
 

1 
 

A method to preserve trends in quantile mapping bias correction of 1 

climate modeled temperature  2 

 3 

Manolis G. Grillakis1, Aristeidis G. Koutroulis1, Ioannis N. Daliakopoulos1, and Ioannis K. 4 

Tsanis1,2 5 

 6 

[1] {Technical University of Crete, School of Environmental Engineering, Chania, Greece} 7 

[2] {McMaster University, Department of Civil Engineering, Hamilton, ON, Canada} 8 

 9 

Manolis G. Grillakis Ph.D.  10 

Phone: +30.28210.37728, Fax: +30.28210.37855, e-mail: manolis@hydromech.gr 11 

 12 

Aristeidis G. Koutroulis Ph.D. 13 

Phone: +30.28210.37764, Fax: +30.28210.37855, e-mail: aris@hydromech.gr 14 

 15 

Ioannis N. Daliakopoulos Ph.D. 16 

Phone: +30.28210.37800, Fax: +30.28210.37855, e-mail: daliakopoulos@hydromech.gr 17 

 18 

Ioannis K. Tsanis Ph.D. 19 

Phone: +30.28210.37799, Fax: +30.28210.37849, e-mail: tsanis@hydromech.gr 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

correspondence email for proofs: manolis@hydromech.gr 33 

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-53
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 7 June 2017
c© Author(s) 2017. CC BY 3.0 License.



 

2 
 

Abstract 34 

Bias correction of climate variables is a standard practice in Climate Change Impact (CCI) studies. 35 

Various methodologies have been developed within the framework of quantile mapping. However, 36 

it is well known that quantile mapping may significantly modify the long term statistics due to the 37 

time dependency that the temperature bias. Here, a method to overcome this issue without 38 

compromising the day to day correction statistics is presented. The methodology separates the 39 

model temperature signal into a normalized and a residual component relatively to the molded 40 

reference period climatology, in order to adjust the biases only for the former and preserve intact 41 

the signal of the later. The results show that the adoption of this method allows for the preservation 42 

of the originally modeled long-term signal in the mean, the standard deviation and higher and 43 

lower percentiles of temperature. The methodology is tested on daily time series obtained from 44 

five Euro CORDEX RCM models, to illustrate the improvements of this method. 45 
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1 Introduction 68 

Climate model output consist the primary source of information used to quantify the effect of the 69 

foreseen anthropogenic climate change on natural systems. One of the most common and 70 

technically sound practices in Climate Change Impact (CCI) studies is to calibrate impact models 71 

using the most suitable observational data and then to replace them with the climate model data 72 

in order to assess the effect of potential changes in the climate regime. Often, raw climate model 73 

data cannot be used in CCI models due to the presence of biases in the representation of regional 74 

climate (Christensen et al., 2008; Haerter et al., 2011). In fact, hydrological CCI studies outcome 75 

have been reported to become unrealistic without a prior adjustment of climate forcing biases 76 

(Hansen et al., 2006; Harding et al., 2014; Sharma et al., 2007). These biases may be attributed 77 

to a number of sources such as the imperfect representation of the physical processes within the 78 

model code and the coarse spatial resolution that do not permit the accurate representation of 79 

small-scale processes. Furthermore, in some cases, climate model tuning for global projections 80 

focuses on the adequate representation of feedbacks between processes and hence the realistic 81 

depiction of a variable, such as temperature, against observations is sidelined (Hawkins et al., 82 

2016). 83 

A number of statistical bias correction methods have been developed and successfully applied in 84 

CCI studies (e.g. Grillakis et al., 2013; Haerter et al., 2011; Ines and Hansen, 2006; Teutschbein 85 

and Seibert, 2012). Their main task is to adjust the statistical properties of climate simulations to 86 

resemble those of observations, in a common climatological period. A commonly used type of 87 

procedure to accomplish this is using a Transfer Function (TF) which minimizes the difference 88 

between the cumulative density function (CDF) of the climate model output and that of the 89 

observations, a process also referred to as quantile mapping. As a result of quantile mapping, the 90 

reference (calibration) period’s adjusted data are statistically closer, and sometimes near-identical 91 

to the observations. Hence the statistical outcome of an impact model run using observational 92 

data is likely to be reproduced by the adjusted data. The good performance of statistical bias 93 

correction methods in the reference period is well documented (Grillakis et al., 2011; Grillakis et 94 

al., 2013; Ines and Hansen, 2006; Papadimitriou et al., 2015). The procedure however overlooks 95 

the time dependency of the biases, i.e the unequal effect of the TF to the varying over time CDF. 96 

