7 and 8 the supermodel obtained by the CPT training should not only compared to the individual imperfect
models, it is not the topic of this article. As indicated by the title the method improves the supermodel, so the comparison should
between the supermodels with different weights.

The scope of this paper is to show that a supermodel constructed by the CPT training can outperform individual imperfect
models. Also it is shown that the CPT training has effect compared to a supermodel with equal weights. It was not the purpose
to compare the method with other methods that give a weighted supermodel. We agree that the title is misleading, hence we
changed it into: “An efficient training scheme for supermodels”.

2

Introduction: I'm wondering if there are still other methods have been used to determine the weights except the example in the
second paragraph of page 2. And I also want to know the advantages of CPT, since the multi-model ensemble method (MME)
can also enlarge the state space.

There are no other examples of methods to determine the weights for a supermodel, to my knowledge. In this study we
use CPT to find optimal weights for a weighted supermodel. CPT generates new trajectories in contrast to a Multi Model
Ensemble (MME) approach that only combines trajectories from an ensemble of models. CPT accomplishes this by continuing
a trajectory from one model using another model and creating hybrid trajectories this way that are trained to lie closer to
the truth. After training, the supermodel climate statistics are closer to the truth since trajectories more closely follow true
trajectories. In a MME approach, combining model statistics leads to improved estimates of for instance the true mean state.
But in the supermodel approach, not only is the mean state of the supermodel closer to the truth but in addition the supermodel
trajectories from which this mean state is calculated are closer to observed trajectories. In a MME approach this is not the case.
Combining trajectories of different models leads to smoothing since weather systems and fronts are in different locations.

Added text in revised paper: In contrast to the standard MME, an alternative approach is to let models exchange information
during the simulation which leads to new solutions. If the models complement each other, these solutions potentially stay closer
to the observed trajectory than the trajectories of the imperfect models individually. Hence both the short term predictability
and the climate statistics will improve. The MME approach only combines trajectories from an ensemble of models after the
simulation. This can lead to improved estimates of for instance the true mean state. It cannot however produce trajectories that
remain closer to observed trajectories as combining trajectories of different models leads to smoothing. (page 1, lines 23-26,
page 2 lines 1-2)

3

Page 4, line 12: why choose deviation 30%?

The deviation of 30% in the imperfect parameter values is chosen because then the imperfect models have completely different
behaviour compared to the true model. For the Lorenz 63 model we showed that even for this large deviation we are still able
to construct a supermodel that reflects the truth quite well.

4

Page 5, Figure 2 and page 7, Figure 3: I suggest figure of 3D-phase space.

Thank you for the suggestion but we think that a figure that shows more of the 3D structure will be less clear than this figure.
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5

Page 7, 3.1 Climate measures: I suggest using probability density function and autocorrelation function to compare the super-
model and truth, not only the mean, standard deviation and covariance.

The supermodel constructed out of the imperfect Lorenz 63 models is again a Lorenz 63 model. Since the supermodel pa-
rameters p,o, 3 are very close to the true parameter values and since there is no bifurcation for this system close by the true
parameter values, it is to be expected that the supermodel has an attractor that is very similar to the true attractor. To illustrate
this, we only used mean, variance and covariance, and since there are no significant differences between the two attractors, we
did not use any other statistical measures.

6

Page 9, Figure 5: (a) of Figure 5 is not necessary. I suggest combine (a) and (b) of Figure 5.

In the case of the forecast quality of the Lorenz 63 model,(a) and (b) of Figure 5 could be combined, since there are not that
many graphs. However, we used the same figures for the forecast quality of the quasi-geostrophic model. For this model we had
more graphs that cannot be merged into one figure, that would be unclear. Hence we chose to separate the figure for the forecast
quality for the imperfect models from the forecast quality for the supermodels for both Lorenz 63 and the quasi-geostrophic
model.

7

Page 9, line 15 and page 10, line 1: in the experiments with Lorenz 63, the model 1 has two stable fixed points and very different
behavior compared to standard Lorenz 63 system. But it still contributes to form supermodel.

For the quasi geostrophic model we chose more realistic imperfect models than for the Lorenz 63 system. The Rossby radii of
deformation are known quite well. Hence we chose imperfect parameter values that cause quite different behavior compared
to the truth (the imperfect models perform much poorer in our short and long term measures than the true model) but this was
accomplished by imperfect Rossby radii that are not that far from the true values.