An indicative example is presented in Figure 1 where modeled temperature data have a mean 97 

bias of 2.49 oC in the reference period (Figure 1a) relatively to the observations. This mean bias 98 

is expressed by the average horizontal distance between the TF and the bisector of the central 99 

plot. The left histogram illustrates the reference period modeled data for 1981-2010. The 100 

histogram at the bottom is derived from observational data. The histogram on the right is derived 101 
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from a moving 30-year period between 1981 and 2098. Finally the rightmost histogram shows the 102 

difference between the reference period and the moving 30-year period. The red mark shows the 103 

theoretical change in the average correction applied by the TF, due to the changes in the projected 104 

temperature histogram. Hence, the average correction applied for the 2068-2097 period reaches 105 

3.85 oC, significantly higher than the reference period’s bias (Figure 1b). The time-dependency of 106 

the correction magnitude introduces a long term signal distortion in the corrected data. In the 107 

quantile mapping based correction methodologies in which the TF distance from the bisector is 108 

variable, this effect is unavoidable. Nevertheless, in cases where the TF retains a relatively 109 

constant distance to the bisector (i.e. parallel to the bisector), the trend of the corrected data 110 

remains similar to the raw model data regardless of the temporal change in the model data 111 

histogram.  112 

 113 

 114 

Based on the previous example, the time extrapolation of the TF use is regarded as a leap of faith 115 

that may lead to a false certainty about the robustness of the adjusted projection. Τhis may 116 

significantly change the original model derived long-term trend or other higher moments of the 117 

climate variable statistics that eventually change the long-term signal of the climate variable. In 118 

their work on distribution based scaling (DBS) bias correction, Olsson et al. (2015) showed that 119 

their methodology might alter the long-term temperature trends, attributing the phenomenon in 120 

the severity of the biases in the mean or the standard deviation between the uncorrected 121 

temperatures and the observations. Maraun, (2016) discuss on whether the change in the trend 122 

is a desired feature of bias correction, concluding that it is case specific, depending on the 123 

skillfulness of a model to simulate the correct long term signal. In the case of CCI studies this 124 

implies that climate model data is assessed for its skill to well represent the trend, which does not 125 

consist a common practice. A possible but indirect solution to this is described in Maurer and 126 

Pierce, (2014) who study the change in precipitation trend over an ensemble of atmospheric 127 

general circulation model (AGCM). They concluded that, while individual quantile mapping 128 

corrected AGCM data may significantly modify the signal of change, a relatively large ensemble 129 

estimation diminished the problem due to the cancel out of the individual model trend changes. 130 

Li et al. (2010) present a quantile mapping method to adjust temperature biases taking into 131 

account the differences of the future and reference period distributions. A drawback of the method 132 

is that the difference between the two periods’ distributions depends on the future period length. 133 

In their work, Hempel et al. (2013) propose a methodology to resolve the trend changing issue, 134 
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by preserving the absolute changes in monthly temperature, and relative changes in monthly 135 

values of precipitation. A conceptual drawback of this approach that  it maps anomalies instead 136 

of absolute values, indicating that specific correction values are attached to each temperature 137 

anomaly. A similar additive for temperature and multiplicative for precipitation approach was also 138 

followed by (Pierce et al., 2015). 139 

In this study, we present a methodology to conserve the long term statistics of the climate model 140 

data in quantile mapping. The methodology considers the separation of the temperature signal 141 

relatively to the raw data reference period, producing a normalized and a residuals data stream. 142 

The residuals include the gradual changes in the signal and potential non-stationary changes. 143 

The quantile mapping bias correction is then applied to the normalized time series. Finally, the 144 

residual components are again merged to the bias corrected time series to form the finally 145 

corrected time series. The methodology is tested along with a generalized version of the Multi-146 

segment Statistical Bias Correction (MSBC) quantile mapping methodology (Grillakis et al., 2013). 147 

The methodology takes the form of a pre- and post-processing module that can be applied along 148 

with different statistical bias correction methodologies. 149 

 150 

2 Methods 151 

2.1 Residual separation 152 

The statistical difference of each individual year’s simulated data, comparing to the average 153 

reference period simulated data is identified as residuals. These are estimated between the CDF 154 

of each year’s modeled climate data and the CDF of the entire reference period of the model data. 155 

Let 𝑆𝑅 be the reference period model data and 𝑆𝑖 the climate data for year 𝑖, then the normalized 156 

data 𝑆𝑖
𝑁  for year 𝑖 are estimated by transferring each year’s data onto the average reference 157 

period CDF through a transfer function 𝑇𝐹𝑆𝑖
 estimated annually. This can be formulated as Eq.(1). 158 

 159 

𝑆𝑖
𝑛 = 𝑇𝐹𝑆𝑅

−1 (𝑇𝐹𝑆𝑖
(𝑆𝑖)) Eq. (1) 

 160 

The difference between the original model data 𝑆𝑖 and the normalized data 𝑆𝑖
𝑁 are the residual 161 

components 𝑆𝑖
𝐷 of the time series (Eq. (2)). 162 

 163 

𝑆𝑖
𝐷 = 𝑆𝑖 −  𝑆𝑖

𝑛 Eq. (2) 

 164 
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The original model data  𝑆𝑖 can be reproduced by adding back the residuals 𝑆𝑖
𝐷 to the normalized 165 

data 𝑆𝑖
𝑛. After the separation, the normalized climate model data are statistically bias corrected 166 

following a suitable methodology. The residuals are preserved in order later to be added again to 167 

the bias corrected time series. We refer to the described method as Normalization Module (NM) 168 

to hereafter lighten the nomenclature of the paper. The normalization procedure is performed in 169 

annual basis, as it consists an obvious periodicity to use in the case of temperature, even if it is 170 

not so well defined in tropics. The underlying assumption of the NM procedure is that it assumes 171 

that there are no major changes in the reference period data, an assumption that can hardly fall 172 

short due to the usually short length of the reference period. 173 

 174 

2.2 Bias correction 175 

Here, the NM is applied along with a modification of the MSBC algorithm that is presented in 176 

Grillakis et al. (2013). This methodology follows the principles of quantile mapping correction 177 

techniques and was originally designed and tested for GCM precipitation adjustment. The method 178 

partitions the CDF data into discrete segments and an individual quantile mapping correction is 179 

applied to each segment, achieving a better fitted transfer function. Here the methodology is 180 

modified to use linear functions instead of the gamma functions used in the original methodology, 181 

in order to facilitate potential negative temperature values but also as a known technique in 182 

quantile mapping, as it has also been used elsewhere (Themeßl et al., 2011). An indicative 183 

example is shown in Figure 2, where the CDFs are split into discrete segments and linear 184 

functions are fit to each of them. In Figure 2, 𝑝 symbolizes the cumulative probability and 𝑠 is the 185 

slope of the linear function. Then the corrected temperature for each temperature value of the 186 

specific segment is estimated as in Eq. (3). 187 

 188 

𝑇𝑐𝑜𝑟𝑟
𝑛 = 𝑠𝑜𝑏𝑠

𝑛 ∗ (
𝑇𝑟𝑎𝑤

𝑛 − 𝑏𝑟𝑎𝑤
𝑛

𝑠𝑟𝑎𝑤
𝑛 ) + 𝑏𝑜𝑏𝑠

𝑛  
Eq. (3) 

 

 189 

The optimal number of the segments is estimated by Schwarz Bayesian Information Criterion 190 

(SBIC) to balance between complexity and performance. Additionally, the upper and lower edge 191 

segments are explicitly corrected using the average difference between the reference period of 192 

the raw model data and the observations (Figure 2 ΔΤ). This provides robustness, avoiding 193 

unrealistic temperature values at the edges of the model CDF. The bias correction methodology 194 

modification has been already used in the Bias Correction Intercomparison Project (BCIP) (Nikulin 195 
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et al., 2015), while produced adjusted data have been used in a number of CCI studies 196 