8

Page 11, Table 7: I suggest add tables for other height (200hPa, 500hPa) and in table supermodel with same weights should
be included.

We included the RMSE for a supermodel with equal weights and the RMSE for the supermodel constructed without the
imperfect model with the poorest forecast quality and we added tables for 200hPa and 500hPa. The supermodel with the equal
weights performs better than imperfect model 1 and 2, but worse than imperfect model 3 and 4 and the supermodel. The
supermodel constructed without the imperfect model with the poorest climate and forecast quality performs slightly better than
the supermodel with equal weights, but the errors are significant compared to the perfect model. The supermodel is also for the
200hPa and 500hPa level indistinguishable from the perfect model.

9

Page 11, line 1: what is the minimal time steps for training? If the training time steps increases, do the weights change?

Already after integrating for half a day, the estimation of the weights is not that different from the final weights, they differ
around 10%. If the number of training steps is more than 3 days, the weights do not significantly change, they differ a few
percent but there is no structural deviation from the obtained weights mentioned in this paper.
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The supermodel with different weights performs better than supermodel with equal weights, but it requires computational time.
Increasing the number of imperfect models also improves the skill of the supermodel with equal weights. So we need to compare
in which way the computational demand is slower in certain application.

Increasing the number of imperfect models can help to improve the quality of supermodel with equal weights, but this does
not necessarily have to be the case. We then have to decide which imperfect parameters we will use, which also takes time.
Running a supermodel that consist of more imperfect models will also take more computational time. A supermodel with equal
weights that consists of the same amount of imperfect models as a supermodel with trained weights costs the same amount of
computation time. Training is relatively cheap and only has to be done once.
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Abstract. Weather and climate models have improved steadily over time as witnessed by objective skill scores, although
significant model errors remain. Given these imperfect models, predictions might be improved by combining them dynamically
into a so-called “supermodel”. In this paper a new training scheme to construct such a supermodel is explored using a technique
called Cross Pollination in Time (CPT). In the CPT approach the models exchange states during the prediction. The number
of possible predictions grows quickly with time and a strategy to retain only a small number of predictions, called pruning,
needs to be developed. The method is explored using low-order dynamical systems and applied to a global atmospheric model.
The results indicate that the CPT training is efficient and leads to a supermodel with improved forecast quality as compared
to the individual models. Due to its computational efficiency, the technique is suited for application to state-of-the art high-

dimensional weather and climate models.

1 Introduction

Weather and climate models remain imperfect despite continuous model development. For example at middle to high latitudes,
the simulated zonal wind stress maximum averaged over an ensemble of state-of-the-art climate models lies 5 to 10 degrees
equatorward of observationally based estimates, which means that on average the mid-latitude winds are too strong in the
current models (IPCC 2013).

Improving the models is a large research effort. A demanding aspect is that there are many uncertain parameters and ap-
proximations because not all physical processes are explicitly resolved. To model and tune all of these aspects requires a huge
computational effort. Even if the optimal solution can be achieved, imperfections remain due to the complexity of the climate
system with interactions across scales over many orders of magnitude. In order to improve predictions, it often helps to aver-
age across model outcomes as model errors tend to average out. Branicki and Majda (2015) provide some evidence that this
multi-model ensemble method (MME) indeed improves predictions under certain conditions. However, it is not straightforward
which imperfect models and what weights should be used for the MME forecast. Because of this almost all operational MME
predictions are based on equal weights.

In contrast to the standard MME, an alternative approach is to let models exchange information during the simulation which

leads to new solutions. If the models complement each other, these solutions potentially have—improvedprediction—quality
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compared-to-the-predictions-stay closer to the observed trajectory than the trajectories of the imperfect models individually.
Hence both the short term predictability and the climate statistics will improve. The MME approach only combines trajectories
from an ensemble of models after the simulation. This can lead to improved estimates of for instance the true mean state. It
cannot however produce trajectories that remain closer to observed trajectories as combining trajectories of different models

leads to smoothing.
A successful approach of combining models is found in van den Berge et al. (2011), where combining models into one large

supermodel (SUMO) by prescribing connections between model equations is proposed. The connection coefficients are learned
from historical observations. The optimization of the coefficients is achieved by minimizing a cost function. In Wiegerinck et al.
(2013) it is noted that the size of these coefficients is typically very large. If the connection coefficients are large enough, the
system will quickly synchronize into a joint state. This joint state can be described as a weighted superposition of the imperfect
models referred to as weighted SUMO.