(Daliakopoulos et al., 2016; Grillakis et al., 2016; Koutroulis et al., 2016; Papadimitriou et al., 197 

2016). As the MSBC methodology belongs to the parametric quantile mapping techniques, it 198 

shares their advantages and drawbacks. A comprehensive shakedown of advantages and 199 

disadvantages of quantile mapping in comparison to other methods can be found in Maraun et al. 200 

(2010) and Themeßl et al. (2011). A step by step example of the multisegment correction 201 

procedure is provided in Appendix A of (Grillakis et al., 2013).  202 

 203 

3 Case study area and data 204 

To examine the effect of NM on the bias correction on a timeseries, the Hadley Center Central 205 

England Temperature (HadCET - Parker et al., 1992) observational dataset was considered to 206 

adjust the simulated output from the earth system model MIROC-ESM-CHEM (Hasumi and 207 

Emori, 2004) historical emissions run between 1850 and 2005 for Central England. This particular 208 

case study was chosen due to the large observational record (the longest instrumental record of 209 

temperature in the world) that is available for central England, i.e. the triangular area of the United 210 

Kingdom enclosed by Lancashire, London and Bristol. Discussion about dataset related 211 

uncertainties can be found in Parker et al., (1992) and Parker and Horton (2005). The Klemes 212 

(1986) split sample test methodology was adopted for verification. Split sample is the most 213 

common type of test used for the validation of model efficiency. The methodology considers two 214 

periods of calibration and validation, between the observed and modeled data. The first period is 215 

used for the calibration, while the second period is used as a pseudo-future period in which the 216 

adjusted data are assessed against the observations. A drawback of the split sample test in bias 217 

correction validation operations is that the remaining bias of the validation period is a function of 218 

the bias correction methodology deficiency and the model deficiency itself to describe the 219 

validation period’s climate, in aspects that are not intended to be bias corrected. That said, a 220 

skillful bias correction method should deal well in that context, as model “democracy” (Knutti, 221 

2010), i.e. the assumption that all model projections are equally possible, is common in CCI 222 

studies with little attention to be given to the model selection. In the specific application and in 223 

order to resemble a typical CCI study, data between 1850 and 1899 serve as calibration period, 224 

while the rest of the data between 1900 and 2005 is used as pseudo-future period for the 225 

validation. Finally, the bias correction results of the two procedures, with (BC-NM) and without 226 

(BC) the normalization module, were compared against the validation period observations.  227 

Furthermore, to expand the methodology assessment in regional scale, the split sample test is 228 

adopted to assess the efficiency of the two procedures in a pan European scale. In order to scale 229 
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up the split sample test, the k-fold cross validation test (Geisser, 1993) is employed. The 230 

procedure has been proposed for evaluating the performance of bias correction procedures in 231 

(Maraun, 2016). In k-fold cross validation test, the data is partitioned into k equal sized folds. Of 232 

the k folds, one subsample is retained each time as the validation data for testing the model, and 233 

the remaining k-1 subsamples are used as calibration data. In a final test, the procedures are 234 

applied on a long-term transcend climate projection experiment to assess their effect in the long-235 

term attributes of the temperature in a European scale application.  236 

Temperature data from the European division of Coordinated Regional Downscaling Experiment 237 

(CORDEX), openly available through the Earth System Grid Federation (ESGF), are considered. 238 

Additional information about the Euro - CORDEX domain can be found on the CORDEX web 239 

page (http://wcrp-cordex.ipsl.jussieu.fr/). Data from five RCM models (Table 1) with 0.44o spatial 240 

resolution and daily time step between 1951-2100 are used. The projection data are considered 241 

under the Representative Concentration Pathway (RCP) 8.5, which projects an 8.5 W m-2 average 242 

increase in the radiative forcing until 2100. The European domain CORDEX simulations have 243 

been evaluated for their performance in previous studies (Kotlarski et al., 2014; Prein et al., 2015). 244 