Since the minimization of a cost function can be computationally very expensive, we propose in this paper a new procedure
to construct such a weighted superposition of imperfect models. The weights are learned from observed trajectories. This new
learning process is based on an idea proposed by Smith (2001), Cross Pollination in Time (CPT). CPT “crosses” different
model trajectories in order to create a larger solution space with trajectories that potentially follow more closely the observed
evolution.

Our training method for a weighted supermodel is developed using the Lorenz 63 system (Lorenz, 1963) following the
perfect model approach. The model with standard parameter values generates observations and imperfect models are created
by perturbing the parameter values. Next, we apply the method to a more chaotic and realistic global atmospheric model with
1449 degrees of freedom by Marshall and Molteni (1993).

Section 2 of this paper explains the training by cross pollination. Applications of the method are described in section 3 for
the Lorenz 63 system and in section 4 for the global atmospheric model. The final section discusses the results and provides an

outlook to apply the developed approach to state-of-the-art models.

2 Training the supermodel

We assume that we have an observed trajectory, called the “truth”. The training phase of CPT starts from an observed initial
condition in state space. From this initial state, the imperfect models run for a-certain-period-one time step each ending in a
different state. (See Fig. 1a.) From these endpoints all models run again. Continuing this process leads to a rapid increase of
the number of predictions with time. A larger region of the state space thus can be explored. In order to retain only a small
number of predictions a pruning step is required. We choose to continue only those predictions that remain closest to the truth,

the others are discarded, as is depicted in Fig. 1b.
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Figure 1. Cross Pollination in Time for 3 models, with pruning (right).

2.1 Determining weights

In the training phase, for each model, it is counted how often for a particular variable its prediction remains closest to the
truth. The probabilities thus obtained can be used as weights for the corresponding time-derivatives of the variables. This

superposition of weighted imperfect models forms a supermodel which potentially has improved prediction skill.

2.2 Iterative method

In order to obtain convergence towards a supermodel that reflects the truth in the best possible way, the training is carried
out iteratively. The first iteration step leads to a first estimate of the weights of the supermodel. In the second iteration step,
this supermodel is added as an extra imperfect model. In the subsequent iteration steps the previously obtained supermodel is
replaced by the newly obtained supermodel. If the added supermodel is closer to the truth than the initial imperfect models, the
constructed trajectory in the CPT procedure receives fewer contributions from the initial imperfect models. Ideally, learning

stops when the supermodel remains closer to the truth than the individual imperfect models for all time steps during the training.
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3 Results Lorenz 63

In the Lorenz 63 system a chaotic attractor appears for certain parameter values. The attractor has the shape of a butterfly
and each “butterfly wing” contains an unstable fixed point at its center, around which the trajectories alternately revolve in an
unpredictable pattern. The differential equations of the system contain system parameters o, p, 5. The state space is described

by coordinates x,y, z (Eq. (1)-(3)).

i=oly—a) M)
y=z(p—2)—y 2)
Z=xy— Pz 3)

The standard parameter values are 0 = 10,p =28 and § = %. Numerical solutions are obtained by using a fourth-order Runge
Kutta time stepping scheme, with a time step of 0.01.
The observed trajectory is generated by the model with these standard parameter values. Two different imperfect models are

created with parameter values that deviate about 30% from the standard parameter values, as denoted in Table 1. In the appendix
it is explained why only two different imperfect models are considered and how the imperfect parameter values are chosen.

Table 1. Standard and perturbed parameter values for the Lorenz 63 system.

o p B
Truth 0 28 &
Model 1 1225 19 3.3
Model2 75 35 19

The behavior of these imperfect models is quite different from the truth as can be seen in Fig. 2. Two stable fixed points
characterize the attractor of Model 1. Model 2 has a chaotic attractor that resembles the truth but its mean is shifted towards

higher z-values.
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Figure 2. Trajectories of the imperfect models (purple), together with the true trajectory (green).