The EOBSv12 temperature data was used (Haylock et al., 2008). Discussion about the 245 

applicability of EOBS to compare temperature of RCMs control climate simulations can be found 246 

in Kyselý and Plavcová (2010). Figure 3 shows the 1951-2005 daily temperature average and 247 

standard deviation for the five RCMs of Table 1. The RCMs’ mean bias ranges between about -2 248 

oC and 1 oC relatively to the EOBS dataset. The positive mean bias in all RCMs is mainly seen in 249 

Eastern Europe, while the same areas exhibit negative bias in standard deviation. Some of the 250 

bias is however attributed to the ability of the observational dataset to represent the true 251 

temperature.  252 

For the k-fold cross validation, the RCM data between 1951-2010 are split into 6 ten-year sections, 253 

comprising a 6-fold, 5 RCM ensemble experiment of Figure 4. Each section is validated once by 254 

using the rest five sections for the calibration. A total number of 30 tests are conducted using 255 

each procedure.  256 

For the transient experiment, the RCM data between 1951 and 2100 are considered, using the 257 

1951-2010 as calibration to correct the 1951-2100 data. 258 

 259 

4 Results and discussion 260 

The results of the split sample test on the central England example are presented in Figure 5. In 261 

Figure 5a the separation of the raw data performed by the NM into residuals and normalized raw 262 

data in annual aggregates is shown. The normalized time series do not exhibit any trend or 263 
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significant fluctuation in the annual aggregates, since the normalization is performed at annual 264 

basis, while the long-term trend and the variability is contained in the residual time series. In 265 

Figure 5b, annual aggregates obtained via the above two procedures are compared to the raw 266 

data and the observations. Results show that both procedures adjust the raw data to better fit the 267 

observations in the calibration period 1850-1899. In the validation period, both procedures 268 

produce similar results, but the BC-NM long-term linear trend is slightly lower than that of the BC 269 

results. While the latter slope is closer to the observations’ linear trend, the former is closer to the 270 

raw data trend (Table 2). The persistence of the long-term trend is a desirable characteristic of 271 

the NM procedure as the GCM long-term moments were not distorted by the correction. However, 272 

the wider deviation of the BC-NM trend relatively to the BC depicts the skill of the GCM to simulate 273 

the observations’ respective trend. Figure 5c shows that the BC-NM output resemble the raw data 274 

histograms in shape, but are shifted in their mean towards the observations. A small decrease in 275 

the variability can also be observed in the BC-NM but consists a substantially smaller disturbance 276 

relatively to the BC. The transfer of the mean with a simultaneous preservation of the larger part 277 

of the variability consists a nearly idealized behavior for the adjusted data, as the distribution of 278 

the annual temperature averages are retained after the correction. Similar results generated on 279 

daily data (Figure 5d) show that both procedures adjust the calibration and validation histograms 280 

in the same degree towards the observations. This can also be verified by the mean, the standard 281 

deviation and the 10th and 90th percentile of the daily data (Table 2). An early concluding remark 282 

about the NM is that it improved the long-term statistics of the adjusted data towards the climate 283 

model signal, without sacrificing the daily scale quality of the correction. 284 

In Figure 6, the results of the cross validation test of the bias correction on the Euro – CORDEX 285 

data with and without the use of NM are shown, in terms of mean temperature. The mean of the 286 

raw temperature data and the observations are respectively equal for their calibration and the 287 

validation periods due to the design of the experiment. The bias correction results show that both 288 

correction procedures with and without the NM, appropriately meet the needs in terms of the 289 

mean value. The differences between the calibration and validation averages with the 290 

corresponding observations show consistently low residuals. A significant difference between the 291 

two tests is that the use of the NM increases the residuals due to the exclusion of the potentially 292 

non-stationary components from the correction process. Nonetheless, the scale of the residuals 293 

is considered below significance in the context of CCI studies, as it ranges only up to 0.035 oC. 294 