The training period 7" is chosen to be 200 time steps, enough to revolve about two times around the unstable fixed points.
The number of iterations is 100. The same part of the attractor is used for training in every iteration.
The weights w;, ¢ € {1,2} that are the result of the training phase are listed in Table 2. They determine the superposition of the
imperfect models (Eq. (4)-(6)). For all three coordinates x,y, z they sum up to 1.

2
5 isuper = Zw;ﬂxz (4)
=1
2
ysuper = Z wfyz @)
1=1
2
fésuper = wazz (6)
=1

After 45 iterations, the weights for ¢y and Z do not change anymore. The weights for & after 100 iterations are still not constant,

but the values differ only from the third decimal onwards.

Table 2. Weights of the supermodel of the Lorenz63 system.

Model wy wi’ w?

1=1 0.5248 0.4385 0.5491
1=2 0.4752 0.5615 0.4509

10 In the case of the Lorenz 63 system, the superposition of the imperfect Lorenz 63 models forms again a Lorenz 63 system,

because the parameter values o, p, 5 appear linearly in the differential equations. Hence the supermodel is a Lorenz 63 system



for which the parameter values can be calculated. The supermodel parameters are almost perfect as is shown in Table 3.
This is possible because for all three perturbed parameters one of the models has an imperfect parameter value smaller than
the standard parameter value and the other model larger (Table 1). Hence, for each of the parameters one can find a linear
combination of the imperfect parameter values with positive weights whose sum is equal to one, that represents the standard

5 parameter value (Eq. (7)-(9)).

2
O super — sz‘cgi @)
1=1
2
Psuper = Z wz/pz (8)
=1
2
Bsuper = Z wfﬂz 9
=1

Table 3. Parameter values of the truth and the supermodel.

o p B
Truth 10 28 g

Supermodel 9.993 27983 2.669

If this supermodel is integrated for a long time period, the attractor of the supermodel and the truth look quite similar, as can

10 be seen in Fig. 3.

Lorenz 63, after training
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Figure 3. Trajectory of the supermodel (blue), together with the true trajectory (green).
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3.1 Climate measures

Straightforward measures to compare the attractor of the supermodel and the truth are the mean, standard deviation and covari-
ance. The calculation of these statistics is based on 500 runs of 5000 time steps. Also the error estimation of a 95% confidence
interval is calculated. In Table 4 can be seen that the statistics of both the true and the supermodel attractor are very similar.
Especially the standard deviations for both x,y and z are the same up to the first decimalthe-same-valae. The largest differences
are in the covariance between x,z and ¥, z. However, these differences are within the 95% uncertainty intervals and are thus

not significant. The sizes of all confidence intervals for both the truth and the supermodel are almost identical.

Table 4. The mean, standard deviation (SD) and covariance for the truth and the supermodel. Between brackets the 95% error estimation is

given.

Truth Supermodel

Meanz  0.073 (0.099)  0.033 (0.098)
Meany  0.073 (0.099)  0.034 (0.098)
Mean z  23.552 (0.012) 23.528 (0.012)

SD z 7.843 (0.010)  7.844 (0.009)
SDy 8.939 (0.011)  8.942 (0.010)
SD z 8.618 (0.012)  8.623(0.012)

Cov.zy 61.529 (0.150) 61.547 (0.148)
Cov.zz 0.189(0.266)  0.057 (0.268)
Cov.yz  0.247(0.336)  0.109 (0.334)

3.2 Forecast quality

Along with the measures of the climate statistics of the models, a measure for the quality of the “weather prediction” can also
be constructed. This measure reflects the forecast quality of the models on shorter time scales. The squared Euclidean distance
between the true trajectory and the trajectory of a model with a slightly perturbed initial condition is calculated and averaged
over a number of forecasts, as shown in Fig. 4. On the true attractor, this value converges for large enough forecast time 7" to a
value corresponding to the average distance between two arbitrary states. This distance is used to normalize the measure of the

forecast quality.
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Figure 4. Measure of the forecast quality. At times ¢; a short integration of time 7 starts from observed initial conditions and slightly

perturbed conditions. The fixed time interval between times ¢; is denoted by d.

The initial perturbation is chosen in the order of 10~!. The number of forecasts is equal to 1000 and the distance between

the initial states d is 10 time steps. Figure 5 shows that the ability of the supermodel and the true model to predict the observed

truth is about the same. In comparison, the imperfect models lose their prediction skill very quickly.
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Figure 5. Forecast quality of the imperfect Lorenz 63 models (purple) and the supermodel (blue) compared to the true Lorenz 63 model

(green).
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4 Results for a quasi-geostrophic model

Given the encouraging results from the Lorenz 63 system, the CPT method is next applied to a more complex model with 1449
degrees of freedom: a three level quasi-geostrophic global atmosphere model developed by Marshall and Molteni (1993). The
model solves the quasi-geostrophic potential vorticity equation on the sphere using a spectral method with spherical harmonic
functions. A triangular T21 truncation is used. The performance of this model is quite realistic. According to Corti et al. (1997),

the simulation of teleconnections and blockings in the Pacific and Atlantic regions is “surprisingly accurate”. The evolution of

the quasi geostrophic potential vorticity at the three levels is given by:

0= I (W) ~ DY, ¥2) + 5 (10)
©2=J (Y2,92) = Do (1, ¥2,¥s) + 9 (1)
Gs= T (Vs,93) ~ Ds(v2, ) + 9 (12)

=~

1) the streamfunction, D (1)) a linear operator that represents dissipative terms and .S a constant

PV source. The index 7 refers to the pressure level. Here the potential vorticity is defined as:

is the potential vorticit

0=V = R = i)+ 13

2= V04 B 2(01 = ) — (s — o) + 1 (13
I

4= V2 + Ry (s —s) + F(1+ ) (15)

where f is the Coriolis parameter, 1?1, Ro are the Rossby radii of deformation of the 200-500 hPa and 500-800 hPa layer
respectively, h is the orographic height and Hj, is a scale height. To create different imperfect models, three parameter values

are varied:

— tdis-TR Time scale in days of the Ekman damping (7g in equation (A11) of Marshall and Molteni (1993) )

— rrdef+I%; Rossby radius of deformation of the 200-500 hPa layer
— #rdef2-Ry Rossby radius of deformation of the 500-800 hPa layer

Four different imperfect models are used for the CPT training phase, their parameters are denoted in Table 5. The imperfect
values of the Rossby radii of deformation are chosen to differ only a few thousandths from the true value since even a small
deviation leads to very different behavior of the model. Numerical solutions are obtained by using a fourth-order Runge Kutta

time stepping scheme, with a time step of 1/36 day.
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Table 5. Parameter values of the imperfect QG-models.

tisTy  rrdefiRy  rrdef2Ry

Truth 2.0 0.1150 0.0720
Model 1 1.5 0.1165 0.0705
Model 2 1.5 0.1130 0.0725
Model 3 24 0.1130 0.0705
Model 4 24 0.1165 0.0725

The training period 7" is 100 time steps, which corresponds to an integration period of about 3 days. Most of the development
of weather systems can be captured within 3 days. The number of iterations is 20. Every iteration a new part of the attractor is
used for training by continuation of the observed trajectory, to get a better sampling of the attractor.

In Table 6 the resulting weights for the different levels are shown. After 20 iterations, the weights are not completely
converged, they differ a few percent per iteration, but there is no increasing or decreasing trend. Note that at the 200 hPa level
the superposition of models consists of model 1 and model 2 solely. The only parameter with imperfections affecting this level
is rrdef1-R,_and the imperfect values of this parameter of model 1 and 4 are the same as well as those of model 2 and 3. Since
every time step in the CPT training every model receives the same state, the tendencies of model 1 and 4 are the same at this
level and the same holds for model 2 and 3. Therefore the corresponding weights of models 3 and 4 are zero since these are

never chosen during the CPT training.

Table 6. Weights of the imperfect QG-models at 200, 500 and 800 hPa.

Model w0 % 1§00

1 0.653 0.217 0.093
2 0.347 0.459 0.235
3 0.000 0.157 0.215
4 0.000 0.167 0.457
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In an additional experiment we left out the imperfect model with the poorest short- and long-term predictability in order to
test the hypothesis that the addition of a relatively bad model can still improve the quality of the supermodel solution. The same
imperfect models are used. The model with the poorest predictability is model 1 (Table 7). so the supermodel is constructed
out of models 2, 3 and 4. Note that these three models still span the same uncertainty range in the three parameters. The same
CPT training phase is applied.