The increased residuals of the NM are the trade off to the preservation of the model long-term 295 

climate change signal, in the transient experiment. Figure 7 shows the long-term change in the 296 

signal of the mean temperature, for the 10th and 90th percentiles (estimated on annual basis). The 297 
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trends are estimated by linear least square regression and are expressed in oC per century. The 298 

use of the NM profoundly better preserved the long-term trend relatively to the raw model data in 299 

all three cases. Without using the NM module, the distortion in the mean annual temperature trend 300 

lies between -0.5 and 0.5 degrees per century, while the distortion in the 10th and 90th percentiles 301 

are apparently more profound. Additionally, the northeastern Europe’s 10th and 90th percentiles 302 

reveal a widening of the temperature distribution when NM is not used. The widening is attributed 303 

to the considerable negative trend in the p10 and the considerable positive p90 trend in the same 304 

areas. The magnitude of the distortion is considerable and can potentially lead to CCI 305 

overestimation. In contrast, with the use of NM the change in the trend is reduced in most of the 306 

Europe’s area.  307 

The impact of NM on the standard deviation is also significant. Figure 8 shows the evolution of 308 

the standard deviation of the daily data for each model, in the cases of raw data and the bias 309 

corrected data using the BC and the BCNM. The standard deviation is estimated for each grid point 310 

and calendar year, and is averaged across the study domain. The results show that the standard 311 

deviation of the adjusted data differ from the respective standard deviations of the raw data, in 312 

both adjustment approaches. This is an expected outcome, as raw model data standard 313 

deviations differ from the respective observed data standard deviation (Figure 8 d, e). However, 314 

the standard deviation differences between BCNM and the raw data (Figure 8 f) is significantly 315 

more stable than that the respective differences from BC (Figure 8 g), meaning that the signal of 316 

standard deviation is better preserved and does not inflate with time in the former case. 317 

Additionally, the variation of the standard deviations time series exhibits lower fluctuations. 318 

 319 

5 Conclusions 320 

This study elaborates with the issue of the distortion of the long term statistics in quantile mapping 321 

statistical bias correction relatively to the raw model data. An extra processing step is presented, 322 

that can be applied along with quantile mapping statistical bias correction techniques. This step, 323 

namely NM, splits the original data into two parts, a normalized one that is bias adjusted using 324 

quantile mapping, and the residuals part that is added to the former after the bias correction. The 325 

methodology is tested and validated from several points of view, leading to some key remarks 326 

about its added value. First, it is shown that the use of the NM module results in the long-term 327 

temperature trend preservation of the mean temperature change, but also of the trend in the 328 

higher and lower percentiles. Furthermore, the examination of the standard deviation temporal 329 

evolution show that is better retained relatively to the raw data, as the exclusion of the residuals 330 

form the correction minimizes the inflation of the variance. Additionally, the inter-annual variability 331 
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of the raw data is preserved relatively to the simple quantile mapping, which consists an important 332 

feature for climate impact studies that involve carbon cycle simulations (Rubino et al., 2016). As 333 

a drawback, the corrected temperature using the NM is found to retain small portions of the 334 

biases, which however is shown that is rather low to virtually affect an CCI study results. 335 

The main advantage of the proposed method compared to other trend preserving methods is that 336 

the preservation of the long-term mean trend is not the objective but rather an ineluctable 337 

consequence of normalization before the bias correction process. Additionally the normalization 338 

is performed in annual basis, hence the projection period results are not affected by the length of 339 

the projection period. Nevertheless, it has to be stressed that a range of issues, such as the 340 

disruption of the physical consistency of climate variables, the mass/energy balance and the 341 

omission of correction feedback mechanisms to other climate variables (Ehret et al., 2012) have 342 

not been addressed in this work despite the existence of methods that preserve consistency 343 

between specific variables (Sippel et al., 2016). Finally, one should bare in mind that climate data 344 

quality prime driver is the climate model skillfulness itself. Statistical post processing methods like 345 

bias correction cannot add new information to the data but rather add usefulness to it, depending 346 

on the needs of each application.  347 
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List of Figures 468 

Figure 1: Τhe transfer function (heavy black line) between observed (bottom histograms) and 469 

modelled (histograms on the left) for the reference period (1981-2010) is used to adjust bias of a 470 