The CPT training provides weights that determine a superposition of models that is capable of following observed trajectories
more closely. But to what extend do the values of these weights matter? Is training really necessary? In order to assess this we
evaluated the quality of a supermodel with equal weights given to each imperfect model in the superposition.
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4.1 Climate measures

As measure for the long-term behavior of the quasi-geostrophic model we choose to compare the geostrophic winds of the
different models. The potential vorticity calculated by the model determines these winds. The true model, imperfect models
and supermodel are integrated over 900 days in a perpetual winter simulation.

As statistical measure (RMSE) the errors in the 900-day average wind strength at the 200 hPa, 500 hPa and 800 hPa level at

each location are averaged over the globe:

N
1
RMSE = | 5 (| = )2

i=1
with ¢ denoting the grid-point, v the zonal wind, v the meridional wind and N the total number of grid-points.

Table 7. The root mean squared error of the wind strength (m/s) over 900 winter daysat-860-hPa. For the true model, the average RMSE is

given. Between brackets, the value is given for which 95% of the RMSE values is below that value.

Model RMSE-wind-strenght800 hPa 500 hPa 200 hPa
Model 1 1.92 1.95 2.27
Model 2 1.80 1.37 2.31
Model 3 1.10 0.90 1.79
Model 4 1.42 1.36 2.06
True model 0.48 (0.65) 0.78 (0.92)  1.66 (2.05)
Supermodel 0.45 0.80 1.77

We take a Monte Carlo approach to assess the uncertainty of the RMSE values. For 98 different initial conditions a trajectory
of 900 days is computed with the true model. Then the RMSE is calculated for these trajectories with respect to one other true
trajectory of observations. The 95% percentile of these values is listed in Table 7. This table reveals that the supermodel with
respect to this climate measure is indistinguishable from the true model. The RMSE wvatae-values of the imperfect models s
are significantly larger. Note that the supermodel was not trained to reproduce the observed mean state but apparently training
on a 3 day time scale is sufficient.

The RMSE values of the supermodel without inclusion of the worst model are comparable with the values of the second best

imperfect model, model 4. The RMSE values of the equally weighted supermodel are even worse.

4.2 Forecast quality

As was done for the Lorenz 63 system, the forecast quality can be measured by calculating the mean squared error between the

true trajectory and the trajectory of a model with a slightly perturbed initial condition and then averaging this over a number
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of forecasts. The mean squared error is taken over all three levels and all spectral coefficients. The number of forecasts is 100
and the distance d between the initial states is 1000 time steps. In Lorenz (1969) it is mentioned that an initial perturbation in
the smallest length scale leads to large errors in all scales after two weeks. For that reason the initial perturbation is chosen in
the order of 10~* as it leads to an almost complete loss of predictability after 14 days.

The forecast quality of the supermodel is not as good as that of the true model, but the supermodel greatly improves the
predictability as compared to the imperfect models (Fig. 6). A-supermodel-thatperfeetly-resembles-the-truth-cannotbe-expeeted

The-forecast-quality-of-the new-supermodel-The forecast quality of the supermodel without inclusion of the worst model

has also improved compared to the imperfect models, but is clearly not as good as the forecast quality of the supermodel
with inclusion of the-this worst model (Fig. 6). Thus inclusion of relatively bad models can still contribute towards a superior

supermodel.

4.3 Useofequal weights

equalweightsupermedel-The equally weighted supermodel turns out to perform also better than the imperfect models (see-Fig.
6), but significantly worse than the supermodel with the weights trained by CPT. Hence, training does add value to the quality

of the supermodel.

5 Conclusions

In this study we have demonstrated that a new training method based on Cross Pollination in Time leads to a dynamical
combination of forecast models (a weighted supermodel) with superior forecast quality and improved climatology. The CPT
training is based on short term trajectories only but it turned out that the errors in the climatology are also greatly reduced.
The results indicate that a supermodel with weights trained by CPT can give significantly better predictions than a supermodel

consisting of the same imperfect models with equal weights.
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Figure 6. Forecast quality of imperfect QG-models (purple), the QG-supermodel (dark blue), the QG-supermodel generated without the
worst imperfect model in forecast quality (medium blue) and the QG-supermodel generated with equal weights (light blue) compared to the
forecast quality of the true QG-model (green).