30-year moving window starting from 1981-2010 to 2068-2097. The rightmost plot shows the 471 

residual histogram after bias correction. The change in the average correction (red mark) on the 472 

TF in comparison to the reference period mean correction (square) is shown. The animated 473 

version provided in the supplemental information shows the temporal evolution of the bias as the 474 

30-year time window moves on the projection data. Data were obtained from ICHEC-EC-EARTH 475 

r12i1p1 SMHI-RCA4_v1 RCM model of Euro-CORDEX experiment (0.11 degrees resolution) 476 

simulation under the representative concentration pathway of RCP85, for the location Chania 477 

International Airport (lon=24.08, lat=35.54). Observational data were obtained from the E-OBS 478 

v14 dataset (Haylock et al., 2008) of 0.25 degrees spatial resolution. 479 

 480 

Figure 2: MSBC methodology on temperature correction using linear functions (borrowed from 481 

Grillakis et al., (2013); modified) in one of the data segments. 482 

 483 

Figure 3: Mean temperature of the EOBS (first line) and for each RCM model (second line) for 484 

the reference period 1951-2005. The long term average difference (DIFF) between individual 485 

models and EOBS are shown in the third line. The last column shows the ensemble mean of each 486 

line. Different color maps are provided for the MEAN panels (1st and 2nd line) and the DIFF (3rd 487 

line). Lines 4, 5, 6 are similar to 1 2 and 3 but for standard deviation. 488 

 489 

Figure 4: The 6-fold cross validation scheme with the calibration (C) and the validation (V) periods 490 

of each fold. Each experiment (Exp) was replicated for all five RCM models. 491 

 492 

Figure 5: a) annual averages of temperature of the raw model data, the observations and the bias 493 

correction with and without the NM, for the calibration period 1850 – 1899 (solid lines) and the 494 

validation period 1900-2005 (dashed). Probability densities of annual (c) and of daily means (d). 495 

 496 

Figure 6: Mean surface temperature of the cross validation test. Panels a and b show the 497 

ensemble mean of the 5 raw models data and the EOBS respectively. Panels c and d show the 498 

ensemble mean of the 5 RCM models after the correction with and without the NM module 499 

respectively, for the calibration periods’ data. Panels e and f show the difference of the c and d 500 
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panels for the EOBS, respectively, Panels g to j are the same as c to f but for the validation 501 

periods’ data. 502 
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Figure 7: Ensemble long-term linear trend of the 5 RCM models’ data. The trend is estimated on 504 

the  mean temperature (top) and the 10th (mid) and 90th (bottom) percentiles in annual basis. 505 

The change in the corrected data trend relatively to the raw data trend is provided for the BC 506 

(middle panels) and the BCNM data (right panels). All values are expressed as degrees per 507 

century [oC/100 y]. 508 

 509 

Figure 8: Average of standard deviations for the study domain, for the raw data (a), the BC (b) 510 

and the BCNM (c) for the different models and the observations, in annual basis. Differences 511 

between the raw and the bias corrected standard deviations are shown in (d) and (e). Plots (f) 512 

and (g) correspond to the same data as (d) and (e), but normalized for their 1951-2005 mean. 513 
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Table 1: RCM models used in this experiment. 516 
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Table 2: Statistical properties of the calibration and the validation periods for the two bias 518 

correction procedures. Variables denoted with * are estimated on annual aggregates. SD stands 519 

for standard deviation and pn for the nth quantile. 520 
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Figure 1: Τhe transfer function (heavy black line) between observed (bottom histograms) and 524 

modelled (histograms on the left) for the reference period (1981-2010) is used to adjust bias of a 525 

30-year moving window starting from 1981-2010 to 2068-2097. The rightmost plot shows the 526 

residual histogram after bias correction. The change in the average correction (red mark) on the 527 

TF in comparison to the reference period mean correction (square) is shown. The animated 528 

version provided in the supplemental information shows the temporal evolution of the bias as the 529 
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 536 

Figure 2: MSBC methodology on temperature correction using linear functions (borrowed from 537 

Grillakis et al., (2013); modified) in one of the data segments.  538 
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 539 

Figure 3: Mean temperature of the EOBS (first line) and for each RCM model (second line) for the 540 

reference period 1951-2005. The long term average difference (DIFF) between individual models 541 

and EOBS are shown in the third line. The last column shows the ensemble mean of each line. 542 

Different color maps are provided for the MEAN panels (1st and 2nd line) and the DIFF (3rd line). 543 

Lines 4, 5, 6 are similar to 1 2 and 3 but for standard deviation. 544 
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 546 

Figure 4: The 6-fold cross validation scheme with the calibration (C) and the validation (V) periods 547 

of each fold. Each experiment (Exp) was replicated for all five RCM models.  548 
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 550 

Figure 5: a) annual averages of temperature of the raw model data, the observations and 551 

the bias correction with and without the NM, for the calibration period 1850 – 1899 (solid 552 

lines) and the validation period 1900-2005 (dashed). Probability densities of annual (c) 553 

and of daily means (d). 554 
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 556 

Figure 6: Mean surface temperature of the cross validation test. Panels a and b show the 557 

ensemble mean of the 5 raw models data and the EOBS respectively. Panels c and d show the 558 

ensemble mean of the 5 RCM models after the correction with and without the NM module 559 

respectively, for the calibration periods’ data. Panels e and f show the difference of the c and d 560 

panels for the EOBS, respectively, Panels g to j are the same as c to f but for the validation 561 

periods’ data. 562 

  563 

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-53
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 7 June 2017
c© Author(s) 2017. CC BY 3.0 License.



 

23 
 

 564 

Figure 7: Ensemble long-term linear trend of the 5 RCM models’ data. The trend is estimated on 565 

the  mean temperature (top) and the 10th (mid) and 90th (bottom) percentiles in annual basis. The 566 

change in the corrected data trend relatively to the raw data trend is provided for the BC (middle 567 

panels) and the BCNM data (right panels). All values are expressed as degrees per century [oC/100 568 

y]. 569 

 570 
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 572 

Figure 8: Average of standard deviations for the study domain, for the raw data (a), the BC (b) and 573 

the BCNM (c) for the different models and the observations, in annual basis. Differences between 574 

the raw and the bias corrected standard deviations are shown in (d) and (e). Plots (f) and (g) 575 

correspond to the same data as (d) and (e), but normalized for their 1951-2005 mean.  576 
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Table 1: RCM models used in this experiment. 578 

# {GCM}_{realization}_{RCM} 

1 CNRM-CM5_r1i1p1_SMHI-RCA4_v1 

2 EC-EARTH_r12i1p1_SMHI-RCA4_v1 

3 EC-EARTH_r3i1p1_DMI-HIRHAM5_v1 

4 IPSL-CM5A-MR_r1i1p1_SMHI-RCA4_v1 

RCA4_v1RCA4_v1RCA4_v1 5 MPI-ESM-LR_r1i1p1_SMHI-RCA4_v1 

 579 
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Table 2: Statistical properties of the calibration and the validation periods for the two bias 581 

correction procedures. Variables denoted with * are estimated on annual aggregates. SD stands 582 

for standard deviation and pn for the nth quantile. 583 

 Parameter RAW Normalized Residuals OBS BC BCNM 

C
a
lib

ra
ti
o
n
 Slope [oC/10yr]* -0.067 0.000 -0.067 -0.026 -0.086 -0.065 

Mean [oC] 11.2 11.2 0.0 9.1 9.2 9.2 

SD [oC] 4.5 4.6 0.9 5.3 5.3 5.3 

p10 [oC] 5.7 5.7 -0.9 2.1 2.2 2.2 

p90 [oCo] 17.4 17.2 1.0 16.3 16.3 16.2 

V
a
lid

a
ti
o
n

 Slope [oC/10yr]* 0.052 0.000 0.051 0.076 0.062 0.051 

Mean [oC] 11.3 11.2 0.1 9.6 9.3 9.3 

SD [oC] 4.7 4.6 0.9 5.2 5.5 5.4 

p10 [oC] 5.6 5.7 -0.9 2.7 2.0 2.0 

p90 [oC] 17.4 17.2 1.0 16.3 16.3 16.2 

 584 

 585 
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