State-of-the-art models are far more complex than the examples from this paper but in principle the approach is applicable
to state-of-the-art models as well. With an increased number of uncertain parameters, it is to be expected that more imperfect
models are required to construct a supermodel with improved prediction skill. This will increase the amount of computation
time but if during the CPT training the number of trajectories is pruned back to a single prediction, the computational cost of
CPT grows only proportional to the number of imperfect models.

In this study the imperfect models differed in parameter values only but were structurally identical. In reality, imperfect state-
of-the-art weather models differ in structure, generally solving different equations on different grids using different numerical
methods. In this case, methods from data assimilation might be used in order to cross states between models as is done by Du
and Smith (2016). Alternatively, a common state space might be defined with models projecting their states into this common
state space and the CPT training limited to this common state space.

In the case when a supermodel solution hardly improves the prediction skill as compared to the imperfect models, one might
experiment with the introduction of an additional imperfect model that has in some sense the “opposite” error behavior as
compared to the other imperfect models. This additional imperfect model can have worse prediction skill but it might still
contribute to a superior supermodel solution. For the quasi-geostrophic atmosphere model in this study it was demonstrated
that a model with poor forecast quality still contributed towards an improved supermodel.

A remarkable result of this study is that even if only a relatively small part of the attractor is used for training, the method

results in a supermodel with improved climatology. There is evidence in Rodwell and Palmer (2007) that climatological errors

13



develop quickly during the first few days of weather forecasts, implying that a short term training can reduce climatological
errors. If this result carries over to the state-of-the-art models then computationally expensive long climate simulations as in
Shen et al. (2016) can be avoided during trainingane-, Using relatively short integrations only can still improve the climatology
of a supermodelusingrelativelyshortintegrations-only.

As indicated above, there are several ways to apply and further develop the CPT training methodology presented in this study.
It is not only applicable to weather and climate models, but also to numerical models of other complex systems, for example
economical or biological models. Cross Pollination in Time as applied in this paper is a promising approach to combine models

dynamically in order to further improve predictions.
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Appendix A

The supermodeling approach only works well if the imperfect models are on “opposite” sides of the truth. We took this into
account in the choice of the imperfections. The imperfect values of the parameters and the number of imperfect models is based
on the convex hull principle. In one dimension this convex hull principle basically says that if there is one parameter value g,
smaller than the true value ¢ and one parameter value o3 larger than the true value, there are positive weights wy,ws such that
a linear combination wy g + w22 is exactly equal to o In case of Lorenz63, the equations for 4.7 and £ each contain only
one parameter that appears linearly in the equation. Since we apply different weights for the different equations for &,y and
£, per equation we need only two imperfect models to be able to reconstruct exactly the true parameter value with positive
weights. This convex hull principle can be extended to more dimensions:

Definition. Letx',....x" be vectors in R™ and let \1, ..., \;, be nonnegative scalars whose sum is uni
(a) The vector \ix! is said to be a convex combination of the vectors x*, ....x".
(b) The convex hull of the vectors x* ¥ is the set of all convex combinations of these vectors.
In this definition, the vectors x*,7 € 1,...k represent the imperfect parameter values = per model i and )\;.i € 1,...k the
corresponding weights. This convex hull generalizes the ‘in between’ concept for one dimension. To be able to reproduce the

2 ..,xk

n-dimensional vector x, it has to lie inside the convex hull of vectors x!. x

We can write this as a matrix-vector equation, where the last row indicates that the sum of the weights has to be equal to 1 and
the vector x represents the true parameter values:

R - TP A1 T

xs 23 . J:SH Ao Ta
1,2 n+1

T, T gy An T,
11 1 Anit 1

that to be able to reproduce the true parameter vector X, for 1 parameters that appear linearly in one differential equation for
a state variable, n -+ 1 linearly independent vectors of these parameters are needed which form a convex hull around the true
parameter vector.

For the quasi-geostrophic model, the imperfect parameters do not appear linearly in the equations. Therefore choosing the
parameter perturbations such that they form a convex hull around the true parameter values will not necessarily result in a
model that reproduces the truth. Nevertheless, in practice we found that this approach still worked well. In this case, choosing.
the imperfect parameter values on opposite sides of the truth created “opposite” behaviour such that the imperfect models could
compensate for each other.
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